JP2000234771A - Secondary refrigerant heat-storing air-conditioning system - Google Patents

Secondary refrigerant heat-storing air-conditioning system

Info

Publication number
JP2000234771A
JP2000234771A JP11039277A JP3927799A JP2000234771A JP 2000234771 A JP2000234771 A JP 2000234771A JP 11039277 A JP11039277 A JP 11039277A JP 3927799 A JP3927799 A JP 3927799A JP 2000234771 A JP2000234771 A JP 2000234771A
Authority
JP
Japan
Prior art keywords
heat exchanger
primary
heat
way valve
heat storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11039277A
Other languages
Japanese (ja)
Inventor
Mitsuharu Matsuo
光晴 松尾
Shozo Funakura
正三 船倉
Noriho Okaza
典穂 岡座
Yuji Yoshida
雄二 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP11039277A priority Critical patent/JP2000234771A/en
Publication of JP2000234771A publication Critical patent/JP2000234771A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Other Air-Conditioning Systems (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a secondary refrigerant heat-storing air-conditioning system for performing efficient operation even if a hydrocarbon refrigerant, an ammonium refrigerant, or the like is used by performing the operation of a heat exchange operation between cycles when a primary-side performs an operation in an air-conditioning operation mode. SOLUTION: In a primary-side refrigeration cycle, a heat exchanger 2 for primary- side outside and a heat exchanger 4 for primary-side inside are used as a condenser and an evaporator, respectively, and a primary refrigerant flows in the order of a compressor 1, a primary-side first three-way valve 7, a primary side heat exchanger 2 for outside, a first inflation valve 5, a primary-side second three-way valve 8, a second inflation valve 6, the primary-side heat exchanger 4 for inside, a first four-way valve 9, and the compressor 1 (air-conditioning operation mode). In a secondary-side transport cycle, chill is received by a secondary-side heat exchanger 12 for inside via the primary-side heat exchanger 4 for inside, and a secondary refrigerant flows in the order of the secondary-side heat exchanger 4 for inside, a circulation pump 13, a secondary-side secondary three-way valve 16, and the secondary-side heat exchanger 12 for inside (heat-exchange operation mode between cycles).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、二次冷媒蓄熱空調
システムに関するものであり、特に、一次冷媒には可燃
性が高い炭化水素系冷媒や毒性が強いアンモニア系冷媒
等を使用し、二次冷媒には水およびブラインのような可
燃性や毒性が実質的にない冷媒を用いた二次冷媒蓄熱空
調システムに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a secondary refrigerant thermal storage air conditioning system, and more particularly to a secondary refrigerant using a highly flammable hydrocarbon refrigerant or a highly toxic ammonia refrigerant as a primary refrigerant. The present invention relates to a secondary refrigerant thermal storage air conditioning system using a refrigerant having substantially no flammability or toxicity such as water and brine.

【0002】[0002]

【従来の技術】近年地球温暖化が急速に注目されるよう
になり、地球温暖化に大きな影響を与えるHFC系冷媒
に代わる自然系冷媒を用いた空調システムの開発が急が
れている。特に、オゾン層破壊もなく、地球温暖化にも
影響を与えない炭化水素系冷媒やアンモニア系冷媒を用
いた冷凍冷蔵庫や空調システムの開発が有望視されてい
る。
2. Description of the Related Art In recent years, global warming has received a great deal of attention, and the development of air conditioning systems using natural refrigerants instead of HFC-based refrigerants, which greatly affect global warming, is urgently required. In particular, the development of refrigerators and air-conditioning systems using hydrocarbon-based refrigerants and ammonia-based refrigerants that do not cause ozone layer destruction and do not affect global warming is expected to be promising.

【0003】炭化水素系冷媒の可燃性やアンモニア系冷
媒の毒性などの危険性を回避する方法として従来から採
用されている技術としては、二次冷媒空調システムがあ
る。図17に、従来の二次冷媒システムの基本構成図を
示す。図17において、一次冷媒は炭化水素系冷媒のプ
ロパンを、二次冷媒は水を封入しており、1は圧縮機、
2は一次側外部用熱交換器、4は一次側内部用熱交換
器、5は第1の膨張弁、9は第1の四方弁、12は二次
側内部用熱交換器、13は循環ポンプ、14は二次側室
内用熱交換器をそれぞれ示す。また、図17における矢
印は、冷房運転時の一次冷媒および二次冷媒の流れを示
す。
[0003] A secondary refrigerant air-conditioning system is a technique that has been conventionally employed as a method for avoiding the dangers such as the flammability of hydrocarbon-based refrigerants and the toxicity of ammonia-based refrigerants. FIG. 17 shows a basic configuration diagram of a conventional secondary refrigerant system. In FIG. 17, the primary refrigerant encapsulates propane, a hydrocarbon-based refrigerant, and the secondary refrigerant encapsulates water.
2 is a primary-side external heat exchanger, 4 is a primary-side internal heat exchanger, 5 is a first expansion valve, 9 is a first four-way valve, 12 is a secondary-side internal heat exchanger, and 13 is a circulation unit. A pump 14 indicates a secondary-side indoor heat exchanger. The arrows in FIG. 17 indicate the flows of the primary refrigerant and the secondary refrigerant during the cooling operation.

【0004】冷房運転時には、一次側外部用熱交換器2
を凝縮器、一次側内部用熱交換器4を蒸発器として、圧
縮機1、第1の四方弁9、一次側外部用熱交換器2、第
1の膨張弁5、一次側内部用熱交換器4、第1の四方弁
9、圧縮機1の順に流れ、二次冷媒は二次側内部用熱交
換器12、二次側室内用熱交換器14、循環ポンプ13
の順に流れ、暖房運転時には一次冷媒は、一次側外部用
熱交換器2を蒸発器、一次側内部用熱交換器4を凝縮器
として、圧縮機1、第1の四方弁9、一次側内部用熱交
換器4、第1の膨張弁5、一次側外部用熱交換器2、第
1の四方弁9、圧縮機1の順に流れ、二次冷媒は二次側
内部用熱交換器12、二次側室内用熱交換器14、循環
ポンプ13の順に流れる。
At the time of cooling operation, the primary-side external heat exchanger 2
, A condenser 1, a first four-way valve 9, a primary-side external heat exchanger 2, a first expansion valve 5, a primary-side internal heat exchanger The secondary refrigerant flows through the heat exchanger 4, the first four-way valve 9, and the compressor 1 in this order. The secondary-side internal heat exchanger 12, the secondary-side indoor heat exchanger 14, and the circulation pump 13
During the heating operation, the primary refrigerant flows through the compressor 1, the first four-way valve 9, the primary side internal heat exchanger 2 as an evaporator and the primary side internal heat exchanger 4 as a condenser. Heat exchanger 4, the first expansion valve 5, the primary external heat exchanger 2, the first four-way valve 9, the compressor 1 flows in this order, the secondary refrigerant, the secondary internal heat exchanger 12, It flows in the order of the secondary side indoor heat exchanger 14 and the circulation pump 13.

【0005】このとき、一次側内部用熱交換器4と二次
側内部用熱交換器12は互いに熱交換を行うことで一次
冷媒の熱を二次冷媒に伝え、二次冷媒を介して熱を室内
へ搬送して空調を行う。
At this time, the primary side internal heat exchanger 4 and the secondary side internal heat exchanger 12 perform heat exchange with each other to transfer the heat of the primary refrigerant to the secondary refrigerant, and to transfer heat through the secondary refrigerant. Is transported indoors to perform air conditioning.

【0006】また、その一方で、地球温暖化にも影響を
与えない炭化水素系冷媒やアンモニア系冷媒等の新規冷
媒を用いながらも、エネルギー効率(COP)の競争も
激化しており、安全で高効率な空調システムや、電力ピ
ーク需要の増大に対応した蓄熱利用による電力平準化を
実現する空調システムの開発も急がれている。
On the other hand, energy efficiency (COP) competition is intensifying even though new refrigerants such as hydrocarbon-based refrigerants and ammonia-based refrigerants that do not affect global warming are being used, and safety is being increased. Development of a highly efficient air conditioning system and an air conditioning system that achieves power leveling by utilizing heat storage in response to an increase in peak power demand is also urgent.

【0007】その対策として、蓄熱部を併設した空調シ
ステムが、例えば、特開昭54−121549号公報に
示されている。これは、蓄熱槽内の熱交換器を夜間は負
荷側として蓄熱を行い、昼間は蓄熱した熱を熱源側とし
て利用することで高効率な冷凍サイクルを実現するもの
である。
As a countermeasure, an air conditioning system provided with a heat storage section is disclosed in, for example, Japanese Patent Application Laid-Open No. 54-121549. This realizes a high-efficiency refrigeration cycle by using the heat exchanger in the heat storage tank as a load side during the night to store heat and using the stored heat as a heat source during the day.

【0008】また、蓄熱の方法としては、氷蓄熱や水の
顕熱による蓄熱が主流である。
[0008] As a heat storage method, ice heat storage or heat storage by sensible heat of water is mainly used.

【0009】[0009]

【発明が解決しようとする課題】しかし、前述の二次冷
媒空調システムでは、直膨式の空調システムに比べて一
次冷媒と二次冷媒の熱交換を行う必要があり、物質間の
熱交換の回数が増えるために、空気側で所用の熱量を確
保するには、一次側冷媒は直膨式と比べて、冷房時の蒸
発温度を低く、または暖房時の凝縮温度を高くする必要
がある。空調システムの規模にもよるが一般には、直膨
式の冷凍サイクルにおける冷媒は、冷房時は凝縮温度は
40℃、蒸発温度は約5℃、暖房時は凝縮温度は約40
℃、蒸発温度は約4℃である。
However, in the aforementioned secondary refrigerant air conditioning system, it is necessary to exchange heat between the primary refrigerant and the secondary refrigerant as compared with the direct expansion type air conditioning system. In order to increase the number of times, in order to secure the required amount of heat on the air side, the primary-side refrigerant needs to have a lower evaporation temperature during cooling or a higher condensation temperature during heating, as compared with the direct expansion type. In general, depending on the size of the air conditioning system, the refrigerant in the direct expansion refrigeration cycle has a condensing temperature of 40 ° C. during cooling, an evaporating temperature of about 5 ° C., and a condensing temperature of about 40 ° C. during heating.
℃, the evaporation temperature is about 4 ℃.

【0010】一方、二次冷媒空調システムでは暖房時凝
縮温度を約5℃以上高く、冷房時蒸発温度を約3℃以上
低く取る必要がある。つまり、二次冷媒空調システムで
は、冷房運転時の凝縮温度は約40℃、蒸発温度は約2
℃、暖房運転時の凝縮温度は約45℃、蒸発温度は約4
℃となる。そのため、一次側入力が増える上に、二次冷
媒を循環させるための循環ポンプ等の動力が不可欠とな
り、総合的なCOPは冷房時、暖房時とも大幅に低下す
ることとなる。
On the other hand, in the secondary refrigerant air conditioning system, it is necessary to set the condensing temperature at the time of heating higher by about 5 ° C. or more and the evaporating temperature at the time of cooling lower by about 3 ° C. or more. That is, in the secondary refrigerant air conditioning system, the condensing temperature during the cooling operation is about 40 ° C., and the evaporating temperature is about 2
° C, the condensation temperature during heating operation is about 45 ° C, and the evaporation temperature is about 4
° C. Therefore, in addition to an increase in the primary-side input, power such as a circulation pump for circulating the secondary refrigerant is indispensable, and the overall COP is significantly reduced both during cooling and during heating.

【0011】また、特開昭54−121549号公報に
みられる蓄熱空調システムの例では、直膨式の空調シス
テムとしては高いCOPを確保するものの、自然系冷媒
を一次側冷凍サイクルに使用する場合には、前述のよう
に可燃性や毒性の問題があるために容易に室内へ流すこ
との出来ない等の課題がある。
In the example of the heat storage air conditioning system disclosed in Japanese Patent Application Laid-Open No. 54-121549, a direct expansion type air conditioning system ensures a high COP, but uses a natural refrigerant for the primary refrigeration cycle. However, as described above, there is a problem that it cannot be easily flowed into a room due to the problem of flammability and toxicity.

【0012】また、蓄熱材として使用する物質について
も、氷蓄熱では、製氷のために0℃以下の蒸発温度で冷
凍サイクルを運転する必要があるため、全体的な効率が
低下してしまい、水の顕熱蓄熱では、十分な熱を蓄える
には、大量の水を必要とするために機器規模が大きくな
るなどの欠点がある。つまり、小型ではあるが、十分な
潜熱を蓄えることが可能であって、かつ地球環境に影響
を与えない自然系物質のみを応用した物質の提案がほと
んどなかった。
[0012] Regarding the substance used as a heat storage material, in the case of ice heat storage, it is necessary to operate a refrigeration cycle at an evaporation temperature of 0 ° C. or less for ice making, so that the overall efficiency is reduced and water is stored. The sensible heat storage method has a drawback that a large amount of water is required to store sufficient heat, so that the equipment scale is increased. In other words, there have been few proposals for substances that are small but can store sufficient latent heat and that apply only natural substances that do not affect the global environment.

【0013】本発明は、上述した従来の二次冷媒空調シ
ステムや蓄熱空調システムが有する課題を考慮して、効
率の良い運転が行える二次冷媒蓄熱空調システム、特
に、地球温暖化にも影響を与えない炭化水素系冷媒やア
ンモニア系冷媒等の新規冷媒を用いても、効率の良い運
転が行える二次冷媒蓄熱空調システムを提供することを
目的とするものである。
The present invention takes into account the problems of the conventional secondary refrigerant air conditioning system and thermal storage air conditioning system described above, and has an effect on the secondary refrigerant thermal storage air conditioning system that can operate efficiently, and in particular, has an effect on global warming. It is an object of the present invention to provide a secondary refrigerant thermal storage air-conditioning system that can operate efficiently even when a new refrigerant such as a hydrocarbon-based refrigerant or an ammonia-based refrigerant that is not provided is used.

【0014】[0014]

【課題を解決するための手段】上記課題を解決するた
め、本発明は、圧縮機、一次側外部用熱交換器、一次側
蓄熱部用熱交換器、一次側内部用熱交換器、絞り装置お
よび一次側流路切替手段を有し、一次冷媒が封入されて
いる一次側サイクルと、循環ポンプ、二次側室内用熱交
換器、二次側蓄熱部用熱交換器、二次側内部用熱交換器
および二次側流路切替手段を有し、二次冷媒が封入され
ている二次側サイクルと、蓄熱材が封入され、前記蓄熱
材が前記一次側蓄熱部用熱交換器および前記二次側蓄熱
部用熱交換器と熱の授受を行うことによって、蓄熱を行
う蓄熱部とを備え、前記一次側内部用熱交換器および前
記二次側内部用熱交換器が、熱の授受が行えるように配
置され、前記一次側サイクルが、前記圧縮機→凝縮器と
して用いられる前記一次側外部用熱交換器→前記絞り装
置→蒸発器として用いられる前記一次側蓄熱部用熱交換
器→前記圧縮機、の順で前記一次冷媒が循環することに
よって、前記一次側外部用熱交換器が外部に温熱を放出
し、前記一次側蓄熱部用熱交換器が前記蓄熱部に冷熱を
蓄える蓄冷運転モード、前記圧縮機→凝縮器として用い
られる前記一次側外部用熱交換器→前記絞り装置→蒸発
器として用いられる前記一次側内部用熱交換器→前記圧
縮機、の順で前記一次冷媒が循環することによって、前
記一次側外部用熱交換器が外部に温熱を放出し、前記一
次側内部用熱交換器が前記二次側内部用熱交換器を介し
て前記二次冷媒に冷熱を伝える第1冷房運転モード、前
記圧縮機→凝縮器として用いられる前記一次側蓄熱部用
熱交換器→前記絞り装置→蒸発器として用いられる前記
一次側内部用熱交換器→前記圧縮機、の順で前記一次冷
媒が循環することによって、前記一次側蓄熱部用熱交換
器が前記蓄熱材に温熱を放出し、前記一次側内部用熱交
換器が前記二次側内部用熱交換器を介して前記二次冷媒
に冷熱を伝える第2冷房運転モード、の3つの運転モー
ドを有し、前記一次側流路切替手段によって前記運転モ
ードを切り替えられて、運転を行い、前記二次側サイク
ルが、前記二次側内部用熱交換器→前記二次側室内用熱
交換器→前記二次側内部用熱交換器、の順で、途中に前
記循環ポンプを介して、前記二次冷媒が循環することに
よって、前記二次側内部用熱交換器が前記一次側内部用
熱交換器から受け取った冷熱を用いて、前記二次側室内
用熱交換器によって室内を冷房するサイクル間熱交換運
転モード、前記二次側蓄熱部用熱交換器→前記二次側室
内用熱交換器→前記二次側蓄熱部用熱交換器、の順で、
途中に前記循環ポンプを介して、前記二次冷媒が循環す
ることによって、前記二次側蓄熱部用熱交換器が前記蓄
熱材から受け取った冷熱を前記二次側室内用熱交換器に
よって室内を冷房する蓄熱利用運転モード、の2つの運
転モードを有し、前記二次側流路切替手段によって前記
運転モードを切り替えられて、運転を行い、前記一次側
サイクルが前記第1冷房運転モードまたは前記第2冷房
運転モードの運転を行うときには、前記サイクル間熱交
換運転モードの運転を運転を行うことを特徴とする二次
冷媒蓄熱空調システムである。
SUMMARY OF THE INVENTION In order to solve the above problems, the present invention provides a compressor, a primary external heat exchanger, a primary heat storage unit heat exchanger, a primary internal heat exchanger, and a throttle device. And a primary cycle in which a primary refrigerant is sealed, a circulating pump, a secondary-side indoor heat exchanger, a secondary-side heat storage unit heat exchanger, and a secondary-side internal A heat exchanger and a secondary cycle switching means, a secondary cycle in which a secondary refrigerant is sealed, a heat storage material is sealed, and the heat storage material is a heat exchanger for the primary heat storage section and A heat storage unit for storing heat by transferring heat to and from the secondary-side heat storage unit heat exchanger, wherein the primary-side internal heat exchanger and the secondary-side internal heat exchanger exchange heat. And the primary cycle is used as the compressor → condenser. The primary-side external heat exchanger is circulated in the order of a secondary-side external heat exchanger → the expansion device → the primary-side heat storage unit heat exchanger used as an evaporator → the compressor, in this order. The heat-exchanger discharges heat to the outside, and the primary-side heat storage unit heat exchanger stores cold heat in the heat storage unit. The cold storage operation mode, the compressor → the primary-side external heat exchanger used as a condenser → the throttle By circulating the primary refrigerant in order of the device → the primary-side internal heat exchanger used as the evaporator → the compressor, the primary-side external heat exchanger emits heat to the outside, and the primary A first cooling operation mode in which a side internal heat exchanger transfers cold heat to the secondary refrigerant via the secondary side internal heat exchanger, and a heat exchange for the primary heat storage unit used as the compressor → condenser Device → the expansion device → evaporator When the primary refrigerant circulates in the order of the primary-side internal heat exchanger → the compressor, the primary-side heat storage unit heat exchanger releases heat to the heat storage material, and the primary-side internal heat exchanger. The heat exchanger for cooling has two operation modes of a second cooling operation mode for transmitting cold heat to the secondary refrigerant via the heat exchanger for internal use on the secondary side, and the operation by the primary side flow switching means. The mode is switched, the operation is performed, and the secondary cycle is performed in the order of the secondary internal heat exchanger → the secondary indoor heat exchanger → the secondary internal heat exchanger. The secondary refrigerant circulates on the way through the circulation pump, so that the secondary-side internal heat exchanger uses the cold heat received from the primary-side internal heat exchanger, Inter-cycle heat exchange operation to cool the room with the indoor heat exchanger Mode, the secondary-side heat storage unit heat exchanger → the secondary-side indoor heat exchanger → the secondary-side heat storage unit heat exchanger, in this order:
Through the circulation pump on the way, the secondary refrigerant is circulated, so that the secondary-side heat storage unit heat exchanger receives the cold heat received from the heat storage material by the secondary-side indoor heat exchanger through the room. It has two operation modes of a heat storage utilization operation mode for cooling, and the operation mode is switched by the secondary side flow path switching means to perform an operation, and the primary cycle is the first cooling operation mode or the When the operation in the second cooling operation mode is performed, the operation in the inter-cycle heat exchange operation mode is performed.

【0015】[0015]

【発明の実施の形態】以下に、本発明の実施の形態を、
図面を参照して説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below.
This will be described with reference to the drawings.

【0016】(第1の実施の形態)図1は、本発明の第
1の実施の形態における二次冷媒蓄熱空調システムを示
す概略構成図である。本実施の形態における二次冷媒蓄
熱空調システムは、一次冷媒として炭化水素系冷媒のプ
ロパンを、二次冷媒として水を使用し、蓄熱材として炭
化水素系冷媒のプロパンと水の混合物が封入されている
ものである。
(First Embodiment) FIG. 1 is a schematic configuration diagram showing a secondary refrigerant heat storage air conditioning system according to a first embodiment of the present invention. The secondary refrigerant thermal storage air conditioning system in the present embodiment uses propane of a hydrocarbon-based refrigerant as a primary refrigerant, water as a secondary refrigerant, and a mixture of propane and water of a hydrocarbon-based refrigerant is sealed as a heat storage material. Is what it is.

【0017】一次側冷凍サイクル(本発明の一次側サイ
クルに対応)においては、圧縮機1、一次側外部用熱交
換器2、一次側蓄熱部用熱交換器3、一次側内部用熱交
換器4、第1の膨張弁5(本発明の第1の絞り装置に対
応)、第2の膨張弁6(本発明の第2の絞り装置に対
応)、第1の三方弁7、第2の三方弁8、第1の四方弁
9から構成され、それぞれが接続配管によって接続され
ている。なお、第1の膨張弁5および第2の膨張弁6
は、本発明の絞り装置に対応するものであり、第1の三
方弁7、第2の三方弁8および第1の四方弁9は、本発
明の一次側流路切替手段に対応するものである。
In the primary refrigeration cycle (corresponding to the primary cycle of the present invention), a compressor 1, a primary external heat exchanger 2, a primary heat storage unit heat exchanger 3, a primary internal heat exchanger. 4, a first expansion valve 5 (corresponding to the first throttle device of the present invention), a second expansion valve 6 (corresponding to the second throttle device of the present invention), a first three-way valve 7, and a second It comprises a three-way valve 8 and a first four-way valve 9, each of which is connected by a connection pipe. The first expansion valve 5 and the second expansion valve 6
Corresponds to the throttle device of the present invention, and the first three-way valve 7, the second three-way valve 8, and the first four-way valve 9 correspond to the primary-side flow switching means of the present invention. is there.

【0018】二次側熱搬送サイクル(本発明の二次側サ
イクルに対応)においては、二次側蓄熱部用熱交換器1
1、二次側内部用熱交換器12、循環ポンプ13、二次
側室内用熱交換器14、第3の三方弁15、第4の三方
弁16から構成され、それぞれが接続配管によって接続
されている。なお、第3の三方弁15および第4の三方
弁16は、本発明の二次側流路切替手段に対応するもの
である。
In the secondary heat transfer cycle (corresponding to the secondary cycle of the present invention), the heat exchanger 1 for the secondary heat storage unit is used.
1, a secondary internal heat exchanger 12, a circulation pump 13, a secondary indoor heat exchanger 14, a third three-way valve 15, and a fourth three-way valve 16, each of which is connected by a connection pipe. ing. The third three-way valve 15 and the fourth three-way valve 16 correspond to the secondary-side flow switching means of the present invention.

【0019】一次側蓄熱部用熱交換器3および二次側蓄
熱部用熱交換器11は、蓄熱槽10(本発明の蓄熱部に
対応)の中に設置されており、それぞれ、蓄熱材と熱の
授受を行うことが出来る。
The heat exchanger 3 for the primary heat storage unit and the heat exchanger 11 for the secondary heat storage unit are installed in a heat storage tank 10 (corresponding to the heat storage unit of the present invention). Exchange of heat can be performed.

【0020】すなわち、本実施の形態における二次冷媒
蓄熱空調システムは、一次側冷凍サイクルと二次側熱搬
送サイクルと蓄熱槽から構成されており、冷房専用の二
次冷媒蓄熱空調システムのシステム構成を示している。
That is, the secondary refrigerant thermal storage air-conditioning system according to the present embodiment includes a primary refrigeration cycle, a secondary heat transfer cycle, and a heat storage tank, and is a system configuration of a secondary refrigerant thermal storage air-conditioning system dedicated to cooling. Is shown.

【0021】ここで、プロパンと水の封入されている蓄
熱槽内は圧力が約500kPaに保たれており、プロパン
と水は上記圧力下では、約5℃で潜熱量約90kcal/kg
を持つクラスレートを生成して冷熱を貯えることができ
る。
Here, the pressure in the heat storage tank in which propane and water are sealed is maintained at about 500 kPa. Under the above-mentioned pressure, propane and water are charged at a temperature of about 5 ° C. and a latent heat quantity of about 90 kcal / kg.
Can generate a clathrate and store cold energy.

【0022】一次側冷凍サイクルのすべての構成機器
と、二次側熱搬送サイクルの二次側室内用熱交換器14
を除くすべての機器と、蓄熱槽10はすべて室外の室外
機の中におさめられて、室外に設置されており、二次側
室内用熱交換器14を含む室内機のみが室内に設置され
ている。
All the components of the primary refrigeration cycle and the secondary indoor heat exchanger 14 of the secondary heat transfer cycle
And all the heat storage tanks 10 are housed inside the outdoor unit and installed outside the room, and only the indoor unit including the secondary-side indoor heat exchanger 14 is installed inside the room. I have.

【0023】本実施の形態における二次冷媒蓄熱空調シ
ステムは、4通りの運転パターンがあり、それぞれの運
転パターンによって、各機器の運転状態や三方弁および
四方弁の状態が切り替えられ、以下の第1の運転パター
ンから第4の運転のパターンで冷熱蓄熱運転及び冷房運
転を行う。
The secondary refrigerant thermal storage air conditioning system according to the present embodiment has four operation patterns, and the operation state of each device and the state of the three-way valve and the four-way valve are switched according to each operation pattern. The cold heat storage operation and the cooling operation are performed in the first to fourth operation patterns.

【0024】第1の運転パターンにおける一次冷媒の流
れを図2の太線にて示す。第1の運転パターンは、夜間
の、室内における冷房運転を必要としない時間帯の冷熱
蓄熱時に行われる。
The flow of the primary refrigerant in the first operation pattern is shown by a thick line in FIG. The first operation pattern is performed at the time of cold heat storage during the nighttime, when the indoor cooling operation is not required.

【0025】一次側冷凍サイクルは、一次側外部用熱交
換器2を凝縮器、一次側蓄熱部用熱交換器3を蒸発器と
して、圧縮機1、一次側第1三方弁7、一次側外部用熱
交換器2、第1の膨張弁5、一次側第2三方弁8、一次
側蓄熱部用熱交換器3、第1の四方弁9、圧縮機1の順
に一次冷媒が流れ(本発明の蓄冷運転モードに対応)、
二次側熱搬送サイクルは循環ポンプ13を停止すること
で二次冷媒は全く流れていない状態にある。
The primary-side refrigeration cycle includes a compressor 1, a primary first three-way valve 7, a primary-side external heat exchanger 2 as a condenser, and a primary-side heat storage unit heat exchanger 3 as an evaporator. Primary refrigerant flows in the following order: heat exchanger 2, first expansion valve 5, primary-side second three-way valve 8, primary-side heat storage unit heat exchanger 3, first four-way valve 9, and compressor 1. Cold storage operation mode),
In the secondary heat transfer cycle, the circulation pump 13 is stopped, so that the secondary refrigerant is not flowing at all.

【0026】第1の運転パターンにより、夜間の熱需要
の少ない時間帯(例えば、これを本発明の予め定められ
た時間帯に対応させることができる)に、蓄熱槽10内
に約5℃以下の温度でプロパンと水のクラスレートを生
成することで冷熱を貯えることができる。
According to the first operation pattern, the temperature in the heat storage tank 10 is reduced to about 5 ° C. or less in a time zone in which nighttime heat demand is small (for example, this can be made to correspond to a predetermined time zone of the present invention). By generating a propane and water clathrate at the temperature, cold energy can be stored.

【0027】このときの一次側冷凍サイクルの運転にお
けるモリエル線図の概略を図3に示す。図3では、夜間
の外気温度が30℃、蓄熱温度が5℃で、冷凍サイクル
の凝縮温度が35℃、冷凍サイクルの蒸発温度が2℃に
おける冷熱蓄熱運転を行う冷凍サイクルを示している。
図3からわかるように、従来の二次冷媒方式の蒸発温度
と凝縮温度差よりも、第1の運転パターンの蒸発温度と
凝縮温度差は小さく、効率の良い運転を行うことが出来
る。
FIG. 3 schematically shows a Mollier diagram in the operation of the primary refrigeration cycle at this time. FIG. 3 shows a refrigeration cycle in which a cold storage operation is performed at a nighttime outside air temperature of 30 ° C., a heat storage temperature of 5 ° C., a refrigeration cycle condensation temperature of 35 ° C., and a refrigeration cycle evaporation temperature of 2 ° C.
As can be seen from FIG. 3, the difference between the evaporating temperature and the condensing temperature in the first operation pattern is smaller than the difference between the evaporating temperature and the condensing temperature of the conventional secondary refrigerant system, so that efficient operation can be performed.

【0028】さらに、一次側冷凍サイクルは、主に夜間
電力を使用して運転しており、また、外気温度も夜間は
昼間と比べて低いので、電気代も安価となる。
Further, the primary side refrigeration cycle is operated mainly by using nighttime electric power, and since the outside air temperature is lower at nighttime than at daytime, the electricity cost is lower.

【0029】第2の運転パターンにおける二次冷媒の流
れを図4の太線にてに示す。第2の運転パターンは、昼
間の、室内における冷房運転を必要とする時間帯であ
り、かつ蓄熱槽内には第1の運転パターンにより蓄熱材
は約5℃のクラスレートを生成して冷熱を蓄えている状
態(本発明の「蓄熱材の温度と外気温度との差が所定の
値以上の場合」に対応)で行われる。
The flow of the secondary refrigerant in the second operation pattern is shown by a thick line in FIG. The second operation pattern is a daytime time period during which indoor cooling operation is required, and the heat storage material generates a clathrate of about 5 ° C. in the heat storage tank according to the first operation pattern to generate cold heat. It is performed in a stored state (corresponding to "a case where the difference between the temperature of the heat storage material and the outside air temperature is equal to or more than a predetermined value").

【0030】このとき、一次側冷凍サイクルは、圧縮機
1の運転を停止しており、一次冷媒は全く流れていない
状態にある。
At this time, in the primary refrigeration cycle, the operation of the compressor 1 is stopped, and the primary refrigerant is not flowing at all.

【0031】二次側熱搬送サイクルは、蓄熱槽10内で
二次側蓄熱部用熱交換器11を介して蓄熱材から冷熱を
受け取った二次冷媒が二次側蓄熱部用熱交換器11、二
次側第1三方弁15、二次側室内用熱交換器14、循環
ポンプ13、二次側第2三方弁16、二次側蓄熱部用熱
交換器11の順に流れる(本発明の蓄熱利用運転モード
に対応)ことで冷熱を室内へ搬送し、冷房運転をおこな
う。この運転により蓄熱槽10内の蓄熱材はクラスレー
トの潜熱を放出して融解し、さらに顕熱を放出して温度
が上昇する。
In the secondary heat transfer cycle, the secondary refrigerant which has received the cold heat from the heat storage material via the secondary heat storage unit heat exchanger 11 in the heat storage tank 10 is converted into the secondary heat storage unit heat exchanger 11. , The secondary-side first three-way valve 15, the secondary-side indoor heat exchanger 14, the circulation pump 13, the secondary-side second three-way valve 16, and the secondary-side heat storage unit heat exchanger 11 in this order (the present invention). (Corresponding to the heat storage operation mode) to transfer the cold heat to the room and perform the cooling operation. With this operation, the heat storage material in the heat storage tank 10 releases the latent heat of the clathrate and melts, and further releases sensible heat to increase the temperature.

【0032】このとき、一次側冷凍サイクルは、停止し
ているために電力は不要となり、二次冷媒を循環させる
循環ポンプ13や、ファン等の極めて少ない電力で冷房
運転を行うことが可能となり、効率の良い運転を行うこ
とが出来る。
At this time, since the primary side refrigeration cycle is stopped, no electric power is required, and the cooling operation can be performed with extremely small electric power from the circulation pump 13 for circulating the secondary refrigerant, the fan, and the like. Efficient operation can be performed.

【0033】また、室内温度は約27℃に保たれ、蓄熱
槽10内の蓄熱材は吸熱してクラスレートが融解し温度
が上昇するが、二次側熱搬送サイクルで搬送した冷熱で
空調可能である分だけ、たとえば蓄熱材の温度が10℃
以下である限り第2の運転パターンを維持する。
The room temperature is maintained at about 27 ° C., and the heat storage material in the heat storage tank 10 absorbs heat to melt the clathrate and increase the temperature. However, air conditioning can be performed using the cold heat transferred in the secondary heat transfer cycle. For example, the temperature of the heat storage material is 10 ° C.
The second operation pattern is maintained as long as the following.

【0034】第3の運転パターンにおける一次冷媒およ
び二次冷媒の流れを図5の太線にて示す。第3の運転パ
ターンは、昼間の、室内における冷房運転を必要とする
時間帯であり、かつ蓄熱槽10内には蓄熱材が実質的に
10℃より高くかつ外気温度35℃より低い温度(平均
蓄熱温度は22.5℃)に保たれた状態(本発明の「蓄
熱材の温度と外気温度との差が所定の値より小さく別の
所定の値より大きい場合」に対応)で行われる。
The flows of the primary refrigerant and the secondary refrigerant in the third operation pattern are shown by thick lines in FIG. The third operation pattern is a time period in the daytime when indoor cooling operation is required, and the temperature of the heat storage material in the heat storage tank 10 is substantially higher than 10 ° C and lower than the outside air temperature of 35 ° C (average temperature). The heat storage temperature is kept at 22.5 ° C. (corresponding to “if the difference between the temperature of the heat storage material and the outside air temperature is smaller than a predetermined value and larger than another predetermined value” in the present invention).

【0035】一次側冷凍サイクルは、一次側蓄熱部用熱
交換器3を凝縮器、一次側内部用熱交換器4を蒸発器と
して、圧縮機1、一次側第1三方弁7、第1の四方弁
9、一次側蓄熱部用熱交換器3、一次側第2三方弁8、
第2の膨張弁6、一次側内部用熱交換器4、第1の四方
弁9、圧縮機1の順に一次冷媒が流れ(本発明の第2冷
房運転モードに対応)、二次側熱搬送サイクルは、二次
側内部用熱交換器12で一次側内部用熱交換器4を介し
て冷熱を受け取り、二次冷媒は二次側内部用熱交換器1
2、二次側第1三方弁15、二次側室内用熱交換器1
4、循環ポンプ13、二次側第2三方弁16、二次側内
部用熱交換器12の順に流れる(本発明のサイクル間熱
交換運転モードに対応)ことで冷熱を室内へ搬送し、冷
房運転をおこなう。
The primary side refrigerating cycle comprises a compressor 1, a primary side first three-way valve 7, a first side three-way valve 7, a primary side heat storage section heat exchanger 3 as a condenser and a primary side internal heat exchanger 4 as an evaporator. A four-way valve 9, a heat exchanger 3 for the primary heat storage unit, a second secondary three-way valve 8,
The primary refrigerant flows in the order of the second expansion valve 6, the primary-side internal heat exchanger 4, the first four-way valve 9, and the compressor 1 (corresponding to the second cooling operation mode of the present invention), and the secondary-side heat transfer. In the cycle, the secondary-side internal heat exchanger 12 receives cold heat via the primary-side internal heat exchanger 4, and the secondary refrigerant is supplied to the secondary-side internal heat exchanger 1.
2. Secondary first three-way valve 15, Secondary indoor heat exchanger 1.
4. Circulation pump 13, secondary second three-way valve 16, and secondary internal heat exchanger 12 flow in this order (corresponding to the inter-cycle heat exchange operation mode of the present invention) to convey cold to the room and cool. Driving.

【0036】この運転により蓄熱槽10内の蓄熱材は一
次側蓄熱部用熱交換器3を流れる一次冷媒の凝縮作用に
より熱を吸収して温度が上昇する。
With this operation, the heat storage material in the heat storage tank 10 absorbs heat due to the condensation of the primary refrigerant flowing through the heat exchanger 3 for the primary heat storage unit, and the temperature rises.

【0037】このときの一次側冷凍サイクルの運転にお
けるモリエル線図の概略を図6に示す。図6では、外気
温度が35℃、空調温度が27℃、蓄熱槽10内の平均
蓄熱温度が22.5℃で、一次側冷凍サイクルの平均蒸
発温度が約5℃、一次側冷凍サイクルの平均凝縮温度が
約27.5℃における冷房運転を行う冷凍サイクルを示
している。
FIG. 6 schematically shows a Mollier diagram in the operation of the primary refrigeration cycle at this time. In FIG. 6, the outside air temperature is 35 ° C., the air conditioning temperature is 27 ° C., the average heat storage temperature in the heat storage tank 10 is 22.5 ° C., the average evaporation temperature of the primary refrigeration cycle is about 5 ° C., and the average of the primary refrigeration cycle. 4 shows a refrigeration cycle for performing a cooling operation at a condensing temperature of about 27.5 ° C.

【0038】このとき、一次側冷凍サイクルの蒸発温度
は、直膨式の冷凍サイクルの従来例と同等であるが、凝
縮温度が、直膨式の冷凍サイクルで外気と熱交換を行う
際の凝縮温度40℃よりもはるかに低くてすむので、従
来の直膨式冷凍サイクルや二次冷媒システムより一次側
の入力が抑えられ、効率の良い運転を行うことが出来
る。
At this time, the evaporation temperature of the primary side refrigeration cycle is the same as that of the conventional example of the direct expansion type refrigeration cycle, but the condensation temperature is the same as that of the direct expansion type refrigeration cycle. Since the temperature can be much lower than 40 ° C., the input on the primary side is suppressed compared to the conventional direct expansion refrigeration cycle and the secondary refrigerant system, and efficient operation can be performed.

【0039】また、室内温度は約27℃に保たれ、蓄熱
槽10内の蓄熱材は吸熱して蓄熱材全体の温度が上昇す
るが、蓄熱材の温度が外気温度よりも低い限り、第3の
運転パターンを維持する。
The indoor temperature is maintained at about 27 ° C., and the heat storage material in the heat storage tank 10 absorbs heat to increase the temperature of the entire heat storage material. However, as long as the temperature of the heat storage material is lower than the outside air temperature, the third temperature is maintained. Maintain the driving pattern of

【0040】なお、第3の運転パターンを、夜間で、室
内冷房を行う場合で、蓄熱槽10内には蓄熱材が外気温
度より低い温度に保たれた状態(本発明の「蓄熱材の温
度と外気温度との差が別の所定の値より大きい場合」に
対応)において、行うことによって、上記と同様に、冷
凍サイクルにおける凝縮温度が低く押さえられ得ること
で、効率の良い運転を行うことが出来る。
It should be noted that the third operation pattern is a case in which indoor cooling is performed at night, and the heat storage material is kept at a temperature lower than the outside air temperature in the heat storage tank 10 (the temperature of the heat storage material of the present invention). The difference between the temperature and the outside air temperature is larger than another predetermined value), the efficiency of the operation can be improved because the condensation temperature in the refrigeration cycle can be kept low as described above. Can be done.

【0041】第4の運転パターンにおける一次冷媒およ
び二次冷媒の流れを図7に示す。第4の運転パターン
は、昼間の、室内における冷房運転を必要とする時間帯
であり、かつ蓄熱槽10内の蓄熱材の温度が外気温度と
同等となった時(本発明の「蓄熱材の温度と外気温度と
の差が別の所定の値以下の場合」に対応)に行われ、こ
の時は従来の二次冷媒システムと同様の運転を行うこと
になる。なお、第4の運転パターンは、夜間において
も、室内における冷房運転を必要とする時間帯であり、
かつ蓄熱槽10内の蓄熱材の温度が外気温度と同等とな
った時にも、行われる。
FIG. 7 shows the flows of the primary refrigerant and the secondary refrigerant in the fourth operation pattern. The fourth operation pattern is a time period in the daytime during which the indoor cooling operation is required, and when the temperature of the heat storage material in the heat storage tank 10 becomes equal to the outside air temperature (“the heat storage material of the present invention”). If the difference between the temperature and the outside air temperature is equal to or less than another predetermined value "), the operation is the same as that of the conventional secondary refrigerant system. Note that the fourth operation pattern is a time period during which the indoor cooling operation is required even at night,
The operation is also performed when the temperature of the heat storage material in the heat storage tank 10 becomes equal to the outside air temperature.

【0042】一次側冷凍サイクルは、一次側外部用熱交
換器2を凝縮器、一次側内部用熱交換器4を蒸発器とし
て、圧縮機1、一次側第1三方弁7、一次側外部用熱交
換器2、第1の膨張弁5、一次側第2三方弁8、第2の
膨張弁6、一次側内部用熱交換器4、第1の四方弁9、
圧縮機1の順に一次冷媒が流れ(本発明の第1冷房運転
モードに対応)、二次側熱搬送サイクルは、二次側内部
用熱交換器12で一次側内部用熱交換器4を介して冷熱
を受け取り、二次冷媒は二次側内部用熱交換器12、二
次側第1三方弁15、二次側室内用熱交換器14、循環
ポンプ13、二次側第2三方弁16、二次側内部用熱交
換器12の順に流れる(本発明のサイクル間熱交換運転
モードに対応)ことで冷熱を室内へ搬送し、冷房運転を
おこなう。
The primary refrigerating cycle comprises a compressor 1, a primary first three-way valve 7, a primary external heat exchanger 2 as a condenser and a primary internal heat exchanger 4 as an evaporator. Heat exchanger 2, first expansion valve 5, primary-side second three-way valve 8, second expansion valve 6, primary-side internal heat exchanger 4, first four-way valve 9,
The primary refrigerant flows in the order of the compressor 1 (corresponding to the first cooling operation mode of the present invention), and the secondary heat transfer cycle is performed by the secondary internal heat exchanger 12 via the primary internal heat exchanger 4. And the secondary refrigerant is supplied to the secondary-side internal heat exchanger 12, the secondary-side first three-way valve 15, the secondary-side indoor heat exchanger 14, the circulation pump 13, and the secondary-side second three-way valve 16 , Flows in the order of the secondary-side internal heat exchanger 12 (corresponding to the inter-cycle heat exchange operation mode of the present invention), thereby transferring the cold to the room and performing the cooling operation.

【0043】このときの一次側冷凍サイクルの運転にお
けるモリエル線図の概略を図8に示す。図8では、外気
温度が35℃、空調温度が27℃で、冷凍サイクルの蒸
発温度が約5℃、冷凍サイクルの凝縮温度が40℃にお
ける冷房運転を行う冷凍サイクルを示している。
FIG. 8 schematically shows a Mollier diagram in the operation of the primary refrigeration cycle at this time. FIG. 8 shows a refrigeration cycle in which the cooling operation is performed at an outside air temperature of 35 ° C., an air conditioning temperature of 27 ° C., a refrigeration cycle evaporation temperature of about 5 ° C., and a refrigeration cycle condensation temperature of 40 ° C.

【0044】このときの運転パターンにおける凝縮温
度、蒸発温度は従来の二次冷媒システムと同等である
が、第4の運転パターンによる運転時間は従来と比べる
と短いので、運転時間全体の効率としては向上すること
になる。
Although the condensing temperature and the evaporating temperature in the operation pattern at this time are the same as those of the conventional secondary refrigerant system, the operation time according to the fourth operation pattern is shorter than that of the conventional system, so that the efficiency of the entire operation time is as follows. Will be improved.

【0045】このように、冷房運転を行うにあたり、時
間帯と蓄熱槽10内の蓄熱材の温度と室外温度の差を考
慮して第1の運転パターン〜第4の運転パターンを切り
替えることにより、自然系冷媒を用いた地球環境に優し
い冷媒を安全に用いながら、従来例の冷房運転に見られ
るような蒸発側温度5℃、凝縮側温度40℃の一次側冷
凍サイクルの定常運転を行うのに対して平均的な凝縮温
度をはるかに低く取ることが可能となり、二次冷媒シス
テムではあるが極めて高効率な運転を可能とする。
As described above, in performing the cooling operation, the first operation pattern to the fourth operation pattern are switched in consideration of the difference between the time zone, the temperature of the heat storage material in the heat storage tank 10, and the outdoor temperature. To perform steady-state operation of the primary-side refrigeration cycle of 5 ° C on the evaporator side and 40 ° C on the condensing side as seen in the conventional cooling operation, while safely using earth-friendly refrigerants using natural refrigerants. On the other hand, the average condensing temperature can be made much lower, which makes it possible to operate the secondary refrigerant system very efficiently.

【0046】また、蓄熱槽10を利用し、夜間に蓄熱運
転を行い、昼間の電力負荷の最も多い時間帯に蓄熱槽1
0内の冷熱を直接利用する運転と、室外空気等の代わり
に蓄熱槽10内に蓄熱された熱を利用する運転を二次冷
媒空調システムと組み合わせることで、自然系冷媒の課
題とされる可燃性や毒性の問題も解消されるとともに、
昼間の電力負荷のピークカットを行うこともできる。さ
らに、本発明におけるクラスレートを利用した蓄熱材で
は水などを用いた顕熱による蓄熱材と比較しても、潜熱
を利用して蓄熱するために小型でも大量の熱を蓄えるこ
とが出来る。
The heat storage tank 10 is used to perform a heat storage operation at night, and the heat storage tank 1 is operated during the daytime when the power load is highest.
Combining an operation that uses the heat stored in the heat storage tank 10 instead of the outdoor air or the like with the secondary refrigerant air conditioning system in combination with the operation that directly uses the cold heat in the refrigeration chamber 0, the flammability that is considered to be a natural refrigerant problem Sex and toxicity issues are resolved,
Peak cuts in daytime power loads can also be made. Furthermore, the heat storage material using the clathrate according to the present invention can store a large amount of heat even if it is small because it stores heat using latent heat, as compared with a heat storage material using sensible heat using water or the like.

【0047】なお、この時の蓄熱槽10の規模や封入す
る蓄熱材の量、また、クラスレートによる潜熱を生成す
る温度・圧力は、一意に決定されるものではなく、シス
テムの規模や熱負荷等によって独自に設定されるもので
ある。
At this time, the size of the heat storage tank 10, the amount of the heat storage material to be enclosed, and the temperature and pressure at which the latent heat is generated by the clathrate are not uniquely determined. Etc. are set independently.

【0048】また、このとき、二次側蓄熱部用熱交換器
11は図1に示すような銅等の管を介した間接的な熱交
換ではなく、蓄熱槽10内の水を選択的に二次側熱搬送
サイクルへ循環する直接熱交換方式によって蓄熱槽10
内の冷熱を室内へ搬送する形式をとっても構わない。
At this time, the heat exchanger 11 for the secondary-side heat storage unit does not perform indirect heat exchange through a pipe such as copper as shown in FIG. The heat storage tank 10 is circulated to the secondary heat transfer cycle by a direct heat exchange method.
The form which conveys the cold in a room may be taken.

【0049】なお、本実施の形態におれる二次冷媒蓄熱
空調システムは、冷房専用であるとして説明したが、さ
らに第二の四方弁(後述する図15の構成)によって、
従来の二次冷媒システムと同様な暖房運転を兼用するこ
とができる。
It is to be noted that the secondary refrigerant heat storage air conditioning system in the present embodiment has been described as being exclusively used for cooling, but it is further provided with a second four-way valve (the configuration of FIG. 15 described later).
The same heating operation as the conventional secondary refrigerant system can be used.

【0050】(第2の実施の形態)次に、本発明の第2
の実施の形態を図面を参照して説明する。本実施の形態
における二次冷媒蓄熱空調システムは、暖房運転を兼用
することに関する点以外は、上述した第1の実施の形態
における二次冷媒蓄熱空調システムと同様である。した
がって、本実施の形態において、特に説明のないものに
ついては、第1の実施の形態と同じとし、第1の実施の
形態と同一符号を付与している構成部材については、特
に説明のない限り、第1の実施の形態と同様の機能を持
つものとする。また、第1の実施の形態において説明し
た各変形例についても、特にことわらない限り、同様の
変形を行うことによって、本実施の形態に適用されるも
のとする。
(Second Embodiment) Next, a second embodiment of the present invention will be described.
An embodiment will be described with reference to the drawings. The secondary refrigerant thermal storage air-conditioning system according to the present embodiment is the same as the secondary refrigerant thermal storage air-conditioning system according to the first embodiment described above, except that the secondary refrigerant thermal storage air conditioning system also serves as a heating operation. Therefore, in the present embodiment, parts that are not particularly described are the same as those in the first embodiment, and those components that are assigned the same reference numerals as those in the first embodiment are unless otherwise specified. Have the same functions as those of the first embodiment. Unless otherwise stated, each modification described in the first embodiment is applied to the present embodiment by performing the same modification.

【0051】図9は、本発明の第2の実施の形態におけ
る二次冷媒蓄熱空調システムを示す概略構成図である。
本実施の形態における二次冷媒蓄熱空調システムでは、
一次冷媒に炭化水素系冷媒のプロパンを、二次冷媒に水
を使用し、蓄熱材として炭化水素系冷媒のエタンとプロ
パンと水の混合物が封入されている。
FIG. 9 is a schematic configuration diagram showing a secondary refrigerant heat storage air conditioning system according to the second embodiment of the present invention.
In the secondary refrigerant heat storage air conditioning system in the present embodiment,
A hydrocarbon-based refrigerant, propane, is used as a primary refrigerant, and water is used as a secondary refrigerant. A mixture of ethane, propane, and water, which are hydrocarbon-based refrigerants, is sealed as a heat storage material.

【0052】一次側冷凍サイクル(本発明の一次側サイ
クルに対応)においては、圧縮機1、一次側外部用熱交
換器2、一次側蓄熱部用熱交換器3、一次側内部用熱交
換器4、第1の膨張弁5(本発明の第1の絞り装置に対
応)、第2の膨張弁6(本発明の第2の絞り装置に対
応)、第1の三方弁7、第2の三方弁8、第1の四方弁
9、第2の四方弁17から構成され、それぞれが接続配
管によって接続されている。なお、第1の膨張弁5およ
び第2の膨張弁6は、本発明の絞り装置に対応するもの
であり、第1の三方弁7、第2の三方弁8、第1の四方
弁9および第2の四方弁17は、本発明の一次側流路切
替手段に対応するものである。
In the primary refrigeration cycle (corresponding to the primary cycle of the present invention), a compressor 1, a primary external heat exchanger 2, a primary heat storage unit heat exchanger 3, and a primary internal heat exchanger. 4, a first expansion valve 5 (corresponding to the first throttle device of the present invention), a second expansion valve 6 (corresponding to the second throttle device of the present invention), a first three-way valve 7, and a second It comprises a three-way valve 8, a first four-way valve 9, and a second four-way valve 17, each of which is connected by a connection pipe. The first expansion valve 5 and the second expansion valve 6 correspond to the throttle device of the present invention, and include a first three-way valve 7, a second three-way valve 8, a first four-way valve 9, The second four-way valve 17 corresponds to the primary-side flow switching means of the present invention.

【0053】二次側熱搬送サイクル(本発明の二次側サ
イクルに対応)においては、二次側蓄熱部用熱交換器1
1、二次側内部用熱交換器12、循環ポンプ13、二次
側室内用熱交換器14、第3の三方弁15、第4の三方
弁16から構成され、それぞれが接続配管によって接続
されている。なお、第3の三方弁15および第4の三方
弁16は、本発明の二次側流路切替手段に対応するもの
である。
In the secondary heat transfer cycle (corresponding to the secondary cycle of the present invention), the heat exchanger 1 for the secondary heat storage section is used.
1, a secondary internal heat exchanger 12, a circulation pump 13, a secondary indoor heat exchanger 14, a third three-way valve 15, and a fourth three-way valve 16, each of which is connected by a connection pipe. ing. The third three-way valve 15 and the fourth three-way valve 16 correspond to the secondary-side flow switching means of the present invention.

【0054】一次側蓄熱部用熱交換器3および二次側蓄
熱部用熱交換器11は、蓄熱槽10(本発明の蓄熱部に
対応)の中に設置されており、それぞれ、蓄熱材と熱の
授受を行うことが出来る。
The heat exchanger 3 for the primary heat storage unit and the heat exchanger 11 for the secondary heat storage unit are installed in a heat storage tank 10 (corresponding to the heat storage unit of the present invention). Exchange of heat can be performed.

【0055】すなわち、本実施の形態における二次冷媒
蓄熱空調システムは、一次側冷凍サイクルと二次側熱搬
送サイクルと蓄熱槽から構成されており、四方弁9、1
7の切り替えによって、冷房運転と暖房運転を兼用する
二次冷媒蓄熱空調システムのシステム構成を示してい
る。
That is, the secondary refrigerant thermal storage air-conditioning system according to the present embodiment comprises a primary refrigeration cycle, a secondary heat transfer cycle, and a thermal storage tank.
7 shows a system configuration of a secondary refrigerant thermal storage air-conditioning system that performs both cooling operation and heating operation by switching of 7.

【0056】ここで、プロパンとエタンと水の封入され
ている蓄熱槽内は圧力が約1000kPaに保たれてお
り、エタンとプロパンの混合物と水は上記圧力下では、
約15℃で潜熱量約100kcal/kgを持つクラスレート
を生成して冷熱を貯えることができる。
Here, the pressure in the heat storage tank in which propane, ethane and water are sealed is maintained at about 1000 kPa, and the mixture of ethane and propane and water are
At about 15 ° C., a clathrate having a latent heat quantity of about 100 kcal / kg can be generated to store cold heat.

【0057】一次側冷凍サイクルのすべての構成機器
と、二次側熱搬送サイクルの二次側室内用熱交換器14
を除くすべての機器と、蓄熱槽10はすべて室外の室外
機の中におさめられ、室外に設置されており、二次側室
内用熱交換器を含む室内機のみが室内に設置されてい
る。
All the components of the primary refrigeration cycle and the secondary indoor heat exchanger 14 of the secondary heat transfer cycle
All the heat storage tanks 10 except for the above and the heat storage tank 10 are all housed in an outdoor unit outside and installed outside, and only the indoor unit including the secondary-side indoor heat exchanger is installed indoors.

【0058】本実施の形態における二次冷媒蓄熱空調シ
ステムは、冷房運転時および暖房運転のそれぞれに4通
りの運転パターンがあるが、冷房運転時には、第2の四
方弁17の切替により、圧縮機1吐出部から一次側第1
三方弁7への冷媒の流れと、第1の四方弁9から圧縮機
1吸入部への冷媒の流れに設定することにより、蓄熱槽
10内の蓄熱材におけるクラスレート生成温度は異なる
ものの、一次冷媒および二次冷媒の流れのパターンは、
第1の実施の形態における二次冷媒蓄熱空調システムと
全く同様であるので、説明を省略する。
In the secondary refrigerant thermal storage air conditioning system of this embodiment, there are four types of operation patterns for the cooling operation and the heating operation, respectively. In the cooling operation, the compressor is operated by switching the second four-way valve 17. From the first discharge unit to the primary side
By setting the flow of the refrigerant to the three-way valve 7 and the flow of the refrigerant from the first four-way valve 9 to the suction part of the compressor 1, the clathrate generation temperature in the heat storage material in the heat storage tank 10 is different, but the primary The flow pattern of the refrigerant and the secondary refrigerant is
Since it is completely the same as the secondary refrigerant thermal storage air conditioning system in the first embodiment, the description is omitted.

【0059】上述したように、本実施の形態における二
次冷媒蓄熱空調システムの暖房運転時には、第5の運転
パターンから第8の運転パターンまでの4通りの運転パ
ターンがあり、それぞれの運転パターンによって、各機
器の運転状態や三方弁および四方弁の状態が切り替えら
れる。
As described above, during the heating operation of the secondary refrigerant thermal storage air-conditioning system in the present embodiment, there are four operation patterns from the fifth operation pattern to the eighth operation pattern. The operating state of each device and the states of the three-way valve and the four-way valve are switched.

【0060】第5の運転パターンにおける一次冷媒の流
れを図10の太線にて示す。第5の運転パターンは、夜
間の、室内における暖房運転を必要としない時間帯の温
熱蓄熱時に行われる。
The flow of the primary refrigerant in the fifth operation pattern is shown by the thick line in FIG. The fifth operation pattern is performed at the time of thermal storage during the night, when the indoor heating operation is not required.

【0061】一次側冷凍サイクルは、一次側外部用熱交
換器2を蒸発器、一次側蓄熱部用熱交換器3を凝縮器と
して、圧縮機1、第2の四方弁17、第1の四方弁9、
一次側蓄熱部用熱交換器3、一次側第2三方弁8、第1
の膨張弁5、一次側外部用熱交換器2、一次側第1三方
弁7、第2の四方弁17、圧縮機1の順に一次冷媒が流
れ(本発明の蓄温運転モードに対応)、二次側熱搬送サ
イクルは循環ポンプ13を停止することで二次冷媒は全
く流れていない状態にある。
The primary-side refrigeration cycle includes a compressor 1, a second four-way valve 17, a first four-way valve, using the primary-side external heat exchanger 2 as an evaporator and the primary-side heat storage unit heat exchanger 3 as a condenser. Valve 9,
Primary side heat storage unit heat exchanger 3, primary side second three-way valve 8, first
The primary refrigerant flows in the order of the expansion valve 5, the primary external heat exchanger 2, the primary first three-way valve 7, the second four-way valve 17, and the compressor 1 (corresponding to the temperature storage operation mode of the present invention), In the secondary heat transfer cycle, the circulation pump 13 is stopped, so that the secondary refrigerant is not flowing at all.

【0062】第5の運転パターンにより、夜間の熱需要
の少ない時間帯(例えば、これを本発明の予め定められ
た時間帯に対応させることができる)に、蓄熱槽10内
に約45℃以上の温度で温水として温熱を貯えることが
できる。
According to the fifth operation pattern, in the heat storage tank 10 at a temperature of about 45 ° C. or more during the night time when heat demand is low (for example, this can be made to correspond to the predetermined time period of the present invention). At this temperature, heat can be stored as hot water.

【0063】このときの一次側冷凍サイクルの運転にお
けるモリエル線図の概略を図11に示す。図11では、
夜間の外気温度が5℃で、冷凍サイクルの蒸発温度が約
2℃、冷凍サイクルの凝縮温度が50℃における暖房運
転を行う冷凍サイクルを示している。
FIG. 11 schematically shows a Mollier diagram in the operation of the primary refrigeration cycle at this time. In FIG.
The refrigeration cycle in which the heating operation is performed when the outside air temperature at night is 5 ° C., the evaporation temperature of the refrigeration cycle is about 2 ° C., and the condensation temperature of the refrigeration cycle is 50 ° C.

【0064】このとき、一次側冷凍サイクルの凝縮温度
50℃と蒸発温度2℃の差は、従来の二次冷媒システム
の昼間の運転時のそれと比べて若干大きく、この時間帯
のみで考えると効率は低下しているものの、夜間電力を
使用して運転しているので電気代は安価となり、また、
この時間帯の蓄熱を後述する昼間の第6から第8の運転
パターンに有効に利用することで、暖房期全体としては
効率は向上する。
At this time, the difference between the condensing temperature of 50 ° C. and the evaporating temperature of 2 ° C. in the primary refrigeration cycle is slightly larger than that of the conventional secondary refrigerant system during the daytime operation. Although it has declined, since it operates using nighttime electricity, the electricity bill becomes cheaper,
By effectively utilizing the heat storage in this time zone for the sixth to eighth daytime operation patterns described later, the efficiency is improved as a whole during the heating period.

【0065】第6の運転パターンにおける二次冷媒の流
れを図12の太線にて示す。第6の運転パターンは、昼
間の、室内における暖房運転を必要とする時間帯であ
り、かつ蓄熱槽10内には第5の運転パターンにより蓄
熱材が約45℃以上の温水として保たれた状態(本発明
の「蓄熱材の温度と外気温度との差が所定の値以上の場
合」に対応)で行われる。
The flow of the secondary refrigerant in the sixth operation pattern is shown by the thick line in FIG. The sixth operation pattern is a daytime period during which the indoor heating operation is required, and the heat storage material is kept in the heat storage tank 10 as warm water of about 45 ° C. or higher by the fifth operation pattern. (Corresponding to “a case where the difference between the temperature of the heat storage material and the outside air temperature is equal to or more than a predetermined value”).

【0066】このとき、一次側冷凍サイクルは圧縮機1
の運転を停止しており、一次冷媒は全く流れていない状
態にある。
At this time, the primary refrigeration cycle is
Is stopped, and the primary refrigerant is not flowing at all.

【0067】二次側熱搬送サイクルは、蓄熱槽10内で
二次側蓄熱部用熱交換器11を介して蓄熱材から温熱を
受け取った二次冷媒が二次側蓄熱部用熱交換器11、二
次側第1三方弁15、二次側室内用熱交換器14、循環
ポンプ12、二次側第2三方弁16、二次側蓄熱部用熱
交換器11の順に流れる(本発明の蓄熱利用運転モード
に対応)ことで温熱を室内へ搬送し、暖房運転をおこな
う。この運転により蓄熱槽10内の蓄熱材は温熱を放出
して温度が下がる。
In the secondary heat transfer cycle, the secondary refrigerant, which has received the heat from the heat storage material via the secondary heat storage unit heat exchanger 11 in the heat storage tank 10, is converted into the secondary heat storage unit heat exchanger 11 , The secondary-side first three-way valve 15, the secondary-side indoor heat exchanger 14, the circulation pump 12, the secondary-side second three-way valve 16, and the secondary-side heat storage unit heat exchanger 11. (It corresponds to the heat storage operation mode) to transfer the heat to the room and perform the heating operation. By this operation, the heat storage material in the heat storage tank 10 emits heat and the temperature drops.

【0068】このとき、一次側冷凍サイクルは停止して
いるために電力は不要となり、二次冷媒を循環させる循
環ポンプ13や、ファン等の極めて少ない電力で暖房運
転を行うことが可能となり、効率の良い運転を行うこと
が出来る。また、室内温度は約20℃に保たれ、蓄熱槽
10内の蓄熱材は放熱して温度が上昇するが、二次側熱
搬送サイクルで搬送した温熱で空調可能である分だけ
(たとえば蓄熱材の温度が40℃以上である限り)第6
の運転パターンを維持する。
At this time, since the primary side refrigeration cycle is stopped, no electric power is required, and the heating operation can be performed with extremely small electric power from the circulation pump 13 for circulating the secondary refrigerant, the fan, and the like. Good driving can be performed. The indoor temperature is maintained at about 20 ° C., and the heat storage material in the heat storage tank 10 radiates heat and the temperature rises. However, only the amount that can be air-conditioned by the heat transferred in the secondary heat transfer cycle (for example, the heat storage material) 6) as long as the temperature of the
Maintain the driving pattern of

【0069】第7の運転パターンにおける一次冷媒およ
び二次冷媒の流れを図13の太線にて示す。第7の運転
パターンは、昼間の、室内における暖房運転を必要とす
る時間帯であり、かつ蓄熱槽10内には蓄熱材が実質的
に40℃より低くかつ外気温度7℃より高い温度に保た
れた状態を示している。
The flows of the primary refrigerant and the secondary refrigerant in the seventh operation pattern are shown by thick lines in FIG. The seventh operation pattern is a daytime period during which the indoor heating operation is required, and the heat storage material in the heat storage tank 10 is maintained at a temperature substantially lower than 40 ° C. and higher than the outside air temperature 7 ° C. This shows a leaned state.

【0070】一次側冷凍サイクルは一次側蓄熱部用熱交
換器3を蒸発器、一次側内部用熱交換器4を凝縮器とし
て、圧縮機1、第2の四方弁17、第1の四方弁9、一
次側内部用熱交換器4、第2の膨張弁6、一次側第2三
方弁8、一次側蓄熱部用熱交換器3、第1の四方弁9、
一次側第1三方弁7、第2の四方弁17、圧縮機1の順
に一次冷媒が流れ(本発明の第2暖房運転モードに対
応)、二次側熱搬送サイクルは、二次側内部用熱交換器
12で一次側内部用熱交換器4を介して温熱を受け取
り、二次冷媒は二次側内部用熱交換器12、二次側第1
三方弁15、二次側室内用熱交換器14、循環ポンプ1
3、二次側第2三方弁16、二次側内部用熱交換器12
の順に流れる(本発明のサイクル間熱交換運転モードに
対応)ことで温熱を室内へ搬送し、暖房運転をおこな
う。
The primary-side refrigeration cycle uses the heat exchanger 3 for the primary-side heat storage unit as an evaporator, the heat exchanger 4 for the primary-side internal as a condenser, the compressor 1, the second four-way valve 17, and the first four-way valve. 9, a primary side internal heat exchanger 4, a second expansion valve 6, a primary side second three-way valve 8, a primary side heat storage unit heat exchanger 3, a first four-way valve 9,
The primary refrigerant flows in the order of the primary first three-way valve 7, the second four-way valve 17, and the compressor 1 (corresponding to the second heating operation mode of the present invention). Heat is received by the heat exchanger 12 via the primary-side internal heat exchanger 4, and the secondary refrigerant is supplied to the secondary-side internal heat exchanger 12 and the secondary-side first heat exchanger 12.
Three-way valve 15, secondary-side indoor heat exchanger 14, circulation pump 1
3. Secondary side second three-way valve 16, Secondary side internal heat exchanger 12
(Corresponding to the inter-cycle heat exchange operation mode of the present invention) to transfer the heat to the room and perform the heating operation.

【0071】この運転により蓄熱槽10内の蓄熱材は一
次側蓄熱部用熱交換器3を流れる一次冷媒の蒸発作用に
より熱を放出して温度が下降する。ただし、蓄熱槽10
内では、一次側蓄熱部用熱交換器で一次冷媒が放出した
冷熱はプロパンとブタンの混合物のクラスレート生成の
潜熱として使用されるため、15℃付近で温度は留ま
り、クラスレートを十分に生成した後に再び蓄熱材全体
の温度が下降する。そのため、実際に蓄熱槽10で放熱
される熱量は、蓄熱材の温度差以上に大きな熱量とな
る。
By this operation, the heat storage material in the heat storage tank 10 emits heat by the evaporating action of the primary refrigerant flowing through the heat exchanger 3 for the primary side heat storage unit, and the temperature falls. However, the heat storage tank 10
Inside, the cold heat released by the primary refrigerant in the heat exchanger for the primary heat storage unit is used as latent heat for clathrate generation of a mixture of propane and butane, so the temperature stays around 15 ° C and the clathrate is sufficiently generated. After that, the temperature of the entire heat storage material falls again. Therefore, the amount of heat actually radiated in the heat storage tank 10 is larger than the temperature difference of the heat storage material.

【0072】このときの一次側冷凍サイクルの運転にお
けるモリエル線図の概略を図14に示す。図14では、
蓄熱槽10内の蓄熱材平均温度が15℃で、冷凍サイク
ルの蒸発温度が約12℃、冷凍サイクルの凝縮温度が4
5℃における暖房運転を行う冷凍サイクルを示してい
る。
FIG. 14 schematically shows a Mollier chart in the operation of the primary refrigeration cycle at this time. In FIG.
The average temperature of the heat storage material in the heat storage tank 10 is 15 ° C., the evaporation temperature of the refrigeration cycle is about 12 ° C., and the condensation temperature of the refrigeration cycle is 4
The refrigeration cycle which performs a heating operation at 5 ° C. is shown.

【0073】このとき、一次側冷凍サイクルの凝縮温度
は従来の二次冷媒冷凍サイクルと同等であるが、蒸発温
度は外気と熱交換を行う際の蒸発温度の約4℃よりもは
るかに高くてすむので、従来の二次冷媒システムより一
次側の入力が抑えられ、効率の良い運転を行うことが出
来る。
At this time, the condensation temperature of the primary side refrigeration cycle is the same as that of the conventional secondary refrigerant refrigeration cycle, but the evaporation temperature is much higher than the evaporation temperature of about 4 ° C. at the time of heat exchange with the outside air. As a result, the input on the primary side is suppressed as compared with the conventional secondary refrigerant system, and efficient operation can be performed.

【0074】また、室内温度は約20℃に保たれ、蓄熱
槽10内の蓄熱材は放熱して蓄熱材全体の温度が下降す
るが、蓄熱材の温度が外気温度よりも高い限り、第7の
運転パターンを維持する。
The indoor temperature is maintained at about 20 ° C., and the heat storage material in the heat storage tank 10 radiates heat to lower the temperature of the entire heat storage material. However, as long as the temperature of the heat storage material is higher than the outside air temperature, the seventh temperature is maintained. Maintain the driving pattern of

【0075】なお、第7の運転パターンを、夜間で、室
内暖房を行う場合で、蓄熱槽10内には蓄熱材が外気温
度より高い温度に保たれた状態(本発明の「蓄熱材の温
度と外気温度との差が別の所定の値より大きい場合」に
対応)において、行うことによって、上記と同様に、冷
凍サイクルにおける蒸発温度を高くすることで効率の良
い運転を行うことが出来る。
It is to be noted that the seventh operation pattern is a case where room heating is performed at night, and a state in which the heat storage material is maintained at a temperature higher than the outside air temperature in the heat storage tank 10 (the “temperature of the heat storage material” in the present invention). In the case where the difference between the temperature and the outside air temperature is larger than another predetermined value), it is possible to perform an efficient operation by increasing the evaporation temperature in the refrigeration cycle in the same manner as described above.

【0076】第8の運転パターンにおける一次冷媒およ
び二次冷媒の流れを図15の太線にて示す。第8の運転
パターンは、昼間の、室内における暖房運転を必要とす
る時間帯であり、かつ蓄熱槽10内の蓄熱材の温度が外
気温度と同等となった時(本発明の「蓄熱材の温度と外
気温度との差が別の所定の値以下の場合」に対応)に行
われ、この時は従来の二次冷媒システムと同様の運転を
行うことになる。なお、第8の運転パターンは、夜間に
おいても、室内における暖房運転を必要とする時間帯で
あり、かつ蓄熱槽10内の蓄熱材の温度が外気温度と同
等となった時にも、行われる。
The flows of the primary refrigerant and the secondary refrigerant in the eighth operation pattern are shown by thick lines in FIG. The eighth operation pattern is a time period in the daytime when the indoor heating operation is required, and when the temperature of the heat storage material in the heat storage tank 10 becomes equal to the outside air temperature (“the heat storage material of the present invention”). If the difference between the temperature and the outside air temperature is equal to or less than another predetermined value "), the operation is the same as that of the conventional secondary refrigerant system. The eighth operation pattern is also performed at night, during a time period during which the indoor heating operation is required, and when the temperature of the heat storage material in the heat storage tank 10 becomes equal to the outside air temperature.

【0077】一次側冷凍サイクルは、一次側外部用熱交
換器2を蒸発器、一次側内部用熱交換器4を凝縮器とし
て、圧縮機1、第2の四方弁17、第1の四方弁9、一
次側内部用熱交換器4、第2の膨張弁6、一次側第2三
方弁8、第1の膨張弁5、一次側外部用熱交換器2、一
次側第1三方弁7、第2の四方弁17、圧縮機1の順に
一次冷媒が流れ(本発明の第1暖房運転モードに対
応)、二次側熱搬送サイクルは、二次側内部用熱交換器
12で一次側内部用熱交換器4を介して温熱を受け取
り、二次冷媒は二次側内部用熱交換器12、二次側第1
三方弁15、二次側室内用熱交換器14、循環ポンプ1
3、二次側第2三方弁16、二次側内部用熱交換器12
の順に流れる(本発明のサイクル間熱交換運転モードに
対応)ことで温熱を室内へ搬送し、暖房運転をおこな
う。
The primary-side refrigeration cycle includes a compressor 1, a second four-way valve 17, and a first four-way valve, using the primary-side external heat exchanger 2 as an evaporator and the primary-side internal heat exchanger 4 as a condenser. 9, a primary internal heat exchanger 4, a second expansion valve 6, a primary second three-way valve 8, a first expansion valve 5, a primary external heat exchanger 2, a primary first three-way valve 7, The primary refrigerant flows in the order of the second four-way valve 17 and the compressor 1 (corresponding to the first heating operation mode of the present invention), and the secondary heat transfer cycle is performed by the secondary internal heat exchanger 12 using the primary internal heat exchanger 12. Heat is received through the internal heat exchanger 4, and the secondary refrigerant is supplied to the secondary internal heat exchanger 12 and the secondary first heat exchanger.
Three-way valve 15, secondary-side indoor heat exchanger 14, circulation pump 1
3. Secondary side second three-way valve 16, Secondary side internal heat exchanger 12
(Corresponding to the inter-cycle heat exchange operation mode of the present invention) to transfer the heat to the room and perform the heating operation.

【0078】このときの一次側冷凍サイクルの運転にお
けるモリエル線図の概略を図16に示す。図16では、
外気温度が7℃で、冷凍サイクルの平均蒸発温度が約4
℃、冷凍サイクルの凝縮温度が45℃における暖房運転
を行う冷凍サイクルを示している。
FIG. 16 schematically shows a Mollier chart in the operation of the primary refrigeration cycle at this time. In FIG.
The outside air temperature is 7 ° C and the average evaporation temperature of the refrigeration cycle is about 4
The refrigeration cycle which performs the heating operation when the condensation temperature of the refrigeration cycle is 45 ° C is shown.

【0079】このように、暖房運転を行うにあたり、時
間帯と蓄熱槽10内の蓄熱材の温度と室外温度の差を考
慮して運転パターン5〜運転パターン8を切り替えるこ
とにより、自然系冷媒を用いた地球環境に優しい冷媒を
安全に用いながら、従来例の暖房運転に見られるような
蒸発側温度4℃、凝縮側温度45℃の一次側冷凍サイク
ルの定常運転を行うのに対して平均的な蒸発温度をはる
かに低く取ることが可能となり、二次冷媒システムでは
あるが極めて高効率な運転を可能とする。もちろん、冷
房時においても、従来例に見られるように、二次冷媒シ
ステムではあるが極めて高効率な運転を可能とする。
As described above, in performing the heating operation, by switching the operation pattern 5 to the operation pattern 8 in consideration of the difference between the time zone, the temperature of the heat storage material in the heat storage tank 10 and the outdoor temperature, the natural refrigerant can be used. It is an average for steady operation of the primary refrigeration cycle of 4 ° C on the evaporating side and 45 ° C on the condensing side as seen in the conventional heating operation, while safely using the used environmentally friendly refrigerant. It is possible to take a much lower evaporating temperature, and it is possible to operate the secondary refrigerant system at a very high efficiency. Of course, even during cooling, as in the conventional example, it is possible to operate the secondary refrigerant system with extremely high efficiency.

【0080】また、蓄熱槽10を利用し、夜間に蓄熱運
転を行い、昼間の電力負荷の最も多い時間帯に蓄熱槽1
0内の冷房時冷熱または暖房時温熱を直接利用する運転
と、室外空気等の代わりに蓄熱槽10内に蓄熱された熱
を利用する運転を二次冷媒空調システムと組み合わせる
ことで、自然系冷媒の課題とされる可燃性や毒性の問題
も解消されるとともに、昼間の電力負荷のピークカット
を行うこともできる。さらに、本発明におけるクラスレ
ートを利用した蓄熱材では、水などを用いた顕熱による
蓄熱材と比較しても、潜熱を利用して蓄熱するために小
型でも大量の熱を蓄えることが出来る。
The heat storage tank 10 is used to perform a heat storage operation at night, and the heat storage tank 1 is operated during the daytime when the power load is highest.
By combining the operation using the cooling heat during cooling or the heating heat during heating directly with the secondary refrigerant air conditioning system with the operation using the heat stored in the heat storage tank 10 in place of the outdoor air or the like, the natural refrigerant is used. In addition to solving the problems of flammability and toxicity, which are problems of the present invention, it is also possible to perform a peak cut of the power load in the daytime. Furthermore, in the heat storage material using clathrate according to the present invention, a large amount of heat can be stored even in a small size because heat is stored using latent heat, even when compared with a heat storage material using sensible heat using water or the like.

【0081】なお、この時の蓄熱槽10の規模や封入す
る蓄熱材の量、また、クラスレートによる潜熱を生成す
る温度・圧力は、一意に決定されるものではなく、シス
テムの規模や熱負荷等によって独自に設定されるもので
ある。
At this time, the scale of the heat storage tank 10, the amount of the heat storage material to be enclosed, and the temperature and pressure at which the latent heat is generated by the clathrate are not uniquely determined. Etc. are set independently.

【0082】クラスレートの凝固点は、プロパンとエタ
ンの混合比によって、約5〜20℃の間で変化するが、
どの温度でクラスレートが生成するように設定するか
は、蓄熱として、冷房を重視する割合と暖房を重視する
割合によって設定されるものである。また、プロパンと
エタンの混合物に、さらに塩化ナトリウム等の物質を混
合させて、凝固点降下によってクラスレートが生成する
温度をさらに低下させても、もちろん構わない。
The freezing point of the clathrate varies between about 5 and 20 ° C. depending on the mixing ratio of propane and ethane.
At which temperature the clathrate is set to be generated is set by the ratio of emphasis on cooling and the ratio of emphasis on heating as heat storage. Further, a mixture of propane and ethane may be further mixed with a substance such as sodium chloride to further lower the temperature at which clathrate is formed by lowering the freezing point.

【0083】なお、上述した第1の実施の形態において
は、冷房専用の二次冷媒蓄熱空調システムについて説明
し、上述した第2の実施の形態においては、冷暖房兼用
の二次冷媒蓄熱空調システムについて説明したが、図1
で示した第1の実施の形態における二次冷媒蓄熱空調シ
ステムの構成の第1の四方弁9の接続を変更する構成と
することによって、暖房専用の二次冷媒蓄熱空調システ
ムを実現することができる。この暖房専用の二次冷媒蓄
熱空調システムは、冷房専用または冷暖房兼用の二次冷
媒蓄熱空調システムが実現する効率アップほどではない
が、従来の二次冷媒空調システムや蓄熱空調システムに
比べて、ある程度効率を改善することができるものであ
る。
In the first embodiment described above, a secondary refrigerant heat storage air conditioning system dedicated to cooling will be described. In the second embodiment described above, a secondary refrigerant heat storage air conditioning system used for both cooling and heating will be described. As explained, FIG.
By changing the connection of the first four-way valve 9 of the configuration of the secondary refrigerant thermal storage air conditioning system in the first embodiment shown in the above, it is possible to realize a secondary refrigerant thermal storage air conditioning system dedicated to heating. it can. This secondary refrigerant thermal storage air conditioning system dedicated to heating is not as efficient as a secondary refrigerant thermal storage air conditioning system dedicated to cooling or for both cooling and heating. The efficiency can be improved.

【0084】また、上述した第1および第2の実施の形
態においては、複数の膨張弁によって本発明の絞り装置
を構成し、複数の三方弁と単数または複数の四方弁と配
管によって本発明の一次側流路切替手段を構成し、複数
の三方弁と配管によって本発明の二次側流路切替手段を
構成するものとして説明したが、これに限るものではな
い。要するに、本発明の二次冷媒蓄熱空調システムは、
圧縮機、一次側外部用熱交換器、一次側蓄熱部用熱交換
器、一次側内部用熱交換器、絞り装置および一次側流路
切替手段を有し、一次冷媒が封入されている一次側サイ
クルと、循環ポンプ、二次側室内用熱交換器、二次側蓄
熱部用熱交換器、二次側内部用熱交換器および二次側流
路切替手段を有し、二次冷媒が封入されている二次側サ
イクルと、蓄熱材が封入され、前記蓄熱材が前記一次側
蓄熱部用熱交換器および前記二次側蓄熱部用熱交換器と
熱の授受を行うことによって、蓄熱を行う蓄熱部とを備
え、前記一次側内部用熱交換器および前記二次側内部用
熱交換器が、熱の授受が行えるように配置され、冷房運
転時には、前記一次側サイクルが、前記圧縮機→凝縮器
として用いられる前記一次側外部用熱交換器→前記絞り
装置→蒸発器として用いられる前記一次側蓄熱部用熱交
換器→前記圧縮機、の順で前記一次冷媒が循環すること
によって、前記一次側外部用熱交換器が外部に温熱を放
出し、前記一次側蓄熱部用熱交換器が前記蓄熱部に冷熱
を蓄える蓄冷運転モード、前記圧縮機→凝縮器として用
いられる前記一次側外部用熱交換器→前記絞り装置→蒸
発器として用いられる前記一次側内部用熱交換器→前記
圧縮機、の順で前記一次冷媒が循環することによって、
前記一次側外部用熱交換器が外部に温熱を放出し、前記
一次側内部用熱交換器が前記二次側内部用熱交換器を介
して前記二次冷媒に冷熱を伝える第1冷房運転モード、
前記圧縮機→凝縮器として用いられる前記一次側蓄熱部
用熱交換器→前記絞り装置→蒸発器として用いられる前
記一次側内部用熱交換器→前記圧縮機、の順で前記一次
冷媒が循環することによって、前記一次側蓄熱部用熱交
換器が前記蓄熱材に温熱を放出し、前記一次側内部用熱
交換器が前記二次側内部用熱交換器を介して前記二次冷
媒に冷熱を伝える第2冷房運転モード、の3つの運転モ
ードを有し、前記一次側流路切替手段によって前記運転
モードを切り替えられて、運転を行い、前記二次側サイ
クルが、前記二次側内部用熱交換器→前記二次側室内用
熱交換器→前記二次側内部用熱交換器、の順で、途中に
前記循環ポンプを介して、前記二次冷媒が循環すること
によって、前記二次側内部用熱交換器が前記一次側内部
用熱交換器から受け取った冷熱を用いて、前記二次側室
内用熱交換器によって室内を冷房するサイクル間熱交換
運転モード、前記二次側蓄熱部用熱交換器→前記二次側
室内用熱交換器→前記二次側蓄熱部用熱交換器、の順
で、途中に前記循環ポンプを介して、前記二次冷媒が循
環することによって、前記二次側蓄熱部用熱交換器が前
記蓄熱材から受け取った冷熱を前記二次側室内用熱交換
器によって室内を冷房する蓄熱利用運転モード、の2つ
の運転モードを有し、前記二次側流路切替手段によって
前記運転モードを切り替えられて、運転を行い、前記一
次側サイクルが前記第1冷房運転モードまたは前記第2
冷房運転モードの運転を行うときには、前記サイクル間
熱交換運転モードの運転を運転を行う構成でありさえす
ればよい。
In the first and second embodiments described above, the expansion device of the present invention is constituted by a plurality of expansion valves, and a plurality of three-way valves, a single or a plurality of four-way valves, and piping are used. Although the description has been made assuming that the primary-side flow switching means is configured and the plurality of three-way valves and pipes configure the secondary-side flow switching means of the present invention, the invention is not limited thereto. In short, the secondary refrigerant thermal storage air conditioning system of the present invention
A primary side having a compressor, a primary-side external heat exchanger, a primary-side heat storage unit heat exchanger, a primary-side internal heat exchanger, a throttling device, and a primary-side flow switching means, in which a primary refrigerant is sealed. It has a cycle, a circulating pump, a secondary-side indoor heat exchanger, a secondary-side heat storage unit heat exchanger, a secondary-side internal heat exchanger, and a secondary-side flow path switching unit. The heat storage material is sealed, and the heat storage material exchanges heat with the heat exchanger for the primary heat storage unit and the heat exchanger for the secondary heat storage unit, thereby storing heat. And a heat storage unit for performing the heat transfer, wherein the primary-side internal heat exchanger and the secondary-side internal heat exchanger are arranged so as to be able to exchange heat, and in a cooling operation, the primary cycle includes the compressor. → The primary external heat exchanger used as a condenser → The throttling device → Evaporator By the primary refrigerant circulating in the order of the used heat exchanger for the primary heat storage unit → the compressor, the external heat exchanger for the primary side emits heat to the outside, and for the primary heat storage unit. A cold storage operation mode in which a heat exchanger stores cold heat in the heat storage unit, the compressor → the primary external heat exchanger used as a condenser → the throttling device → the primary internal heat exchanger used as an evaporator → by the primary refrigerant circulating in the order of the compressor,
A first cooling operation mode in which the primary-side external heat exchanger emits heat to the outside, and the primary-side internal heat exchanger transmits cold heat to the secondary refrigerant via the secondary-side internal heat exchanger ,
The primary refrigerant circulates in the order of the compressor → the heat exchanger for the primary heat storage section used as a condenser → the expansion device → the heat exchanger for the primary side used as an evaporator → the compressor. Thereby, the heat exchanger for the primary side heat storage unit emits heat to the heat storage material, and the heat exchanger for the primary side internal cools the secondary refrigerant through the heat exchanger for the secondary side internal heat. A second cooling operation mode to be conveyed. The operation mode is switched by the primary-side flow switching means, and the secondary cycle is operated by the primary-side flow switching means. The secondary refrigerant is circulated on the way through the circulation pump in the order of an exchanger → the secondary-side indoor heat exchanger → the secondary-side internal heat exchanger. The internal heat exchanger receives the heat from the primary internal heat exchanger. Using the cold heat taken, the inter-cycle heat exchange operation mode for cooling the room by the secondary-side indoor heat exchanger, the secondary-side heat storage unit heat exchanger → the secondary-side indoor heat exchanger → the In the order of the secondary-side heat storage unit heat exchanger, the secondary refrigerant is circulated on the way through the circulation pump, so that the secondary-side heat storage unit heat exchanger receives from the heat storage material. It has two operation modes, a heat storage utilization operation mode for cooling the room by the secondary side indoor heat exchanger, and the operation mode is switched by the secondary flow path switching means to perform operation. The primary cycle is in the first cooling operation mode or the second cooling mode.
When the operation in the cooling operation mode is performed, it is sufficient that the operation in the inter-cycle heat exchange operation mode is performed.

【0085】また、暖房運転を行う場合は、前記圧縮機
→凝縮器として用いられる前記一次側蓄熱部用熱交換器
→前記絞り装置→蒸発器として用いられる前記一次側外
部用熱交換器→前記圧縮機、の順で前記一次冷媒が循環
することによって、前記一次側外部用熱交換器が外部か
ら温熱を吸収し、前記一次側蓄熱部用熱交換器が前記蓄
熱部に温熱を蓄える蓄温運転モード、前記圧縮機→凝縮
器として用いられる前記一次側内部用熱交換器→前記絞
り装置→蒸発器として用いられる前記一次側外部用熱交
換器→前記圧縮機、の順で前記一次冷媒が循環すること
によって、前記一次側外部用熱交換器が外部から温熱を
吸収し、前記一次側内部用熱交換器が前記二次側内部用
熱交換器を介して前記二次冷媒に温熱を伝える第1暖房
運転モード、前記圧縮機→凝縮器として用いられる前記
一次側内部用熱交換器→前記絞り装置→蒸発器として用
いられる前記一次側蓄熱部用熱交換器→前記圧縮機、の
順で前記一次冷媒が循環することによって、前記一次側
蓄熱部用熱交換器が前記蓄熱材から温熱を吸収し、前記
一次側内部用熱交換器が前記二次側内部用熱交換器を介
して前記二次冷媒に温熱を伝える第2暖房運転モード、
の3つの運転モードを有し、前記一次側流路切替手段に
よって前記運転モードを切り替えられて、運転を行い、
前記二次側サイクルが、前記一次側サイクルが前記第1
暖房運転モードまたは前記第2暖房運転モードの運転を
行うときには、前記サイクル間熱交換運転モードの運転
を行うことによって、前記二次側内部用熱交換器が前記
一次側内部用熱交換器から受け取った温熱を用いて、前
記二次側室内用熱交換器によって室内を暖房し、前記一
次側サイクルが運転を行っていないときに、前記蓄熱利
用運転モードの運転を運転を行うことによって、前記二
次側蓄熱部用熱交換器が前記蓄熱材から受け取った温熱
を前記二次側室内用熱交換器によって室内を暖房する構
成でありさえすればよい。
When the heating operation is performed, the compressor → the heat exchanger for the primary heat storage section used as a condenser → the throttling device → the heat exchanger for the primary external used as an evaporator → By circulating the primary refrigerant in the order of the compressor, the primary-side external heat exchanger absorbs heat from the outside, and the primary-side heat storage unit heat exchanger stores heat in the heat storage unit. The operation mode, the compressor → the primary side internal heat exchanger used as a condenser → the expansion device → the primary side external heat exchanger used as an evaporator → the compressor, the primary refrigerant in this order. By circulating, the primary-side external heat exchanger absorbs heat from the outside, and the primary-side internal heat exchanger transmits heat to the secondary refrigerant via the secondary-side internal heat exchanger. 1st heating operation mode, said The primary refrigerant circulates in the order of a compressor → the primary-side internal heat exchanger used as a condenser → the expansion device → the primary-side heat storage unit heat exchanger used as an evaporator → the compressor. Thereby, the heat exchanger for the primary heat storage unit absorbs heat from the heat storage material, and the primary internal heat exchanger transmits heat to the secondary refrigerant via the secondary internal heat exchanger. Second heating operation mode,
Has three operation modes, the operation mode is switched by the primary side flow path switching means, and the operation is performed,
The secondary cycle is the primary cycle is the first cycle.
When the operation in the heating operation mode or the second heating operation mode is performed, by performing the operation in the inter-cycle heat exchange operation mode, the secondary-side internal heat exchanger receives the heat from the primary-side internal heat exchanger. By heating the room by the secondary-side indoor heat exchanger using the heated heat and operating the heat storage operation mode when the primary cycle is not operating, It is only necessary that the secondary-side heat storage unit heat exchanger heats the room received from the heat storage material by the secondary-side indoor heat exchanger.

【0086】[0086]

【発明の効果】以上述べたところから明らかなように、
請求項1〜8の本発明は、効率の良い運転が行える二次
冷媒蓄熱空調システム、特に、地球温暖化にも影響を与
えない炭化水素系冷媒やアンモニア系冷媒等の新規冷媒
を用いても、効率の良い運転が行える二次冷媒蓄熱空調
システムを提供することができる。すなわち、一次冷媒
に炭化水素系冷媒やアンモニア系冷媒を用いることで、
環境に優しい自然系冷媒を用いながら、可燃性や毒性を
有する冷媒の漏洩による影響が少なくかつ高効率な二次
冷媒蓄熱空調システムを提供することができる。
As is apparent from the above description,
The present invention according to claims 1 to 8, the secondary refrigerant thermal storage air-conditioning system capable of efficient operation, especially, even using a new refrigerant such as a hydrocarbon-based refrigerant or an ammonia-based refrigerant that does not affect global warming. Thus, it is possible to provide a secondary refrigerant heat storage air conditioning system capable of performing efficient operation. That is, by using a hydrocarbon-based refrigerant or an ammonia-based refrigerant as the primary refrigerant,
It is possible to provide a highly efficient secondary refrigerant thermal storage air-conditioning system that is less affected by leakage of a flammable or toxic refrigerant while using an environmentally friendly natural refrigerant.

【0087】また、請求項3、4の本発明は、冷房運転
と暖房運転を兼用できる四方弁を設けた蓄熱空調システ
ムを構成することで、冷房運転と暖房運転の両方で効率
の高い二次冷媒蓄熱空調システムを提供することができ
る。
The present invention according to claims 3 and 4 comprises a heat storage air-conditioning system provided with a four-way valve capable of performing both the cooling operation and the heating operation. A refrigerant heat storage air conditioning system can be provided.

【0088】また、請求項5の本発明は、本発明の「予
め定められた時間帯」を夜間とすることによって、夜間
に蓄熱を行い、昼間の電力需要の多い時間帯に蓄熱槽内
の熱を直接用いて空調を行うか、蓄熱槽内の熱を室外空
気の代わりとして利用して空調を行うことができるの
で、高効率で、電気料金が安価となり、電力ピークのカ
ットにも貢献する二次冷媒蓄熱空調システムを提供する
ことができる。
Further, according to the present invention, by setting the "predetermined time zone" of the present invention to be nighttime, heat is stored at night, and during the daytime when power demand is high, the heat in the heat storage tank is stored. Air conditioning can be performed directly by using heat or by using the heat in the heat storage tank instead of outdoor air, so high efficiency, low electricity rates, and a reduction in power peaks can be achieved. A secondary refrigerant heat storage air conditioning system can be provided.

【0089】また、請求項7、8の本発明は、蓄熱材と
して炭素数4以下の炭化水素系の物質を使用してクラス
レートを生成させることで、環境に優しい自然系冷媒を
用いながら、潜熱利用により小型でも蓄熱量の大きな二
次冷媒蓄熱空調システムを提供することができる。
Further, according to the present invention, the clathrate is generated by using a hydrocarbon-based substance having 4 or less carbon atoms as a heat storage material, thereby using an environmentally friendly natural refrigerant. By using latent heat, it is possible to provide a secondary refrigerant heat storage air conditioning system having a large heat storage amount even though it is small.

【0090】また、請求項8の本発明は、蓄熱材として
プロパンおよびエタンの単体又は混合物を用いて凝固点
を0〜15℃のクラスレートを生成させることで、環境
に優しい自然系冷媒を用いながら、冷房運転に最適な温
度でかつ潜熱利用により小型かつ蓄熱量の大きな二次冷
媒蓄熱空調システムを提供することができ、蓄熱材とし
てプロパンおよびエタンの単体又は混合物を用いて凝固
点を0〜20℃のクラスレートを生成させることで、環
境に優しい自然系冷媒を用いながら、冷房運転と暖房運
転の両方で適切な潜熱利用が可能な小型でも蓄熱量の大
きな二次冷媒蓄熱空調システムを提供することができ
る。
Further, according to the present invention, a clathrate having a freezing point of 0 to 15 ° C. is generated by using propane and ethane alone or as a mixture as a heat storage material, thereby using an environmentally friendly natural refrigerant. It is possible to provide a secondary refrigerant heat storage air conditioning system having a small size and a large amount of heat storage by utilizing latent heat at a temperature optimal for cooling operation and using a single or mixture of propane and ethane as a heat storage material to have a freezing point of 0 to 20 ° C. To provide a small-sized secondary refrigerant thermal storage air-conditioning system that can use appropriate latent heat in both cooling operation and heating operation by using an environmentally friendly natural refrigerant by generating a clathrate of Can be.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施の形態における二次冷媒蓄
熱空調システムを示す概略構成図である。
FIG. 1 is a schematic configuration diagram showing a secondary refrigerant heat storage air conditioning system according to a first embodiment of the present invention.

【図2】本発明の第1の実施の形態における二次冷媒蓄
熱空調システムの第1の運転パターンにおける一次冷媒
および二次冷媒の流れを示す図である。
FIG. 2 is a diagram illustrating flows of a primary refrigerant and a secondary refrigerant in a first operation pattern of the secondary refrigerant thermal storage air conditioning system according to the first embodiment of the present invention.

【図3】本発明の第1の実施の形態における二次冷媒蓄
熱空調システムの第1の運転パターンにおける一次冷媒
のモリエル線図である。
FIG. 3 is a Mollier diagram of a primary refrigerant in a first operation pattern of the secondary refrigerant thermal storage air conditioning system according to the first embodiment of the present invention.

【図4】本発明の第1の実施の形態における二次冷媒蓄
熱空調システムの第2の運転パターンにおける一次冷媒
および二次冷媒の流れを示す図である。
FIG. 4 is a diagram showing flows of a primary refrigerant and a secondary refrigerant in a second operation pattern of the secondary refrigerant thermal storage air conditioning system according to the first embodiment of the present invention.

【図5】本発明の第1の実施の形態における二次冷媒蓄
熱空調システムの第3の運転パターンにおける一次冷媒
および二次冷媒の流れを示す図である。
FIG. 5 is a diagram showing flows of a primary refrigerant and a secondary refrigerant in a third operation pattern of the secondary refrigerant thermal storage air conditioning system according to the first embodiment of the present invention.

【図6】本発明の第1の実施の形態における二次冷媒蓄
熱空調システムの第3の運転パターンにおける一次冷媒
のモリエル線図である。
FIG. 6 is a Mollier diagram of a primary refrigerant in a third operation pattern of the secondary refrigerant heat storage air conditioning system according to the first embodiment of the present invention.

【図7】本発明の第1の実施の形態における二次冷媒蓄
熱空調システムの第4の運転パターンにおける一次冷媒
および二次冷媒の流れを示す図である。
FIG. 7 is a diagram showing flows of a primary refrigerant and a secondary refrigerant in a fourth operation pattern of the secondary refrigerant thermal storage air conditioning system according to the first embodiment of the present invention.

【図8】本発明の第1の実施の形態における二次冷媒蓄
熱空調システムの第4の運転パターンにおける一次冷媒
のモリエル線図である。
FIG. 8 is a Mollier diagram of a primary refrigerant in a fourth operation pattern of the secondary refrigerant thermal storage air conditioning system according to the first embodiment of the present invention.

【図9】本発明の第2の実施の形態における二次冷媒蓄
熱空調システムを示す概略構成図である。
FIG. 9 is a schematic configuration diagram showing a secondary refrigerant heat storage air conditioning system according to a second embodiment of the present invention.

【図10】本発明の第2の実施の形態における二次冷媒
蓄熱空調システムの暖房運転の第5の運転パターンにお
ける一次冷媒および二次冷媒の流れを示す図である。
FIG. 10 is a diagram showing flows of a primary refrigerant and a secondary refrigerant in a fifth operation pattern of a heating operation of the secondary refrigerant heat storage air conditioning system according to the second embodiment of the present invention.

【図11】本発明の第2の実施の形態における二次冷媒
蓄熱空調システムの暖房運転の第5の運転パターンにお
ける一次冷媒のモリエル線図である。
FIG. 11 is a Mollier diagram of a primary refrigerant in a fifth operation pattern of a heating operation of the secondary refrigerant heat storage air conditioning system according to the second embodiment of the present invention.

【図12】本発明の第2の実施の形態における二次冷媒
蓄熱空調システムの暖房運転の第6の運転パターンにお
ける一次冷媒および二次冷媒の流れを示す図である。
FIG. 12 is a diagram showing flows of a primary refrigerant and a secondary refrigerant in a sixth operation pattern of a heating operation of the secondary refrigerant heat storage air conditioning system according to the second embodiment of the present invention.

【図13】本発明の第2の実施の形態における二次冷媒
蓄熱空調システムの暖房運転の第7の運転パターンにお
ける一次冷媒および二次冷媒の流れを示す図である。
FIG. 13 is a diagram illustrating flows of a primary refrigerant and a secondary refrigerant in a seventh operation pattern of a heating operation of the secondary refrigerant heat storage air conditioning system according to the second embodiment of the present invention.

【図14】本発明の第2の実施の形態における二次冷媒
蓄熱空調システムの暖房運転の第7の運転パターンにお
ける一次冷媒のモリエル線図である。
FIG. 14 is a Mollier diagram of a primary refrigerant in a seventh operation pattern of a heating operation of the secondary refrigerant heat storage air conditioning system according to the second embodiment of the present invention.

【図15】本発明の第2の実施の形態における二次冷媒
蓄熱空調システムの暖房運転の第8の運転パターンにお
ける一次冷媒および二次冷媒の流れを示す図である。
FIG. 15 is a diagram showing flows of a primary refrigerant and a secondary refrigerant in an eighth operation pattern of a heating operation of the secondary refrigerant thermal storage air conditioning system according to the second embodiment of the present invention.

【図16】本発明の第2の実施の形態における二次冷媒
蓄熱空調システムの暖房運転の第8の運転パターンにお
ける一次冷媒のモリエル線図である。
FIG. 16 is a Mollier diagram of a primary refrigerant in an eighth operation pattern of a heating operation of the secondary refrigerant heat storage air conditioning system according to the second embodiment of the present invention.

【図17】従来の二次冷媒空調システムを示す概略構成
図である。
FIG. 17 is a schematic configuration diagram showing a conventional secondary refrigerant air conditioning system.

【符号の説明】[Explanation of symbols]

1 圧縮機 2 一次側外部用熱交換器 3 一次側蓄熱部用熱交換器 4 一次側内部用熱交換器 5 第1の膨張弁 6 第2の膨張弁 7 第1の三方弁 8 第2の三方弁 9 第1の四方弁 10 蓄熱槽 11 二次側蓄熱部用熱交換器 12 二次側内部用熱交換器 13 循環ポンプ 14 二次側室内用熱交換器 15 第3の三方弁 16 第4の三方弁 17 第2の四方弁 DESCRIPTION OF SYMBOLS 1 Compressor 2 Primary-side external heat exchanger 3 Primary-side heat storage part heat exchanger 4 Primary-side internal heat exchanger 5 First expansion valve 6 Second expansion valve 7 First three-way valve 8 Second Three-way valve 9 First four-way valve 10 Heat storage tank 11 Secondary-side heat storage unit heat exchanger 12 Secondary-side internal heat exchanger 13 Circulation pump 14 Secondary-side indoor heat exchanger 15 Third three-way valve 16 Four three-way valve 17 Second four-way valve

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C09K 5/06 C09K 5/06 Z F24F 11/02 102 F24F 11/02 102B F25B 13/00 351 F25B 13/00 351 F28D 20/02 F28F 23/02 D F28F 23/02 F28D 20/00 C (72)発明者 岡座 典穂 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 吉田 雄二 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 Fターム(参考) 3L054 BG04 BH07 3L060 AA03 CC01 CC08 DD07 EE01 EE41 3L092 AA02 BA17 BA21 BA23 BA26 EA18 EA20 FA22 FA34 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C09K 5/06 C09K 5/06 Z F24F 11/02 102 F24F 11/02 102B F25B 13/00 351 F25B 13 / 00 351 F28D 20/02 F28F 23/02 D F28F 23/02 F28D 20/00 C (72) Inventor Norioka Okaza 1006 Odoma, Kazuma, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (72) Inventor Yuji Yoshida Osaka 1006, Kadoma, Kamon, Fumonma-shi Matsushita Electric Industrial Co., Ltd. F term (reference) 3L054 BG04 BH07 3L060 AA03 CC01 CC08 DD07 EE01 EE41 3L092 AA02 BA17 BA21 BA23 BA26 EA18 EA20 FA22 FA34

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 圧縮機、一次側外部用熱交換器、一次側
蓄熱部用熱交換器、一次側内部用熱交換器、絞り装置お
よび一次側流路切替手段を有し、一次冷媒が封入されて
いる一次側サイクルと、 循環ポンプ、二次側室内用熱交換器、二次側蓄熱部用熱
交換器、二次側内部用熱交換器および二次側流路切替手
段を有し、二次冷媒が封入されている二次側サイクル
と、 蓄熱材が封入され、前記蓄熱材が前記一次側蓄熱部用熱
交換器および前記二次側蓄熱部用熱交換器と熱の授受を
行うことによって、蓄熱を行う蓄熱部とを備え、 前記一次側内部用熱交換器および前記二次側内部用熱交
換器は、熱の授受が行えるように配置され、 前記一次側サイクルは、 前記圧縮機→凝縮器として用いられる前記一次側外部用
熱交換器→前記絞り装置→蒸発器として用いられる前記
一次側蓄熱部用熱交換器→前記圧縮機、の順で前記一次
冷媒が循環することによって、前記一次側外部用熱交換
器が外部に温熱を放出し、前記一次側蓄熱部用熱交換器
が前記蓄熱部に冷熱を蓄える蓄冷運転モード、 前記圧縮機→凝縮器として用いられる前記一次側外部用
熱交換器→前記絞り装置→蒸発器として用いられる前記
一次側内部用熱交換器→前記圧縮機、の順で前記一次冷
媒が循環することによって、前記一次側外部用熱交換器
が外部に温熱を放出し、前記一次側内部用熱交換器が前
記二次側内部用熱交換器を介して前記二次冷媒に冷熱を
伝える第1冷房運転モード、 前記圧縮機→凝縮器として用いられる前記一次側蓄熱部
用熱交換器→前記絞り装置→蒸発器として用いられる前
記一次側内部用熱交換器→前記圧縮機、の順で前記一次
冷媒が循環することによって、前記一次側蓄熱部用熱交
換器が前記蓄熱材に温熱を放出し、前記一次側内部用熱
交換器が前記二次側内部用熱交換器を介して前記二次冷
媒に冷熱を伝える第2冷房運転モード、 の3つの運転モードを有し、前記一次側流路切替手段に
よって前記運転モードを切り替えられて、運転を行い、 前記二次側サイクルは、 前記二次側内部用熱交換器→前記二次側室内用熱交換器
→前記二次側内部用熱交換器、の順で、途中に前記循環
ポンプを介して、前記二次冷媒が循環することによっ
て、前記二次側内部用熱交換器が前記一次側内部用熱交
換器から受け取った冷熱を用いて、前記二次側室内用熱
交換器によって室内を冷房するサイクル間熱交換運転モ
ード、 前記二次側蓄熱部用熱交換器→前記二次側室内用熱交換
器→前記二次側蓄熱部用熱交換器、の順で、途中に前記
循環ポンプを介して、前記二次冷媒が循環することによ
って、前記二次側蓄熱部用熱交換器が前記蓄熱材から受
け取った冷熱を前記二次側室内用熱交換器によって室内
を冷房する蓄熱利用運転モード、 の2つの運転モードを有し、前記二次側流路切替手段に
よって前記運転モードを切り替えられて、運転を行い、 前記一次側サイクルが前記第1冷房運転モードまたは前
記第2冷房運転モードの運転を行うときには、前記二次
側サイクルが前記サイクル間熱交換運転モードの運転を
運転を行うことを特徴とする二次冷媒蓄熱空調システ
ム。
1. A compressor, a primary-side external heat exchanger, a primary-side heat storage unit heat exchanger, a primary-side internal heat exchanger, a throttling device, and a primary-side flow switching means, and a primary refrigerant is filled therein. Having a primary cycle, a circulation pump, a secondary-side indoor heat exchanger, a secondary-side heat storage unit heat exchanger, a secondary-side internal heat exchanger, and a secondary-side flow path switching unit, A secondary cycle in which a secondary refrigerant is sealed, and a heat storage material is sealed, and the heat storage material exchanges heat with the heat exchanger for the primary heat storage unit and the heat exchanger for the secondary heat storage unit. A heat storage unit that stores heat, wherein the primary-side internal heat exchanger and the secondary-side internal heat exchanger are arranged so as to be able to exchange heat, and the primary cycle includes the compression Heat exchanger for primary side used as a condenser → condenser → the throttling device → evaporator By the primary refrigerant circulating in the order of the used heat exchanger for the primary heat storage unit → the compressor, the external heat exchanger for the primary side emits heat to the outside, and for the primary heat storage unit. A cold storage operation mode in which a heat exchanger stores cold heat in the heat storage unit; the compressor → the primary external heat exchanger used as a condenser → the throttling device → the primary internal heat exchanger used as an evaporator → The primary refrigerant circulates in the order of the compressor, whereby the primary-side external heat exchanger emits heat to the outside, and the primary-side internal heat exchanger exchanges the secondary-side internal heat exchange. A first cooling operation mode for transmitting cold heat to the secondary refrigerant via a heat exchanger, the compressor → the heat exchanger for the primary heat storage unit used as a condenser → the throttling device → the primary interior used as an evaporator Heat exchanger → compression The primary refrigerant circulates in this order, whereby the heat exchanger for the primary heat storage unit releases heat to the heat storage material, and the heat exchanger for the primary internal heat exchanges the heat for the secondary internal heat. A second cooling operation mode for transmitting cold heat to the secondary refrigerant via a heat exchanger, wherein the operation mode is switched by the primary-side flow switching means to perform an operation; The side cycle is performed in the order of the secondary side internal heat exchanger → the secondary side indoor heat exchanger → the secondary side internal heat exchanger, By the circulation of the refrigerant, the secondary-side internal heat exchanger uses the cold heat received from the primary-side internal heat exchanger to cool the room by the secondary-side indoor heat exchanger. Exchange operation mode, heat exchanger for secondary side heat storage section → The secondary-side heat storage unit heat exchanger is circulated in the middle of the secondary-side heat storage unit heat exchanger → the secondary-side heat storage unit heat exchanger via the circulation pump in the order of the secondary-side heat storage unit heat exchanger. A heat storage use operation mode in which the heat exchanger cools down the room received by the heat storage material from the heat storage material by the secondary side indoor heat exchanger. The mode is switched, and the operation is performed. When the primary cycle performs the operation of the first cooling operation mode or the second cooling operation mode, the secondary cycle performs the operation of the inter-cycle heat exchange operation mode. A secondary refrigerant heat storage air conditioning system characterized by performing operation.
【請求項2】 前記絞り装置は、前記一次側外部用熱交
換器および前記一次側内部用熱交換器の間に配置された
第1の絞り装置と、前記第1の絞り装置および前記一次
側内部用熱交換器の間に配置された第2の絞り装置とを
有し、前記第1および第2の絞り装置のいずれか一方単
独で、または、両方同時に動作するものであり、 前記一次側流路切替手段は、第1の三方弁と、第2の三
方弁と、第1の四方弁とを有し、 前記二次側流路切替手段は、第3の三方弁と、第4の三
方弁とを有し、 前記第1の三方弁は、前記圧縮機の出口側、前記一次側
外部用熱交換器、前記第1の四方弁、のいずれか二方を
選択して接続するものであり、 前記第2の三方弁は、前記第1の絞り装置、前記第2の
絞り装置、前記一次側蓄熱部用熱交換器、のいずれか二
方を選択して接続するものであり、 前記第1の四方弁は、前記圧縮機の入口側または前記第
1の三方弁のいずれかと、前記一次側蓄熱部用熱交換器
または前記一次側内部用熱交換器のいずれかとを、それ
ぞれ選択して接続するものであり、 前記第3の三方弁は、前記二次側蓄熱部用熱交換器、前
記二次側室内用熱交換器、前記二次側内部用熱交換器、
のいずれか二方を選択して接続するものであり、 前記第4の三方弁は、前記二次側蓄熱部用熱交換器、前
記二次側室内用熱交換器、前記二次側内部用熱交換器、
のいずれか二方を選択して接続するものであり、 前記循環ポンプは、前記第3の三方弁と前記二次側室内
用熱交換器との間を接続する経路上、または、前記第4
の三方弁と前記二次側室内用熱交換器との間を接続する
経路上、に配置されていることを特徴とする請求項1に
記載の二次冷媒蓄熱空調システム。
2. The throttle device according to claim 1, further comprising: a first throttle device disposed between the primary-side external heat exchanger and the primary-side internal heat exchanger; and a first throttle device and the primary side. And a second expansion device disposed between the internal heat exchangers, wherein one of the first and second expansion devices operates alone or both simultaneously, and the primary side The flow path switching means has a first three-way valve, a second three-way valve, and a first four-way valve, and the secondary flow path switching means has a third three-way valve, a fourth three-way valve, A three-way valve, wherein the first three-way valve selects and connects any two of the outlet side of the compressor, the primary-side external heat exchanger, and the first four-way valve Wherein the second three-way valve is one of the first throttle device, the second throttle device, and the heat exchanger for the primary-side heat storage unit. The first four-way valve is connected to either the inlet side of the compressor or the first three-way valve and the heat exchanger for the primary heat storage unit or the inside of the primary side. And the third three-way valve is connected to the secondary heat storage unit heat exchanger, the secondary indoor heat exchanger, and the second heat exchanger. Internal heat exchanger
And the fourth three-way valve is connected to the secondary-side heat storage unit heat exchanger, the secondary-side indoor heat exchanger, and the secondary-side interior. Heat exchanger,
And the circulating pump is connected to a path connecting the third three-way valve and the secondary-side indoor heat exchanger, or the fourth pump.
2. The secondary refrigerant thermal storage air conditioning system according to claim 1, wherein the secondary refrigerant thermal storage air conditioning system is disposed on a path connecting between the three-way valve and the secondary-side indoor heat exchanger.
【請求項3】 前記一次側サイクルは、前記3つの運転
モードに加え、 前記圧縮機→凝縮器として用いられる前記一次側蓄熱部
用熱交換器→前記絞り装置→蒸発器として用いられる前
記一次側外部用熱交換器→前記圧縮機、の順で前記一次
冷媒が循環することによって、前記一次側外部用熱交換
器が外部から温熱を吸収し、前記一次側蓄熱部用熱交換
器が前記蓄熱部に温熱を蓄える蓄温運転モード、 前記圧縮機→凝縮器として用いられる前記一次側内部用
熱交換器→前記絞り装置→蒸発器として用いられる前記
一次側外部用熱交換器→前記圧縮機、の順で前記一次冷
媒が循環することによって、前記一次側外部用熱交換器
が外部から温熱を吸収し、前記一次側内部用熱交換器が
前記二次側内部用熱交換器を介して前記二次冷媒に温熱
を伝える第1暖房運転モード、 前記圧縮機→凝縮器として用いられる前記一次側内部用
熱交換器→前記絞り装置→蒸発器として用いられる前記
一次側蓄熱部用熱交換器→前記圧縮機、の順で前記一次
冷媒が循環することによって、前記一次側蓄熱部用熱交
換器が前記蓄熱材から温熱を吸収し、前記一次側内部用
熱交換器が前記二次側内部用熱交換器を介して前記二次
冷媒に温熱を伝える第2暖房運転モード、 の3つの運転モードを有し、前記一次側流路切替手段に
よって前記運転モードを切り替えられて、運転を行い、 前記二次側サイクルは、 前記一次側サイクルが前記第1暖房運転モードまたは前
記第2暖房運転モードの運転を行うときには、前記サイ
クル間熱交換運転モードの運転を行うことによって、前
記二次側内部用熱交換器が前記一次側内部用熱交換器か
ら受け取った温熱を用いて、前記二次側室内用熱交換器
によって室内を暖房し、 前記一次側サイクルが運転を行っていないときに、前記
蓄熱利用運転モードの運転を運転を行うことによって、
前記二次側蓄熱部用熱交換器が前記蓄熱材から受け取っ
た温熱を前記二次側室内用熱交換器によって室内を暖房
することを特徴とする請求項1に記載の二次冷媒蓄熱空
調システム。
3. The primary cycle includes, in addition to the three operation modes, the compressor → the heat exchanger for the primary heat storage section used as a condenser → the throttle device → the primary side used as an evaporator. By circulating the primary refrigerant in the order of the external heat exchanger → the compressor, the primary external heat exchanger absorbs heat from the outside, and the primary heat storage unit heat exchanger absorbs the heat. A heat storage operation mode for storing heat in the section, the compressor → the primary internal heat exchanger used as a condenser → the throttling device → the primary external heat exchanger used as an evaporator → the compressor, By circulating the primary refrigerant in the order, the primary-side external heat exchanger absorbs heat from the outside, and the primary-side internal heat exchanger passes through the secondary-side internal heat exchanger. Transfers heat to secondary refrigerant 1 heating operation mode, the compressor → the primary side internal heat exchanger used as a condenser → the expansion device → the primary side heat storage unit heat exchanger used as an evaporator → the compressor in this order By circulating the primary refrigerant, the heat exchanger for the primary heat storage unit absorbs heat from the heat storage material, and the heat exchanger for the primary side internal heat exchanger is connected to the heat exchanger for the secondary side via the heat exchanger for secondary side internal heat. A second heating operation mode for transmitting heat to the secondary refrigerant, and has three operation modes, wherein the operation mode is switched by the primary-side flow switching means to perform an operation, and the secondary cycle includes: When the side cycle performs the operation of the first heating operation mode or the second heating operation mode, by performing the operation of the inter-cycle heat exchange operation mode, the secondary-side internal heat exchanger is connected to the primary side. Using the heat received from the external heat exchanger, the secondary-side indoor heat exchanger heats the room, and when the primary cycle is not operating, operates the heat storage operation mode. By doing
2. The secondary refrigerant heat storage air conditioning system according to claim 1, wherein the secondary-side heat storage unit heat exchanger heats the room received from the heat storage material by the secondary-side indoor heat exchanger. 3. .
【請求項4】 前記絞り装置は、前記一次側外部用熱交
換器および前記一次側内部用熱交換器の間に配置された
第1の絞り装置と、前記第1の絞り装置および前記一次
側内部用熱交換器の間に配置された第2の絞り装置とを
有し、前記第1および第2の絞り装置のいずれか一方単
独で、または、両方同時に動作するものであり、 前記一次側流路切替手段は、第1の三方弁と、第2の三
方弁と、第1の四方弁と、第2の四方弁とを有し、 前記二次側流路切替手段は、第3の三方弁と、第4の三
方弁とを有し、 前記第1の三方弁は、前記第2の四方弁、前記一次側外
部用熱交換器、前記第1の四方弁、のいずれか二方を選
択して接続するものであり、 前記第2の三方弁は、前記第1の絞り装置、前記第2の
絞り装置、前記一次側蓄熱部用熱交換器、のいずれか二
方を選択して接続するものであり、 前記第1の四方弁は、前記第2の四方弁または前記第1
の三方弁のいずれかと、前記一次側蓄熱部用熱交換器ま
たは前記一次側内部用熱交換器のいずれかとを、それぞ
れ選択して接続するものであり、 前記第2の四方弁は、前記圧縮機の入口側または前記圧
縮機の出口側のいずれかと、前記第1の四方弁または前
記第1の三方弁のいずれかとを、それぞれ選択して接続
するものであり、 前記第3の三方弁は、前記二次側蓄熱部用熱交換器、前
記二次側室内用熱交換器、前記二次側内部用熱交換器、
のいずれか二方を選択して接続するものであり、 前記第4の三方弁は、前記二次側蓄熱部用熱交換器、前
記二次側室内用熱交換器、前記二次側内部用熱交換器、
のいずれか二方を選択して接続するものであり、 前記循環ポンプは、前記第3の三方弁と前記二次側室内
用熱交換器との間を接続 する経路上、または、前記第
4の三方弁と前記二次側室内用熱交換器との間を接続す
る経路上、に配置されていることを特徴とする請求項3
に記載の二次冷媒蓄熱空調システム。
4. The throttle device according to claim 1, further comprising: a first throttle device disposed between the primary-side external heat exchanger and the primary-side internal heat exchanger; and a first throttle device and the primary side. And a second expansion device disposed between the internal heat exchangers, wherein one of the first and second expansion devices operates alone or both simultaneously, and the primary side The flow path switching means has a first three-way valve, a second three-way valve, a first four-way valve, and a second four-way valve. It has a three-way valve and a fourth three-way valve, and the first three-way valve is any one of the second four-way valve, the primary-side external heat exchanger, and the first four-way valve. And the second three-way valve is connected to the first throttling device, the second throttling device, and heat exchange for the primary heat storage unit. , Which selectively connects one of two-way of the first four-way valve, the second four-way valve or the first
One of the three-way valve and one of the primary-side heat storage unit heat exchanger or the primary-side internal heat exchanger is selected and connected, respectively, and the second four-way valve is the compression unit. Any one of the inlet side of the compressor or the outlet side of the compressor and one of the first four-way valve and the first three-way valve is selected and connected, respectively, and the third three-way valve is , The secondary-side heat storage unit heat exchanger, the secondary-side indoor heat exchanger, the secondary-side internal heat exchanger,
And the fourth three-way valve is connected to the secondary-side heat storage unit heat exchanger, the secondary-side indoor heat exchanger, and the secondary-side interior. Heat exchanger,
And the circulating pump is connected to a path connecting the third three-way valve and the secondary-side indoor heat exchanger or the fourth pump. 4. A three-way valve and a secondary-side indoor heat exchanger are disposed on a path connecting between the three-way valve and the secondary-side indoor heat exchanger.
The secondary refrigerant thermal storage air-conditioning system according to 4.
【請求項5】 冷房および暖房運転を行っていないと
き、予め定められた時間帯の場合、前記一次側サイクル
は、前記蓄冷運転モードまたは前記蓄温運転モードの運
転を行い、その際、前記二次側サイクルは、運転を停止
しており、 冷房または暖房運転を行うとき、前記予め定められた時
間帯以外の時間帯で、前記蓄熱材の温度と外気温度との
差が所定の値以上の場合、前記二次側サイクルは、前記
蓄熱利用運転モードの運転を行い、その際、前記一次側
サイクルは、運転を停止しており、 冷房または暖房運転を行うとき、前記予め定められた時
間帯以外の時間帯で、前記蓄熱材の温度と外気温度との
差が前記所定の値より小さく別の所定の値より大きい場
合、または、前記予め定められた時間帯で、前記蓄熱材
の温度と外気温度との差が前記別の所定の値より大きい
場合、前記一次側サイクルは、前記第2冷房運転モード
または前記第2暖房運転モードの運転を行い、その際、
前記二次側サイクルは、前記サイクル間熱交換運転モー
ドの運転を行い、 冷房または暖房運転を行うとき、前記蓄熱材の温度と外
気温度との差が前記別の所定の値以下の場合、前記一次
側サイクルは、前記第1冷房運転モードまたは前記第1
暖房運転モードの運転を行い、その際、前記二次側サイ
クルは、前記サイクル間熱交換運転モードの運転を行う
ことを特徴とする請求項1〜4のいずれかに記載の二次
冷媒蓄熱空調システム。
5. When a cooling and heating operation is not being performed, and in a predetermined time zone, the primary cycle performs an operation in the cold storage operation mode or the temperature storage operation mode. The secondary cycle has stopped operation, and when performing cooling or heating operation, the difference between the temperature of the heat storage material and the outside air temperature is equal to or more than a predetermined value in a time zone other than the predetermined time zone. In the case, the secondary cycle performs the operation of the heat storage utilizing operation mode, and at this time, the primary cycle has stopped the operation, and when performing the cooling or heating operation, the predetermined time period. In a time zone other than, when the difference between the temperature of the heat storage material and the outside air temperature is smaller than the predetermined value and larger than another predetermined value, or, in the predetermined time zone, the temperature of the heat storage material and Before the difference with the outside air temperature If another larger than a predetermined value, the primary cycle performs the operation of the second cooling operation mode or the second heating operation mode, in which,
The secondary cycle performs an operation in the inter-cycle heat exchange operation mode.When performing a cooling or heating operation, the difference between the temperature of the heat storage material and the outside air temperature is equal to or less than the another predetermined value. The primary cycle is the first cooling operation mode or the first cooling operation mode.
The secondary refrigerant thermal storage air conditioning according to any one of claims 1 to 4, wherein the operation in the heating operation mode is performed, and the secondary cycle performs the operation in the inter-cycle heat exchange operation mode. system.
【請求項6】 前記一次冷媒は、炭化水素系の冷媒また
はアンモニア系の冷媒であることを特徴とする請求項1
〜5のいずれかに記載の二次冷媒蓄熱空調システム。
6. The refrigerant according to claim 1, wherein the primary refrigerant is a hydrocarbon-based refrigerant or an ammonia-based refrigerant.
The secondary refrigerant thermal storage air conditioning system according to any one of claims 1 to 5.
【請求項7】 前記蓄熱材は、炭素数が4以下の炭化水
素系物質の単体または混合物と、水とを含むものであ
り、クラスレートを生成することにより潜熱蓄熱を行う
ものであることを特徴とする請求項1〜6のいずれかに
記載の二次冷媒蓄熱空調システム。
7. The heat storage material includes a simple substance or a mixture of hydrocarbon-based substances having 4 or less carbon atoms and water, and performs latent heat storage by generating a clathrate. The secondary refrigerant thermal storage air conditioning system according to any one of claims 1 to 6, wherein:
【請求項8】 前記蓄熱材は、プロパンおよび/または
エタン単体または混合物と、水とを含むものであり、 さらに、前記蓄熱材は、冷房専用の場合は、凝固点が実
質的に0℃〜15℃の範囲のクラスレートを生成するも
のであり、冷暖房兼用の場合は、凝固点が実質的に0℃
〜20℃の範囲のクラスレートを生成するものであるこ
とを特徴とする請求項7に記載の二次冷媒蓄熱空調空調
システム。
8. The heat storage material contains propane and / or ethane alone or as a mixture, and water. When the heat storage material is exclusively used for cooling, the solidification point is substantially 0 ° C. to 15 ° C. It generates a clathrate in the range of ° C, and when used for both cooling and heating, its freezing point is substantially 0 ° C.
The secondary refrigerant thermal storage air-conditioning air-conditioning system according to claim 7, wherein a clathrate in a range of ~ 20 ° C is generated.
JP11039277A 1999-02-17 1999-02-17 Secondary refrigerant heat-storing air-conditioning system Pending JP2000234771A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11039277A JP2000234771A (en) 1999-02-17 1999-02-17 Secondary refrigerant heat-storing air-conditioning system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11039277A JP2000234771A (en) 1999-02-17 1999-02-17 Secondary refrigerant heat-storing air-conditioning system

Publications (1)

Publication Number Publication Date
JP2000234771A true JP2000234771A (en) 2000-08-29

Family

ID=12548683

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11039277A Pending JP2000234771A (en) 1999-02-17 1999-02-17 Secondary refrigerant heat-storing air-conditioning system

Country Status (1)

Country Link
JP (1) JP2000234771A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010507066A (en) * 2006-10-19 2010-03-04 エルカル リサーチ エルエルシー Dynamic thermal energy storage system
JP2014236581A (en) * 2013-05-31 2014-12-15 ダイキン工業株式会社 Demand response system
KR101607978B1 (en) 2014-10-07 2016-03-31 고강용 Refrigeration cycle apparatus and control method thereof
CN114110846A (en) * 2021-11-23 2022-03-01 珠海格力电器股份有限公司 Energy storage heat pump system and control method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010507066A (en) * 2006-10-19 2010-03-04 エルカル リサーチ エルエルシー Dynamic thermal energy storage system
JP2014236581A (en) * 2013-05-31 2014-12-15 ダイキン工業株式会社 Demand response system
KR101607978B1 (en) 2014-10-07 2016-03-31 고강용 Refrigeration cycle apparatus and control method thereof
CN114110846A (en) * 2021-11-23 2022-03-01 珠海格力电器股份有限公司 Energy storage heat pump system and control method thereof
CN114110846B (en) * 2021-11-23 2023-05-02 珠海格力电器股份有限公司 Energy storage heat pump system and control method thereof

Similar Documents

Publication Publication Date Title
US20140230477A1 (en) Hot water supply air conditioning system
CN102597657B (en) Air conditioning device
JP6095764B2 (en) Air conditioner
WO2012070192A1 (en) Air conditioner
CN103080668B (en) Air-conditioning device
WO2000050822A1 (en) Heat pump system of combination of ammonia cycle and carbon dioxide cycle
JP2011069529A (en) Air-conditioning hot water supply system and heat pump unit
JP5837099B2 (en) Air conditioner
JPWO2014083681A1 (en) Air conditioner
WO2011052049A1 (en) Air conditioning device
CN104813112A (en) Air conditioning device
JP2013083439A5 (en)
JP5373959B2 (en) Air conditioner
JP3063348B2 (en) Indirect refrigerant air conditioner, detachable heat exchanger for indirect refrigerant air conditioner, and indirect refrigerant air conditioning method
JPH10300265A (en) Refrigerating equipment
JP2000234771A (en) Secondary refrigerant heat-storing air-conditioning system
JP2004251557A (en) Refrigeration device using carbon dioxide as refrigerant
JP3896705B2 (en) Refrigeration cycle and refrigeration cycle control method
JPH10306952A (en) Secondary refrigerant system refrigerating apparatus
JP3821286B2 (en) Refrigeration system combining absorption type and compression type and its operating method
JP3502155B2 (en) Thermal storage type air conditioner
US20240142146A1 (en) Modular Cold Climate Heat Pump System with Multi-Segment Heat Exchanger
JP3521011B2 (en) Heat transfer device
JP2004245535A (en) Heat energy system
JP2004012102A (en) Refrigeration system