JPH03294754A - Air conditioner - Google Patents

Air conditioner

Info

Publication number
JPH03294754A
JPH03294754A JP9579790A JP9579790A JPH03294754A JP H03294754 A JPH03294754 A JP H03294754A JP 9579790 A JP9579790 A JP 9579790A JP 9579790 A JP9579790 A JP 9579790A JP H03294754 A JPH03294754 A JP H03294754A
Authority
JP
Japan
Prior art keywords
heat exchanger
compressor
condenser
heat
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9579790A
Other languages
Japanese (ja)
Other versions
JP2684814B2 (en
Inventor
Isao Kondo
功 近藤
Koji Matsuoka
弘二 松岡
Shinji Matsuura
松浦 伸二
Kazuo Yonemoto
和生 米本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2095797A priority Critical patent/JP2684814B2/en
Publication of JPH03294754A publication Critical patent/JPH03294754A/en
Application granted granted Critical
Publication of JP2684814B2 publication Critical patent/JP2684814B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

PURPOSE:To perform concurrent condensing operations at different condensing temperatures and to improve a heat dissipating efficiency by connecting first, second compressors in series with first, second conduits, connecting a pressure reduction valve and an evaporator in series with a third conduit, and connecting the first, second conduits in parallel with the third conduit. CONSTITUTION:An outdoor heat exchanger 12 and an outdoor motor-driven expansion valve 13 for regulating its refrigerant flow rate are provided at the discharge side of a first compressor 11, and they are connected in series in a first conduit 14. A water heat exchanger 22 as a second condenser and a chilled water side motor-driven expansion valve 23 are provided at the discharge side of a second compressor 21, and they are connected in series in a second conduit 24. Further, an indoor heat exchanger 23 as an evaporator and an indoor motor-driven expansion valve 33 as a pressure reducing valve are connected in series in a third conduit 34. The conduits 14, 24 are composed in parallel with the conduit 34 to form a refrigerant circuit 1. Accordingly, if required capacity is large, the compressors 11, 21 are operated, while if the capacity is small, only one compressor is operated.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、冷媒回路中に配置される2台の凝縮器に対し
て、各々圧縮機を直列に接続したものに関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to two condensers arranged in a refrigerant circuit, each having a compressor connected in series.

(従来の技術) 従来より、例えば特公昭58−48823号公報に開示
される如く、−台の圧縮機に対して、2台の空気熱交換
器及び2台の水熱交換器を並列に、かつその接続関係を
可変に接続してなる冷媒回路を備え、空調負荷に応じて
各空気熱交換器及び水熱交換器の凝縮器、蒸発器機能を
可変に切換えて、水熱交換器と空気熱交換器とにおける
同時蒸発運転や、同時凝縮運転を行うことにより、冷温
水への蓄熱や蓄熱の利用を図り、もって、空気調和装置
の電力コストの低減を図ろうとするものは公知の技術で
ある。
(Prior Art) Conventionally, as disclosed in Japanese Patent Publication No. 58-48823, two air heat exchangers and two water heat exchangers are connected in parallel to two compressors. The refrigerant circuit has a refrigerant circuit whose connection relationship is variably connected, and the condenser and evaporator functions of each air heat exchanger and water heat exchanger can be variably switched according to the air conditioning load. There is a known technology that attempts to store heat in cold and hot water and utilize heat storage by performing simultaneous evaporation operation and simultaneous condensation operation with a heat exchanger, thereby reducing the electricity cost of air conditioners. be.

(発明が解決しようとする課題) しかしながら、上記従来のもので、例えば空気熱交換器
と水熱交換器で同時凝縮運転を行い凝縮熱源として大気
及び冷水双方を利用しようとする場合、その熱源温度が
大きく隔っているときには、高い方の温度に凝縮温度を
合わせる必要があり、そのため、凝縮温度が低い水熱交
換器では一部に液冷媒か溜まった状態で運転せざるを得
ず、結局、装置の有する能力を充分有効に使用すること
ができないという問題があった。
(Problem to be Solved by the Invention) However, in the above-mentioned conventional device, when simultaneous condensing operation is performed using an air heat exchanger and a water heat exchanger to use both the air and cold water as a condensing heat source, the heat source temperature When there is a large difference between the two temperatures, it is necessary to match the condensing temperature to the higher temperature. Therefore, in a water heat exchanger with a low condensing temperature, there is no choice but to operate with liquid refrigerant accumulated in a part of the water heat exchanger. However, there was a problem in that the capabilities of the device could not be used effectively.

本発明は斯かる点に鑑みてなされたものであり、その目
的は、2台の凝縮器にそれぞれ圧縮機を直列に接続する
ことにより、各凝縮器で異なる凝縮温度による同時凝縮
運転を行い、もって、能力の利用効率の向上を図ること
にある。
The present invention has been made in view of the above, and its purpose is to perform simultaneous condensing operation at different condensing temperatures in each condenser by connecting a compressor to each of the two condensers in series. The aim is to improve the efficiency of capacity utilization.

(課題を解決するための手段) 上記1]的を達成するため本発明の解決手段は、第1図
に示すように、空気調和装置として、第1圧縮機(11
)と第1凝縮器(12)とを直列に接続してなる第1管
路(14)と、第2圧縮機(21)と上記第1凝縮器(
12)とは凝縮温度の異なる第2凝縮器(22)とを直
列に接続してなる第2管路(24)とを、減圧弁(33
)と蒸発器(32)とを直列に接続してなる第3管路(
34)に対して並列に循環接続してなる冷媒回路(1)
を設ける構成としたものである。
(Means for Solving the Problems) In order to achieve the above object 1, the solving means of the present invention provides a first compressor (11
) and the first condenser (12) are connected in series, and the second compressor (21) and the first condenser (
12) is connected in series with a second condenser (22) having a different condensing temperature.
) and the evaporator (32) are connected in series (
Refrigerant circuit (1) connected in parallel to the refrigerant circuit (1)
The configuration is such that the

第2の解決手段は、第2図に示すように、上記第1の解
決手段における第1凝縮器(12)を蒸発器に、蒸発器
(32)を凝縮器にするよう冷媒回路(1)の冷媒循環
サイクルを切換えるサイクル切換機構(2)を設けたも
のである。
As shown in FIG. 2, the second solution is to change the refrigerant circuit (1) so that the first condenser (12) in the first solution is used as an evaporator and the evaporator (32) is used as a condenser. A cycle switching mechanism (2) for switching the refrigerant circulation cycle is provided.

第3の解決手段は、第3図に示すように、上記第1又は
第2の解決手段における第2凝縮器(22)を蓄熱熱交
換器とする。
A third solution, as shown in FIG. 3, uses a regenerative heat exchanger as the second condenser (22) in the first or second solution.

加えて、第2圧縮機(21)の吸入管と蓄熱熱交換器(
22)のガス管とをバイパス接続する分岐路(25)と
、蓄熱熱交換器(22)のガス管を第2圧縮機(21)
の吐出管と上記分岐路(25)とに選択的に連通させる
よう切換える蓄熱切換機構(26)とを設けるものとす
る。
In addition, the suction pipe of the second compressor (21) and the regenerative heat exchanger (
22) and the gas pipe of the regenerative heat exchanger (22) to the second compressor (21).
A heat storage switching mechanism (26) is provided to selectively connect the discharge pipe and the branch path (25).

さらに、上記第1.第2圧縮機(11) 、  (21
)の吐出管同士を接続するバイパス路(3)と、該バイ
パス路(3)に介設され、一方から他方への冷媒の流通
のみを許容する逆止弁(4)とを設ける構成としたもの
である。
Furthermore, the above 1. Second compressor (11), (21
) and a check valve (4) that is interposed in the bypass path (3) and allows only the flow of refrigerant from one side to the other. It is something.

第4の解決手段は、第4図に示すように、上記第3の解
決手段において、氷蓄熱槽(5)と、該氷蓄熱槽(5)
と蓄熱熱交換器(22)との間で液を循環させる循環手
段(50)とを設けたものである。
As shown in FIG. 4, a fourth solution means includes an ice heat storage tank (5), an ice heat storage tank (5)
and a circulation means (50) for circulating the liquid between the storage heat exchanger (22) and the heat storage heat exchanger (22).

(作用) 以上の構成により、請求項(1)の発明では、空気調和
装置の運転時、室内側の要求能力の大小に応じて、第1
.第2圧縮機(11)、(21)を同時又は単独に運転
することで全体の能力が調節される。
(Function) With the above configuration, in the invention of claim (1), when the air conditioner is operating, the first
.. The overall capacity is adjusted by operating the second compressors (11) and (21) simultaneously or independently.

その場合、各凝縮器(12)、  (22)にそれぞれ
直列に圧縮機(11)、  (21)が接続されている
ので、例えば大気と冷水というような異なる温度を有す
る凝縮熱源を同時に利用する場合、各管路(14)、 
 (24)における凝縮温度をそれぞれの熱源温度に見
合った異なる温度で運転することか可能になるので、そ
の能力が余すことなく利用されることになる。
In that case, since compressors (11) and (21) are connected in series to each condenser (12) and (22), condensation heat sources with different temperatures, such as air and cold water, can be used simultaneously. In this case, each conduit (14),
Since it is possible to operate the condensing temperature in (24) at different temperatures commensurate with the respective heat source temperatures, the capacity can be fully utilized.

請求項(2)の発明では、上記請求項(1)の発明の作
用に加えて、サイクル切換機構(2)の切換えにより、
第1凝縮器(12)が蒸発器としても機能するようにな
されているので、第2凝縮器(22)で冷水の冷熱を回
収しながら、或いは温水を生ぜしめながら、室内で冷房
運転と暖房運転とを切換えて行うことが可能になる。
In the invention of claim (2), in addition to the effect of the invention of claim (1), by switching the cycle switching mechanism (2),
Since the first condenser (12) also functions as an evaporator, the second condenser (22) recovers the cold heat of cold water or generates hot water to perform indoor cooling and heating operations. It becomes possible to switch between operation and operation.

請求項(3)の発明では、第2凝縮器(22)か蓄熱熱
交換器になり、かつ蓄熱切換機構(26)の切換えによ
り凝縮器又は蒸発器として機能しうるので、蒸発器とし
て機能するときには蓄熱槽の蓄熱媒体に冷熱を付与する
一方、凝縮器として機能するときには蓄熱槽に蓄えられ
た冷熱を利用して冷媒の凝縮を行うことが可能となる。
In the invention of claim (3), the second condenser (22) becomes a heat storage heat exchanger, and can function as a condenser or an evaporator by switching the heat storage switching mechanism (26), so it functions as an evaporator. While sometimes applying cold heat to the heat storage medium in the heat storage tank, when functioning as a condenser, it is possible to condense the refrigerant using the cold heat stored in the heat storage tank.

また、逆に蓄熱槽に暖熱を蓄える場合には、蓄暖熱と暖
熱取出し用に利用することも可能となる。
Conversely, when storing warm heat in a heat storage tank, it can also be used for storing warm heat and extracting warm heat.

その場合、各圧縮機(11)、  (21)の吐出管同
士を接続するバイパス路(3)が設けられ、該バイパス
路(3)に一方から他方への冷媒の流通のみを許容する
逆止弁(4)が介設されているので、通常凝縮温度又は
蒸発温度が高くなる方から低くなる方への冷媒流通を阻
止しながら、熱源の変化に応じて放熱量又は吸熱量か調
節され、蓄熱の利用性が向上することになる。
In that case, a bypass path (3) connecting the discharge pipes of each compressor (11) and (21) is provided, and a non-return check is provided in the bypass path (3) to allow refrigerant to flow only from one side to the other. Since the valve (4) is provided, the amount of heat released or absorbed can be adjusted according to changes in the heat source while preventing the refrigerant from flowing from the side where the condensing temperature or evaporation temperature is higher to the side where the temperature is lower. This will improve the usability of heat storage.

請求項(4)の発明では、夜間に氷蓄熱槽(5)に冷熱
を蓄熱する一方、昼間に蓄熱熱交換器(22)における
蓄冷熱と室外側における大気への放熱とを利用して冷媒
の凝縮作用を行わせることで、圧縮機(11,)、  
(21)の容量を最小値に調節しながら夜間電力を積極
的に利用しながら、トータルの電力コストが低減される
ことになる。
In the invention of claim (4), while cold heat is stored in the ice heat storage tank (5) at night, during the day the cold heat stored in the storage heat exchanger (22) and the heat radiated to the atmosphere outside the room are used to store the refrigerant. By performing the condensing action of the compressor (11,),
(21) While adjusting the capacity to the minimum value and actively utilizing nighttime power, the total power cost is reduced.

(実施例) 以下、本発明の実施例について、図面に基づき説明する
(Example) Hereinafter, an example of the present invention will be described based on the drawings.

第1図は請求項(1)の発明に係る第1実施例の空気調
和装置を示し、(11)は第1圧縮機、(12)は該第
1圧縮機(11)の吐出側に配置され、冷媒と室外空気
との熱交換を行う室外熱交換器、(13)は該室外熱交
換器(12)の冷媒流量を調節する室外電動膨張弁であ
って、上記各機器(11)〜(13)は第1管路(14
)中で直列に接続されている。
FIG. 1 shows an air conditioner according to a first embodiment of the invention as claimed in claim (1), in which (11) is a first compressor, and (12) is arranged on the discharge side of the first compressor (11). an outdoor heat exchanger that exchanges heat between the refrigerant and outdoor air; (13) is an outdoor electric expansion valve that adjusts the refrigerant flow rate of the outdoor heat exchanger (12); (13) is the first conduit (14
) are connected in series.

また、(21)は第2圧縮機、(22)は該第2圧縮機
(21)の吐出側に配置され、冷水源に接続される第2
凝縮器としての水熱交換器、(23)は該水熱交換器(
22)の冷媒流量を調節する冷水側電動膨張弁であって
、上記各機器(21)〜(23)は第2管路(24)中
で直列に接続されている。
Further, (21) is a second compressor, and (22) is a second compressor arranged on the discharge side of the second compressor (21) and connected to a cold water source.
A water heat exchanger as a condenser (23) is a water heat exchanger (
22) is a cold water side electric expansion valve that adjusts the refrigerant flow rate, and the above-mentioned devices (21) to (23) are connected in series in the second pipe line (24).

さらに、(32)は蒸発器として機能する室内熱交換器
、(33)は冷媒を減圧する減圧弁としての室内電動膨
張弁であって、上記各機器(32)〜(33)は第3管
路(34)中で直列に接続されている。
Further, (32) is an indoor heat exchanger that functions as an evaporator, (33) is an indoor electric expansion valve that is a pressure reducing valve that reduces the pressure of the refrigerant, and each of the above devices (32) to (33) is connected to a third pipe. are connected in series in the line (34).

そして、上記第1管路(14)及び第2管路(24)は
第3管路(34)に対して並列に、かつ閉回路を形成す
るように接続されていて、冷媒が循環する冷媒回路(1
)が構成されている。
The first pipe line (14) and the second pipe line (24) are connected in parallel to the third pipe line (34) so as to form a closed circuit, and the refrigerant circulates through the refrigerant. Circuit (1
) is configured.

したがって、請求項(1)の発明では、空気調和装置の
運転時、室内側の要求能力が大きいときには、第1.第
2管路(14)、  (24)において第1゜第2圧縮
機(11)、  (21)をそれぞれ運転し、各圧縮機
(11)、  (21)からの吐出冷媒を室外熱交換器
(12)及び水熱交換器(22)で凝縮した後、第3管
路(34)に合流させて室内電動膨張弁(33)で減圧
して室内熱交換器(32)で蒸発させることにより、大
きな要求能力に対応させる一方、室内側の要求能力が小
さいときには、各圧縮機(11)、  (21)のうち
いずれか−台のみ運転することにより、室内側の要求能
力及び水熱交換器(22)の冷水源の熱量に応じた能力
の調節を行いうる。
Therefore, in the invention of claim (1), when the required indoor capacity is large during operation of the air conditioner, the first. The first and second compressors (11) and (21) are operated in the second pipes (14) and (24), respectively, and the refrigerant discharged from each compressor (11) and (21) is transferred to the outdoor heat exchanger. (12) and the water heat exchanger (22), then merge into the third pipe (34), reduce the pressure with the indoor electric expansion valve (33), and evaporate in the indoor heat exchanger (32). When the required capacity on the indoor side is small, only one of the compressors (11) and (21) is operated to meet the required capacity on the indoor side and the water heat exchanger. (22) The capacity can be adjusted according to the amount of heat of the cold water source.

その場合、各熱交換器(12)、  (22)にそれぞ
れ直列に圧縮機(11)、  (21)が接続されてい
るので、大気と冷水という異なる温度を有する凝縮熱源
を同時に利用する場合、各管路(14)、  (24)
における凝縮温度を異ならせて運転することが可能にな
る。例えば大気の温度が30℃で冷水の温度が0℃の場
合、従来のように、−台の圧縮機に対して2台の凝縮器
を並列に接続したものを同時に利用するには、凝縮温度
を同じにする必要があるために、高いほうの温度に合わ
せて運転する必要があった。したがって、温度の低い方
の熱交換器(上記実施例では水熱交換器(2,2))に
一部に液冷媒が溜まった状態で運転することになり、装
置の有する能力を充分発揮す0 ることかできなかった。
In that case, compressors (11) and (21) are connected in series to each heat exchanger (12) and (22), respectively, so when condensing heat sources having different temperatures, such as air and cold water, are used at the same time, Each pipe (14), (24)
It becomes possible to operate with different condensation temperatures. For example, if the atmospheric temperature is 30°C and the chilled water temperature is 0°C, in order to simultaneously use two condensers connected in parallel to -1 compressors, the condensing temperature Because it was necessary to keep the temperatures the same, it was necessary to operate according to the higher temperature. Therefore, the lower temperature heat exchanger (water heat exchanger (2, 2) in the above example) will be operated with liquid refrigerant partially accumulated, and the equipment will not be able to fully utilize its capabilities. 0 I couldn't do anything.

それに対して、本発明では、各管路(14)。In contrast, in the present invention, each conduit (14).

(24)における凝縮温度をそれぞれの熱源温度に見合
った温度で運転することができるので、その能力を余す
ことなく利用することができる。特に、凝縮温度の低い
方の圧縮機(本実施例では第2圧縮機(21))の消費
電力の低減を図ることができるのである。
Since the condensing temperature in (24) can be adjusted to match the temperature of each heat source, its capacity can be fully utilized. In particular, it is possible to reduce the power consumption of the compressor with a lower condensing temperature (the second compressor (21) in this embodiment).

なお、上記実施例では、第1管路(14)に室外熱交換
器(12)を配置し、第3管路(34)に室内熱交換器
(32)を配置したが、本発明は斯かる実施例に限定さ
れるものではなく、第1凝縮器(12)が室内熱交換器
で蒸発器(32)が室外熱交換器であってもよい。その
場合、室内側で暖房運転(例えば室内温度25℃)をし
ながら、水熱交換器(22)で給湯のための温水(例え
ば湯温60°C)を生ぜしめるような利用が可能になる
利点がある。
In the above embodiment, the outdoor heat exchanger (12) was arranged in the first pipe line (14), and the indoor heat exchanger (32) was arranged in the third pipe line (34), but the present invention The present invention is not limited to this embodiment, and the first condenser (12) may be an indoor heat exchanger and the evaporator (32) may be an outdoor heat exchanger. In that case, it becomes possible to use the water heat exchanger (22) to generate hot water for hot water supply (for example, hot water temperature 60°C) while heating the room (for example, indoor temperature 25°C). There are advantages.

次に、請求項(2)の発明に係る第2実施例について、
説明する。第2図は第2実施例に係る空気調1 釦装置の冷媒配管系統を示し、本実施例では、上記第1
図に示す第1実施例の構成に加えて、室外熱交換器(1
2)のガス管と室内熱交換器(32)のガス管とを圧縮
機(11)、  (21)の吐出側又は吸入側に交互に
切換えるサイクル切換機構としての四路切換弁(2)が
設けられている。つまり、該四路切換弁(2)の切換え
により冷媒の循環サイクルが切換えられ、四路切換弁(
2)が図中実線側に切換わったときには室外熱交換器(
12)が凝縮器、室内熱交換器(32)が蒸発器として
機能する一方、四路切換弁(2)が図中破線側に切換わ
ったときには室外熱交換器(12)が蒸発器、室内熱交
換器(32)が凝縮器として機能するようになされてい
る。
Next, regarding the second embodiment according to the invention of claim (2),
explain. FIG. 2 shows the refrigerant piping system of the air conditioner 1 button device according to the second embodiment.
In addition to the configuration of the first embodiment shown in the figure, an outdoor heat exchanger (1
A four-way switching valve (2) serves as a cycle switching mechanism that alternately switches the gas pipe of 2) and the gas pipe of the indoor heat exchanger (32) to the discharge side or suction side of the compressor (11), (21). It is provided. In other words, the refrigerant circulation cycle is switched by switching the four-way switching valve (2), and the four-way switching valve (2) switches the refrigerant circulation cycle.
2) switches to the solid line side in the figure, the outdoor heat exchanger (
12) functions as a condenser and the indoor heat exchanger (32) functions as an evaporator, while when the four-way selector valve (2) switches to the broken line side in the figure, the outdoor heat exchanger (12) functions as an evaporator and indoor heat exchanger (32) functions as an evaporator. A heat exchanger (32) is adapted to function as a condenser.

したがって、請求項(2)の発明では、上記請求項(1
)の発明に加えて、室外熱交換器(12)が蒸発器とし
ても機能しうるので、水熱交換器(22)を冷水との熱
交換による熱源側として、或いは温水を製造する利用側
として利用しながら、室内で冷房運転と暖房運転とを切
換えて行うことができ2 る利点がある。
Therefore, in the invention of claim (2), the above claim (1)
In addition to the above invention, since the outdoor heat exchanger (12) can also function as an evaporator, the water heat exchanger (22) can be used as a heat source by exchanging heat with cold water, or as a user for producing hot water. It has the advantage of being able to switch between cooling and heating operations indoors while using the system.

次に、請求項(3)の発明に係る第3実施例について説
明する。
Next, a third embodiment according to the invention of claim (3) will be described.

第3図は第3実施例に係る空気調和装置の冷媒配管系統
を示し、上記第2図に示す第2実施例の空気調和装置の
構成において、水熱交換器として蓄熱槽(図示せず)の
蓄熱媒体との熱交換を行う蓄熱熱交換器(22)が配置
されている。さらに、該蓄熱熱交換器(22)のガス管
と第2圧縮機(21)の吸入管とをバイパス接続する分
岐路(25)と、蓄熱熱交換器(22)のガス管を上記
第2圧縮機(21)の吐出管と分岐路(25)とに交互
に連通させる蓄熱切換機構としての蓄熱切換弁(26)
とが設けられている。該蓄熱切換弁(26)は四路切換
弁のうちの3つのポートを利用しており、蓄熱切換弁(
26)が図中実線側に切換わったときには蓄熱熱交換器
(22)のガス管が分岐路(25)側つまり第1圧縮機
(11)の吸入側に連通し、蓄熱熱交換器(22)が蒸
発器として機能する一方、蓄熱切換弁(26)が図3 中破線側に切換わったときには蓄熱熱交換器(22)の
ガス管が第2圧縮機の吐出管に連通し、蓄熱熱交換器(
22)が凝縮器として機能するようになされている。な
お、(C)は蓄熱切換弁(26)のデッドボート側の配
管に介設されたキャピラリチューブである。
FIG. 3 shows a refrigerant piping system of an air conditioner according to a third embodiment. In the configuration of the air conditioner of the second embodiment shown in FIG. 2, a heat storage tank (not shown) is used as a water heat exchanger. A thermal storage heat exchanger (22) is arranged to exchange heat with the thermal storage medium. Furthermore, a branch line (25) bypass-connects the gas pipe of the regenerative heat exchanger (22) and the suction pipe of the second compressor (21), and a gas pipe of the regenerative heat exchanger (22) is connected to the second compressor (21). A heat storage switching valve (26) as a heat storage switching mechanism that alternately communicates with the discharge pipe of the compressor (21) and the branch path (25).
is provided. The heat storage switching valve (26) uses three ports of the four-way switching valve, and the heat storage switching valve (26) uses three ports of the four-way switching valve.
26) is switched to the solid line side in the figure, the gas pipe of the regenerative heat exchanger (22) communicates with the branch path (25) side, that is, the suction side of the first compressor (11), and the regenerative heat exchanger (22) ) functions as an evaporator, while when the heat storage switching valve (26) is switched to the middle broken line side in Figure 3, the gas pipe of the heat storage heat exchanger (22) communicates with the discharge pipe of the second compressor, and the heat storage Exchanger (
22) is adapted to function as a condenser. Note that (C) is a capillary tube interposed in the pipe on the dead boat side of the heat storage switching valve (26).

また、第1圧縮機(11)及び第2圧縮機(2])の吐
出管同士を接続するバイパス路(3)が設けられていて
、該バイパス路(3)には第2圧縮機(21)の吐出管
側から第1圧縮機(11)の吐出管側への冷媒流通のみ
を許容する逆止弁(4)が介設されている。
Further, a bypass passage (3) is provided that connects the discharge pipes of the first compressor (11) and the second compressor (2]), and the bypass passage (3) is provided with a bypass passage (3) that connects the discharge pipes of the first compressor (11) and the second compressor (2). ) is provided with a check valve (4) that allows refrigerant to flow only from the discharge pipe side of the first compressor (11) to the discharge pipe side of the first compressor (11).

すなわち、室外熱交換器(12)及び蓄熱熱交換器(2
2)が凝縮器として機能する際、蓄熱熱交換器(22)
における凝縮温度が高く圧力が高くなった場合、第2圧
縮機(21)の吐出ガスを室外熱交換器(12)側に逃
がすことにより、放熱量を分配しうるようになされてい
る。
That is, the outdoor heat exchanger (12) and the regenerative heat exchanger (2)
2) functions as a condenser, the regenerative heat exchanger (22)
When the condensation temperature and pressure become high, the amount of heat released can be distributed by releasing the gas discharged from the second compressor (21) to the outdoor heat exchanger (12).

なお、上記実施例では逆止弁(4)を第2圧縮機(21
)の吐出管側から第1圧縮機(11)の4 吐出管側への冷媒流通のみを許容するように設けたが、
本発明は係る実施例に限定されるものではなく、例えば
蓄熱熱交換器(22)が給湯用に利用される場合には、
蓄熱熱交換器(22)側で常に凝縮温度が高くなるので
、逆止弁(4)の向きは上記実施例とは逆向きになる。
In the above embodiment, the check valve (4) is connected to the second compressor (21).
) was installed so as to only allow refrigerant flow from the discharge pipe side of the first compressor (11) to the discharge pipe side of the first compressor (11).
The present invention is not limited to such embodiments; for example, when the regenerative heat exchanger (22) is used for hot water supply,
Since the condensation temperature is always high on the storage heat exchanger (22) side, the direction of the check valve (4) is opposite to that of the above embodiment.

したがって、請求項(3)の発明では、蓄熱切換弁(2
6)の切換えにより、蓄熱熱交換器(22)が凝縮器又
は蒸発器として機能しつるので、蒸発器として機能する
ときには蓄熱槽の蓄熱媒体(例えば水)に冷熱を(=1
与する一方、蓄熱熱交換器(22)が凝縮器として機能
するときには蓄熱槽に蓄えられた冷熱を利用して冷媒の
凝縮を行うことが可能となる。また、逆に蓄熱槽に暖熱
を蓄える場合には、蓄暖熱と暖熱取出し用に利用するこ
ともできる。
Therefore, in the invention of claim (3), the heat storage switching valve (2
By switching 6), the storage heat exchanger (22) functions as a condenser or an evaporator, so when it functions as an evaporator, it transfers cold heat (=1
On the other hand, when the thermal storage heat exchanger (22) functions as a condenser, it becomes possible to condense the refrigerant using the cold heat stored in the thermal storage tank. Conversely, when storing warm heat in a heat storage tank, it can also be used for storing warm heat and extracting warm heat.

その場合、各圧縮機(] ])、  (21)の吐出管
同士を接続するバイパス路(3)が設けられ、該バイパ
ス路(3)に一方から他方への冷媒の流通のみを許容す
る逆止弁(4)が介設されている5 ので、通常凝縮温度又は蒸発温度が高くなる方から低く
なる方への冷媒流通を阻止しながら、熱源の変化に応じ
て放熱量又は吸熱量を調節しうる利点がある。
In that case, a bypass passage (3) is provided that connects the discharge pipes of each compressor (] ), (21), and a reverse passageway that allows refrigerant to flow only from one side to the other is provided in the bypass passage (3). Since a stop valve (4) is provided5, the amount of heat released or absorbed is adjusted according to changes in the heat source while preventing the refrigerant from flowing from the side where the condensing temperature or evaporation temperature is higher to the side where it is lower. There are possible advantages.

次に、請求項(4)の発明に係る第4実施例について説
明する。
Next, a fourth embodiment according to the invention of claim (4) will be described.

第4図は第4実施例に係る空気調和装置の冷媒配管系統
を示し、上記第3図に示す第3実施例の空気調和装置の
構成に加えて、複数の室内熱交換器(32)、(32)
が設けられ、さらに、蓄熱媒体としての水又は水溶液を
貯留する氷蓄熱槽(5)が配置されている。そして、該
氷蓄熱槽(5)と蓄熱熱交換器(22)との間は水配管
(6)により水の循環可能に接続されており、該水配管
(6)には水の循環を駆動するポンプ(7)が介設され
ている。該水配管(6)及びポンプ(7)により、氷蓄
熱槽(5)と蓄熱熱交換器(22)との間で液を循環さ
せる循環手段(50)が構成されている。
FIG. 4 shows a refrigerant piping system of an air conditioner according to a fourth embodiment. In addition to the configuration of the air conditioner of the third embodiment shown in FIG. 3, a plurality of indoor heat exchangers (32), (32)
Further, an ice heat storage tank (5) for storing water or an aqueous solution as a heat storage medium is arranged. The ice heat storage tank (5) and the heat storage heat exchanger (22) are connected by a water pipe (6) so that water can be circulated, and the water pipe (6) is connected to the water pipe (6). A pump (7) is provided. The water pipe (6) and the pump (7) constitute a circulation means (50) that circulates the liquid between the ice heat storage tank (5) and the thermal storage heat exchanger (22).

すなわち、蓄熱熱交換器(22)は氷蓄熱槽6 (5)の冷水(蓄熱媒体)と冷媒との熱交換を行うこと
により、氷蓄熱槽(5)で製氷し、或いは製氷により蓄
えた冷熱を利用して冷媒の凝縮を行わせることにより、
室内側の要求能力に対応しうるようになされている。
That is, the thermal storage heat exchanger (22) performs heat exchange between the cold water (thermal storage medium) in the ice storage tank 6 (5) and the refrigerant, thereby generating ice in the ice storage tank (5) or converting the cold heat stored by ice making into ice. By condensing the refrigerant using
It is designed to meet the required indoor capacity.

したがって、請求項(4)の発明では、第5図に示すよ
うに、夜間に氷蓄熱槽(5)に冷熱を蓄熱する(図中、
破線ハツチング領域■)一方、昼間に蓄熱熱交換器(2
2)における蓄冷熱の利用(図中、横線ハツチング領域
■)と室外熱交換器(12)における大気への放熱(図
中、未ハツチング領域■)とを利用して冷媒の凝縮作用
を行わせることで、圧縮機(11)、  (21)の容
量を低減しながら、夜間電力を積極的に利用することが
できる。
Therefore, in the invention of claim (4), as shown in FIG. 5, cold heat is stored in the ice heat storage tank (5) at night (in the figure,
On the other hand, during the day the heat storage heat exchanger (2
The condensation action of the refrigerant is performed by utilizing the stored cold heat in 2) (horizontal hatched area ■ in the figure) and the heat radiation to the atmosphere in the outdoor heat exchanger (12) (unhatched area ■ in the figure). This makes it possible to actively utilize nighttime power while reducing the capacity of the compressors (11) and (21).

すなわち、第6図に示すように、昼間の圧縮機(11)
、  (21)の運転容量は蓄冷熱利用率の増大に対し
てリニアに減少する(図中の実線Ω1参照)が、一方、
夜間の圧縮機(11)、(21)の運転容量は蓄冷熱の
回収効率を考慮すると、蓄7 冷熱利用率の増大に対してリニアに増大しく図中の破線
Ω2参照)、その増大率は昼間の減少率よりも逆に増大
する(図中、A点とB点との差)。
That is, as shown in FIG. 6, the compressor (11) during the daytime
The operating capacity of (21) decreases linearly as the cold storage heat utilization rate increases (see the solid line Ω1 in the figure), but on the other hand,
The operating capacity of the compressors (11) and (21) during the night increases linearly with the increase in the storage heat utilization rate (see the broken line Ω2 in the figure), considering the recovery efficiency of cold storage heat (refer to the broken line Ω2 in the figure), and the rate of increase is On the contrary, it increases more than the rate of decrease during the daytime (difference between point A and point B in the figure).

その場合、夜間電力が安価なことをも考慮すると、結局
、電力のコストは上記実線ρ1と破線Ω2との交点Cに
おいて最小となる。
In that case, taking into account that nighttime power is cheap, the cost of power eventually becomes minimum at the intersection C between the solid line ρ1 and the broken line Ω2.

したがって、氷蓄熱槽(5)に蓄えられた冷熱を回収す
る際、室外熱交換器(12)と蓄熱熱交換器(22)と
て異なる凝縮温度で運転することにより、上記のような
電力コストが最小となる点Cでの同時凝縮運転が可能に
なり、夜間電力の利用効率の向上を図ることができるの
である。
Therefore, when recovering the cold heat stored in the ice storage tank (5), the outdoor heat exchanger (12) and the storage heat exchanger (22) are operated at different condensing temperatures, thereby reducing the electricity cost as described above. Simultaneous condensing operation can be performed at point C, where is the minimum, and it is possible to improve the efficiency of nighttime power usage.

(発明の効果) 以上説明したように、請求項(1)の発明によれば、第
1管路に第1圧縮機と第1凝縮器とを直列に接続し、第
2管路に第2圧縮機と第2凝縮器とを直列に接続する一
方、第3管路に減圧弁と蒸発器とを直列に接続して、第
1管路と第2管路とを第3管路に対して並列に接続した
ので、各凝縮器で相異なる凝縮温度による同時凝縮運転
が可能になり、8 よって、利用熱源の有効利用或いは放熱源への放熱効率
の向上を図ることができる。
(Effects of the Invention) As explained above, according to the invention of claim (1), the first compressor and the first condenser are connected in series to the first conduit, and the second condenser is connected to the second conduit. While the compressor and the second condenser are connected in series, the pressure reducing valve and the evaporator are connected in series to the third pipe line, and the first pipe line and the second pipe line are connected to the third pipe line. Since the condensers are connected in parallel, each condenser can perform simultaneous condensing operation at different condensing temperatures, thereby making it possible to effectively utilize the available heat source or improve the efficiency of heat radiation to the heat radiation source.

請求項(2)の発明によれば、上記請求項(1)の発明
に加えて、第1凝縮器と蒸発器との機能を切換えるよう
にしたので、第2凝縮器で放熱源への放熱或いは吸熱源
からの吸熱を行いながら、冷房運転及び暖房運転を切換
えて行うことができる利点がある。
According to the invention of claim (2), in addition to the invention of claim (1), the functions of the first condenser and the evaporator are switched, so that the second condenser radiates heat to the heat radiation source. Alternatively, there is an advantage that cooling operation and heating operation can be switched while absorbing heat from the heat absorption source.

請求項(3)の発明によれば、上記請求項(1)又は(
2)の発明において、第2凝縮器を蓄熱槽の蓄熱媒体と
の熱交換を行う蓄熱熱交換器とし、蓄熱熱交換器を蒸発
器及び凝縮器に切換え可能にするとともに、各圧縮機の
吐出管同士を接続するバイパス路を設け、該バイパス路
に一方から他方への冷媒の流通のみを許容する逆止弁を
設けたので、バイパス路における凝縮温度又は蒸発温度
の高い側から低い側への冷媒流通を阻止しながら、両者
の高低が逆転するときには冷媒が流通することにより、
放熱量又は吸熱量を分配することができ、よって、能力
の利用効率の向上を図ることができる。
According to the invention of claim (3), the above claim (1) or (
In the invention of 2), the second condenser is a regenerative heat exchanger that exchanges heat with the heat storage medium of the heat storage tank, and the regenerative heat exchanger can be switched to an evaporator and a condenser, and the discharge of each compressor is A bypass path is provided to connect the pipes, and a check valve is installed in the bypass path to allow refrigerant to flow only from one side to the other. While blocking the refrigerant flow, when the height of both is reversed, the refrigerant flows,
It is possible to distribute the heat radiation amount or the heat absorption amount, and therefore it is possible to improve the efficiency of capacity utilization.

9 請求項(4)の発明によれば、上記請求項(3)の発明
において、氷蓄熱槽を配置し、さらに氷蓄熱槽と蓄熱熱
交換器との間で液を循環させる循環手段を設けたので、
昼間に室外側と蓄熱熱交換器との同時凝縮運転を行って
夜間の蓄冷熱を利用することにより、圧縮機の運転容量
を最小に制御することができ、よって、電力使用効率の
向上を図ることかできる。
9 According to the invention of claim (4), in the invention of claim (3), an ice heat storage tank is arranged, and a circulation means for circulating a liquid between the ice heat storage tank and the heat storage heat exchanger is provided. So,
By performing simultaneous condensing operation on the outdoor side and the storage heat exchanger during the day and using the cold storage heat at night, the operating capacity of the compressor can be controlled to the minimum, thereby improving power usage efficiency. I can do it.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の実施例を示し、第1図は請求項(1)の
発明に係る第1実施例の空気調和装置の構成を示す冷媒
配管系統図、第2図は請求項(2)の発明に係る第2実
施例の空気調和装置の構成を示す冷媒配管系統図、第3
図は請求項(3)の発明に係る空気調和装置の構成を示
す冷媒配管系統図、第4図は請求項(4)の発明に係る
第4実施例の空気調和装置の構成を示す冷媒配管系統図
、第5図は夜間と昼間における空気調和装置の運転モー
ドの変更を示す説明図、第6図は蓄熱利用率の変化に対
する圧縮機の運転容量の変化を示す特性図である。 0 1  冷媒回路 2  四路切換弁 (サイクル切換機構) 3  バイパス路 4  逆止弁 5  氷蓄熱槽 11 第1圧縮機 12 室外熱交換器 (第1凝縮器) 14 第1管路 21 第2圧縮機 22 蓄熱熱交換器 (第2凝縮器) 24 第2管路 25 分岐路 26 蓄熱切換弁 (蓄熱切換機構) 32 室内熱交換器 (蒸発器) 33 室内電動膨張弁 1 (減圧弁) 34 第3管路 50 循環手段 2
The drawings show embodiments of the present invention, FIG. 1 is a refrigerant piping system diagram showing the configuration of the air conditioner of the first embodiment according to the invention of claim (1), and FIG. Refrigerant piping system diagram showing the configuration of the air conditioner according to the second embodiment of the invention, No. 3
The figure is a refrigerant piping system diagram showing the configuration of the air conditioner according to the invention of claim (3), and FIG. 4 is the refrigerant piping system diagram showing the configuration of the air conditioner of the fourth embodiment according to the invention of claim (4). The system diagram, FIG. 5 is an explanatory diagram showing changes in the operating mode of the air conditioner between night and daytime, and FIG. 6 is a characteristic diagram showing changes in the operating capacity of the compressor with respect to changes in the heat storage utilization rate. 0 1 Refrigerant circuit 2 Four-way switching valve (cycle switching mechanism) 3 Bypass path 4 Check valve 5 Ice heat storage tank 11 First compressor 12 Outdoor heat exchanger (first condenser) 14 First pipe line 21 Second compression Machine 22 Thermal storage heat exchanger (second condenser) 24 Second pipe line 25 Branch line 26 Thermal storage switching valve (thermal storage switching mechanism) 32 Indoor heat exchanger (evaporator) 33 Indoor electric expansion valve 1 (pressure reducing valve) 34 No. 3 pipe line 50 circulation means 2

Claims (4)

【特許請求の範囲】[Claims] (1)第1圧縮機(11)と第1凝縮器(12)とを直
列に接続してなる第1管路(14)と、第2圧縮機(2
1)と上記第1凝縮器(12)とは凝縮温度の異なる第
2凝縮器(22)とを直列に接続してなる第2管路(2
4)とを、減圧弁(33)と蒸発器(32)とを直列に
接続してなる第3管路(34)に対して並列に循環接続
してなる冷媒回路(1)を備えたことを特徴とする空気
調和装置。
(1) A first conduit (14) formed by connecting a first compressor (11) and a first condenser (12) in series, and a second compressor (2
1) and the first condenser (12) are connected in series to a second condenser (22) having a different condensing temperature.
4) is provided with a refrigerant circuit (1) which is circularly connected in parallel to a third pipe line (34) formed by connecting a pressure reducing valve (33) and an evaporator (32) in series. An air conditioner featuring:
(2)第1凝縮器(12)を蒸発器に、蒸発器(32)
を凝縮器にするよう冷媒回路(1)の冷媒循環サイクル
を切換えるサイクル切換機構(2)を備えた請求項(1
)記載の空気調和装置。
(2) First condenser (12) as evaporator, evaporator (32)
Claim (1) further comprising a cycle switching mechanism (2) for switching the refrigerant circulation cycle of the refrigerant circuit (1) so that the refrigerant is used as a condenser.
) air conditioning equipment.
(3)第2凝縮器(22)は蓄熱熱交換器であり、第2
圧縮機(21)の吸入管と蓄熱熱交換器(22)のガス
管とをバイパス接続する分岐路(25)と、蓄熱熱交換
器(22)のガス管を第2圧縮機(21)の吐出管と上
記分岐路(25)とに選択的に連通させるよう切換える
蓄熱切換機構(26)とを備えるとともに、 上記第1、第2圧縮機(11)、(21)の吐出管同士
を接続するバイパス路(3)と、該バイパス路(3)に
介設され、一方から他方への冷媒の流通のみを許容する
逆止弁(4)とを備えた請求項(1)又は(2)記載の
空気調和装置。
(3) The second condenser (22) is a heat storage heat exchanger, and the second condenser (22) is a heat storage heat exchanger.
A branch line (25) bypass-connects the suction pipe of the compressor (21) and the gas pipe of the regenerative heat exchanger (22), and connects the gas pipe of the regenerative heat exchanger (22) to the second compressor (21). A heat storage switching mechanism (26) that selectively connects the discharge pipe to the branch path (25) is provided, and the discharge pipes of the first and second compressors (11) and (21) are connected to each other. Claim (1) or (2), comprising: a bypass passage (3) that allows refrigerant to pass through the bypass passage (3); and a check valve (4) that is interposed in the bypass passage (3) and that allows refrigerant to flow only from one side to the other. The air conditioner described.
(4)氷蓄熱槽(5)と、該氷蓄熱槽(5)と蓄熱熱交
換器(22)との間で液を循環させる循環手段(50)
とを備えた請求項(3)記載の空気調和装置。
(4) An ice heat storage tank (5) and a circulation means (50) for circulating a liquid between the ice heat storage tank (5) and the heat storage heat exchanger (22).
The air conditioner according to claim (3), comprising:
JP2095797A 1990-04-11 1990-04-11 Air conditioner Expired - Lifetime JP2684814B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2095797A JP2684814B2 (en) 1990-04-11 1990-04-11 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2095797A JP2684814B2 (en) 1990-04-11 1990-04-11 Air conditioner

Publications (2)

Publication Number Publication Date
JPH03294754A true JPH03294754A (en) 1991-12-25
JP2684814B2 JP2684814B2 (en) 1997-12-03

Family

ID=14147434

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2095797A Expired - Lifetime JP2684814B2 (en) 1990-04-11 1990-04-11 Air conditioner

Country Status (1)

Country Link
JP (1) JP2684814B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05346267A (en) * 1992-06-16 1993-12-27 Daikin Ind Ltd Air conditioning device
WO2000033002A1 (en) * 1998-12-01 2000-06-08 Daikin Industries,Ltd. Refrigerator
EP1046868A3 (en) * 1999-04-19 2001-10-24 Luciano Zanon Refrigeration system having a refrigeration cycle which provides optimized consumption
WO2006044281A2 (en) 2004-10-18 2006-04-27 Carrier Corporation Refrigerant cycle with tandem compressors and multiple condensers
JP2007064613A (en) * 2005-08-04 2007-03-15 Denso Corp Vapor compression refrigeration cycle
JP2007315738A (en) * 2006-04-28 2007-12-06 Denso Corp Vapor compression type refrigerating cycle
WO2010031919A1 (en) * 2008-09-16 2010-03-25 E.C.L. Service machine used for intervention on electrolysis cells for producing aluminium by igneous electrolysis
JP2015124918A (en) * 2013-12-26 2015-07-06 エア・ウォーター株式会社 Geothermal heat pump device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5177735U (en) * 1974-12-13 1976-06-19
JPS60248957A (en) * 1984-05-24 1985-12-09 八洋エンジニアリング株式会社 Freezing thawing device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5177735U (en) * 1974-12-13 1976-06-19
JPS60248957A (en) * 1984-05-24 1985-12-09 八洋エンジニアリング株式会社 Freezing thawing device

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05346267A (en) * 1992-06-16 1993-12-27 Daikin Ind Ltd Air conditioning device
WO2000033002A1 (en) * 1998-12-01 2000-06-08 Daikin Industries,Ltd. Refrigerator
EP1046868A3 (en) * 1999-04-19 2001-10-24 Luciano Zanon Refrigeration system having a refrigeration cycle which provides optimized consumption
US6427460B1 (en) 1999-04-19 2002-08-06 Luciano Zanon Refrigeration system having a refrigeration cycle which provides optimized consumption
EP1802923A2 (en) * 2004-10-18 2007-07-04 Carrier Corporation Refrigerant cycle with tandem compressors and multiple condensers
WO2006044281A2 (en) 2004-10-18 2006-04-27 Carrier Corporation Refrigerant cycle with tandem compressors and multiple condensers
EP1802923A4 (en) * 2004-10-18 2010-01-06 Carrier Corp Refrigerant cycle with tandem compressors and multiple condensers
JP2007064613A (en) * 2005-08-04 2007-03-15 Denso Corp Vapor compression refrigeration cycle
JP2007315738A (en) * 2006-04-28 2007-12-06 Denso Corp Vapor compression type refrigerating cycle
WO2010031919A1 (en) * 2008-09-16 2010-03-25 E.C.L. Service machine used for intervention on electrolysis cells for producing aluminium by igneous electrolysis
FR2937341A1 (en) * 2008-10-16 2010-04-23 Ecl SERVICE MACHINE FOR INTERVENTION ON ELECTROLYSIS CELLS FOR THE PRODUCTION OF ALUMINUM BY IGNEE ELECTROLYSIS
CN102177280A (en) * 2008-10-16 2011-09-07 E·C·L·公司 Service machine used for intervention on electrolysis cells for producing aluminium by igneous electrolysis
US8647481B2 (en) 2008-10-16 2014-02-11 E.C.L. Pot tending machine for working on electrolysis cells for the production of aluminum by igneous electrolysis
JP2015124918A (en) * 2013-12-26 2015-07-06 エア・ウォーター株式会社 Geothermal heat pump device

Also Published As

Publication number Publication date
JP2684814B2 (en) 1997-12-03

Similar Documents

Publication Publication Date Title
JP3858015B2 (en) Refrigerant circuit and heat pump water heater
US20230092215A1 (en) Air conditioning system with capacity control and controlled hot water generation
US6324860B1 (en) Dehumidifying air-conditioning system
US12038195B2 (en) Air conditioning system
JP5373964B2 (en) Air conditioning and hot water supply system
JPH0481101B2 (en)
JP4298990B2 (en) Refrigeration equipment using carbon dioxide as refrigerant
JP2006292313A (en) Geothermal unit
JP5335131B2 (en) Air conditioning and hot water supply system
JPH03294754A (en) Air conditioner
WO2021231619A1 (en) Switching flow water source heater/chiller
CN210832213U (en) Air conditioner
JP2001263848A (en) Air conditioner
JP2018189321A (en) Heat pump system
JP2004251557A (en) Refrigeration device using carbon dioxide as refrigerant
KR20030082822A (en) The Combined Cooling and Heating Ice Regenerative System
KR101416207B1 (en) Heat-pump system with three cycles using air and water heat
JP3502155B2 (en) Thermal storage type air conditioner
JPH0794927B2 (en) Air conditioner
JPH04257661A (en) Two stage compression refrigerating cycle device
JP2002061897A (en) Heat storage type air conditioner
JP2712641B2 (en) Air conditioner
JP2002349995A (en) Heating system
JP2007147133A (en) Air conditioner
JP3569546B2 (en) Air conditioner

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080815

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080815

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090815

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100815

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100815

Year of fee payment: 13