JP6982692B2 - Air conditioner system - Google Patents

Air conditioner system Download PDF

Info

Publication number
JP6982692B2
JP6982692B2 JP2020535567A JP2020535567A JP6982692B2 JP 6982692 B2 JP6982692 B2 JP 6982692B2 JP 2020535567 A JP2020535567 A JP 2020535567A JP 2020535567 A JP2020535567 A JP 2020535567A JP 6982692 B2 JP6982692 B2 JP 6982692B2
Authority
JP
Japan
Prior art keywords
air conditioner
heat exchanger
conditioner system
refrigerant
pipeline
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020535567A
Other languages
Japanese (ja)
Other versions
JP2021508025A (en
Inventor
飛 王
裕 付
栄邦 羅
文明 許
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qingdao Haier Air Conditioner Gen Corp Ltd
Original Assignee
Qingdao Haier Air Conditioner Gen Corp Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qingdao Haier Air Conditioner Gen Corp Ltd filed Critical Qingdao Haier Air Conditioner Gen Corp Ltd
Publication of JP2021508025A publication Critical patent/JP2021508025A/en
Application granted granted Critical
Publication of JP6982692B2 publication Critical patent/JP6982692B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/02Defrosting cycles
    • F25B47/022Defrosting cycles hot gas defrosting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • F25B40/02Subcoolers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/39Dispositions with two or more expansion means arranged in series, i.e. multi-stage expansion, on a refrigerant line leading to the same evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/021Indoor unit or outdoor unit with auxiliary heat exchanger not forming part of the indoor or outdoor unit
    • F25B2313/0211Indoor unit or outdoor unit with auxiliary heat exchanger not forming part of the indoor or outdoor unit the auxiliary heat exchanger being only used during defrosting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/021Indoor unit or outdoor unit with auxiliary heat exchanger not forming part of the indoor or outdoor unit
    • F25B2313/0213Indoor unit or outdoor unit with auxiliary heat exchanger not forming part of the indoor or outdoor unit the auxiliary heat exchanger being only used during heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/09Improving heat transfers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/31Low ambient temperatures

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Description

本発明は、空調機の技術分野に関し、特に空調機システムに関する。 The present invention relates to the technical field of an air conditioner, and particularly to an air conditioner system.

従来の空調機システムは、一般的に、コンデンサーと、絞り装置と、蒸発器と、コンプレッサーとにより、冷房/暖房の循環回路を形成している。コンプレッサーから排出された高温・高圧の気体冷媒は、コンデンサーに低温・高圧の液体として凝縮され、しかも、絞り装置により低温・低圧の液体として絞られる。次に、蒸発器に入り、吸熱して蒸発されると、一つの冷房/暖房のサイクルが完了することになる。 In a conventional air conditioner system, a condenser, a throttle device, an evaporator, and a compressor generally form a cooling / heating circulation circuit. The high-temperature, high-pressure gaseous refrigerant discharged from the compressor is condensed in a condenser as a low-temperature, high-pressure liquid, and is squeezed as a low-temperature, low-pressure liquid by a drawing device. Then, when it enters the evaporator, absorbs heat and evaporates, one cooling / heating cycle is completed.

空調機が暖房運転している際に、高温・高圧の気体冷媒は、コンデンサーにより熱交換された後に、低温・高圧の液体の冷媒になり、また、絞り装置により絞って降圧された後に、低温・低圧の気体相と液体相が共に存在しているものになり、蒸発器に入り熱交換を行うことになる。蒸発の面積は、大きいほど、相対的に蒸発の能力が高い。なお、低温・高圧の液体の冷媒は、放熱しつつあると、超冷却度が高くなり、システムの循環における冷房・暖房量を増加させることになる。冷却材は、熱交換が行われると、95%以上の熱交換量がその気体相と液体相の気化潜熱によるものであり、単一の相(単純な液体や気体)の定圧比熱容量が相当に小さく、熱交換量がシステムの循環の全体に占める比は小さい。また、気体の冷却材は、管路内の降圧が大きく、システムの循環における圧力損失の主な源であり、循環の電力消費量が増加し、システムの循環におけるエネルギー消費が増加してしまう恐れがある。 During the heating operation of the air conditioner, the high-temperature / high-pressure gas refrigerant becomes a low-temperature / high-pressure liquid refrigerant after heat exchange by the condenser, and is squeezed by the throttle device to reduce the pressure, and then the low temperature.・ Both the low-pressure gas phase and the liquid phase will exist, and they will enter the evaporator and exchange heat. The larger the area of evaporation, the higher the ability of evaporation. When the low-temperature and high-pressure liquid refrigerant is radiating heat, the degree of super-cooling becomes high, and the amount of cooling / heating in the circulation of the system is increased. When heat exchange is performed, the cooling material has a heat exchange amount of 95% or more due to the latent heat of vaporization of the gas phase and the liquid phase, and the constant pressure specific heat capacity of a single phase (simple liquid or gas) is equivalent. The ratio of heat exchange to the total circulation of the system is small. In addition, gas coolant has a large pressure drop in the pipeline and is the main source of pressure loss in the circulation of the system, which may increase the power consumption of the circulation and increase the energy consumption in the circulation of the system. There is.

なお、図3を参照すると、図3は、従来の空調機が暖房運転している際の循環の原理図である。図3に示されるように、空調機が暖房運転する実際の運転の温度点については、一般的に、冷媒は、A点で70℃の高温の気体となり、室内熱交換器に入ると20℃の室内の環境と熱交換を行い、温度が30℃まで低下し、機器接続管を通過した後に絞り装置に入る。また、B点と絞り装置との間の温度(30℃程度)が7℃の室外環境温度よりも遥かに高く、余熱が無駄になってしまう。そして、余熱が吸収されて利用されると、システムの循環における超冷却度を増加することができる。本発明は、このことに鑑みてなされたものである。 In addition, referring to FIG. 3, FIG. 3 is a principle diagram of circulation when a conventional air conditioner is in a heating operation. As shown in FIG. 3, regarding the temperature point of the actual operation in which the air conditioner is heated, the refrigerant is generally a high temperature gas of 70 ° C. at point A, and 20 ° C. when entering the indoor heat exchanger. After exchanging heat with the indoor environment of the room, the temperature drops to 30 ° C, and after passing through the equipment connection tube, it enters the throttle device. Further, the temperature (about 30 ° C.) between the point B and the drawing device is much higher than the outdoor environment temperature of 7 ° C., and the residual heat is wasted. Then, when the residual heat is absorbed and used, the degree of supercooling in the circulation of the system can be increased. The present invention has been made in view of this.

従来技術における上記課題を解決するために、即ち、空調機の暖房サイクルの効果を向上させるために、本発明が提供する空調機システムは、直列接続されている、コンプレッサーと、室内熱交換器と、第一の絞り装置と、室外熱交換器と、がメイン回路に含まれる空調機システムであって、前記メイン回路には、熱交換器と第一の気液分離器とがさらに設置され、前記熱交換器の一の側が前記第一の絞り装置と前記室内熱交換器との間における第一の管路に接続され、前記熱交換器の他の側が前記第一の絞り装置と前記室外熱交換器との間における第二の管路に接続されることから、前記第一の管路を通過した冷媒、及び、前記第二の管路を通過した冷媒は前記熱交換器に熱交換を行うことができるようにし、前記第一の気液分離器は、前記熱交換器と前記室外熱交換器との間の第二の管路の部分に設置され、かつ、前記第一の気液分離器と前記コンプレッサーとの間に迂回管路が設置される。 In order to solve the above problems in the prior art, that is, to improve the effect of the heating cycle of the air conditioner, the air conditioner system provided by the present invention includes a compressor and an indoor heat exchanger connected in series. , The first throttle device and the outdoor heat exchanger are included in the main circuit, and the heat exchanger and the first gas-liquid separator are further installed in the main circuit. One side of the heat exchanger is connected to the first pipeline between the first drawing device and the indoor heat exchanger, and the other side of the heat exchanger is the first drawing device and the outdoor. Since it is connected to the second pipeline to and from the heat exchanger, the refrigerant that has passed through the first pipeline and the refrigerant that has passed through the second pipeline exchange heat with the heat exchanger. The first gas-liquid separator is installed in a portion of the second conduit between the heat exchanger and the outdoor heat exchanger, and the first air is installed. A detour pipeline is installed between the liquid separator and the compressor.

上記の空調機システムに係る好ましい実施形態において、前記迂回管路には、前記空調機システムが暖房運転している際に、気体の冷媒の流量をコントロールするように構成される第二の絞り装置が設置される。 In a preferred embodiment of the above air conditioner system, the detour line is configured to control the flow rate of gaseous refrigerant when the air conditioner system is in heating operation. Is installed.

上記の空調機システムに係る好ましい実施形態において、前記第一の管路は、前記熱交換器の一の側を通り抜け、及び/又は、前記第二の管路は、前記熱交換器の他の側を通り抜ける。 In a preferred embodiment of the air conditioner system, the first line passes through one side of the heat exchanger and / or the second line is the other of the heat exchanger. Go through the side.

上記の空調機システムに係る好ましい実施形態において、前記メイン回路には、前記熱交換器及び前記室内熱交換器との間における第一の管路の部分に位置する前記第三の絞り装置がさらに設置される。 In a preferred embodiment of the air conditioner system, the main circuit further comprises the third throttle device located in the portion of the first conduit between the heat exchanger and the indoor heat exchanger. Will be installed.

上記の空調機システムに係る好ましい実施形態において、前記空調機システムが暖房運転している際に、前記第三の絞り装置が全開の状態になり、前記第一の絞り装置が冷媒を絞るためのものである。 In a preferred embodiment of the above air conditioner system, when the air conditioner system is in a heating operation, the third throttle device is fully opened and the first throttle device throttles the refrigerant. It is a thing.

上記の空調機システムに係る好ましい実施形態において、前記空調機システムが冷房運転している際に、前記第一の絞り装置が全開の状態になり、前記第三の絞り装置が冷媒を絞るためのものである。 In a preferred embodiment of the above air conditioner system, when the air conditioner system is in a cooling operation, the first throttle device is fully opened and the third throttle device throttles the refrigerant. It is a thing.

上記の空調機システムに係る好ましい実施形態において、前記コンプレッサーには第二の気液分離器が設置され、冷媒は、前記第二の気液分離器を経た後に、前記コンプレッサーへ回流する。上記の空調機システムに係る好ましい実施形態において、前記迂回管路は、前記第二の気液分離器の上流に接続される。 In a preferred embodiment of the air conditioner system, the compressor is provided with a second gas-liquid separator, and the refrigerant passes through the second gas-liquid separator and then circulates to the compressor. In a preferred embodiment of the air conditioner system, the detour line is connected upstream of the second gas-liquid separator.

上記の空調機システムに係る好ましい実施形態において、前記空調機システムは、冷房モードと暖房モードとの間に前記空調機システムを切り替えるためのモード切り替え装置がさらに含まれる。上記の空調機システムに係る好ましい実施形態において、前記モード切り替え装置は、四方弁である。 In a preferred embodiment of the air conditioner system, the air conditioner system further includes a mode switching device for switching the air conditioner system between a cooling mode and a heating mode. In a preferred embodiment of the air conditioner system, the mode switching device is a four-way valve.

本発明に係る技術の形態は、空調機システムに熱交換器が追加され、当該熱交換器の両側のそれぞれが第一の管路と第二の管路に接続されることから、第一の管路における冷媒及び第二の管路における冷媒は、熱交換器に熱交換を行うことができる。そして、第一の管路における冷媒の超冷却度を効果的に増やすことができるのみならず、第二の管路における冷媒の蒸発を促進してシステムの暖房量を増加することができる。また、本発明に係る第一の気液分離器とコンプレッサーとの間には、迂回管路が設置される。気液分離器を経た気体冷媒は、当該迂回管路を通過してからコンプレッサーの吸気口に入ることができる。この部分の気体冷媒が暖房サイクルにおける圧力損失を減少することは、コンプレッサーにおける吸気口の圧力を増加することに相当することから、コンプレッサーの電力消費を減少させ、空調機システムが暖房サイクルを行う際の冷媒の循環量を増加させ、暖房量を増加する、という目的を実現することができる。また、本発明に係る空調機は、第三の絞り装置を設置する形態により、空調機が冷房モードに切り替えられた時に、第一の絞り装置(この時に、第一の絞り装置が全開の状態にある)に代わり、当該第三の絞り装置を利用し、冷媒を絞ることから、冷房サイクルを行う際に、冷房量が低下してしまう現象を避けることができる。 The first aspect of the technique according to the present invention is that a heat exchanger is added to the air conditioner system, and both sides of the heat exchanger are connected to the first pipe line and the second pipe line, respectively. The refrigerant in the pipeline and the refrigerant in the second pipeline can exchange heat with the heat exchanger. Not only can the degree of supercooling of the refrigerant in the first pipeline be effectively increased, but the evaporation of the refrigerant in the second pipeline can be promoted to increase the heating amount of the system. Further, a detour pipe is installed between the first gas-liquid separator according to the present invention and the compressor. The gaseous refrigerant that has passed through the gas-liquid separator can enter the intake port of the compressor after passing through the detour pipe. Reducing the pressure loss in the heating cycle by the gaseous refrigerant in this part corresponds to increasing the pressure at the intake port in the compressor, thus reducing the power consumption of the compressor and when the air conditioner system performs the heating cycle. It is possible to realize the purpose of increasing the circulation amount of the refrigerant and increasing the heating amount. Further, in the air conditioner according to the present invention, the first throttle device (at this time, the first throttle device is fully open) when the air conditioner is switched to the cooling mode by installing the third throttle device. Since the refrigerant is squeezed by using the third squeezing device instead of the above), it is possible to avoid the phenomenon that the cooling amount decreases when the cooling cycle is performed.

本発明に係る空調機システムの実施例一の構成の原理図である。It is a principle diagram of the structure of Example 1 of the air conditioner system which concerns on this invention. 本発明に係る空調機システムの実施例二の構成の原理図である。It is a principle diagram of the structure of Example 2 of the air conditioner system which concerns on this invention. 従来の空調機が暖房運転している際の循環の原理図である。It is a principle diagram of circulation when a conventional air conditioner is in heating operation.

本発明に係る実施例、技術の形態及び利点をより明確にするように、以下に、図面に基づいて、本発明に係る技術の形態を明確にかつ完全に説明する。この実施例が、本発明に係る実施例のすべてでなく、その一部だけに過ぎないことも自明である。これらの実施形態は、本発明に係る保護範囲を限定するものではなく、あくまでも本発明に係る技術原理を説明するためのものであることも、当業者にとって理解するべきである。 In order to further clarify the embodiments, the embodiments and advantages of the present invention, the embodiments of the present invention will be clearly and completely described below with reference to the drawings. It is also self-evident that this example is not all of the examples of the present invention, but only a part thereof. It should be understood by those skilled in the art that these embodiments do not limit the scope of protection according to the present invention, but are merely for explaining the technical principle according to the present invention.

まず、図1を参照すると、図1は、本発明に係る空調機システムの実施例一の構成の原理図である。図1に示されるように、本発明に係る空調機システムでは、直列接続されている、コンプレッサー1と、室内熱交換器2と、第一の絞り装置3と、室外熱交換器4と、がメイン回路に含まれる。当該メイン回路に、さらに、熱交換器5が設置される。説明を便宜にするように、第一の絞り装置3と室内熱交換器2との間における管路を第一の管路Mとし、第一の絞り装置3と室外熱交換器4との間における管路を第二の管路Nとし、熱交換器5の一の側を第一の管路Mに接続し、熱交換器5の他の側を第二の管路Nに接続する。図1に示されるように、その接続は、第一の管路Mが熱交換器5の一の側を通り抜け、第二の管路Nが熱交換器Nの他の側を通り抜けるという方式になる。しかも、第一の管路Mを通過した冷媒及び第二の管路Nを通過した冷媒は、熱交換器5に熱交換を行うことができる。また、メイン回路には、さらに、熱交換器5と室外熱交換器4との間における第二の管路Nの部分に位置し、コンプレッサー1との間に迂回管路Lを設置する第一の気液分離器6が設置される。 First, with reference to FIG. 1, FIG. 1 is a principle diagram of the configuration of the first embodiment of the air conditioner system according to the present invention. As shown in FIG. 1, in the air conditioner system according to the present invention, the compressor 1, the indoor heat exchanger 2, the first throttle device 3, and the outdoor heat exchanger 4, which are connected in series, are connected to each other. Included in the main circuit. A heat exchanger 5 is further installed in the main circuit. For convenience of explanation, the conduit between the first drawing device 3 and the indoor heat exchanger 2 is defined as the first conduit M, and between the first drawing device 3 and the outdoor heat exchanger 4. Is the second pipeline N, one side of the heat exchanger 5 is connected to the first pipeline M, and the other side of the heat exchanger 5 is connected to the second pipeline N. As shown in FIG. 1, the connection is such that the first line M passes through one side of the heat exchanger 5 and the second line N passes through the other side of the heat exchanger N. Become. Moreover, the refrigerant that has passed through the first pipeline M and the refrigerant that has passed through the second pipeline N can exchange heat with the heat exchanger 5. Further, in the main circuit, a first circuit is further located at a portion of a second pipeline N between the heat exchanger 5 and the outdoor heat exchanger 4, and a detour pipeline L is installed between the heat exchanger 1 and the compressor 1. The gas-liquid separator 6 is installed.

空調機が暖房サイクルにある過程では、コンプレッサー1から排出された高温・高圧気体冷媒は、室内熱交換器2へ流出し、室内熱交換器2に熱交換を行って低温・高圧の液体冷媒になる。冷媒は、第一の管路Mに沿ってC点に到着すると、冷媒の温度が20℃程度となる(ここでの熱量は、十分に利用されていない廃棄熱である)。次に、冷媒は、第一の絞り装置3に絞られた後に、第二の管路Nに入ると、D点での冷媒(絞られた冷媒)の温度はほぼ5℃となる。第一の管路Mにおける冷媒と第二の管路Nにおける冷媒との間に温度差が存在しており、いずれも熱交換器5を通過するため、第一の管路Mにおける冷媒及び第二の管路Nにおける冷媒は、熱交換器5に熱交換を行うことになる。そして、第一の管路Mにおける冷媒の超冷却度(即ち、C点から第一の絞り装置3までの冷媒が放熱して温度が下がりつつある)を効果的に増やすことができるのみならず、第二の管路Nにおける冷媒の蒸発(即ち、D点での低温の冷媒は、C点での余熱を蒸発して吸熱することができるため、これは、蒸発の面積を増加させて熱交換の能力を効果的に向上させることに相当する)を促進して暖房量を増加することができる。 In the process of the air conditioner being in the heating cycle, the high temperature / high pressure gas refrigerant discharged from the compressor 1 flows out to the indoor heat exchanger 2 and exchanges heat with the indoor heat exchanger 2 to become a low temperature / high pressure liquid refrigerant. Become. When the refrigerant arrives at point C along the first pipeline M, the temperature of the refrigerant becomes about 20 ° C. (the amount of heat here is waste heat that is not sufficiently utilized). Next, when the refrigerant is squeezed by the first squeezing device 3 and then enters the second pipeline N, the temperature of the refrigerant (squeezed refrigerant) at point D becomes approximately 5 ° C. Since there is a temperature difference between the refrigerant in the first pipeline M and the refrigerant in the second pipeline N and both pass through the heat exchanger 5, the refrigerant in the first pipeline M and the first The refrigerant in the second pipeline N exchanges heat with the heat exchanger 5. Not only can the degree of supercooling of the refrigerant in the first pipeline M (that is, the refrigerant from point C to the first throttle device 3 dissipate heat and the temperature is decreasing) can be effectively increased. , Evaporation of the refrigerant in the second conduit N (ie, the low temperature refrigerant at point D can evaporate and absorb the residual heat at point C, which increases the area of evaporation and heat. The amount of heating can be increased by promoting (corresponding to effectively improving the capacity of exchange).

次に、熱交換器5により熱交換された冷媒は、第一の気液分離器6に入り、第一の気液分離器6により分離された気体冷媒は、そのまま迂回管路Lに沿ってコンプレッサー1へ回流する。そして、この部分の気体冷媒が暖房サイクルの圧力損失を減少することは、コンプレッサー1における吸気口の圧力を増加することに相当することから、コンプレッサー1の電力消費を減少させ、空調機システムが暖房サイクルを行う際の冷媒の循環量を増加させ、暖房量を増加する、という目的を実現することができる。第一の気液分離器6を経た液体冷媒は、室外熱交換器4を通過してからコンプレッサー1へ回流する。このような設計によれば、空調機が暖房運転している過程において、廃棄熱を再度利用できるのみならず、システム電力消費を低下させ、空調機システムが暖房サイクルを行う際の冷媒の循環量を増加させ、システム全体の暖房量を増加することができる。 Next, the refrigerant heat-exchanged by the heat exchanger 5 enters the first gas-liquid separator 6, and the gas refrigerant separated by the first gas-liquid separator 6 is directly along the detour pipeline L. Refrigerate to compressor 1. Then, reducing the pressure loss of the heating cycle by the gaseous refrigerant in this portion corresponds to increasing the pressure at the intake port in the compressor 1, so that the power consumption of the compressor 1 is reduced and the air conditioner system heats the heater. The purpose of increasing the circulation amount of the refrigerant during the cycle and increasing the heating amount can be realized. The liquid refrigerant that has passed through the first gas-liquid separator 6 passes through the outdoor heat exchanger 4 and then flows to the compressor 1. According to such a design, not only the waste heat can be reused in the process of heating the air conditioner, but also the system power consumption is reduced, and the circulation amount of the refrigerant when the air conditioner system performs the heating cycle. Can be increased and the amount of heating of the entire system can be increased.

例示すると、迂回管路Lには、空調が暖房運転している際に、気体の冷媒の流量をコントロールするための第二の絞り装置7が設置される。即ち、実際の運転の状況に従って、気体の冷媒が通過する量を自由にコントロールするように、第二の絞り装置7の開度を調整してもよい。冷房サイクルを行う際に、迂回管路Lを冷房サイクルに関与しないように、第二の絞り装置7をオフにしてもよい。 For example, in the detour pipe L, a second throttle device 7 for controlling the flow rate of the gaseous refrigerant is installed when the air conditioner is in the heating operation. That is, the opening degree of the second throttle device 7 may be adjusted so as to freely control the amount of the gaseous refrigerant passing through according to the actual operation situation. When performing the cooling cycle, the second throttle device 7 may be turned off so that the detour line L does not participate in the cooling cycle.

注意されたいことは、上記に記載される熱交換器5は、水を貯める水タンクであってもよく、第一の絞り装置3における上流と下流の冷媒に熱交換を行わせるものであれば、他の任意の適当なものであってもよい。また、上記の設計は、暖房サイクルの際の暖房量を効果的に向上させる一方、冷房サイクルの際の冷房量を低下させるものである。 It should be noted that the heat exchanger 5 described above may be a water tank for storing water, as long as it allows the upstream and downstream refrigerants in the first drawing device 3 to exchange heat. , Any other suitable one. Further, the above design effectively improves the heating amount during the heating cycle, while reducing the cooling amount during the cooling cycle.

例示すると、本発明に係る空調機システムは、冷房モードと暖房モードとの間に空調機システムを切り替えるためのモード切り替え装置(例えば、図1に示される四方弁Q)をさらに含む。 Illustratively, the air conditioner system according to the present invention further includes a mode switching device (eg, a four-way valve Q shown in FIG. 1) for switching the air conditioner system between the cooling mode and the heating mode.

例示すると、図2を参照し、図2は本発明に係る空調機システムの実施例二の構成の原理図である。図2に示されるように、本発明に係る空調機システムは、さらに、熱交換器5と室内熱交換器2との間における第一の管路Mの部分に位置する第三の絞り装置8がメイン回路に設置される。空調機が暖房運転している際に、第三の絞り装置8は、全開の状態になり、第一の絞り装置3は、冷媒を絞るためのものである。この時、実施例一に係る空調機システムの原理と同様に、四方弁Qにより空調機システムを冷房の運転に切り替えると、第一の絞り装置3は、全開の状態になり、第三の絞り装置8は、冷媒を絞るためのものである。同時に、第二の絞り装置7をオフにする。この時、熱交換器5における両側の冷媒は、温度差がほぼなくなる。即ち、熱交換器5が冷房サイクルを行う過程において機能せず、冷房サイクルの全体が通常の冷房サイクルとなる。そして、冷房が運転している際の冷房量が低下してしまうことを避けることができる。 By way of example, with reference to FIG. 2, FIG. 2 is a principle diagram of the configuration of Example 2 of the air conditioner system according to the present invention. As shown in FIG. 2, the air conditioner system according to the present invention further comprises a third throttle device 8 located in a portion of a first pipeline M between the heat exchanger 5 and the indoor heat exchanger 2. Is installed in the main circuit. When the air conditioner is in the heating operation, the third throttle device 8 is fully opened, and the first throttle device 3 is for throttle the refrigerant. At this time, similarly to the principle of the air conditioner system according to the first embodiment, when the air conditioner system is switched to the cooling operation by the four-way valve Q, the first throttle device 3 is fully opened and the third throttle is fully opened. The device 8 is for squeezing the refrigerant. At the same time, the second aperture device 7 is turned off. At this time, the temperature difference between the refrigerants on both sides of the heat exchanger 5 is almost eliminated. That is, the heat exchanger 5 does not function in the process of performing the cooling cycle, and the entire cooling cycle becomes a normal cooling cycle. Then, it is possible to avoid a decrease in the amount of cooling when the cooling is in operation.

好ましくは、図1と図2を参照すると、コンプレッサー1に気液分離器11を設置し、コンプレッサー1に入った気体の冷媒は、まず、当該気液分離器11を経て、次に、コンプレッサー1に吸入されることから、次のサイクルをスタートさせることになる。また、迂回管路Lは、第二の気液分離器11の上流に接続される。 Preferably, referring to FIGS. 1 and 2, a gas-liquid separator 11 is installed in the compressor 1, and the gaseous refrigerant that has entered the compressor 1 first passes through the gas-liquid separator 11 and then the compressor 1. Since it is inhaled to, the next cycle will be started. Further, the detour pipe L is connected to the upstream of the second gas-liquid separator 11.

以上より、本発明に係る空調機システムは、熱交換器を追加すると共に、当該熱交換器の両側のそれぞれが第一の管路と第二の管路に接続されることから、第一の管路における冷媒及び第二の管路における冷媒は、熱交換器に熱交換を行うことができる。第一の管路における冷媒の超冷却度を効果的に増やすことができるのみならず、第二の管路における冷媒の蒸発を促進してシステムの暖房量を増加することができる。しかも、本発明に係る第一の気液分離器とコンプレッサーとの間に迂回管路を設置し、第一の気液分離器を通過した気体冷媒は、当該迂回管路を通過してからコンプレッサーの吸気口に入ることができる。そして、この部分の気体冷媒が暖房サイクルにおける圧力損失を減少することは、コンプレッサーの吸気口の圧力を増加することに相当し、コンプレッサーの電力消費を低下させ、空調機システムが暖房サイクルを行う際の冷媒の循環量を増加させ、暖房量を増加する、という目的を実現することができる。本発明に係る空調機は、第三の絞り装置をさらに設置する形態により、空調機が冷房モードに切り替えられた時に、第一の絞り装置(この時に、第一の絞り装置が全開の状態にある)に代わり、当該第三の絞り装置を利用し、冷媒を絞ることから、冷房サイクルを行う際に、冷房量が低下してしまう現象を避けることができる。 From the above, in the air conditioner system according to the present invention, a heat exchanger is added, and both sides of the heat exchanger are connected to the first pipe line and the second pipe line, respectively. The refrigerant in the pipeline and the refrigerant in the second pipeline can exchange heat with the heat exchanger. Not only can the degree of supercooling of the refrigerant in the first line be effectively increased, but the evaporation of the refrigerant in the second line can be promoted to increase the heating amount of the system. Moreover, a detour pipe is installed between the first gas-liquid separator and the compressor according to the present invention, and the gas refrigerant that has passed through the first gas-liquid separator passes through the detour pipe and then the compressor. You can enter the air intake. The reduction of the pressure loss in the heating cycle by the gaseous refrigerant in this portion corresponds to an increase in the pressure at the intake port of the compressor, which reduces the power consumption of the compressor and when the air conditioner system performs the heating cycle. It is possible to realize the purpose of increasing the circulation amount of the refrigerant and increasing the heating amount. In the air conditioner according to the present invention, the first throttle device (at this time, the first throttle device is fully opened) when the air conditioner is switched to the cooling mode by further installing the third throttle device. Since the refrigerant is squeezed by using the third squeezing device instead of the above), it is possible to avoid the phenomenon that the cooling amount decreases when the cooling cycle is performed.

なお、図面に示される好ましい実施形態を組み合わせて、本発明に係る技術の形態を説明したが、本発明に係る保護の範囲がこれらの具体的な実施形態に限られていないことも、当業者にとって容易に理解され得る。本発明に係る原理を逸脱しないという前提で、当業者が関連技術の特徴に同等の変形や代替を行ってもよく、これらの変形や代替が行われた技術の形態も本発明に係る保護範囲に含まれている。 Although the embodiments of the technique according to the present invention have been described by combining the preferred embodiments shown in the drawings, those skilled in the art also know that the scope of protection according to the present invention is not limited to these specific embodiments. Can be easily understood by. A person skilled in the art may make equivalent modifications or substitutions to the features of the related technology on the premise that the principles of the present invention are not deviated, and the form of the technique in which these modifications or substitutions are made is also the scope of protection according to the present invention. Included in.

Claims (7)

直列接続されている、コンプレッサーと、室内熱交換器と、第一の絞り装置と、室外熱交換器と、がメイン回路に含まれる空調機システムであって、
前記メイン回路に、熱交換器と第一の気液分離器とがさらに設置され、
前記熱交換器の一の側が前記第一の絞り装置と前記室内熱交換器との間における第一の管路に接続され、前記熱交換器の他の側が前記第一の絞り装置と前記室外熱交換器との間における第二の管路に接続されることにより、前記第一の管路を通過した冷媒、及び、前記第二の管路を通過した冷媒は前記熱交換器に熱交換を行うことができるようにし、
前記第一の気液分離器は、前記熱交換器と前記室外熱交換器との間の第二の管路の部分に設置され、かつ、前記第一の気液分離器と前記コンプレッサーとの間に迂回管路が設置され、
前記メイン回路には、前記熱交換器及び前記室内熱交換器との間における第一の管路の部分に位置する第三の絞り装置がさらに設置され、
前記空調機システムが暖房運転している際に、前記第三の絞り装置が全開の状態になり、前記第一の絞り装置が冷媒を絞るためのものであり、
前記空調機システムが冷房運転している際に、前記第一の絞り装置が全開の状態になり、前記第三の絞り装置が冷媒を絞るためのものである、
空調機システム。
An air conditioner system in which a compressor, an indoor heat exchanger, a first throttle device, and an outdoor heat exchanger, which are connected in series, are included in the main circuit.
A heat exchanger and a first gas-liquid separator are further installed in the main circuit.
One side of the heat exchanger is connected to the first conduit between the first drawing device and the indoor heat exchanger, and the other side of the heat exchanger is the first drawing device and the outdoor. By being connected to the second pipeline to and from the heat exchanger, the refrigerant that has passed through the first pipeline and the refrigerant that has passed through the second pipeline exchange heat with the heat exchanger. To be able to do
The first gas-liquid separator is installed in a portion of a second pipeline between the heat exchanger and the outdoor heat exchanger, and the first gas-liquid separator and the compressor are used. A detour pipeline was set up between them ,
The main circuit is further equipped with a third throttle device located in the portion of the first pipeline between the heat exchanger and the indoor heat exchanger.
The purpose is for the third throttle device to be fully opened and the first throttle device to throttle the refrigerant while the air conditioner system is in the heating operation.
The purpose is for the first throttle device to be fully opened and the third throttle device to throttle the refrigerant while the air conditioner system is in the cooling operation.
Air conditioner system.
前記迂回管路には、前記空調機システムが暖房運転している際に、気体の冷媒の流量をコントロールするように構成される第二の絞り装置が設置される、
請求項1に記載の空調機システム。
A second throttle device configured to control the flow rate of the gaseous refrigerant during the heating operation of the air conditioner system is installed in the detour pipeline.
The air conditioner system according to claim 1.
前記第一の管路は、前記熱交換器の一の側を通り抜け、及び/又は、前記第二の管路は、前記熱交換器の他の側を通り抜ける、
請求項1に記載の空調機システム。
The first line passes through one side of the heat exchanger and / or the second line passes through the other side of the heat exchanger.
The air conditioner system according to claim 1.
前記コンプレッサーには第二の気液分離器が設置され、
冷媒は、前記第二の気液分離器を経た後に、前記コンプレッサーへ回流する、
請求項1からのいずれか一つに記載の空調機システム。
A second gas-liquid separator is installed in the compressor,
The refrigerant flows to the compressor after passing through the second gas-liquid separator.
The air conditioner system according to any one of claims 1 to 3.
前記迂回管路は、第二の気液分離器の上流に接続される、
請求項に記載の空調機システム。
The detour line is connected upstream of the second gas-liquid separator,
The air conditioner system according to claim 4.
前記空調機システムには、冷房モードと暖房モードとの間に前記空調機システムを切り替えるためのモード切り替え装置がさらに含まれる、
請求項1からのいずれかに記載の空調機システム。
The air conditioner system further includes a mode switching device for switching the air conditioner system between a cooling mode and a heating mode.
The air conditioner system according to any one of claims 1 to 5.
前記モード切り替え装置は、四方弁である、
請求項に記載の空調機システム。
The mode switching device is a four-way valve.
The air conditioner system according to claim 6.
JP2020535567A 2017-12-29 2018-11-15 Air conditioner system Active JP6982692B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201711471669.9 2017-12-29
CN201711471669.9A CN108375255B (en) 2017-12-29 2017-12-29 Air conditioner system
PCT/CN2018/115748 WO2019128517A1 (en) 2017-12-29 2018-11-15 Air-conditioner system

Publications (2)

Publication Number Publication Date
JP2021508025A JP2021508025A (en) 2021-02-25
JP6982692B2 true JP6982692B2 (en) 2021-12-17

Family

ID=63015488

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020535567A Active JP6982692B2 (en) 2017-12-29 2018-11-15 Air conditioner system

Country Status (4)

Country Link
EP (1) EP3734199B1 (en)
JP (1) JP6982692B2 (en)
CN (1) CN108375255B (en)
WO (1) WO2019128517A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108375255B (en) * 2017-12-29 2019-12-06 青岛海尔空调器有限总公司 Air conditioner system
CN111059615A (en) * 2019-12-20 2020-04-24 青岛海尔空调电子有限公司 Multi-split air conditioning system

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE489590T1 (en) * 2002-08-02 2010-12-15 Daikin Ind Ltd COOLING DEVICE
WO2009087733A1 (en) * 2008-01-07 2009-07-16 Mitsubishi Electric Corporation Refrigeration cycle device and four-way valve
CN101776308B (en) * 2009-01-13 2012-11-21 珠海格力电器股份有限公司 Energy-saving air conditioner
JP5452138B2 (en) * 2009-09-01 2014-03-26 三菱電機株式会社 Refrigeration air conditioner
JP5278452B2 (en) * 2011-01-27 2013-09-04 パナソニック株式会社 Refrigeration cycle apparatus and hot water heater using the same
JP2013204952A (en) * 2012-03-29 2013-10-07 Fujitsu General Ltd Refrigeration cycle device
CN203132222U (en) * 2013-01-23 2013-08-14 广东美的制冷设备有限公司 Air-conditioner system
JP6080939B2 (en) * 2013-02-19 2017-02-15 三菱電機株式会社 Air conditioner
CN203432134U (en) * 2013-07-05 2014-02-12 广东长菱空调冷气机制造有限公司 Heat pump system of air source heat pump water heater
US8763424B1 (en) * 2013-09-30 2014-07-01 Heat Pump Technologies, LLC Subcooling heat exchanger adapted for evaporator distribution lines in a refrigeration circuit
AU2014410881B2 (en) * 2014-11-04 2018-01-18 Mitsubishi Electric Corporation Air-conditioning apparatus
WO2016125697A1 (en) * 2015-02-04 2016-08-11 株式会社デンソー Integrated valve and heat pump cycle
US10591192B2 (en) * 2015-02-27 2020-03-17 Hitachi-Johnson Controls Air Conditioning, Inc. Heat exchange apparatus and air conditioner using same
CN106016535B (en) * 2016-05-31 2019-01-08 广东美的制冷设备有限公司 Air injection enthalpy-increasing air-conditioning system and its defrosting control method
CN106016505B (en) * 2016-06-12 2019-05-31 青岛海尔空调器有限总公司 Air conditioning circuit board cooling device
CN106403347B (en) * 2016-11-22 2019-01-29 广东美的暖通设备有限公司 Low-temperature air-conditioning system and air-conditioning
CN206310607U (en) * 2016-11-30 2017-07-07 美的集团股份有限公司 A kind of control system and air-conditioner for improving air-conditioning heating effect
CN107084562A (en) * 2017-04-13 2017-08-22 青岛海尔空调器有限总公司 A kind of control method of air conditioner and air conditioner
CN206739693U (en) * 2017-04-24 2017-12-12 深圳创维空调科技有限公司 A kind of air-conditioner system
CN108375255B (en) * 2017-12-29 2019-12-06 青岛海尔空调器有限总公司 Air conditioner system

Also Published As

Publication number Publication date
JP2021508025A (en) 2021-02-25
CN108375255B (en) 2019-12-06
EP3734199A4 (en) 2021-02-24
WO2019128517A1 (en) 2019-07-04
CN108375255A (en) 2018-08-07
EP3734199A1 (en) 2020-11-04
EP3734199B1 (en) 2022-07-27

Similar Documents

Publication Publication Date Title
JP7175985B2 (en) air conditioner system
CN211739588U (en) Air conditioner capable of improving heat exchange performance
WO2019091241A1 (en) Cooling circulation system for air conditioning, and air conditioner
CN107178833B (en) Heat recovery external machine system and air conditioning system
JP2005106360A (en) Refrigerant circuit and heat pump water heater
JP2021508024A (en) Air conditioner system
WO2019091240A1 (en) Heating circulation system for air conditioning, and air conditioner
WO2014029316A1 (en) Heat pump with defrosting structure and defrosting method thereof
JP6982692B2 (en) Air conditioner system
JP2021508809A (en) Air conditioner system
JP2019515238A (en) Energy-efficient central air conditioning and heat pump system
CN109539620B (en) Air conditioning system
JP2015124910A (en) Hot water supply air conditioning system
JP2018189321A (en) Heat pump system
WO2021047158A1 (en) Air conditioner and control method therefor
KR101280442B1 (en) Duality cold cycle heat pump system of control method
CN112797660A (en) Air conditioner and control method thereof
WO2013046723A1 (en) Hot-water-supplying, air-conditioning system
CN210569375U (en) Heat exchanger system and water chilling unit
KR101627659B1 (en) Hybrid heat pump boiler system
JP2012063083A (en) Heat source unit
CN210772889U (en) Heat exchanger system and water chilling unit
WO2022253115A1 (en) Air conditioning system, and control method for air conditioning system
JP3155492U (en) Electrical energy saving device
KR101640412B1 (en) Air condtioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200720

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210706

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210928

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211102

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211119

R150 Certificate of patent or registration of utility model

Ref document number: 6982692

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150