JP2018189321A - Heat pump system - Google Patents

Heat pump system Download PDF

Info

Publication number
JP2018189321A
JP2018189321A JP2017093069A JP2017093069A JP2018189321A JP 2018189321 A JP2018189321 A JP 2018189321A JP 2017093069 A JP2017093069 A JP 2017093069A JP 2017093069 A JP2017093069 A JP 2017093069A JP 2018189321 A JP2018189321 A JP 2018189321A
Authority
JP
Japan
Prior art keywords
water supply
refrigerant
hot water
air
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017093069A
Other languages
Japanese (ja)
Inventor
健太 安井
Kenta Yasui
健太 安井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Housing Corp
Original Assignee
Toyota Housing Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Housing Corp filed Critical Toyota Housing Corp
Priority to JP2017093069A priority Critical patent/JP2018189321A/en
Publication of JP2018189321A publication Critical patent/JP2018189321A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To reduce load in each heat pump by enabling each heat pump to use waste heat in a heat pump system having the air-conditioning heat pump and the hot water supply heat pump.SOLUTION: In a heat pump system 10, an air-conditioning heat pump 11 includes an air-conditioning refrigerant circuit 21 for circulating an air-conditioning refrigerant, and a hot water supply heat pump 12 includes a hot water supply refrigerant circuit 41 for circulating a hot water supply refrigerant. During cooling hot water supply operation, heat is exchanged between the air-conditioning refrigerant circulating in a refrigerant circulation passage R3 and the hot water supply refrigerant circulating a refrigerant circulation passage L2 in a heat exchanger 35 between refrigerants, and through the heat exchange, heat of the air-conditioning refrigerant is emitted to the hot water supply refrigerant. During heating hot water supply operation, heat is exchanged between the air-conditioning refrigerant circulating in the refrigerant circulation passage and the hot water supply refrigerant circulating in the refrigerant circulation passage in the heat exchanger 35 between refrigerants, and through the heat exchange, heat of the hot water supply refrigerant is emitted to the air-conditioning refrigerant.SELECTED DRAWING: Figure 5

Description

本発明は、空調用のヒートポンプと給湯用のヒートポンプとを備えたヒートポンプシステムに関するものである。   The present invention relates to a heat pump system including a heat pump for air conditioning and a heat pump for hot water supply.

特許文献1には、建物内の空調を行う空調用ヒートポンプと、建物内で利用する湯(温水)を生成する(沸かす)給湯用ヒートポンプとを備えるヒートポンプシステムが開示されている。このヒートポンプシステムでは、空調用ヒートポンプが空調用冷媒を循環させる空調用冷媒回路を有しており、その空調用冷媒と室内空気との熱交換により室内の冷暖房を行うものとなっている。また、給湯用ヒートポンプは、給湯用冷媒を循環させる給湯用冷媒回路を有しており、その給湯用冷媒と水循環流路を循環する水との間の熱交換により水を加熱し湯を生成するものとなっている。   Patent Document 1 discloses a heat pump system including an air conditioning heat pump that performs air conditioning in a building and a hot water supply heat pump that generates (boils) hot water (hot water) used in the building. In this heat pump system, the air conditioning heat pump has an air conditioning refrigerant circuit that circulates the air conditioning refrigerant, and heats and cools the room by exchanging heat between the air conditioning refrigerant and room air. Moreover, the hot water supply heat pump has a hot water supply refrigerant circuit for circulating the hot water supply refrigerant, and heats water between the hot water supply refrigerant and the water circulating in the water circulation flow path to generate hot water. It has become a thing.

また、上記特許文献1のヒートポンプシステムには、空調用冷媒回路を循環する空調用冷媒と、給湯用冷媒回路を循環する給湯用冷媒との間で熱交換を行わせる冷媒間熱交換器が設けられている。この冷媒間熱交換器では、空調用ヒートポンプと給湯用ヒートポンプとが同時運転している場合に、上記冷媒同士の熱交換が行われ、その熱交換により空調用冷媒の熱(排熱)が給湯用冷媒により回収(吸収)されるようになっている。この場合、給湯用ヒートポンプでは、その排熱を利用して負荷低減を図ることが可能となっている。   Further, the heat pump system disclosed in Patent Document 1 includes an inter-refrigerant heat exchanger that performs heat exchange between an air-conditioning refrigerant that circulates through an air-conditioning refrigerant circuit and a hot-water supply refrigerant that circulates through a hot-water supply refrigerant circuit. It has been. In this inter-refrigerant heat exchanger, when the air-conditioning heat pump and the hot water supply heat pump are operating simultaneously, heat exchange between the refrigerants is performed, and the heat (exhaust heat) of the air-conditioning refrigerant is supplied by the heat exchange. It is collected (absorbed) by the refrigerant for use. In this case, the hot water supply heat pump can reduce the load by utilizing the exhaust heat.

特開2010−236817号公報JP 2010-236817 A

ところで、上述した特許文献1のヒートポンプシステムでは、空調用ヒートポンプの冷房運転と給湯用ヒートポンプの水加熱運転(湯沸かし運転)とが同時に行われる冷房給湯運転時と、空調用ヒートポンプの暖房運転と給湯用ヒートポンプの水加熱運転とが同時に行われる暖房給湯運転時との双方において、空調用冷媒の排熱が給湯用ヒートポンプにて回収されるようになっている。そのため、上記特許文献1のヒートポンプシステムでは、冷房給湯運転時と暖房給湯運転時との双方において、排熱利用による負荷低減が給湯用ヒートポンプにて図られるようになっている。   By the way, in the heat pump system of Patent Document 1 described above, the cooling operation of the air conditioning heat pump and the water heating operation (water heating operation) of the hot water supply heat pump are performed simultaneously, and the heating operation and the hot water supply of the air conditioning heat pump are performed. The exhaust heat of the air conditioning refrigerant is recovered by the hot water supply heat pump both in the heating hot water supply operation in which the water heating operation of the heat pump is performed simultaneously. For this reason, in the heat pump system of Patent Document 1 described above, the load reduction due to the use of exhaust heat is achieved by the hot water supply heat pump both during the cooling hot water supply operation and during the heating hot water supply operation.

しかしながら、ヒートポンプシステム全体の寿命や性能劣化等を考慮すると、空調用ヒートポンプと給湯用ヒートポンプとの双方でバランスよく負荷低減が図られるのが望ましいと考えられる。その点、冷房給湯運転時及び暖房給湯運転時の双方で排熱利用による負荷低減が給湯用ヒートポンプにて図られる上記特許文献1のシステムは未だ改善の余地があると考えられる。   However, considering the life and performance degradation of the entire heat pump system, it is considered desirable to reduce the load in a balanced manner in both the air conditioning heat pump and the hot water supply heat pump. In that respect, it is considered that there is still room for improvement in the system of Patent Document 1 in which the load reduction due to the use of exhaust heat is achieved by the heat pump for hot water supply both during the cooling hot water supply operation and during the heating hot water supply operation.

本発明は、上記事情に鑑みてなされたものであり、空調用ヒートポンプと給湯用ヒートポンプとを備えるヒートポンプシステムにおいて、各ヒートポンプが相互に排熱利用を図ることで、各ヒートポンプそれぞれで負荷低減を図るようにすることを主たる目的とするものである。   The present invention has been made in view of the above circumstances, and in a heat pump system including an air conditioning heat pump and a hot water supply heat pump, the heat pumps mutually use waste heat, thereby reducing the load of each heat pump. This is the main purpose.

上記課題を解決すべく、第1の発明のヒートポンプシステムは、空調用冷媒を循環させる空調用冷媒回路を有し、前記空調用冷媒と室内空気との間の熱交換により室内の冷暖房を行う空調用ヒートポンプと、給湯用冷媒を循環させる給湯用冷媒回路を有し、前記給湯用冷媒と水循環流路を循環する水との間の熱交換により前記水の加熱を行う給湯用ヒートポンプと、を備えるヒートポンプシステムであって、前記空調用冷媒回路は、切替可能な流路として、前記空調用ヒートポンプの冷房運転と前記給湯用ヒートポンプの水加熱運転とを同時に行う冷房給湯運転時に前記空調用冷媒を循環させる第1空調循環流路と、前記空調用ヒートポンプの暖房運転と前記給湯用ヒートポンプの水加熱運転とを同時に行う暖房給湯運転時に前記空調用冷媒を循環させる第2空調循環流路とを有し、前記給湯用冷媒回路は、切替可能な流路として、前記冷房給湯運転時に前記給湯用冷媒を循環させる第1給湯循環流路と、前記暖房給湯運転時に前記給湯用冷媒を循環させる第2給湯循環流路とを有し、前記第1空調循環流路を循環する前記空調用冷媒と前記第1給湯循環流路を循環する前記給湯用冷媒との間で熱交換を行わせることで、前記空調用冷媒の熱を前記給湯用冷媒へ放出させる第1熱交換手段と、前記第2空調循環流路を循環する前記空調用冷媒と前記第2給湯循環流路を循環する前記給湯用冷媒との間で熱交換を行わせることで、前記給湯用冷媒の熱を前記空調用冷媒へ放出させる第2熱交換手段と、を備えることを特徴とする。   In order to solve the above problems, a heat pump system according to a first aspect of the present invention includes an air conditioning refrigerant circuit that circulates an air conditioning refrigerant, and performs air conditioning by performing heat exchange between the air conditioning refrigerant and room air. And a hot water supply heat pump having a hot water supply refrigerant circuit for circulating the hot water supply refrigerant and heating the water by heat exchange between the hot water supply refrigerant and the water circulating in the water circulation passage. In the heat pump system, the air conditioning refrigerant circuit circulates the air conditioning refrigerant as a switchable flow path during a cooling hot water supply operation in which a cooling operation of the air conditioning heat pump and a water heating operation of the hot water supply heat pump are performed simultaneously. The air conditioning refrigerant during the heating and hot water supply operation in which the heating operation of the air conditioning heat pump and the water heating operation of the hot water supply heat pump are performed simultaneously. A second air-conditioning circulation channel that circulates, and the hot-water supply refrigerant circuit circulates as a switchable channel, a first hot-water supply circulation channel that circulates the hot-water supply refrigerant during the cooling and hot-water supply operation, and the heating and hot water supply A second hot water supply circulation path for circulating the hot water supply refrigerant during operation, the air conditioning refrigerant circulating in the first air conditioning circulation path, and the hot water supply refrigerant circulating in the first hot water circulation path Heat exchange between the first air exchange means for releasing the heat of the air conditioning refrigerant to the hot water supply refrigerant, the air conditioning refrigerant circulating in the second air conditioning circulation channel, and the second And a second heat exchange means for releasing heat from the hot water supply refrigerant to the air conditioning refrigerant by performing heat exchange with the hot water supply refrigerant circulating in the hot water supply circulation channel. To do.

本発明によれば、冷房給湯運転時においては、空調用冷媒が第1空調循環流路を循環しかつ給湯用冷媒が第1給湯循環流路を循環することで、第1熱交換手段においてそれら各冷媒の間で熱交換が行われる。そして、その熱交換により空調用冷媒の熱が給湯用冷媒に放出される。この場合、給湯用ヒートポンプ側で空調用冷媒の排熱を回収することができるため、その排熱を利用して給湯用ヒートポンプの負荷低減を図ることができる。   According to the present invention, during the cooling hot water supply operation, the air conditioning refrigerant circulates through the first air conditioning circulation passage and the hot water supply refrigerant circulates through the first hot water supply circulation passage. Heat exchange is performed between the refrigerants. Then, heat of the air conditioning refrigerant is released to the hot water supply refrigerant by the heat exchange. In this case, since the exhaust heat of the air conditioning refrigerant can be recovered on the hot water supply heat pump side, the load of the hot water supply heat pump can be reduced using the exhaust heat.

一方、暖房給湯運転時においては、空調用冷媒が第2空調循環流路を循環しかつ給湯用冷媒が第2給湯循環流路を循環することで、第2熱交換手段においてそれら各冷媒の間で熱交換が行われる。そして、その熱交換により給湯用冷媒の熱が空調用冷媒に放出される。この場合、空調用ヒートポンプ側で給湯用冷媒の排熱を回収することができるため、その排熱を利用して空調用ヒートポンプの負荷低減を図ることができる。よって、以上より、空調用ヒートポンプと給湯用ヒートポンプとの双方で排熱利用を図ることで、それら各ヒートポンプそれぞれで負荷低減を図ることができる。   On the other hand, during the heating and hot water supply operation, the air conditioning refrigerant circulates through the second air conditioning circulation passage and the hot water supply refrigerant circulates through the second hot water supply circulation passage, so that the second heat exchange means can connect each of the refrigerants. Heat exchange takes place at. And the heat of the hot water supply refrigerant is released to the air conditioning refrigerant by the heat exchange. In this case, since the exhaust heat of the hot water supply refrigerant can be recovered on the air conditioning heat pump side, the exhaust heat can be used to reduce the load on the air conditioning heat pump. Therefore, by using exhaust heat in both the air conditioning heat pump and the hot water supply heat pump, the load can be reduced in each of the heat pumps.

第2の発明のヒートポンプシステムは、第1の発明において、前記空調用ヒートポンプは、前記空調用冷媒を圧縮する第1圧縮機を有し、前記第1熱交換手段は、前記冷房給湯運転時に、前記第1空調循環流路において前記第1圧縮機から吐出された前記空調用冷媒と前記第1給湯循環流路を循環する前記給湯用冷媒との間で熱交換を行わせるものであることを特徴とする。   A heat pump system according to a second aspect of the present invention is the heat pump system according to the first aspect, wherein the air conditioning heat pump includes a first compressor that compresses the air conditioning refrigerant, and the first heat exchange means is in the cooling hot water supply operation. Heat exchange is performed between the air-conditioning refrigerant discharged from the first compressor in the first air-conditioning circulation flow path and the hot-water supply refrigerant circulating in the first hot-water supply circulation flow path. Features.

本発明によれば、冷房給湯運転時には、第1熱交換手段において第1圧縮機より吐出された高温の空調用冷媒と給湯用冷媒との間で熱交換が行われるため、給湯用ヒートポンプにて高温状態での排熱回収を行うことができる。これにより、給湯用ヒートポンプの負荷低減を好適に図ることができる。   According to the present invention, during the cooling and hot water supply operation, heat exchange is performed between the high-temperature air-conditioning refrigerant discharged from the first compressor and the hot water supply refrigerant in the first heat exchange means. Waste heat recovery at high temperature can be performed. Thereby, the load reduction of the heat pump for hot water supply can be aimed at suitably.

第3の発明のヒートポンプシステムは、第1又は第2の発明において、前記給湯用ヒートポンプは、前記給湯用冷媒を圧縮する第2圧縮機と、その第2圧縮機より吐出された前記給湯用冷媒と前記水循環流路を循環する水との間で熱交換を行わせ前記水を加熱する水熱交換器と有し、前記第2熱交換手段は、前記暖房給湯運転時に、前記第2給湯循環流路において前記水熱交換器を通過した後の前記給湯用冷媒と、前記第2空調循環流路を循環する前記空調用冷媒との間で熱交換を行わせるものであることを特徴とする。   In the heat pump system according to a third aspect of the present invention, in the first or second aspect of the invention, the hot water supply heat pump compresses the hot water supply refrigerant, and the hot water supply refrigerant discharged from the second compressor. And a water heat exchanger that heats the water by performing heat exchange between the water circulating in the water circulation flow path, and the second heat exchange means is configured to circulate the second hot water supply circulation during the heating hot water supply operation. Heat exchange is performed between the hot water supply refrigerant after passing through the water heat exchanger in the flow path and the air conditioning refrigerant circulating in the second air conditioning circulation flow path. .

本発明によれば、暖房給湯運転時には、第2熱交換手段において、水熱交換器を通過した後の給湯用冷媒と空調用冷媒との間で熱交換が行われる。この場合、水熱交換器において水との熱交換を行った後の給湯用冷媒の熱(余熱)が空調用ヒートポンプにて回収されるため、水熱交換器での水の加熱能力を低下させることなく、空調用ヒートポンプの負荷低減を図ることができる。   According to the present invention, during the heating and hot water supply operation, the second heat exchange means performs heat exchange between the hot water supply refrigerant and the air conditioning refrigerant after passing through the water heat exchanger. In this case, since the heat (residual heat) of the hot water supply refrigerant after heat exchange with water in the water heat exchanger is recovered by the air conditioning heat pump, the water heating capacity in the water heat exchanger is reduced. Therefore, it is possible to reduce the load of the air conditioning heat pump.

第4の発明のヒートポンプシステムは、第1乃至第3のいずれかの発明において、前記第1熱交換手段と前記第2熱交換手段とは共通の熱交換器により構成され、前記各空調循環流路と前記各給湯循環流路とはいずれも前記共通の熱交換器を経由する流路となっていることを特徴とする。   A heat pump system according to a fourth aspect of the present invention is the heat pump system according to any one of the first to third aspects, wherein the first heat exchange means and the second heat exchange means are configured by a common heat exchanger, Both the passage and the hot water supply circulation passages are passages that pass through the common heat exchanger.

本発明によれば、第1熱交換手段と第2熱交換手段との共用化が図られているため、熱交換器の個数削減を図ることができる。これにより、構成の簡素化等を図りながら、上記第1の発明の効果を得ることができる。   According to the present invention, since the first heat exchange means and the second heat exchange means are shared, the number of heat exchangers can be reduced. Thus, the effects of the first invention can be obtained while simplifying the configuration and the like.

第5の発明のヒートポンプシステムは、第1乃至第4のいずれかの発明において、前記第1熱交換手段は、前記冷房給湯運転時において、前記空調用ヒートポンプの凝縮器として機能し、前記第2熱交換手段は、前記暖房給湯運転時において、前記空調用ヒートポンプの蒸発器として機能し、前記空調用冷媒回路は、切替可能な流路として、前記給湯用ヒートポンプの水加熱運転が停止している状態で前記空調用ヒートポンプの冷房運転又は暖房運転を行う空調単独運転時に前記空調用冷媒を循環させる第3空調循環流路をさらに有し、前記空調用ヒートポンプは、前記空調用冷媒と屋外空気との間で熱交換を行わせることで凝縮器又は蒸発器として機能する室外熱交換器を備え、前記第3空調循環流路は、前記各熱交換手段を経由せずに前記室外熱交換器を経由する流路となっていることを特徴とする。   The heat pump system according to a fifth aspect of the present invention is the heat pump system according to any one of the first to fourth aspects, wherein the first heat exchanging means functions as a condenser of the air conditioning heat pump during the cooling hot water supply operation. The heat exchange means functions as an evaporator of the air conditioning heat pump during the heating and hot water supply operation, and the water heating operation of the hot water supply heat pump is stopped as the air conditioning refrigerant circuit as a switchable flow path. The air conditioning heat pump further includes a third air conditioning circulation passage for circulating the air conditioning refrigerant during an air conditioning single operation in which the air conditioning heat pump performs a cooling operation or a heating operation, and the air conditioning heat pump includes the air conditioning refrigerant, outdoor air, An outdoor heat exchanger that functions as a condenser or an evaporator by exchanging heat between them, and the third air-conditioning circulation channel is not connected to the heat exchange means before passing through the heat exchange means. Characterized in that it is a flow path passing through the outdoor heat exchanger.

本発明によれば、冷房給湯運転時には第1熱交換手段が空調用ヒートポンプの凝縮器として機能し、暖房給湯運転時には第2熱交換手段が空調用ヒートポンプの蒸発器として機能する。ここで、このような構成において、冷房単独運転時に第1熱交換手段を凝縮器として機能させ、暖房単独運転時に第2熱交換手段を蒸発器として機能させる場合、給湯用ヒートポンプの運転が停止して給湯用冷媒が循環していないことから、第1熱交換手段又は第2熱交換手段において空調用冷媒の凝縮又は蒸発が十分に行われないことが想定される。その場合、空調用ヒートポンプの効率低下を招くおそれがある。   According to the present invention, the first heat exchanging means functions as a condenser of an air conditioning heat pump during the cooling hot water supply operation, and the second heat exchanging means functions as an evaporator of the air conditioning heat pump during the heating hot water supply operation. Here, in such a configuration, when the first heat exchange means functions as a condenser during cooling only operation and the second heat exchange means functions as an evaporator during heating single operation, the operation of the hot water supply heat pump stops. Therefore, it is assumed that the air conditioning refrigerant is not sufficiently condensed or evaporated in the first heat exchange means or the second heat exchange means. In that case, the efficiency of the air-conditioning heat pump may be reduced.

そこで本発明では、この点に鑑み、空調単独運転時(冷房単独運転時及び暖房単独運転時)には、空調用冷媒を第3空調循環流路に循環させ、それにより空調用冷媒を各熱交換手段を経由させずに室外熱交換器を経由させて循環させるようにしている。これにより、空調単独運転時には、室外熱交換器にて屋外空気との熱交換により空調用冷媒の凝縮又は蒸発を行わせることができるため、空調単独運転時に空調用ヒートポンプの効率低下を招くのを回避することができる。   Therefore, in the present invention, in view of this point, at the time of air conditioning single operation (at the time of single cooling operation and at the time of single heating operation), the air-conditioning refrigerant is circulated through the third air-conditioning circulation channel, thereby It is made to circulate through an outdoor heat exchanger, without passing through an exchange means. This allows the air conditioning refrigerant to condense or evaporate by heat exchange with outdoor air in the outdoor heat exchanger during air conditioning alone operation, leading to a reduction in efficiency of the air conditioning heat pump during air conditioning alone operation. It can be avoided.

第6の発明のヒートポンプシステムは、第5の発明において、前記給湯用ヒートポンプは、前記給湯用冷媒と屋外空気との間で熱交換を行わせる熱交換器として前記空調用ヒートポンプの前記室外熱交換器を用いており、前記冷房給湯運転時に前記空調用冷媒を循環させる前記第1空調循環流路と、前記暖房給湯運転時に前記空調用冷媒を循環させる前記第2空調循環流路とはいずれも前記室外熱交換器を経由しない経路となっていることを特徴とする。   The heat pump system according to a sixth aspect of the present invention is the heat pump system according to the fifth aspect, wherein the hot water supply heat pump serves as a heat exchanger for exchanging heat between the hot water supply refrigerant and outdoor air. The first air conditioning circulation channel that circulates the air conditioning refrigerant during the cooling and hot water supply operation, and the second air conditioning circulation channel that circulates the air conditioning refrigerant during the heating and hot water operation. The route is not via the outdoor heat exchanger.

本発明によれば、給湯用ヒートポンプの室外熱交換器が空調用ヒートポンプの室外熱交換器と共用されているため、室外熱交換器の個数削減を図ることができ、構成の簡素化等を図ることができる。   According to the present invention, since the outdoor heat exchanger of the hot water supply heat pump is shared with the outdoor heat exchanger of the air conditioning heat pump, the number of outdoor heat exchangers can be reduced, and the configuration can be simplified. be able to.

また、こうした構成にあっても、冷房給湯運転時には、空調用冷媒が室外熱交換器を経由せずに第1熱交換手段を経由して循環し、暖房給湯運転時には、空調用冷媒が室外熱交換器を経由せずに第2熱交換手段を経由して循環するため、冷房給湯運転時及び暖房給湯運転時には室外熱交換器に空調用冷媒と給湯用冷媒とのうち給湯用冷媒のみを流通させることができる。そのため、給湯用ヒートポンプの室外熱交換器を空調用ヒートポンプの室外熱交換器と共用した上記の構成にあって、冷房給湯運転時及び暖房給湯運転時において給湯用冷媒と屋外空気との間の熱交換効率の低下が生じるのを回避することができる。   Even in such a configuration, the air-conditioning refrigerant circulates through the first heat exchanging means without passing through the outdoor heat exchanger during the cooling hot water supply operation, and the air-conditioning refrigerant passes through the outdoor heat exchanger during the heating hot water supply operation. Since it circulates through the second heat exchange means without going through the exchanger, only the hot water supply refrigerant out of the air conditioning refrigerant and the hot water supply refrigerant flows to the outdoor heat exchanger during the cooling hot water supply operation and the heating hot water supply operation. Can be made. Therefore, the outdoor heat exchanger of the hot water supply heat pump is shared with the outdoor heat exchanger of the air conditioning heat pump, and the heat between the hot water supply refrigerant and the outdoor air during the cooling hot water supply operation and the heating hot water supply operation. A reduction in exchange efficiency can be avoided.

第7の発明のヒートポンプシステムは、第1乃至第6のいずれかの発明において、前記給湯用冷媒回路は、切替可能な流路として、前記空調用ヒートポンプの冷房運転及び暖房運転が停止している状態で前記給湯用ヒートポンプの水加熱運転を行う給湯単独運転時に前記給湯用冷媒を循環させる第3給湯循環流路をさらに有し、前記第3給湯循環流路は、前記各熱交換手段を経由しない流路となっていることを特徴とする。   The heat pump system according to a seventh aspect of the present invention is the heat pump system according to any one of the first to sixth aspects, wherein the cooling circuit and the heating operation of the air conditioning heat pump are stopped as the hot water supply refrigerant circuit as a switchable flow path. And a third hot water supply circulation channel for circulating the hot water supply refrigerant during a single hot water supply operation for performing a water heating operation of the hot water supply heat pump in a state, and the third hot water supply circulation channel passes through the heat exchange means. It is characterized by being a non-flow channel.

本発明によれば、給湯単独運転時には、給湯用冷媒が第3給湯循環流路を循環する。この場合、給湯用冷媒は第1熱交換手段及び第2熱交換手段のいずれをも経由しないで循環する。これにより、空調用ヒートポンプの運転が停止し空調用冷媒が循環していないにもかかわらず給湯用冷媒を各熱交換手段を経由させて循環させることで、給湯用ヒートポンプの効率低下を招いてしまうことを回避できる。   According to the present invention, during the hot water supply single operation, the hot water supply refrigerant circulates through the third hot water supply circulation channel. In this case, the hot water supply refrigerant circulates without passing through either the first heat exchange means or the second heat exchange means. As a result, the operation of the air conditioning heat pump is stopped and the hot water supply refrigerant is circulated through each heat exchanging means even though the air conditioning refrigerant is not circulated, thereby reducing the efficiency of the hot water supply heat pump. You can avoid that.

第8の発明のヒートポンプシステムは、第1乃至第7のいずれかの発明において、前記給湯用ヒートポンプは、前記給湯用冷媒と屋外空気との間で熱交換を行わせることで前記給湯用冷媒に屋外空気の熱を吸収させる給湯用室外熱交換器を備え、前記第1給湯循環流路は、前記第1熱交換手段に加え前記給湯用室外熱交換器を経由する流路となっていることを特徴とする。   In the heat pump system according to an eighth aspect of the present invention, in any one of the first to seventh aspects of the invention, the hot water supply heat pump causes the hot water supply refrigerant to exchange heat between the hot water supply refrigerant and outdoor air. An outdoor heat exchanger for hot water supply that absorbs the heat of outdoor air is provided, and the first hot water supply circulation channel is a channel that passes through the outdoor heat exchanger for hot water supply in addition to the first heat exchange means. It is characterized by.

本発明によれば、冷房給湯運転時には、給湯用冷媒が第1熱交換手段に加え給湯用室外熱交換器を経由して循環する。この場合、給湯用冷媒は空調用冷媒から熱を吸収(回収)するとともに屋外空気からも熱を吸収するため、冷房給湯運転時において給湯用ヒートポンプの効率をより一層向上させることができる。   According to the present invention, during the cooling hot water supply operation, the hot water supply refrigerant circulates via the hot water supply outdoor heat exchanger in addition to the first heat exchange means. In this case, since the hot water supply refrigerant absorbs (recovers) heat from the air conditioning refrigerant and also absorbs heat from the outdoor air, the efficiency of the hot water supply heat pump can be further improved during the cooling hot water supply operation.

第1の実施形態におけるヒートポンプシステムの構成を示す図。The figure which shows the structure of the heat pump system in 1st Embodiment. 冷房単独運転モード時における冷媒の流れを示す図。The figure which shows the flow of the refrigerant | coolant at the time of air_conditioning | cooling independent operation mode. 暖房単独運転モード時における冷媒の流れを示す図。The figure which shows the flow of the refrigerant | coolant at the time of heating independent operation mode. 給湯単独運転モード時における冷媒の流れを示す図。The figure which shows the flow of the refrigerant | coolant at the time of hot water supply independent operation mode. 冷房給湯運転モード時における冷媒の流れを示す図。The figure which shows the flow of the refrigerant | coolant at the time of air-conditioning hot water supply operation mode. 暖房給湯運転モード時における冷媒の流れを示す図。The figure which shows the flow of the refrigerant | coolant at the time of heating hot-water supply operation mode. 第2の実施形態におけるヒートポンプシステムの構成を示す図であり、冷房単独運転モード時における冷媒の流れを併せて示す。It is a figure which shows the structure of the heat pump system in 2nd Embodiment, and also shows the flow of the refrigerant | coolant at the time of the cooling only operation mode. 給湯単独運転モード時における冷媒の流れを示す図。The figure which shows the flow of the refrigerant | coolant at the time of hot water supply independent operation mode. 冷房給湯運転モード時における冷媒の流れを示す図。The figure which shows the flow of the refrigerant | coolant at the time of air-conditioning hot water supply operation mode. 暖房給湯運転モード時における冷媒の流れを示す図。The figure which shows the flow of the refrigerant | coolant at the time of heating hot-water supply operation mode.

〔第1の実施形態〕
以下に、本発明を具体化した一実施の形態について図面を参照しつつ説明する。本実施形態では、住宅等の建物に、建物内の空調と給湯(湯沸かし)とを行うヒートポンプシステムが設けられている。以下、このヒートポンプシステムの構成について図1に基づいて説明する。図1はヒートポンプシステムの構成を示す図である。
[First Embodiment]
Hereinafter, an embodiment of the present invention will be described with reference to the drawings. In the present embodiment, a heat pump system that performs air conditioning and hot water supply in a building such as a house is provided. Hereinafter, the configuration of the heat pump system will be described with reference to FIG. FIG. 1 is a diagram showing a configuration of a heat pump system.

図1に示すように、ヒートポンプシステム10は、建物内(室内)の空調(冷房及び暖房)を行うための空調用ヒートポンプ11と、建物内で利用する湯を生成する(沸かす)ための給湯用ヒートポンプ12とを備えている。これら各ヒートポンプ11,12は、屋外に設けられた室外機14と、屋内に設けられた室内機15とを用いて構成されている。詳しくは、空調用ヒートポンプ11が室外機14及び室内機15を用いて構成され、給湯用ヒートポンプ12が室外機14(のみ)を用いて構成されている。なお、図1では便宜上、室外機14を一点鎖線の矩形枠で示し、室内機15を二点鎖線の矩形枠で示している。   As shown in FIG. 1, a heat pump system 10 is used for air conditioning heat pump 11 for air conditioning (cooling and heating) in a building (indoor) and hot water supply for generating (boiling) hot water used in the building. And a heat pump 12. Each of these heat pumps 11 and 12 is configured by using an outdoor unit 14 provided outdoors and an indoor unit 15 provided indoors. Specifically, the air conditioning heat pump 11 is configured using the outdoor unit 14 and the indoor unit 15, and the hot water supply heat pump 12 is configured using the outdoor unit 14 (only). In FIG. 1, for the sake of convenience, the outdoor unit 14 is indicated by a one-dot chain line rectangular frame, and the indoor unit 15 is indicated by a two-dot chain line rectangular frame.

空調用ヒートポンプ11は、空調用冷媒を循環させる空調用冷媒回路21と、その空調用冷媒回路21に設けられた圧縮機22、室内熱交換器23、膨張弁24及び室外熱交換器25とを備えている。空調用冷媒回路21は複数の冷媒流路からなる。それら複数の冷媒流路には、環状をなす環状流路27(図2において太線で示す流路)が含まれている。この環状流路27には、上記各機器22〜25、すなわち圧縮機22、室内熱交換器23、膨張弁24及び室外熱交換器25が、この順に並んで設けられている。この場合、これら各機器22〜25は環状流路27を介して直列に接続されている。なお、空調用冷媒としては、例えばHFCが用いられる。   The air conditioning heat pump 11 includes an air conditioning refrigerant circuit 21 that circulates an air conditioning refrigerant, and a compressor 22, an indoor heat exchanger 23, an expansion valve 24, and an outdoor heat exchanger 25 provided in the air conditioning refrigerant circuit 21. I have. The air conditioning refrigerant circuit 21 includes a plurality of refrigerant flow paths. The plurality of refrigerant channels include an annular channel 27 (a channel indicated by a thick line in FIG. 2). In the annular flow path 27, the devices 22 to 25, that is, the compressor 22, the indoor heat exchanger 23, the expansion valve 24, and the outdoor heat exchanger 25 are arranged in this order. In this case, these devices 22 to 25 are connected in series via the annular flow path 27. For example, HFC is used as the air conditioning refrigerant.

圧縮機22は、空調用冷媒を圧縮することで空調用冷媒を高温高圧とするものである。なお、圧縮機22が第1圧縮機に相当する。室内熱交換器23は、空調用冷媒と室内空気との間で熱交換を行わせるものである。室内熱交換器23は室内機15に設けられており、その室内機15には室内熱交換器23に向けて室内空気を送るファン(図示略)が設けられている。   The compressor 22 compresses the air-conditioning refrigerant to bring the air-conditioning refrigerant to a high temperature and high pressure. The compressor 22 corresponds to the first compressor. The indoor heat exchanger 23 performs heat exchange between the air-conditioning refrigerant and the room air. The indoor heat exchanger 23 is provided in the indoor unit 15, and the indoor unit 15 is provided with a fan (not shown) that sends indoor air toward the indoor heat exchanger 23.

膨張弁24は、空調用冷媒を膨張させることで空調用冷媒を低温低圧とするものである。室外熱交換器25は、空調用冷媒と屋外空気(外気)との間で熱交換を行わせるものである。室外熱交換器25は室外機14に設けられており、その室外機14には室外熱交換器25に向けて屋外空気を送るファン(図示略)が設けられている。   The expansion valve 24 expands the air-conditioning refrigerant to make the air-conditioning refrigerant low temperature and low pressure. The outdoor heat exchanger 25 performs heat exchange between the air conditioning refrigerant and outdoor air (outside air). The outdoor heat exchanger 25 is provided in the outdoor unit 14, and the outdoor unit 14 is provided with a fan (not shown) that sends outdoor air toward the outdoor heat exchanger 25.

環状流路27には四方弁28が設けられている。四方弁28は、環状流路27(ひいては空調用冷媒回路21)を流れる空調用冷媒の流れの向きを切り替えるものである。この四方弁28により空調用冷媒の流れの向きを切り替えることで、空調用ヒートポンプ11を冷房運転と暖房運転とに切り替えることが可能となっている。詳しくは、四方弁28は、圧縮機22の吸込側に室内熱交換器23を接続しかつ圧縮機22の吐出側に室外熱交換器25(又は後述する冷媒間熱交換器35)を接続する状態(図2,図5参照)と、圧縮機22の吸込側に室外熱交換器25(又は後述する冷媒間熱交換器35)を接続しかつ圧縮機22の吐出側に室内熱交換器23を接続する状態(図3,図6参照)とに流路切替可能となっており、冷房運転時には前者の状態に、暖房運転時には後者の状態に流路切替されるようになっている。   A four-way valve 28 is provided in the annular flow path 27. The four-way valve 28 switches the direction of the air-conditioning refrigerant flowing through the annular flow path 27 (and thus the air-conditioning refrigerant circuit 21). By switching the flow direction of the air conditioning refrigerant by the four-way valve 28, the air conditioning heat pump 11 can be switched between the cooling operation and the heating operation. Specifically, the four-way valve 28 connects the indoor heat exchanger 23 to the suction side of the compressor 22 and connects the outdoor heat exchanger 25 (or an inter-refrigerant heat exchanger 35 described later) to the discharge side of the compressor 22. The state (see FIGS. 2 and 5), an outdoor heat exchanger 25 (or a refrigerant heat exchanger 35 described later) is connected to the suction side of the compressor 22, and the indoor heat exchanger 23 is connected to the discharge side of the compressor 22. The flow path can be switched to the state of connecting the two (see FIGS. 3 and 6), and the flow path is switched to the former state during the cooling operation and to the latter state during the heating operation.

環状流路27には、熱交換用流路31が接続されている。熱交換用流路31は、その一端部が三方弁32を介して環状流路27における圧縮機22と室外熱交換器25との間(より詳しくは四方弁28と室外熱交換器25との間)に接続され、その他端部が三方弁33を介して環状流路27における膨張弁24と室外熱交換器25との間に接続されている。   A heat exchange channel 31 is connected to the annular channel 27. One end of the heat exchange channel 31 is interposed between the compressor 22 and the outdoor heat exchanger 25 in the annular channel 27 via the three-way valve 32 (more specifically, between the four-way valve 28 and the outdoor heat exchanger 25). The other end is connected between the expansion valve 24 and the outdoor heat exchanger 25 in the annular flow path 27 via the three-way valve 33.

熱交換用流路31には、冷媒間熱交換器35が設けられている。冷媒間熱交換器35は、熱交換用流路31を流れる空調用冷媒と給湯用ヒートポンプ12の給湯用冷媒回路41(その詳細は後述)を流れる給湯用冷媒との間で熱交換を行わせるものである。この場合、冷媒間熱交換器35は、室外熱交換器25と並列に配置されている。   An inter-refrigerant heat exchanger 35 is provided in the heat exchange channel 31. The inter-refrigerant heat exchanger 35 exchanges heat between the air-conditioning refrigerant flowing through the heat-exchange channel 31 and the hot-water supply refrigerant flowing through the hot-water supply refrigerant circuit 41 (details will be described later) of the hot-water supply heat pump 12. Is. In this case, the inter-refrigerant heat exchanger 35 is arranged in parallel with the outdoor heat exchanger 25.

続いて、給湯用ヒートポンプ12について説明する。   Next, the hot water supply heat pump 12 will be described.

給湯用ヒートポンプ12は、給湯用冷媒を循環させる給湯用冷媒回路41と、その給湯用冷媒回路41に設けられた圧縮機42、水熱交換器43、膨張弁44及び室外熱交換器25とを備えている。給湯用冷媒回路41は複数の冷媒流路からなる。それら複数の冷媒流路には環状をなす環状流路47(図4で太線で示す流路)が含まれている。環状流路47には、上記各機器42〜44,25、すなわち圧縮機42、水熱交換器43、膨張弁44及び室外熱交換器25が、この順に並んで配置されている。この場合、上記各機器42〜44,25は環状流路47を介して直列に接続されている。なお、給湯用冷媒としては、例えばCO2が用いられる。   The hot water supply heat pump 12 includes a hot water supply refrigerant circuit 41 that circulates a hot water supply refrigerant, and a compressor 42, a water heat exchanger 43, an expansion valve 44, and an outdoor heat exchanger 25 provided in the hot water supply refrigerant circuit 41. I have. The hot water supply refrigerant circuit 41 includes a plurality of refrigerant flow paths. The plurality of refrigerant channels include an annular channel 47 (a channel indicated by a thick line in FIG. 4). In the annular channel 47, the devices 42 to 44, 25, that is, the compressor 42, the water heat exchanger 43, the expansion valve 44, and the outdoor heat exchanger 25 are arranged in this order. In this case, the devices 42 to 44 and 25 are connected in series via the annular channel 47. For example, CO2 is used as the hot water supply refrigerant.

圧縮機42は、給湯用冷媒を圧縮することで給湯用冷媒を高温高圧とするものである。なお、圧縮機42が第2圧縮機に相当する。水熱交換器43は、圧縮機42から吐出された高温の給湯用冷媒と水循環流路51を循環する水との間で熱交換を行わせるものである。水循環流路51には、循環ポンプ52と貯湯槽53とが設けられている。循環ポンプ52は、水循環流路51において水を循環させるものであり、その循環する水が水熱交換器43において給湯用冷媒との熱交換により加熱されるようになっている。そして、その加熱された水が貯湯槽53に蓄えられるようになっている。図示は省略するが、貯湯槽53には、その蓄えられた湯を室内の給湯端末(例えばキッチンや浴室等に設けられた水栓)に供給する給湯配管が接続されている。   The compressor 42 compresses the hot water supply refrigerant to bring the hot water supply refrigerant to a high temperature and high pressure. The compressor 42 corresponds to the second compressor. The water heat exchanger 43 exchanges heat between the high-temperature hot water supply refrigerant discharged from the compressor 42 and the water circulating in the water circulation passage 51. The water circulation passage 51 is provided with a circulation pump 52 and a hot water storage tank 53. The circulation pump 52 circulates water in the water circulation passage 51, and the circulating water is heated by heat exchange with the hot water supply refrigerant in the water heat exchanger 43. Then, the heated water is stored in the hot water storage tank 53. Although illustration is omitted, the hot water storage tank 53 is connected to a hot water supply pipe for supplying the stored hot water to an indoor hot water supply terminal (for example, a faucet provided in a kitchen or a bathroom).

膨張弁44は、給湯用冷媒を膨張させることで給湯用冷媒を低温低圧とするものである。室外熱交換器25は、膨張弁44で膨張された給湯用冷媒と屋外空気との間で熱交換を行わせるものである。室外熱交換器25は、上述したように、空調用冷媒と屋外空気との間の熱交換にも用いられている。このため、室外熱交換器25は、空調用ヒートポンプ11と給湯用ヒートポンプ12との両方で共用されるものとなっている。   The expansion valve 44 expands the hot water supply refrigerant to make the hot water supply refrigerant at low temperature and low pressure. The outdoor heat exchanger 25 performs heat exchange between the hot water supply refrigerant expanded by the expansion valve 44 and outdoor air. As described above, the outdoor heat exchanger 25 is also used for heat exchange between the air conditioning refrigerant and the outdoor air. Therefore, the outdoor heat exchanger 25 is shared by both the air conditioning heat pump 11 and the hot water supply heat pump 12.

環状流路47において水熱交換器43と膨張弁44との間には熱交換用流路55が接続されている。熱交換用流路55は、その一端部が三方弁56を介して環状流路47に接続され、その他端部が三方弁57を介して環状流路47に接続されている。この場合、各三方弁56,57のうち、三方弁56が水熱交換器43側(換言すると上流側)に配置され、三方弁57が膨張弁44側(換言すると下流側)に配置されている。   A heat exchange channel 55 is connected between the water heat exchanger 43 and the expansion valve 44 in the annular channel 47. One end of the heat exchange channel 55 is connected to the annular channel 47 via the three-way valve 56, and the other end is connected to the annular channel 47 via the three-way valve 57. In this case, of the three-way valves 56, 57, the three-way valve 56 is disposed on the hydrothermal exchanger 43 side (in other words, the upstream side), and the three-way valve 57 is disposed on the expansion valve 44 side (in other words, the downstream side). Yes.

熱交換用流路55には、上述した冷媒間熱交換器35が設けられている。この冷媒間熱交換器35において、熱交換用流路55を流れる給湯用冷媒と熱交換用流路31を流れる空調用冷媒との間で熱交換が行われる。   The heat exchanger flow path 55 is provided with the above-described refrigerant heat exchanger 35. In the inter-refrigerant heat exchanger 35, heat exchange is performed between the hot water supply refrigerant flowing through the heat exchange channel 55 and the air conditioning refrigerant flowing through the heat exchange channel 31.

熱交換用流路55は、環状流路47における室外熱交換器25と圧縮機42との間の流路部分と接続流路58,59を介して接続されている。各接続流路58,59のうち、第1接続流路58は、その一端部が三方弁61を介して熱交換用流路55における冷媒間熱交換器35の下流側に接続され、その他端部が三方弁62を介して環状流路47の上記流路部分に接続されている。第2接続流路59は、その一端部が三方弁63を介して熱交換用流路55における冷媒間熱交換器35の上流側に接続され、その他端部が三方弁64を介して環状流路47の上記流路部分に接続されている。この場合、環状流路47の上記流路部分において、各三方弁62,64のうち、三方弁62が圧縮機42側に配置され、三方弁64が室外熱交換器25側に配置されている。   The heat exchange channel 55 is connected to a channel portion between the outdoor heat exchanger 25 and the compressor 42 in the annular channel 47 via connection channels 58 and 59. Among the connection flow paths 58 and 59, the first connection flow path 58 has one end connected to the downstream side of the inter-refrigerant heat exchanger 35 in the heat exchange flow path 55 via the three-way valve 61, and the other end. The part is connected to the flow path portion of the annular flow path 47 via the three-way valve 62. One end of the second connection flow path 59 is connected to the upstream side of the inter-refrigerant heat exchanger 35 in the heat exchange flow path 55 via the three-way valve 63, and the other end is connected to the annular flow via the three-way valve 64. It is connected to the flow path portion of the path 47. In this case, among the three-way valves 62 and 64, the three-way valve 62 is disposed on the compressor 42 side, and the three-way valve 64 is disposed on the outdoor heat exchanger 25 side in the channel portion of the annular channel 47. .

以上が、ヒートポンプシステム10の構成に関する説明である。図示は省略するが、ヒートポンプシステム10には、空調用ヒートポンプ11及び給湯用ヒートポンプ12の各種制御を行う制御装置が設けられている。制御装置は、CPU等を有する周知のマイクロコンピュータを備えて構成され、例えば室外機14に設けられている。この制御装置により、空調用ヒートポンプ11の圧縮機22、各三方弁32,33及び四方弁28が制御され、また給湯用ヒートポンプ12の圧縮機42及び各三方弁56,57,61〜64が制御されるようになっている。   The above is the description regarding the configuration of the heat pump system 10. Although illustration is omitted, the heat pump system 10 is provided with a control device that performs various controls of the heat pump 11 for air conditioning and the heat pump 12 for hot water supply. The control device includes a known microcomputer having a CPU and the like, and is provided in the outdoor unit 14, for example. By this control device, the compressor 22, the three-way valves 32, 33 and the four-way valve 28 of the air conditioning heat pump 11 are controlled, and the compressor 42 and the three-way valves 56, 57, 61 to 64 of the hot water supply heat pump 12 are controlled. It has come to be.

次に、ヒートポンプシステム10の動作について説明する。ヒートポンプシステム10は、その運転モードとして、冷房単独運転モード、暖房単独運転モード、給湯単独運転モード、冷房給湯運転モード及び暖房給湯運転モードを有している。以下においては、これら各運転モードごとにヒートポンプシステム10の動作について説明する。   Next, the operation of the heat pump system 10 will be described. The heat pump system 10 has a cooling single operation mode, a heating single operation mode, a hot water supply single operation mode, a cooling hot water supply operation mode, and a heating hot water supply operation mode as its operation modes. Hereinafter, the operation of the heat pump system 10 will be described for each of these operation modes.

まず、冷房単独運転モードにおけるヒートポンプシステム10の動作について図2に基づき説明する。図2は、冷房単独運転モードでヒートポンプシステム10を動作させた場合における冷媒の流れを示す図である。   First, the operation of the heat pump system 10 in the cooling only operation mode will be described with reference to FIG. FIG. 2 is a diagram illustrating a refrigerant flow when the heat pump system 10 is operated in the cooling single operation mode.

冷房単独運転モードは、給湯用ヒートポンプ12による水加熱運転(湯沸かし運転)が停止している状態で、空調用ヒートポンプ11による冷房運転を行う場合(すなわち冷房単独運転時)に実行される。冷房単独運転モードでは、制御装置により空調用ヒートポンプ11の圧縮機22が駆動される。また、冷房単独運転モードでは、空調用冷媒回路21において空調用冷媒が当該モード用の冷媒循環流路R1(図2において太線で示す流路)を循環するよう、四方弁28及び各三方弁32,33による流路切替が行われる。なお、冷媒循環流路R1が第3空調循環流路に相当する。   The cooling only operation mode is executed when the cooling operation by the air conditioning heat pump 11 is performed in a state where the water heating operation (water heating operation) by the hot water supply heat pump 12 is stopped (that is, during the cooling only operation). In the cooling single operation mode, the compressor 22 of the heat pump 11 for air conditioning is driven by the control device. In the cooling single operation mode, the four-way valve 28 and the three-way valves 32 are arranged so that the air-conditioning refrigerant in the air-conditioning refrigerant circuit 21 circulates in the refrigerant circulation channel R1 for that mode (the channel indicated by a thick line in FIG. 2). , 33 is used to switch the flow path. The refrigerant circulation channel R1 corresponds to a third air conditioning circulation channel.

また、図2では便宜上、四方弁28において開放された通路を実線で示しており、また三方弁32,33において開放されたポートを黒塗りで示している。また、後述する図3〜図10においても、これと同様に、四方弁の開放通路を実線で示し、三方弁の開放ポートを黒塗りで示している。   Further, in FIG. 2, for convenience, a passage opened in the four-way valve 28 is indicated by a solid line, and a port opened in the three-way valves 32 and 33 is indicated by black. 3 to 10 described later, similarly, the open passage of the four-way valve is indicated by a solid line, and the open port of the three-way valve is indicated by black.

図2に示すように、冷房単独運転モードでは、空調用ヒートポンプ11において、圧縮機22により圧縮されて高温高圧となった空調用冷媒(ガス冷媒)が四方弁28と三方弁32とを経由して室外熱交換器25に流入する。室外熱交換器25では、空調用冷媒が屋外空気との熱交換により冷却されて凝縮する。この場合、室外熱交換器25は凝縮器として機能する。室外熱交換器25で凝縮された空調用冷媒は三方弁33を経由して膨張弁24に流入し、その膨張弁24において減圧され低温低圧となる。   As shown in FIG. 2, in the cooling single operation mode, in the air conditioning heat pump 11, the air conditioning refrigerant (gas refrigerant) that has been compressed by the compressor 22 to become high temperature and pressure passes through the four-way valve 28 and the three-way valve 32. And flows into the outdoor heat exchanger 25. In the outdoor heat exchanger 25, the air-conditioning refrigerant is cooled and condensed by heat exchange with outdoor air. In this case, the outdoor heat exchanger 25 functions as a condenser. The air-conditioning refrigerant condensed in the outdoor heat exchanger 25 flows into the expansion valve 24 via the three-way valve 33, and is decompressed at the expansion valve 24 to become a low temperature and a low pressure.

膨張弁24で減圧された空調用冷媒は室内熱交換器23に流入し、その室内熱交換器23において室内空気との熱交換により加熱され蒸発(気化)する。この場合、室内熱交換器23は蒸発器として機能する。また、室内空気は空調用冷媒との熱交換により冷却され、その冷却された室内空気により室内の冷房が行われる。蒸発した空調用冷媒は四方弁28を経由して再び圧縮機22に戻る。   The air-conditioning refrigerant decompressed by the expansion valve 24 flows into the indoor heat exchanger 23, where it is heated and evaporated (vaporized) by heat exchange with indoor air. In this case, the indoor heat exchanger 23 functions as an evaporator. The room air is cooled by heat exchange with the air conditioning refrigerant, and the indoor air is cooled by the cooled room air. The evaporated air-conditioning refrigerant returns to the compressor 22 again via the four-way valve 28.

続いて、暖房単独運転モードにおけるヒートポンプシステム10の動作について図3に基づき説明する。図3は、暖房単独運転モード時における冷媒の流れを示す図である。   Next, the operation of the heat pump system 10 in the heating single operation mode will be described with reference to FIG. FIG. 3 is a diagram illustrating a refrigerant flow in the heating single operation mode.

暖房単独運転モードは、給湯用ヒートポンプ12による水加熱運転が停止している状態で、空調用ヒートポンプ11による暖房運転を行う場合(すなわち暖房単独運転時)に実行される。暖房単独運転モードでは、制御装置により空調用ヒートポンプ11の圧縮機22が駆動される。また、暖房単独運転モードでは、空調用冷媒回路21において空調用冷媒が当該モード用の冷媒循環流路R2(図3において太線で示す流路)を循環するよう、四方弁28及び各三方弁32,33による流路切替が行われる。なお、冷媒循環流路R2が第3空調循環流路に相当する。   The heating single operation mode is executed when the heating operation by the air conditioning heat pump 11 is performed in a state where the water heating operation by the hot water supply heat pump 12 is stopped (that is, during the heating single operation). In the heating single operation mode, the compressor 22 of the heat pump 11 for air conditioning is driven by the control device. In the heating independent operation mode, the four-way valve 28 and the three-way valves 32 are arranged so that the air-conditioning refrigerant circulates in the refrigerant circulation channel R2 for the mode (the channel indicated by a bold line in FIG. 3) in the air-conditioning refrigerant circuit 21. , 33 is used to switch the flow path. The refrigerant circulation channel R2 corresponds to a third air conditioning circulation channel.

図3に示すように、暖房単独運転モードでは、空調用ヒートポンプ11において、圧縮機22により圧縮されて高温高圧となった空調用冷媒(ガス冷媒)が四方弁28を経由して室内熱交換器23に流入する。室内熱交換器23では、空調用冷媒が室内空気との熱交換により冷却されて凝縮する。この場合、室内熱交換器23は凝縮器として機能する。また、室内空気は空調用冷媒との熱交換により加熱され、その加熱された室内空気により室内の暖房が行われる。   As shown in FIG. 3, in the heating single operation mode, in the air conditioning heat pump 11, the air conditioning refrigerant (gas refrigerant) that has been compressed by the compressor 22 to a high temperature and high pressure passes through the four-way valve 28 and is an indoor heat exchanger. 23. In the indoor heat exchanger 23, the air conditioning refrigerant is cooled and condensed by heat exchange with room air. In this case, the indoor heat exchanger 23 functions as a condenser. The room air is heated by heat exchange with the air-conditioning refrigerant, and the room is heated by the heated room air.

室内熱交換器23で冷却された空調用冷媒は膨張弁24に流入し、その膨張弁24において減圧され低温低圧となる。膨張弁24で減圧された空調用冷媒は三方弁33を経由して室外熱交換器25に流入する。室外熱交換器25では、空調用冷媒が屋外空気との熱交換により加熱されて蒸発(気化)する。この場合、室外熱交換器25は蒸発器として機能する。室外熱交換器25で蒸発した空調用冷媒は三方弁32及び四方弁28を経由して再び圧縮機22に戻る。   The air-conditioning refrigerant cooled by the indoor heat exchanger 23 flows into the expansion valve 24 and is decompressed at the expansion valve 24 to become a low temperature and a low pressure. The air conditioning refrigerant decompressed by the expansion valve 24 flows into the outdoor heat exchanger 25 via the three-way valve 33. In the outdoor heat exchanger 25, the air-conditioning refrigerant is heated and evaporated (vaporized) by heat exchange with outdoor air. In this case, the outdoor heat exchanger 25 functions as an evaporator. The air conditioning refrigerant evaporated in the outdoor heat exchanger 25 returns to the compressor 22 again via the three-way valve 32 and the four-way valve 28.

続いて、給湯単独運転モードにおけるヒートポンプシステム10の動作について図4に基づき説明する。図4は、給湯単独運転モード時における冷媒の流れを示す図である。   Next, the operation of the heat pump system 10 in the hot water supply single operation mode will be described with reference to FIG. FIG. 4 is a diagram showing a refrigerant flow in the hot water supply single operation mode.

給湯単独運転モードは、空調用ヒートポンプ11による空調運転(冷房運転及び暖房運転)が停止している状態で、給湯用ヒートポンプ12による水加熱運転(湯沸かし運転)を行う場合(すなわち給湯単独運転時)に実行される。給湯単独運転モードでは、制御装置により、給湯用ヒートポンプ12の圧縮機42と循環ポンプ52とが駆動される。また、給湯単独運転モードでは、給湯用冷媒回路41において給湯用冷媒が当該モード用の冷媒循環流路L1(図4において太線で示す流路)を循環するよう、各三方弁56,57,61〜64による流路切替が行われる。なお、冷媒循環流路L1が第3給湯循環流路に相当する。   In the hot water supply single operation mode, when the air heating operation (cooling operation and heating operation) by the air conditioning heat pump 11 is stopped, the water heating operation (water heating operation) by the hot water supply heat pump 12 is performed (that is, during the hot water supply single operation). To be executed. In the hot water supply single operation mode, the compressor 42 and the circulation pump 52 of the hot water supply heat pump 12 are driven by the control device. In the hot water supply single operation mode, the three-way valves 56, 57, 61 are arranged so that the hot water supply refrigerant circulates in the hot water supply refrigerant circuit 41 through the refrigerant circulation flow path L 1 for the mode (the flow path shown by a bold line in FIG. 4). The flow path switching by ~ 64 is performed. The refrigerant circulation channel L1 corresponds to the third hot water supply circulation channel.

図4に示すように、給湯単独運転モードでは、給湯用ヒートポンプ12において、圧縮機42により圧縮されて高温高圧となった給湯用冷媒(ガス冷媒)が水熱交換器43に流入する。水熱交換器43では、給湯用冷媒が水循環流路51を循環する水との間の熱交換により冷却されて凝縮する。また、水循環流路51内の水は給湯用冷媒との熱交換により加熱され、その加熱された水が貯湯槽53に蓄えられる。   As shown in FIG. 4, in the hot water supply single operation mode, in the hot water supply heat pump 12, hot water supply refrigerant (gas refrigerant) that has been compressed by the compressor 42 to become high temperature and high pressure flows into the water heat exchanger 43. In the water heat exchanger 43, the hot water supply refrigerant is cooled and condensed by heat exchange with water circulating in the water circulation passage 51. Further, the water in the water circulation channel 51 is heated by heat exchange with the hot water supply refrigerant, and the heated water is stored in the hot water storage tank 53.

水熱交換器43で凝縮された給湯用冷媒は各三方弁56,57を経由して膨張弁44に流入する。膨張弁44では、給湯用冷媒が減圧され低温低圧の状態となる。膨張弁44で減圧された給湯用冷媒は室外熱交換器25に流入し、その室外熱交換器25において屋外空気との熱交換により加熱され蒸発(気化)する。蒸発した給湯用冷媒は各三方弁62,64を経由して再び圧縮機42に戻る。   The hot water supply refrigerant condensed in the water heat exchanger 43 flows into the expansion valve 44 via the three-way valves 56 and 57. In the expansion valve 44, the hot water supply refrigerant is depressurized to a low temperature and low pressure state. The hot water supply refrigerant decompressed by the expansion valve 44 flows into the outdoor heat exchanger 25, where it is heated and evaporated (vaporized) by heat exchange with outdoor air. The evaporated hot water supply refrigerant returns to the compressor 42 via the three-way valves 62 and 64 again.

続いて、冷房給湯運転モードにおけるヒートポンプシステム10の動作について図5に基づき説明する。図5は、冷房給湯運転モード時における冷媒の流れを示す図である。   Next, the operation of the heat pump system 10 in the cooling hot water supply operation mode will be described with reference to FIG. FIG. 5 is a diagram showing a refrigerant flow in the cooling hot water supply operation mode.

冷房給湯運転モードは、空調用ヒートポンプ11による冷房運転と給湯用ヒートポンプ12による水加熱運転とを同時に行う場合(すなわち冷房給湯運転時)に実行される。冷房給湯運転モードでは、制御装置により各ヒートポンプ11,12の圧縮機22,42と、循環ポンプ52とが駆動される。また、冷房給湯運転モードでは、空調用冷媒回路21において空調用冷媒が当該モード用の冷媒循環流路R3(図5において太線で示す流路)を循環するよう、四方弁28及び各三方弁32,33による流路切替が行われるとともに、給湯用冷媒回路41において給湯用冷媒が当該モード用の冷媒循環流路L2(図5において太線で示す流路)を循環するよう、各三方弁56,57,61〜64による流路切替が行われる。なお、この場合、冷媒循環流路R3が第1空調循環流路に相当し、冷媒循環流路L2が第1給湯循環流路に相当する。   The cooling hot water supply operation mode is executed when the cooling operation by the air conditioning heat pump 11 and the water heating operation by the hot water supply heat pump 12 are performed simultaneously (that is, during the cooling hot water supply operation). In the cooling hot water supply operation mode, the compressors 22 and 42 of the heat pumps 11 and 12 and the circulation pump 52 are driven by the control device. In the cooling hot water supply operation mode, the four-way valve 28 and each three-way valve 32 are arranged so that the air-conditioning refrigerant in the air-conditioning refrigerant circuit 21 circulates through the refrigerant circulation channel R3 for that mode (the channel indicated by a thick line in FIG. 5). , 33 and the three-way valves 56, 56 so that the hot water supply refrigerant is circulated in the hot water supply refrigerant circuit 41 through the refrigerant circulation flow path L2 for the mode (the flow line shown by a bold line in FIG. 5). The flow path is switched by 57, 61 to 64. In this case, the refrigerant circulation channel R3 corresponds to the first air conditioning circulation channel, and the refrigerant circulation channel L2 corresponds to the first hot water supply circulation channel.

図5に示すように、冷房給湯運転モードでは、空調用ヒートポンプ11において、圧縮機22により圧縮されて高温高圧となった空調用冷媒(ガス冷媒)が四方弁28と三方弁32とを経由して冷媒間熱交換器35に流入する。冷媒間熱交換器35では、空調用冷媒が給湯用冷媒回路41(冷媒循環流路L2)を流れる給湯用冷媒との熱交換により冷却され凝縮する。この場合、冷媒間熱交換器35は空調用ヒートポンプ11の凝縮器として機能する。なお、冷媒間熱交換器35が第1熱交換手段に相当する。   As shown in FIG. 5, in the cooling hot water supply operation mode, in the air conditioning heat pump 11, the air conditioning refrigerant (gas refrigerant) that has been compressed by the compressor 22 to become high temperature and pressure passes through the four-way valve 28 and the three-way valve 32. And flows into the inter-refrigerant heat exchanger 35. In the inter-refrigerant heat exchanger 35, the air conditioning refrigerant is cooled and condensed by heat exchange with the hot water supply refrigerant flowing in the hot water supply refrigerant circuit 41 (refrigerant circulation passage L2). In this case, the inter-refrigerant heat exchanger 35 functions as a condenser of the air conditioning heat pump 11. The inter-refrigerant heat exchanger 35 corresponds to the first heat exchange means.

冷媒間熱交換器35で凝縮された空調用冷媒は三方弁33を経由して膨張弁24に流入し、その膨張弁24にて減圧され低温低圧となる。減圧された空調用冷媒は室内熱交換器23に流入し、その室内熱交換器23において室内空気との熱交換により加熱され蒸発する。この場合、室内熱交換器23は蒸発器として機能する。また、室内空気は空調用冷媒との熱交換により冷却され、その冷却された室内空気により室内の冷房が行われる。蒸発した空調用冷媒は四方弁28を経由して再び圧縮機22に戻る。   The air-conditioning refrigerant condensed in the inter-refrigerant heat exchanger 35 flows into the expansion valve 24 via the three-way valve 33, and is decompressed by the expansion valve 24 to become low temperature and low pressure. The decompressed air-conditioning refrigerant flows into the indoor heat exchanger 23 and is heated and evaporated by heat exchange with the indoor air in the indoor heat exchanger 23. In this case, the indoor heat exchanger 23 functions as an evaporator. The room air is cooled by heat exchange with the air conditioning refrigerant, and the indoor air is cooled by the cooled room air. The evaporated air-conditioning refrigerant returns to the compressor 22 again via the four-way valve 28.

一方、給湯用ヒートポンプ12では、圧縮機42により圧縮されて高温高圧となった給湯用冷媒(ガス冷媒)が水熱交換器43に流入し、その水熱交換器43にて水循環流路51を流れる水との熱交換により冷却され凝縮する。また、水循環流路51内の水は給湯用冷媒との熱交換により加熱され、その加熱された水が貯湯槽53に蓄えられる。   On the other hand, in the hot water supply heat pump 12, the hot water supply refrigerant (gas refrigerant) that has been compressed by the compressor 42 to a high temperature and high pressure flows into the water heat exchanger 43, and the water heat exchanger 43 passes through the water circulation channel 51. It is cooled and condensed by heat exchange with flowing water. Further, the water in the water circulation channel 51 is heated by heat exchange with the hot water supply refrigerant, and the heated water is stored in the hot water storage tank 53.

水熱交換器43で凝縮された給湯用冷媒は各三方弁56,57を経由して膨張弁44に流入する。膨張弁44では、給湯用冷媒が減圧されて低温低圧となり、その減圧された給湯用冷媒が室外熱交換器25に流入する。室外熱交換器25では給湯用冷媒が屋外空気との熱交換により加熱されて蒸発する。この場合、室外熱交換器25が給湯用室外熱交換器に相当する。   The hot water supply refrigerant condensed in the water heat exchanger 43 flows into the expansion valve 44 via the three-way valves 56 and 57. In the expansion valve 44, the hot water supply refrigerant is decompressed to a low temperature and low pressure, and the decompressed hot water supply refrigerant flows into the outdoor heat exchanger 25. In the outdoor heat exchanger 25, the hot water supply refrigerant is heated and evaporated by heat exchange with the outdoor air. In this case, the outdoor heat exchanger 25 corresponds to an outdoor heat exchanger for hot water supply.

蒸発した給湯用冷媒は各三方弁63,64及び第2接続流路59を経由して冷媒間熱交換器35に流入する。冷媒間熱交換器35では、給湯用冷媒が冷媒循環流路R3(詳しくは熱交換用流路31)を流れる空調用冷媒との熱交換により加熱される。詳しくは、給湯用冷媒は圧縮機22より吐出された高温の空調用冷媒により加熱される。また、換言すると、この場合、上記の熱交換により、空調用冷媒の熱が給湯用冷媒に放出され、その放出された熱が給湯用冷媒により回収(吸収)される。   The evaporated hot water supply refrigerant flows into the inter-refrigerant heat exchanger 35 via the three-way valves 63 and 64 and the second connection channel 59. In the inter-refrigerant heat exchanger 35, the hot water supply refrigerant is heated by heat exchange with the air conditioning refrigerant flowing in the refrigerant circulation channel R3 (specifically, the heat exchange channel 31). Specifically, the hot water supply refrigerant is heated by the high-temperature air-conditioning refrigerant discharged from the compressor 22. In other words, in this case, the heat exchange releases the heat of the air conditioning refrigerant to the hot water supply refrigerant, and the released heat is recovered (absorbed) by the hot water supply refrigerant.

上記のように、給湯用冷媒は室外熱交換器25と冷媒間熱交換器35とでそれぞれ加熱される。この場合、給湯用冷媒は室外熱交換器25において全部蒸発されてもよいし、室外熱交換器25と冷媒間熱交換器35とのそれぞれで蒸発されてもよい。冷媒間熱交換器35で加熱された給湯用冷媒は各三方弁61,62及び第1接続流路58を経由して再び圧縮機42に戻る。   As described above, the hot water supply refrigerant is heated by the outdoor heat exchanger 25 and the inter-refrigerant heat exchanger 35, respectively. In this case, all of the hot water supply refrigerant may be evaporated in the outdoor heat exchanger 25, or may be evaporated in each of the outdoor heat exchanger 25 and the inter-refrigerant heat exchanger 35. The hot water supply refrigerant heated by the inter-refrigerant heat exchanger 35 returns to the compressor 42 again via the three-way valves 61 and 62 and the first connection flow path 58.

続いて、暖房給湯運転モードにおけるヒートポンプシステム10の動作について図6に基づき説明する。図6は、暖房給湯運転モード時における冷媒の流れを示す図である。   Next, the operation of the heat pump system 10 in the heating / hot water supply operation mode will be described with reference to FIG. FIG. 6 is a diagram showing a refrigerant flow in the heating hot water supply operation mode.

暖房給湯運転モードは、空調用ヒートポンプ11による暖房運転と給湯用ヒートポンプ12による水加熱運転とを同時に行う場合(すなわち暖房給湯運転時)に実行される。暖房給湯運転モードでは、制御装置により各ヒートポンプ11,12の圧縮機22,42と、循環ポンプ52とが駆動される。また、暖房給湯運転モードでは、空調用冷媒回路21において空調用冷媒が当該モード用の冷媒循環流路R4(図6において太線で示す流路)を循環するよう、四方弁28及び各三方弁32,33による流路切替が行われるとともに、給湯用冷媒回路41において給湯用冷媒が当該モード用の冷媒循環流路L3(図6において太線で示す流路)を循環するよう、各三方弁56,57,61〜64による流路切替が行われる。なお、この場合、冷媒循環流路R4が第2空調循環流路に相当し、冷媒循環流路L3が第2給湯循環流路に相当する。   The heating and hot water supply operation mode is executed when the heating operation by the air conditioning heat pump 11 and the water heating operation by the hot water supply heat pump 12 are performed simultaneously (that is, during the heating and hot water supply operation). In the heating and hot water supply operation mode, the compressors 22 and 42 of the heat pumps 11 and 12 and the circulation pump 52 are driven by the control device. Further, in the heating and hot water supply operation mode, the four-way valve 28 and the three-way valves 32 are arranged so that the air-conditioning refrigerant in the air-conditioning refrigerant circuit 21 circulates through the refrigerant circulation channel R4 for that mode (the channel indicated by a thick line in FIG. 6). , 33 and the three-way valves 56, 56 so that the hot water supply refrigerant circulates in the refrigerant circulation flow path L3 for the mode (the flow path shown by a bold line in FIG. 6) in the hot water supply refrigerant circuit 41. The flow path is switched by 57, 61 to 64. In this case, the refrigerant circulation channel R4 corresponds to the second air conditioning circulation channel, and the refrigerant circulation channel L3 corresponds to the second hot water supply circulation channel.

図6に示すように、暖房給湯運転モードでは、空調用ヒートポンプ11において、圧縮機22により圧縮されて高温高圧となった空調用冷媒(ガス冷媒)が四方弁28を経由して室内熱交換器23に流入する。室内熱交換器23では、空調用冷媒が室内空気との熱交換により冷却されて凝縮する。この場合、室内熱交換器23は凝縮器として機能する。また、室内空気は空調用冷媒との熱交換により加熱され、その加熱された室内空気により室内の暖房が行われる。   As shown in FIG. 6, in the heating and hot water supply operation mode, in the air conditioning heat pump 11, the air conditioning refrigerant (gas refrigerant) that has been compressed by the compressor 22 to become high temperature and high pressure passes through the four-way valve 28 and is an indoor heat exchanger. 23. In the indoor heat exchanger 23, the air conditioning refrigerant is cooled and condensed by heat exchange with room air. In this case, the indoor heat exchanger 23 functions as a condenser. The room air is heated by heat exchange with the air-conditioning refrigerant, and the room is heated by the heated room air.

室内熱交換器23で加熱された空調用冷媒は膨張弁24に流入し、その膨張弁24において減圧され低温低圧となる。膨張弁24で減圧された空調用冷媒は三方弁33を経由して冷媒間熱交換器35に流入する。冷媒間熱交換器35では、空調用冷媒が給湯用冷媒回路41(冷媒循環流路L3)を流れる給湯用冷媒との熱交換により加熱され蒸発する。この場合、冷媒間熱交換器35は空調用ヒートポンプ11の蒸発器として機能する。なお、冷媒間熱交換器35が第2熱交換手段に相当する。冷媒間熱交換器35で蒸発した空調用冷媒は三方弁32及び四方弁28を経由して再び圧縮機22に戻る。   The air-conditioning refrigerant heated by the indoor heat exchanger 23 flows into the expansion valve 24, where it is depressurized and becomes low temperature and low pressure. The air-conditioning refrigerant decompressed by the expansion valve 24 flows into the inter-refrigerant heat exchanger 35 via the three-way valve 33. In the inter-refrigerant heat exchanger 35, the air conditioning refrigerant is heated and evaporated by heat exchange with the hot water supply refrigerant flowing in the hot water supply refrigerant circuit 41 (refrigerant circulation channel L3). In this case, the inter-refrigerant heat exchanger 35 functions as an evaporator of the air conditioning heat pump 11. The inter-refrigerant heat exchanger 35 corresponds to the second heat exchange means. The air-conditioning refrigerant evaporated in the inter-refrigerant heat exchanger 35 returns to the compressor 22 again via the three-way valve 32 and the four-way valve 28.

一方、給湯用ヒートポンプ12では、圧縮機42により圧縮されて高温高圧となった給湯用冷媒(ガス冷媒)が水熱交換器43に流入し、その水熱交換器43にて水循環流路51を流れる水との熱交換により冷却され凝縮する。また、水循環流路51内の水は給湯用冷媒との熱交換により加熱され、その加熱された水が貯湯槽53に蓄えられる。   On the other hand, in the hot water supply heat pump 12, the hot water supply refrigerant (gas refrigerant) that has been compressed by the compressor 42 to a high temperature and high pressure flows into the water heat exchanger 43, and the water heat exchanger 43 passes through the water circulation channel 51. It is cooled and condensed by heat exchange with flowing water. Further, the water in the water circulation channel 51 is heated by heat exchange with the hot water supply refrigerant, and the heated water is stored in the hot water storage tank 53.

水熱交換器43で凝縮された給湯用冷媒は各三方弁56,63を経由して冷媒間熱交換器35に流入する。冷媒間熱交換器35では、給湯用冷媒が冷媒循環流路R4(詳しくは熱交換用流路31)を流れる空調用冷媒との熱交換により冷却される。この場合、給湯用冷媒は、水熱交換器43にて水との熱交換を行った後の余熱(排熱)を、上記の熱交換により空調用冷媒に放出する。そして、その放出した熱が空調用冷媒により回収(吸収)される。   The hot water supply refrigerant condensed in the water heat exchanger 43 flows into the inter-refrigerant heat exchanger 35 via the three-way valves 56 and 63. In the inter-refrigerant heat exchanger 35, the hot water supply refrigerant is cooled by heat exchange with the air conditioning refrigerant flowing in the refrigerant circulation channel R4 (specifically, the heat exchange channel 31). In this case, the hot water supply refrigerant releases residual heat (exhaust heat) after heat exchange with water in the water heat exchanger 43 to the air conditioning refrigerant by the heat exchange. The released heat is recovered (absorbed) by the air conditioning refrigerant.

冷媒間熱交換器35で冷却された給湯用冷媒は各三方弁57,61を経由して膨張弁44に流入する。膨張弁44では、給湯用冷媒が減圧されて低温低圧となり、その減圧された給湯用冷媒が室外熱交換器25に流入する。室外熱交換器25では給湯用冷媒が屋外空気との熱交換により加熱されて蒸発する。蒸発した給湯用冷媒は各三方弁62,64を経由して再び圧縮機42に戻る。   The hot water supply refrigerant cooled by the inter-refrigerant heat exchanger 35 flows into the expansion valve 44 via the three-way valves 57 and 61. In the expansion valve 44, the hot water supply refrigerant is decompressed to a low temperature and low pressure, and the decompressed hot water supply refrigerant flows into the outdoor heat exchanger 25. In the outdoor heat exchanger 25, the hot water supply refrigerant is heated and evaporated by heat exchange with the outdoor air. The evaporated hot water supply refrigerant returns to the compressor 42 via the three-way valves 62 and 64 again.

以上、詳述した本実施形態の構成によれば、以下の優れた効果が得られる。   As mentioned above, according to the structure of this embodiment explained in full detail, the following outstanding effects are acquired.

冷房給湯運転時には、空調用冷媒を冷媒循環流路R3に循環させかつ給湯用冷媒を冷媒循環流路L2に循環させることで、それら各冷媒同士を冷媒間熱交換器35で熱交換させるようにした。そして、その熱交換により空調用冷媒の熱を給湯用冷媒に放出させるようにした。この場合、給湯用ヒートポンプ12において空調用冷媒の排熱を回収することができるため、その排熱を利用して給湯用ヒートポンプ12の負荷低減を図ることができる。   During the cooling and hot water supply operation, the refrigerant for air conditioning is circulated in the refrigerant circulation flow path R3 and the refrigerant for hot water supply is circulated in the refrigerant circulation flow path L2, so that each of the refrigerants exchanges heat with the heat exchanger 35 between the refrigerants. did. Then, heat of the air conditioning refrigerant is released to the hot water supply refrigerant by the heat exchange. In this case, since the exhaust heat of the air conditioning refrigerant can be recovered in the hot water supply heat pump 12, the load of the hot water supply heat pump 12 can be reduced using the exhaust heat.

一方、暖房給湯運転時には、空調用冷媒を冷媒循環流路R4に循環させかつ給湯用冷媒を冷媒循環流路L3に循環させることで、それら各冷媒同士を冷媒間熱交換器35で熱交換させるようにした。そして、その熱交換により給湯用冷媒の熱を空調用冷媒に放出させるようにした。この場合、空調用ヒートポンプ11において給湯用冷媒の排熱を回収することができるため、その排熱を利用して空調用ヒートポンプ11の負荷低減を図ることができる。よって、以上より、空調用ヒートポンプ11と給湯用ヒートポンプ12との双方で排熱利用を図ることで、それら各ヒートポンプ11,12それぞれで負荷低減を図ることができる。   On the other hand, at the time of heating and hot water supply operation, the refrigerant for air conditioning is circulated through the refrigerant circulation channel R4 and the refrigerant for hot water supply is circulated through the refrigerant circulation channel L3, so that each of the refrigerants exchanges heat with the heat exchanger 35 between the refrigerants. I did it. And the heat of the hot water supply refrigerant is released to the air conditioning refrigerant by the heat exchange. In this case, since the exhaust heat of the hot water supply refrigerant can be recovered in the air conditioning heat pump 11, the load of the air conditioning heat pump 11 can be reduced using the exhaust heat. Therefore, by using exhaust heat in both the air conditioning heat pump 11 and the hot water supply heat pump 12 as described above, it is possible to reduce the load in each of the heat pumps 11 and 12.

冷房給湯運転時には、冷媒間熱交換器35において、圧縮機22より吐出された高温の空調用冷媒と給湯用冷媒との間で熱交換を行わせるようにしたため、給湯用ヒートポンプ12において高温状態での排熱回収を行うことができる。これにより、給湯用ヒートポンプ12の負荷低減を好適に図ることができる。   In the cooling hot water supply operation, the inter-refrigerant heat exchanger 35 exchanges heat between the high-temperature air-conditioning refrigerant discharged from the compressor 22 and the hot-water supply refrigerant, so that the hot-water supply heat pump 12 is in a high-temperature state. It is possible to recover the exhaust heat. Thereby, the load reduction of the heat pump 12 for hot water supply can be aimed at suitably.

暖房給湯運転時には、冷媒間熱交換器35において、水熱交換器43を通過した後の給湯用冷媒と空調用冷媒との間で熱交換を行わせるようにした。この場合、水熱交換器43において水との熱交換を行った後の給湯用冷媒の熱(余熱)が空調用ヒートポンプ11にて回収されるため、水熱交換器43での水の加熱能力を低下させることなく、空調用ヒートポンプ11の負荷低減を図ることができる。   During the heating and hot water supply operation, the inter-refrigerant heat exchanger 35 exchanges heat between the hot water supply refrigerant and the air conditioning refrigerant after passing through the water heat exchanger 43. In this case, since the heat (residual heat) of the hot water supply refrigerant after heat exchange with water in the water heat exchanger 43 is recovered by the air conditioning heat pump 11, the water heating capacity in the water heat exchanger 43 It is possible to reduce the load on the air conditioning heat pump 11 without reducing the temperature.

冷房給湯運転時に空調用冷媒と給湯用冷媒との間で熱交換を行わせる熱交換器(第1熱交換手段)と、暖房給湯運転時に空調用冷媒と給湯用冷媒との間で熱交換を行わせる熱交換器(第2熱交換手段)とについて、共通の冷媒間熱交換器35を用いた。この場合、熱交換器の個数削減を図ることができるため、構成の簡素化や室外機14のコンパクト化等を図ることができる。   A heat exchanger (first heat exchange means) that exchanges heat between the air conditioning refrigerant and the hot water supply refrigerant during the cooling hot water supply operation, and heat exchange between the air conditioning refrigerant and the hot water supply refrigerant during the heating hot water operation. A common inter-refrigerant heat exchanger 35 was used for the heat exchanger (second heat exchange means) to be performed. In this case, since the number of heat exchangers can be reduced, the configuration can be simplified and the outdoor unit 14 can be made compact.

冷房単独運転時には空調用冷媒を冷媒循環流路R1に循環させ、暖房単独運転時には空調用冷媒を冷媒循環流路R2に循環させることで、冷房単独運転時及び暖房単独運転時(つまり空調単独運転時)には空調用冷媒を冷媒間熱交換器35を経由させずに室外熱交換器25を経由させて循環させるようにした。これにより、空調単独運転時には、冷媒間熱交換器35ではなく、室外熱交換器25を空調用冷媒の凝縮器又は蒸発機として用いることができる。このため、空調単独運転時に空調用冷媒の凝縮又は蒸発が十分に行われず、空調用ヒートポンプ11の効率低下を招いてしまうのを回避することができる。   The air conditioning refrigerant is circulated through the refrigerant circulation channel R1 during the cooling single operation, and the air conditioning refrigerant is circulated through the refrigerant circulation channel R2 during the heating single operation, so that the air conditioning refrigerant and the heating single operation (that is, the air conditioning single operation). The air conditioning refrigerant is circulated through the outdoor heat exchanger 25 without passing through the inter-refrigerant heat exchanger 35. Thereby, at the time of air-conditioning independent operation, the outdoor heat exchanger 25 can be used as a condenser or an evaporator of the air-conditioning refrigerant instead of the inter-refrigerant heat exchanger 35. For this reason, it is possible to avoid that the air-conditioning refrigerant is not sufficiently condensed or evaporated during the air-conditioning independent operation and the efficiency of the air-conditioning heat pump 11 is reduced.

給湯用ヒートポンプ12の室外熱交換器を空調用ヒートポンプ11の室外熱交換器と共用にしたため、室外熱交換器25の個数削減を図ることができる。これにより、構成の簡素化や室外機14のコンパクト化等を図ることができる。   Since the outdoor heat exchanger of the hot water supply heat pump 12 is shared with the outdoor heat exchanger of the air conditioning heat pump 11, the number of the outdoor heat exchangers 25 can be reduced. Thereby, simplification of a structure, size reduction of the outdoor unit 14, etc. can be achieved.

また、こうした構成にあって、冷房給湯運転時及び暖房給湯運転時には、空調用冷媒を室外熱交換器25を経由させず冷媒間熱交換器35を経由させて循環させるようにしたため、冷房給湯運転時及び暖房給湯運転時には、室外熱交換器25にて空調用冷媒と給湯用冷媒とのうち、給湯用冷媒のみを流通させることができる。そのため、給湯用ヒートポンプ12の室外熱交換器を空調用ヒートポンプ11の室外熱交換器と共用した構成にあって、冷房給湯運転時及び暖房給湯運転時において給湯用冷媒と屋外空気との間の熱交換効率の低下が生じるのを回避することができる。   Further, in such a configuration, at the time of cooling hot water supply operation and heating hot water supply operation, the air conditioning refrigerant is circulated not through the outdoor heat exchanger 25 but through the inter-refrigerant heat exchanger 35. During the heating and hot water supply operation, the outdoor heat exchanger 25 can distribute only the hot water supply refrigerant out of the air conditioning refrigerant and the hot water supply refrigerant. For this reason, the outdoor heat exchanger of the hot water supply heat pump 12 is shared with the outdoor heat exchanger of the air conditioning heat pump 11, and the heat between the hot water supply refrigerant and the outdoor air during the cooling hot water supply operation and the heating hot water supply operation. A reduction in exchange efficiency can be avoided.

給湯単独運転時には、給湯用冷媒を冷媒循環流路L1に循環させることで冷媒間熱交換器35を経由させないようにした。この場合、空調用ヒートポンプ11の運転が停止して空調用冷媒が循環していないにもかかわらず給湯用冷媒を冷媒間熱交換器35に流通させることで、給湯用ヒートポンプ12の効率低下を招いてしまうことを回避することができる。   During the hot water supply single operation, the hot water supply refrigerant is circulated in the refrigerant circulation flow path L1 so as not to pass through the inter-refrigerant heat exchanger 35. In this case, the efficiency of the hot water supply heat pump 12 is reduced by circulating the hot water supply refrigerant to the inter-refrigerant heat exchanger 35 even though the operation of the air conditioning heat pump 11 is stopped and the air conditioning refrigerant is not circulating. Can be avoided.

冷房給湯運転時には、給湯用冷媒を冷媒循環流路L2において冷媒間熱交換器35に加え室外熱交換器25を経由させて循環させるようにした。この場合、給湯用冷媒は冷媒間熱交換器35にて空調用冷媒から熱を吸収(回収)するとともに、室外熱交換器25にて屋外空気から熱を吸収する。このため、冷房給湯運転時において給湯用ヒートポンプ12の効率をより一層向上させることができる。   During the cooling hot water supply operation, the hot water supply refrigerant is circulated through the outdoor heat exchanger 25 in addition to the inter-refrigerant heat exchanger 35 in the refrigerant circulation passage L2. In this case, the hot water supply refrigerant absorbs (recovers) heat from the air conditioning refrigerant in the inter-refrigerant heat exchanger 35 and also absorbs heat from the outdoor air in the outdoor heat exchanger 25. For this reason, the efficiency of the hot water supply heat pump 12 can be further improved during the cooling hot water supply operation.

〔第2の実施形態〕
上記第1の実施形態では、冷房給湯運転時に空調用冷媒と給湯用冷媒との熱交換を行わせる熱交換器(第1熱交換手段に相当)と、暖房給湯運転時に空調用冷媒と給湯用冷媒との熱交換を行わせる熱交換器(第2熱交換手段に相当)としていずれも同じ冷媒間熱交換器35を用い熱交換器の共用化を図ったが、本実施形態では、冷房給湯運転時に各冷媒間の熱交換を行わせる熱交換器(第1熱交換手段に相当)と、暖房給湯運転時に各冷媒間の熱交換を行わせる熱交換器(第2熱交換手段に相当)とをそれぞれ個別に設けている。以下においては、かかる本実施形態のヒートポンプシステムについて図7に基づき説明する。なお、図7は、本実施形態におけるヒートポンプシステムの構成を示す図である。
[Second Embodiment]
In the first embodiment, a heat exchanger (corresponding to the first heat exchanging means) that performs heat exchange between the air conditioning refrigerant and the hot water supply refrigerant during the cooling hot water supply operation, and the air conditioning refrigerant and the hot water supply during the heating hot water supply operation. Although the same inter-refrigerant heat exchanger 35 is used as a heat exchanger for performing heat exchange with the refrigerant (corresponding to the second heat exchanging means), the heat exchanger is shared. A heat exchanger (corresponding to the first heat exchanging means) that exchanges heat between the refrigerants during operation and a heat exchanger (corresponding to the second heat exchanging means) that exchanges heat between the refrigerants during heating hot water supply operation Are provided individually. Below, the heat pump system of this embodiment is demonstrated based on FIG. In addition, FIG. 7 is a figure which shows the structure of the heat pump system in this embodiment.

図7に示すように、本実施形態のヒートポンプシステム70は、空調用ヒートポンプ71と給湯用ヒートポンプ72とを備えている。空調用ヒートポンプ71は、空調用冷媒回路74を有し、その空調用冷媒回路74の環状流路75(図7における太線参照)に圧縮機22、室内熱交換器23、膨張弁24及び室外熱交換器25が設けられている。環状流路75には、熱交換用流路76,77が接続されている。これら各熱交換用流路76,77はいずれも、その一端部が三方弁78,79を介して環状流路75における圧縮機22と室外熱交換器25との間に接続され、その他端部が三方弁81,82を介して環状流路75における膨張弁24と室外熱交換器25との間に接続されている。また、各熱交換用流路76,77にはそれぞれ冷媒間熱交換器83,84が設けられている。   As shown in FIG. 7, the heat pump system 70 of this embodiment includes an air conditioning heat pump 71 and a hot water supply heat pump 72. The air conditioning heat pump 71 has an air conditioning refrigerant circuit 74, and the compressor 22, the indoor heat exchanger 23, the expansion valve 24, and the outdoor heat are disposed in an annular flow path 75 (see a thick line in FIG. 7) of the air conditioning refrigerant circuit 74. An exchanger 25 is provided. Heat exchange channels 76 and 77 are connected to the annular channel 75. One end of each of the heat exchange channels 76 and 77 is connected between the compressor 22 and the outdoor heat exchanger 25 in the annular channel 75 via three-way valves 78 and 79, and the other end. Is connected between the expansion valve 24 and the outdoor heat exchanger 25 in the annular flow path 75 via the three-way valves 81 and 82. Further, the heat exchangers 83 and 84 are provided in the heat exchange channels 76 and 77, respectively.

一方、給湯用ヒートポンプ72は、給湯用冷媒回路86を有し、その給湯用冷媒回路86の環状流路87(図8における太線参照)には圧縮機42、水熱交換器43、膨張弁44及び室外熱交換器25が設けられている。環状流路87には、熱交換用流路88,89が接続されている。熱交換用流路88は、その両端部がいずれも三方弁91,92を介して環状流路87における圧縮機42と室外熱交換器25との間に接続されている。また、熱交換用流路89は、その両端部がいずれも三方弁93,94を介して環状流路87における膨張弁44と水熱交換器43との間に接続されている。また、各熱交換用流路88,89にはそれぞれ上述の冷媒間熱交換器83,84が設けられている。   On the other hand, the hot water supply heat pump 72 has a hot water supply refrigerant circuit 86, and the compressor 42, the water heat exchanger 43, and the expansion valve 44 are disposed in an annular flow path 87 (see a thick line in FIG. 8) of the hot water supply refrigerant circuit 86. And an outdoor heat exchanger 25 is provided. Heat exchange channels 88 and 89 are connected to the annular channel 87. Both ends of the heat exchange channel 88 are connected between the compressor 42 and the outdoor heat exchanger 25 in the annular channel 87 via the three-way valves 91 and 92. Further, both ends of the heat exchange channel 89 are connected between the expansion valve 44 and the water heat exchanger 43 in the annular channel 87 via three-way valves 93 and 94. The heat exchangers 83 and 84 are provided in the heat exchange channels 88 and 89, respectively.

次に、ヒートポンプシステム70の動作について説明する。まず、冷房単独運転モードにおけるヒートポンプシステム70の動作について図7に基づき説明する。図7には、冷房単独運転モード時における冷媒の流れを示している。   Next, the operation of the heat pump system 70 will be described. First, the operation of the heat pump system 70 in the cooling single operation mode will be described with reference to FIG. FIG. 7 shows the refrigerant flow in the cooling single operation mode.

図7に示すように、冷房単独運転モードでは、空調用ヒートポンプ71において、空調用冷媒が空調用冷媒回路74における当該モード用の冷媒循環流路R11(図7において太線で示す流路)を循環する。空調用冷媒は、冷媒循環流路R11を、圧縮機22→室外熱交換器25→膨張弁24→室内熱交換器23→圧縮機22の順に経由して循環する。この場合、室内熱交換器23において空調用冷媒と室内空気との熱交換により、室内空気が冷却され室内の冷房が行われる。なお、冷媒循環流路R11が第3空調循環流路に相当する。   As shown in FIG. 7, in the air conditioning heat pump 71, in the air conditioning heat pump 71, the air conditioning refrigerant circulates through the mode refrigerant circulation channel R <b> 11 (the channel indicated by the thick line in FIG. 7) in the air conditioning refrigerant circuit 74. To do. The air-conditioning refrigerant circulates in the refrigerant circulation passage R11 in the order of the compressor 22 → the outdoor heat exchanger 25 → the expansion valve 24 → the indoor heat exchanger 23 → the compressor 22. In this case, the indoor air is cooled and the indoor air is cooled by heat exchange between the air conditioning refrigerant and the indoor air in the indoor heat exchanger 23. The refrigerant circulation channel R11 corresponds to the third air conditioning circulation channel.

続いて、暖房単独運転モードについて説明する。図示は省略するが、暖房単独運転モードでは、空調用冷媒が当該モード用の冷媒循環流路を循環する。この冷媒循環流路は、冷房単独運転時の冷媒循環流路R11に対して空調用冷媒の流れる向きが逆の向きとされた流路となっている。暖房単独運転モードでは、空調用冷媒が、当該冷媒循環流路を圧縮機22→室内熱交換器23→膨張弁24→室外熱交換器25→圧縮機22の順に経由して循環する。この場合、室内熱交換器23において空調用冷媒と室内空気との熱交換により、室内空気が加熱され室内の暖房が行われる。なお、この場合の冷媒循環流路が第3空調循環流路に相当する。   Then, heating independent operation mode is demonstrated. Although illustration is omitted, in the heating single operation mode, the air-conditioning refrigerant circulates through the refrigerant circulation passage for the mode. This refrigerant circulation channel is a channel in which the flow direction of the air-conditioning refrigerant is opposite to that of the refrigerant circulation channel R11 during cooling only operation. In the heating single operation mode, the air-conditioning refrigerant circulates through the refrigerant circulation passage in the order of the compressor 22 → the indoor heat exchanger 23 → the expansion valve 24 → the outdoor heat exchanger 25 → the compressor 22. In this case, in the indoor heat exchanger 23, the indoor air is heated and the room is heated by heat exchange between the air-conditioning refrigerant and the room air. In this case, the refrigerant circulation channel corresponds to the third air conditioning circulation channel.

続いて、給湯単独運転モードについて図8に基づき説明する。図8には、給湯単独運転モード時における冷媒の流れを示す。   Next, the hot water supply single operation mode will be described with reference to FIG. FIG. 8 shows the flow of the refrigerant in the hot water supply single operation mode.

図8に示すように、給湯単独運転モードでは、給湯用ヒートポンプ72において、給湯用冷媒が給湯用冷媒回路86における当該モード用の冷媒循環流路L11(図8において太線で示す流路)を循環する。給湯用冷媒は、冷媒循環流路L11を、圧縮機42→水熱交換器43→膨張弁44→室外熱交換器25→圧縮機42の順に経由して循環する。この場合、水熱交換器43において給湯用冷媒と水循環流路51内の水との熱交換が行われ、その熱交換により水が加熱される。なお、冷媒循環流路L11が第3給湯循環流路に相当する。   As shown in FIG. 8, in the hot water supply independent operation mode, in the hot water supply heat pump 72, the hot water supply refrigerant circulates in the refrigerant circulation passage L <b> 11 for the mode in the hot water supply refrigerant circuit 86 (the flow path indicated by a bold line in FIG. 8). To do. The hot water supply refrigerant circulates in the refrigerant circulation passage L11 in the order of the compressor 42 → the water heat exchanger 43 → the expansion valve 44 → the outdoor heat exchanger 25 → the compressor 42. In this case, the water heat exchanger 43 exchanges heat between the hot water supply refrigerant and the water in the water circulation passage 51, and the water is heated by the heat exchange. The refrigerant circulation channel L11 corresponds to a third hot water supply circulation channel.

続いて、冷房給湯運転モードについて図9に基づき説明する。図9には、冷房給湯運転モード時における冷媒の流れを示す。   Next, the cooling hot water supply operation mode will be described with reference to FIG. FIG. 9 shows the refrigerant flow in the cooling hot water supply operation mode.

図9に示すように、冷房給湯運転モードでは、空調用ヒートポンプ71において、空調用冷媒が空調用冷媒回路74における当該モード用の冷媒循環流路R12(図9において太線で示す流路)を循環する。空調用冷媒は、冷媒循環流路R12を、圧縮機22→冷媒間熱交換器83→膨張弁24→室内熱交換器23→圧縮機22の順に経由して循環する。この場合、室内熱交換器23において空調用冷媒と室内空気との熱交換により、室内空気が冷却され室内の冷房が行われる。また、冷媒間熱交換器83では、空調用冷媒と給湯用冷媒回路86(詳しくは後述する冷媒循環流路L12内の熱交換用流路88)を流れる給湯用冷媒との間で熱交換が行われ、その熱交換により空調用冷媒が冷却され凝縮する。なお、冷媒循環流路R12が第1空調循環流路に相当する。   As shown in FIG. 9, in the cooling hot water supply operation mode, in the air conditioning heat pump 71, the air conditioning refrigerant circulates through the refrigerant circulation channel R <b> 12 for the mode in the air conditioning refrigerant circuit 74 (the channel indicated by a bold line in FIG. 9). To do. The air-conditioning refrigerant circulates in the refrigerant circulation passage R12 in the order of the compressor 22 → the inter-refrigerant heat exchanger 83 → the expansion valve 24 → the indoor heat exchanger 23 → the compressor 22. In this case, the indoor air is cooled and the indoor air is cooled by heat exchange between the air conditioning refrigerant and the indoor air in the indoor heat exchanger 23. In the inter-refrigerant heat exchanger 83, heat exchange is performed between the air-conditioning refrigerant and the hot water supply refrigerant circuit 86 (specifically, a heat exchange flow path 88 in the refrigerant circulation flow path L <b> 12 described later). The air conditioning refrigerant is cooled and condensed by the heat exchange. The refrigerant circulation channel R12 corresponds to the first air conditioning circulation channel.

一方、給湯用ヒートポンプ72では、給湯用冷媒が給湯用冷媒回路86における当該モード用の冷媒循環流路L12(図9において太線で示す流路)を循環する。給湯用冷媒は、冷媒循環流路L12を、圧縮機42→水熱交換器43→膨張弁44→室外熱交換器25→冷媒間熱交換器83→圧縮機42の順に経由して循環する。この場合、水熱交換器43では、給湯用冷媒と水循環流路51内の水との熱交換により水が加熱される。また、冷媒間熱交換器83では、給湯用冷媒が冷媒循環流路R12(詳しくは熱交換用流路76)を流れる空調用冷媒との熱交換により加熱される。換言すると、この場合、上記熱交換により、空調用冷媒の熱が給湯用冷媒に放出され、その放出された熱が給湯用冷媒により回収(吸収)される。なお、この場合、冷媒間熱交換器83が第1熱交換手段に相当する。また、冷媒循環流路L12が第1給湯循環流路に相当する。   On the other hand, in the hot water supply heat pump 72, the hot water supply refrigerant circulates in the refrigerant circulation channel L12 for the mode in the hot water supply refrigerant circuit 86 (a channel indicated by a thick line in FIG. 9). The hot water supply refrigerant circulates through the refrigerant circulation passage L12 in the order of the compressor 42 → the water heat exchanger 43 → the expansion valve 44 → the outdoor heat exchanger 25 → the inter-refrigerant heat exchanger 83 → the compressor 42. In this case, in the water heat exchanger 43, the water is heated by heat exchange between the hot water supply refrigerant and the water in the water circulation passage 51. In the inter-refrigerant heat exchanger 83, the hot water supply refrigerant is heated by heat exchange with the air conditioning refrigerant flowing in the refrigerant circulation channel R12 (specifically, the heat exchange channel 76). In other words, in this case, heat of the air conditioning refrigerant is released to the hot water supply refrigerant by the heat exchange, and the released heat is recovered (absorbed) by the hot water supply refrigerant. In this case, the inter-refrigerant heat exchanger 83 corresponds to the first heat exchange means. The refrigerant circulation channel L12 corresponds to the first hot water supply circulation channel.

続いて、暖房給湯運転モードについて図10に基づき説明する。図10には、暖房給湯運転モード時における冷媒の流れを示す。   Next, the heating and hot water supply operation mode will be described with reference to FIG. FIG. 10 shows the flow of the refrigerant in the heating hot water supply operation mode.

図10に示すように、暖房給湯運転モードでは、空調用ヒートポンプ71において、空調用冷媒が空調用冷媒回路74における当該モード用の冷媒循環流路R13(図10において太線で示す流路)を循環する。空調用冷媒は、冷媒循環流路R13を、圧縮機22→→室内熱交換器23→膨張弁24→冷媒間熱交換器84→圧縮機22の順に経由して循環する。この場合、室内熱交換器23において空調用冷媒と室内空気との熱交換により、室内空気が加熱され室内の暖房が行われる。また、冷媒間熱交換器84では、空調用冷媒と給湯用冷媒回路86(詳しくは後述する冷媒循環流路L13内の熱交換用流路89)を流れる給湯用冷媒との間で熱交換が行われ、その熱交換により空調用冷媒が加熱され蒸発する。なお、冷媒循環流路R13が第2空調循環流路に相当する。   As shown in FIG. 10, in the heating and hot water supply operation mode, in the air conditioning heat pump 71, the air conditioning refrigerant circulates through the refrigerant circulation channel R <b> 13 for the mode in the air conditioning refrigerant circuit 74 (the channel indicated by a thick line in FIG. 10). To do. The air-conditioning refrigerant circulates in the refrigerant circulation passage R13 in the order of the compressor 22 → the indoor heat exchanger 23 → the expansion valve 24 → the inter-refrigerant heat exchanger 84 → the compressor 22. In this case, in the indoor heat exchanger 23, the indoor air is heated and the room is heated by heat exchange between the air-conditioning refrigerant and the room air. Further, in the inter-refrigerant heat exchanger 84, heat exchange is performed between the air-conditioning refrigerant and the hot water supply refrigerant circuit 86 (more specifically, the heat exchange flow path 89 in the refrigerant circulation flow path L13 described later). The air conditioning refrigerant is heated and evaporated by the heat exchange. The refrigerant circulation channel R13 corresponds to the second air conditioning circulation channel.

一方、給湯用ヒートポンプ72では、給湯用冷媒が給湯用冷媒回路86における当該モード用の冷媒循環流路L13(図10において太線で示す流路)を循環する。給湯用冷媒は、冷媒循環流路L13を、圧縮機42→水熱交換器43→冷媒間熱交換器84→膨張弁44→室外熱交換器25→圧縮機42の順に経由して循環する。この場合、水熱交換器43では、給湯用冷媒と水循環流路51内の水との熱交換により水が加熱される。また、冷媒間熱交換器84では、給湯用冷媒が冷媒循環流路R13(詳しくは熱交換用流路77)を流れる空調用冷媒との熱交換により冷却される。換言すると、この場合、その熱交換により、給湯用冷媒の熱が空調用冷媒に放出され、その放出された熱が空調用冷媒により回収(吸収)される。なお、この場合、冷媒間熱交換器84が第2熱交換手段に相当する。また、冷媒循環流路L13が第2給湯循環流路に相当する。   On the other hand, in the hot water supply heat pump 72, the hot water supply refrigerant circulates in the refrigerant circulation channel L13 for the mode in the hot water supply refrigerant circuit 86 (a channel indicated by a thick line in FIG. 10). The hot water supply refrigerant circulates through the refrigerant circulation passage L13 in the order of the compressor 42 → the water heat exchanger 43 → the inter-refrigerant heat exchanger 84 → the expansion valve 44 → the outdoor heat exchanger 25 → the compressor 42. In this case, in the water heat exchanger 43, the water is heated by heat exchange between the hot water supply refrigerant and the water in the water circulation passage 51. In the inter-refrigerant heat exchanger 84, the hot water supply refrigerant is cooled by heat exchange with the air conditioning refrigerant flowing in the refrigerant circulation passage R13 (specifically, the heat exchange passage 77). In other words, in this case, heat of the hot water supply refrigerant is released to the air conditioning refrigerant by the heat exchange, and the released heat is recovered (absorbed) by the air conditioning refrigerant. In this case, the inter-refrigerant heat exchanger 84 corresponds to the second heat exchange means. The refrigerant circulation channel L13 corresponds to the second hot water supply circulation channel.

以上、詳述した本実施形態の構成によれば、上記第1の実施形態における効果と同様の効果を得ることができる。すなわち、冷房給湯運転時には、空調用冷媒を冷媒循環流路R12に循環させかつ給湯用冷媒を冷媒循環流路L12に循環させることで、それら各冷媒同士を冷媒間熱交換器83で熱交換させ、その熱交換により空調用冷媒の熱を給湯用冷媒に放出させるようにしたため、給湯用ヒートポンプ72において空調用冷媒の排熱を回収することができ、その結果、その排熱を利用して給湯用ヒートポンプ72の負荷低減を図ることができる。   As mentioned above, according to the structure of this embodiment explained in full detail, the effect similar to the effect in the said 1st Embodiment can be acquired. That is, at the time of cooling hot water supply operation, the refrigerant for air conditioning is circulated in the refrigerant circulation flow path R12 and the refrigerant for hot water supply is circulated in the refrigerant circulation flow path L12, so that each refrigerant is heat-exchanged by the inter-refrigerant heat exchanger 83. Since the heat exchange causes the heat of the air conditioning refrigerant to be released to the hot water supply refrigerant, the hot water supply heat pump 72 can recover the exhaust heat of the air conditioning refrigerant. As a result, the exhaust heat is used to supply hot water The load of the heat pump 72 can be reduced.

また、暖房給湯運転時には、空調用冷媒を冷媒循環流路R13に循環させかつ給湯用冷媒を冷媒循環流路L13に循環させることで、それら各冷媒同士を冷媒間熱交換器84で熱交換させ、その熱交換により給湯用冷媒の熱を空調用冷媒に放出させるようにしたため、空調用ヒートポンプ71において給湯用冷媒の排熱を回収することができ、その結果、その排熱を利用して空調用ヒートポンプ71の負荷低減を図ることができる。よって、以上より、空調用ヒートポンプ71と給湯用ヒートポンプ72との双方で排熱利用を図ることで、それら各ヒートポンプ71,72それぞれで負荷低減を図ることができる。   Further, during the heating and hot water supply operation, the refrigerant for air conditioning is circulated in the refrigerant circulation passage R13 and the refrigerant for hot water supply is circulated in the refrigerant circulation passage L13, so that each of the refrigerants exchanges heat with the inter-refrigerant heat exchanger 84. Since the heat exchange causes the heat of the hot water supply refrigerant to be released to the air conditioning refrigerant, the exhaust heat of the hot water supply refrigerant can be recovered by the air conditioning heat pump 71, and as a result, the exhaust heat is used to perform air conditioning. The load of the heat pump 71 can be reduced. Therefore, by using exhaust heat in both the air conditioning heat pump 71 and the hot water supply heat pump 72, the load can be reduced in each of the heat pumps 71 and 72.

〔他の実施形態〕
本発明は上記実施形態に限らず、例えば次のように実施されてもよい。
[Other Embodiments]
The present invention is not limited to the above embodiment, and may be implemented as follows, for example.

・上記各実施形態では、暖房給湯運転時に、冷媒間熱交換器35,84において、水熱交換器43を通過した後の給湯用冷媒と空調用冷媒との間で熱交換を行わせるようにしたが、これを変更し、例えば暖房給湯運転時に、冷媒間熱交換器(第2熱交換手段)において、圧縮機42より吐出されかつ水熱交換器43に流入する前の給湯用冷媒と空調用冷媒との間で熱交換を行わせるようにしてもよい。この場合、圧縮機42により吐出された高温の給湯用冷媒と空調用冷媒との間で熱交換が行われるため、空調用ヒートポンプ11にて高温状態での排熱回収を行うことができる。そのため、空調用ヒートポンプ11の負荷低減をより一層図ることができる。   In each of the above embodiments, during the heating and hot water supply operation, heat exchange between the hot water supply refrigerant and the air conditioning refrigerant after passing through the water heat exchanger 43 is performed in the inter-refrigerant heat exchangers 35 and 84. However, this is changed, for example, during the heating and hot water supply operation, in the heat exchanger between refrigerants (second heat exchange means), the hot water supply refrigerant and air conditioning before being discharged from the compressor 42 and flowing into the water heat exchanger 43. Heat exchange may be performed with the refrigerant for use. In this case, since heat exchange is performed between the high-temperature hot water supply refrigerant discharged from the compressor 42 and the air-conditioning refrigerant, exhaust heat recovery in a high-temperature state can be performed by the air-conditioning heat pump 11. Therefore, the load of the air conditioning heat pump 11 can be further reduced.

但し、このような構成では、給湯用冷媒が空調用冷媒との間で熱交換を行った後に、水熱交換器43において水との熱交換を行うことになるため、水の加熱能力が低下することが懸念される。そのため、この点を鑑みると、上記各実施形態のように、水熱交換器43を通過した後の給湯用冷媒と空調用冷媒との間で熱交換を行わせるのが望ましい。   However, in such a configuration, since the hot water supply refrigerant performs heat exchange with the air conditioning refrigerant, the water heat exchanger 43 performs heat exchange with water. There is a concern to do. Therefore, in view of this point, it is desirable to cause heat exchange between the hot water supply refrigerant and the air conditioning refrigerant after passing through the water heat exchanger 43 as in the above embodiments.

・上記各実施形態では、冷房単独運転時に、空調用冷媒を室外熱交換器25を経由する冷媒循環流路R1,R11(第3空調循環流路に相当)に循環させるようにしたが、これを変更して、冷房単独運転時に、空調用冷媒を冷媒間熱交換器35,83を経由する冷房給湯運転時用の冷媒循環流路R3,R12に循環させてもよい。この場合、冷媒循環流路R3,R12に室外熱交換器25を設けてもよい。   In each of the embodiments described above, the air conditioning refrigerant is circulated through the refrigerant circulation channels R1 and R11 (corresponding to the third air conditioning circulation channel) via the outdoor heat exchanger 25 during the cooling only operation. Thus, the air-conditioning refrigerant may be circulated through the refrigerant circulation passages R3 and R12 for the cooling hot water supply operation via the inter-refrigerant heat exchangers 35 and 83 during the cooling only operation. In this case, you may provide the outdoor heat exchanger 25 in refrigerant | coolant circulation flow path R3, R12.

また、上記実施形態では、暖房単独運転時に、空調用冷媒を室外熱交換器25を経由する冷媒循環流路R2(第3空調循環流路に相当)に循環させるようにしたが、これを変更して、暖房単独運転時に、空調用冷媒を冷媒間熱交換器35,84を経由する暖房給湯運転時用の冷媒循環流路R4,R13に循環させてもよい。この場合、冷媒循環流路R4,R13に室外熱交換器25を設けてもよい。   In the above embodiment, the air conditioning refrigerant is circulated in the refrigerant circulation channel R2 (corresponding to the third air conditioning circulation channel) passing through the outdoor heat exchanger 25 during the heating single operation. Then, the air-conditioning refrigerant may be circulated through the refrigerant circulation passages R4 and R13 for the heating and hot water supply operation via the inter-refrigerant heat exchangers 35 and 84 during the heating-only operation. In this case, you may provide the outdoor heat exchanger 25 in refrigerant | coolant circulation flow path R4, R13.

上記のような構成とした場合、冷媒循環流路R1,R11(R2)を不要とできるため、その分、空調用冷媒回路21,74の構成を簡素化することができる。   In the case of the above-described configuration, the refrigerant circulation channels R1 and R11 (R2) can be omitted, so that the configuration of the air conditioning refrigerant circuits 21 and 74 can be simplified correspondingly.

・上記各実施形態では、給湯単独運転時に、給湯用冷媒を冷媒間熱交換器35,83,84を経由しない冷媒循環流路L1,L11(第3給湯循環流路に相当)に循環させるようにしたが、これを変更して、給湯単独運転時に、給湯用冷媒を冷媒間熱交換器35,83を経由する冷房給湯運転時用又は暖房給湯運転時用の冷媒循環流路L2,L3,L12,L13に循環させるようにしてもよい。その場合、冷媒循環流路L1,L11を設ける必要がなくなるため、その分、給湯用冷媒回路41,86の構成を簡素化することができる。   In each of the above embodiments, the hot water supply refrigerant is circulated in the refrigerant circulation passages L1, L11 (corresponding to the third hot water supply circulation passage) that do not pass through the inter-refrigerant heat exchangers 35, 83, 84 in the hot water supply single operation. However, by changing this, the refrigerant circulation passages L2, L3 for the cooling hot water supply operation or the heating hot water supply operation using the hot water supply refrigerant via the inter-refrigerant heat exchangers 35, 83 in the hot water supply single operation. You may make it circulate to L12 and L13. In that case, it is not necessary to provide the refrigerant circulation channels L1 and L11, and accordingly, the configuration of the hot water supply refrigerant circuits 41 and 86 can be simplified.

・上記各実施形態では、冷房給湯運転時に、給湯用冷媒を冷媒間熱交換器35,83に加え室外熱交換器25を経由させて循環させたが、冷房給湯運転時に給湯用冷媒を冷媒間熱交換器35,83にのみ経由させて循環させてもよい。換言すると、冷房給湯運転時に給湯用冷媒を循環させる冷媒循環流路L2,L12(第1給湯循環流路)を冷媒間熱交換器35,83を経由しかつ室外熱交換器25を経由しない流路としてもよい。   In each of the above embodiments, the hot water supply refrigerant is circulated through the outdoor heat exchanger 25 in addition to the inter-refrigerant heat exchangers 35 and 83 during the cooling hot water supply operation. You may circulate only through the heat exchangers 35 and 83. In other words, the refrigerant circulation passages L2 and L12 (first hot water circulation passage) for circulating the hot water supply refrigerant during the cooling hot water supply operation flow through the inter-refrigerant heat exchangers 35 and 83 and not through the outdoor heat exchanger 25. It may be a road.

・上記各実施形態では、空調用ヒートポンプ11,71と給湯用ヒートポンプ12,72とで室外熱交換器25の共用化を図ったが、これを変更して、各ヒートポンプ11,12(71,72)ごとに個別に室外熱交換器を設けてもよい。   In each of the above-described embodiments, the outdoor heat exchanger 25 is shared by the air conditioning heat pumps 11 and 71 and the hot water supply heat pumps 12 and 72. However, the heat pumps 11 and 12 (71 and 72) are changed. ) May be provided individually for each outdoor heat exchanger.

10…ヒートポンプシステム、11…空調用ヒートポンプ、12…給湯用ヒートポンプ、21…空調用冷媒回路、22…第1圧縮機としての圧縮機、25…給湯用室外熱交換器としての室外熱交換器、35…第1熱交換手段及び第2熱交換手段としての冷媒間熱交換器、41…給湯用冷媒回路、42…第2圧縮機としての圧縮機、43…水熱交換器、51…水循環流路、70…ヒートポンプシステム、71…空調用ヒートポンプ、72…給湯用ヒートポンプ、74…空調用冷媒回路、86…給湯用冷媒回路、83…第1熱交換手段としての冷媒間熱交換器、84…第2熱交換手段としての冷媒間熱交換器、R1…第3空調循環流路としての冷媒循環流路、R2…第3空調循環流路としての冷媒循環流路、R3…第1空調循環流路としての冷媒循環流路、R4…第2空調循環流路としての冷媒循環流路、L1…第3給湯循環流路としての冷媒循環流路、L2…第1給湯循環流路としての冷媒循環流路、L3…第2給湯循環流路としての冷媒循環流路、R11…第3空調循環流路としての冷媒循環流路、R12…第1空調循環流路としての冷媒循環流路、R13…第2空調循環流路としての冷媒循環流路、L11…第3給湯循環流路としての冷媒循環流路、L12…第1給湯循環流路としての冷媒循環流路、L13…第2給湯循環流路としての冷媒循環流路。   DESCRIPTION OF SYMBOLS 10 ... Heat pump system, 11 ... Heat pump for air conditioning, 12 ... Heat pump for hot water supply, 21 ... Refrigerant circuit for air conditioning, 22 ... Compressor as 1st compressor, 25 ... Outdoor heat exchanger as an outdoor heat exchanger for hot water supply, 35 ... Inter-refrigerant heat exchanger as first heat exchange means and second heat exchange means, 41 ... Refrigerant circuit for hot water supply, 42 ... Compressor as second compressor, 43 ... Water heat exchanger, 51 ... Water circulation flow , 70 ... heat pump system, 71 ... heat pump for air conditioning, 72 ... heat pump for hot water supply, 74 ... refrigerant circuit for air conditioning, 86 ... refrigerant circuit for hot water supply, 83 ... heat exchanger between refrigerants as first heat exchange means, 84 ... R2... Refrigerant circulation channel as a third air conditioning circulation channel, R2... Refrigerant circulation channel as a third air conditioning circulation channel, R3. Refrigerant as a way Ring flow path, R4 ... Refrigerant circulation path as second air conditioning circulation path, L1 ... Refrigerant circulation path as third hot water supply circulation path, L2 ... Refrigerant circulation path as first hot water circulation path, L3 ... Refrigerant circulation channel as second hot water supply circulation channel, R11... Refrigerant circulation channel as third air conditioning circulation channel, R12. Refrigerant circulation channel as first air conditioning circulation channel, R13. Refrigerant circulation channel as a channel, L11... Refrigerant circulation channel as a third hot water supply circulation channel, L12. Refrigerant circulation channel as a first hot water circulation channel, L13. Refrigerant circulation as a second hot water circulation channel. Flow path.

Claims (8)

空調用冷媒を循環させる空調用冷媒回路を有し、前記空調用冷媒と室内空気との間の熱交換により室内の冷暖房を行う空調用ヒートポンプと、
給湯用冷媒を循環させる給湯用冷媒回路を有し、前記給湯用冷媒と水循環流路を循環する水との間の熱交換により前記水の加熱を行う給湯用ヒートポンプと、
を備えるヒートポンプシステムであって、
前記空調用冷媒回路は、切替可能な流路として、前記空調用ヒートポンプの冷房運転と前記給湯用ヒートポンプの水加熱運転とを同時に行う冷房給湯運転時に前記空調用冷媒を循環させる第1空調循環流路と、前記空調用ヒートポンプの暖房運転と前記給湯用ヒートポンプの水加熱運転とを同時に行う暖房給湯運転時に前記空調用冷媒を循環させる第2空調循環流路とを有し、
前記給湯用冷媒回路は、切替可能な流路として、前記冷房給湯運転時に前記給湯用冷媒を循環させる第1給湯循環流路と、前記暖房給湯運転時に前記給湯用冷媒を循環させる第2給湯循環流路とを有し、
前記第1空調循環流路を循環する前記空調用冷媒と前記第1給湯循環流路を循環する前記給湯用冷媒との間で熱交換を行わせることで、前記空調用冷媒の熱を前記給湯用冷媒へ放出させる第1熱交換手段と、
前記第2空調循環流路を循環する前記空調用冷媒と前記第2給湯循環流路を循環する前記給湯用冷媒との間で熱交換を行わせることで、前記給湯用冷媒の熱を前記空調用冷媒へ放出させる第2熱交換手段と、を備えることを特徴とするヒートポンプシステム。
An air conditioning heat pump that has an air conditioning refrigerant circuit for circulating the air conditioning refrigerant, and that heats and cools the room by heat exchange between the air conditioning refrigerant and room air;
A hot water supply heat pump that heats the water by heat exchange between the hot water supply refrigerant and the water circulating in the water circulation flow path, having a hot water supply refrigerant circuit for circulating the hot water supply refrigerant;
A heat pump system comprising:
The air-conditioning refrigerant circuit has a first air-conditioning circulation flow for circulating the air-conditioning refrigerant as a switchable flow path during a cooling hot-water supply operation in which a cooling operation of the air-conditioning heat pump and a water heating operation of the hot-water supply heat pump are performed simultaneously. A second air conditioning circulation channel for circulating the air conditioning refrigerant during a heating hot water supply operation in which a heating operation of the air conditioning heat pump and a water heating operation of the hot water supply heat pump are performed simultaneously,
The hot water supply refrigerant circuit has, as a switchable flow path, a first hot water supply circulation path for circulating the hot water supply refrigerant during the cooling hot water supply operation and a second hot water supply circulation for circulating the hot water supply refrigerant during the heating hot water supply operation. A flow path,
Heat exchange is performed between the air-conditioning refrigerant circulating in the first air-conditioning circulation channel and the hot-water supply refrigerant circulating in the first hot-water supply circulation channel, so that the heat of the air-conditioning refrigerant is transferred to the hot-water supply First heat exchanging means to be discharged to the refrigerant for use;
Heat exchange is performed between the air-conditioning refrigerant circulating in the second air-conditioning circulation channel and the hot-water supply refrigerant circulating in the second hot-water supply circulation channel, so that the heat of the hot-water supply refrigerant is air-conditioned. A heat pump system comprising: a second heat exchanging means for releasing the refrigerant into the industrial refrigerant.
前記空調用ヒートポンプは、前記空調用冷媒を圧縮する第1圧縮機を有し、
前記第1熱交換手段は、前記冷房給湯運転時に、前記第1空調循環流路において前記第1圧縮機から吐出された前記空調用冷媒と前記第1給湯循環流路を循環する前記給湯用冷媒との間で熱交換を行わせるものであることを特徴とする請求項1に記載のヒートポンプシステム。
The air conditioning heat pump has a first compressor that compresses the air conditioning refrigerant,
The first heat exchanging means is configured to circulate the air-conditioning refrigerant discharged from the first compressor in the first air-conditioning circulation channel and the first hot-water supply circulation channel during the cooling hot-water supply operation. The heat pump system according to claim 1, wherein heat exchange is performed between the heat pump system and the heat pump system.
前記給湯用ヒートポンプは、前記給湯用冷媒を圧縮する第2圧縮機と、その第2圧縮機より吐出された前記給湯用冷媒と前記水循環流路を循環する水との間で熱交換を行わせ前記水を加熱する水熱交換器と有し、
前記第2熱交換手段は、前記暖房給湯運転時に、前記第2給湯循環流路において前記水熱交換器を通過した後の前記給湯用冷媒と、前記第2空調循環流路を循環する前記空調用冷媒との間で熱交換を行わせるものであることを特徴とする請求項1又は2に記載のヒートポンプシステム。
The hot water supply heat pump performs heat exchange between a second compressor that compresses the hot water supply refrigerant, and the hot water supply refrigerant discharged from the second compressor and the water circulating in the water circulation passage. A water heat exchanger for heating the water;
The second heat exchange means circulates the hot water supply refrigerant after passing through the water heat exchanger in the second hot water supply circulation channel and the second air conditioning circulation channel in the heating hot water supply operation. The heat pump system according to claim 1, wherein heat exchange is performed with the refrigerant for use.
前記第1熱交換手段と前記第2熱交換手段とは共通の熱交換器により構成され、
前記各空調循環流路と前記各給湯循環流路とはいずれも前記共通の熱交換器を経由する流路となっていることを特徴とする請求項1乃至3のいずれか一項に記載のヒートポンプシステム。
The first heat exchange means and the second heat exchange means are constituted by a common heat exchanger,
4. The air conditioning circulation flow path and the hot water supply circulation flow path are both flow paths that pass through the common heat exchanger. 5. Heat pump system.
前記第1熱交換手段は、前記冷房給湯運転時において、前記空調用ヒートポンプの凝縮器として機能し、
前記第2熱交換手段は、前記暖房給湯運転時において、前記空調用ヒートポンプの蒸発器として機能し、
前記空調用冷媒回路は、切替可能な流路として、前記給湯用ヒートポンプの水加熱運転が停止している状態で前記空調用ヒートポンプの冷房運転又は暖房運転を行う空調単独運転時に前記空調用冷媒を循環させる第3空調循環流路をさらに有し、
前記空調用ヒートポンプは、前記空調用冷媒と屋外空気との間で熱交換を行わせることで凝縮器又は蒸発器として機能する室外熱交換器を備え、
前記第3空調循環流路は、前記各熱交換手段を経由せずに前記室外熱交換器を経由する流路となっていることを特徴とする請求項1乃至4のいずれか一項に記載のヒートポンプシステム。
The first heat exchanging means functions as a condenser of the heat pump for air conditioning during the cooling hot water supply operation.
The second heat exchange means functions as an evaporator of the air conditioning heat pump during the heating and hot water supply operation,
The air-conditioning refrigerant circuit serves as a switchable flow path for supplying the air-conditioning refrigerant during air-conditioning single operation in which the air-conditioning heat pump is cooled or heated while the water heating operation of the hot-water supply heat pump is stopped. A third air-conditioning circulation channel for circulation;
The air conditioning heat pump includes an outdoor heat exchanger that functions as a condenser or an evaporator by performing heat exchange between the air conditioning refrigerant and outdoor air,
5. The third air-conditioning circulation channel is a channel that passes through the outdoor heat exchanger without passing through the heat exchange means. 6. Heat pump system.
前記給湯用ヒートポンプは、前記給湯用冷媒と屋外空気との間で熱交換を行わせる熱交換器として前記空調用ヒートポンプの前記室外熱交換器を用いており、
前記冷房給湯運転時に前記空調用冷媒を循環させる前記第1空調循環流路と、前記暖房給湯運転時に前記空調用冷媒を循環させる前記第2空調循環流路とはいずれも前記室外熱交換器を経由しない経路となっていることを特徴とする請求項5に記載のヒートポンプシステム。
The hot water supply heat pump uses the outdoor heat exchanger of the air conditioning heat pump as a heat exchanger for performing heat exchange between the hot water supply refrigerant and outdoor air,
Both the first air-conditioning circulation channel for circulating the air-conditioning refrigerant during the cooling and hot-water supply operation and the second air-conditioning circulation channel for circulating the air-conditioning refrigerant during the heating and hot-water supply operation are both used for the outdoor heat exchanger. The heat pump system according to claim 5, wherein the route is a route that does not pass through.
前記給湯用冷媒回路は、切替可能な流路として、前記空調用ヒートポンプの冷房運転及び暖房運転が停止している状態で前記給湯用ヒートポンプの水加熱運転を行う給湯単独運転時に前記給湯用冷媒を循環させる第3給湯循環流路をさらに有し、
前記第3給湯循環流路は、前記各熱交換手段を経由しない流路となっていることを特徴とする請求項1乃至6のいずれか一項に記載のヒートポンプシステム。
The hot water supply refrigerant circuit uses the hot water supply refrigerant as a switchable flow path during a single hot water supply operation in which a water heating operation of the hot water supply heat pump is performed in a state where the cooling operation and the heating operation of the air conditioning heat pump are stopped. A third hot water supply circulation channel for circulation;
The heat pump system according to any one of claims 1 to 6, wherein the third hot water supply circulation channel is a channel that does not pass through each of the heat exchange means.
前記給湯用ヒートポンプは、前記給湯用冷媒と屋外空気との間で熱交換を行わせることで前記給湯用冷媒に屋外空気の熱を吸収させる給湯用室外熱交換器を備え、
前記第1給湯循環流路は、前記第1熱交換手段に加え前記給湯用室外熱交換器を経由する流路となっていることを特徴とする請求項1乃至7のいずれか一項に記載のヒートポンプシステム。
The hot water supply heat pump includes a hot water supply outdoor heat exchanger that causes the hot water supply refrigerant to absorb heat of outdoor air by causing heat exchange between the hot water supply refrigerant and outdoor air,
The said 1st hot water supply circulation flow path is a flow path which goes through via the said hot water supply outdoor heat exchanger in addition to the said 1st heat exchange means. Heat pump system.
JP2017093069A 2017-05-09 2017-05-09 Heat pump system Pending JP2018189321A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017093069A JP2018189321A (en) 2017-05-09 2017-05-09 Heat pump system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017093069A JP2018189321A (en) 2017-05-09 2017-05-09 Heat pump system

Publications (1)

Publication Number Publication Date
JP2018189321A true JP2018189321A (en) 2018-11-29

Family

ID=64478290

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017093069A Pending JP2018189321A (en) 2017-05-09 2017-05-09 Heat pump system

Country Status (1)

Country Link
JP (1) JP2018189321A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020071534A1 (en) 2018-10-04 2020-04-09 日本製鉄株式会社 Austenitic stainless steel sheet and method for producing same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020071534A1 (en) 2018-10-04 2020-04-09 日本製鉄株式会社 Austenitic stainless steel sheet and method for producing same

Similar Documents

Publication Publication Date Title
JP3858015B2 (en) Refrigerant circuit and heat pump water heater
JP5866000B2 (en) Air conditioning and hot water supply system
JP2021509945A (en) Air conditioner system
JP5183804B2 (en) Refrigeration cycle equipment, air conditioning equipment
JP2001289465A (en) Air conditioner
JP5395950B2 (en) Air conditioner and air conditioning hot water supply system
JP2006292313A (en) Geothermal unit
JP2017101855A (en) Air conditioning system
EP2629031B1 (en) Gas heat pump system
JP2005299935A (en) Air conditioner
KR20160086636A (en) Air conditioner
EP2541170A1 (en) Air-conditioning hot-water-supply system
JP2021508024A (en) Air conditioner system
WO2020174618A1 (en) Air-conditioning device
JP2017101854A (en) Air conditioning system
JP6982692B2 (en) Air conditioner system
JP2018189321A (en) Heat pump system
JP2005147440A (en) Multiroom-type air conditioner
JP2021055961A (en) Air conditioner
JPH03294754A (en) Air conditioner
JP5525906B2 (en) Refrigeration cycle equipment
WO2013046723A1 (en) Hot-water-supplying, air-conditioning system
JP2004293889A (en) Ice thermal storage unit, ice thermal storage type air conditioner and its operating method
JP2005106303A (en) Water heat source heat pump-type air conditioner
WO2023007803A1 (en) Air-conditioning device