WO2023007803A1 - Air-conditioning device - Google Patents

Air-conditioning device Download PDF

Info

Publication number
WO2023007803A1
WO2023007803A1 PCT/JP2022/009090 JP2022009090W WO2023007803A1 WO 2023007803 A1 WO2023007803 A1 WO 2023007803A1 JP 2022009090 W JP2022009090 W JP 2022009090W WO 2023007803 A1 WO2023007803 A1 WO 2023007803A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat medium
heat
refrigerant
heat exchanger
pipe
Prior art date
Application number
PCT/JP2022/009090
Other languages
French (fr)
Japanese (ja)
Inventor
博紀 鷲山
祐治 本村
良輔 松井
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to GB2400849.2A priority Critical patent/GB2623036A/en
Publication of WO2023007803A1 publication Critical patent/WO2023007803A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle

Definitions

  • the present disclosure relates to an air conditioner capable of mixed cooling and heating operation.
  • a refrigerant circulation circuit that connects the outdoor unit and the relay unit with piping to circulate the heat source side refrigerant
  • a heat medium circulation circuit that connects the relay unit and the indoor unit with piping to circulate the heat medium that is the indoor side refrigerant.
  • the air conditioner as described above as shown in Patent Document 1, two heat medium heat exchangers that exchange heat between the heat source side refrigerant and the heat medium are provided in the relay unit, and a pump that conveys the heat medium to the indoor unit.
  • two heat medium heat exchangers that exchange heat between the heat source side refrigerant and the heat medium are provided in the relay unit, and a pump that conveys the heat medium to the indoor unit.
  • Patent Document 1 during mixed operation of cooling and heating, one heat medium circulation circuit having a heat medium heat exchanger used on the cooling side and a pump that conveys the heat medium, and a heat medium heat exchange used on the heating side
  • one heat carrier circulation circuit comprising a vessel and a pump for conveying the heat carrier.
  • An object of the present invention is to provide an air conditioner.
  • An air conditioner includes a compressor, an outdoor unit that outputs a refrigerant compressed by the compressor to a refrigerant pipe, and the outdoor unit and the refrigerant pipe that flow through the refrigerant pipe.
  • a relay unit for exchanging heat between a refrigerant and a heat medium flowing through a heat medium main pipe; and an indoor unit having an indoor heat exchanger connected to the heat medium main pipe of the relay unit via a heat medium branch pipe.
  • a controller for controlling the outdoor unit, the relay unit, and the indoor unit, wherein the relay unit controls the refrigerant output from the outdoor unit to the refrigerant pipe and the heat medium flowing through the heat medium main pipe.
  • the control device obtains the cooling load of the plurality of indoor units and the heating load of the plurality of indoor units, and the obtained cooling load is equal to the obtained heating load.
  • the indoor unit includes a temperature sensor that measures a first temperature, which is the temperature of air heat-exchanging with the heat medium in the indoor heat exchanger, and the control device controls the temperature sensor in the cooling/heating mixed operation mode.
  • a first temperature which is the temperature of air heat-exchanging with the heat medium in the indoor heat exchanger
  • the control device controls the temperature sensor in the cooling/heating mixed operation mode.
  • the third heat medium heat exchanger when the cooling load is greater than the heating load, the third heat medium heat exchanger is used for cooling, and when the cooling load is less than or equal to the heating load, the third heat medium heat exchanger is used for heating. use as Therefore, even when the load on the indoor unit side is unbalanced, efficient operation can be performed according to the cooling or heating load, and comfort can be maintained in the indoor unit.
  • FIG. 1 is a schematic diagram showing an arrangement example of an air conditioner according to Embodiment 1.
  • FIG. 1 is a diagram showing the configuration of an air conditioner according to Embodiment 1.
  • FIG. FIG. 4 is a circuit diagram showing the flow of refrigerant in the cooling-main operation mode of the air conditioner according to Embodiment 1;
  • FIG. 3 is a circuit diagram showing the flow of refrigerant in the heating main operation mode of the air conditioner according to Embodiment 1; 4 is a diagram showing a flowchart for determining whether to use the third heat medium heat exchanger for heating or cooling in the cooling/heating operation mode of the air conditioner according to Embodiment 1.
  • FIG. 4 is a flowchart of a modified example for determining whether to use the third heat medium heat exchanger for heating or cooling in the cooling/heating operation mode of the air conditioner according to Embodiment 1.
  • FIG. 4 is a flow chart of a second modified example for determining whether to use the third heat medium heat exchanger for heating or cooling in the cooling/heating operation mode of the air conditioner according to Embodiment 1.
  • FIG. 3 is a diagram showing the configuration of an air conditioner according to Embodiment 2;
  • FIG. 9 is a diagram showing a flowchart for explaining the operation in the cooling/heating operation mode of the air conditioner according to Embodiment 2;
  • 10 is a flowchart of a modification for determining whether to use the third heat medium heat exchanger for heating or cooling in the cooling/heating operation mode of the air conditioner according to Embodiment 2.
  • FIG. FIG. 10 is a diagram showing the configuration of an air conditioner according to Embodiment 3;
  • 10 is a diagram showing a flowchart for explaining the operation in the cooling/heating operation mode of the air conditioner according to Embodiment 3; 10 is a flowchart of a modification for determining whether to use the third heat medium heat exchanger for heating or cooling in the cooling/heating operation mode of the air conditioner according to Embodiment 3.
  • FIG. 1 is a schematic diagram showing an arrangement example of an air conditioner 100 according to Embodiment 1.
  • FIG. An arrangement example of the air conditioner 100 will be described based on FIG. 1 .
  • This air conditioner 100 has a heat source side refrigerant circulation circuit A (see FIG. 2), which is a refrigeration cycle for circulating a heat source side refrigerant, and a heat medium circulation circuit B (see FIG. 2), which is a refrigeration cycle for circulating a heat medium. .
  • the indoor unit 3a, the indoor unit 3b, and the indoor unit 3c use the heat source side refrigerant circulation circuit A and the heat medium circulation circuit B, so that the cooling mode, the heating mode, or the mixed cooling and heating mode can be freely selected as the operation mode.
  • FIG. 1 schematically shows an overall air conditioner 100 connecting three indoor units 3 .
  • the size relationship of each component may differ from the actual size.
  • an air conditioner 100 includes an outdoor unit 1 which is a heat source, three indoor units 3, and one relay interposed between the outdoor unit 1 and the indoor unit 3. a unit 2;
  • the relay unit 2 exchanges heat between the heat source side refrigerant and the heat medium.
  • the outdoor unit 1 and the relay unit 2 are connected by a refrigerant pipe 5 that conducts the heat source side refrigerant.
  • the relay unit 2 and the indoor unit 3a are connected by a heat medium branch pipe 6a that conducts the heat medium.
  • the relay unit 2 and the indoor unit 3b are connected by a heat medium branch pipe 6b that conducts the heat medium.
  • the relay unit 2 and the indoor unit 3c are connected by a heat medium branch pipe 6c that conducts the heat medium.
  • Cold heat or heat generated in the outdoor unit 1 is delivered to the indoor unit 3 via the relay unit 2 .
  • the outdoor unit 1 is normally placed outdoors, such as on the roof of a building 9 such as a building, and supplies cold or hot heat to the indoor unit 3 via the relay unit 2 .
  • the indoor unit 3 is arranged at a position capable of supplying cooling air or heating air to an indoor space 7 such as a living room inside the building 9, and supplies cooling air or heating air to the indoor space 7 to be air-conditioned.
  • the relay unit 2 is configured as a separate housing from the outdoor unit 1 and the indoor unit 3 so that it can be arranged at a position separate from the outdoor and indoor spaces 7 .
  • the relay unit 2 is connected to the outdoor unit 1 by a refrigerant pipe 5 and is connected to the indoor unit 3 by a heat medium branch pipe 6 .
  • the relay unit 2 transfers cold heat or heat supplied from the outdoor unit 1 to the indoor unit 3 .
  • the heat source side refrigerant is conveyed from the outdoor unit 1 to the relay unit 2 through the refrigerant pipe 5 .
  • the transported heat source side refrigerant exchanges heat with the heat medium in the heat medium heat exchanger 20 (see FIG. 2) in the relay unit 2 to heat or cool the heat medium. That is, the heat medium heat exchanger 20 produces hot water or cold water.
  • Hot water or cold water produced by the relay unit 2 is conveyed to the indoor unit 3 .
  • the hot water or cold water conveyed to the indoor unit 3 is used for heating or cooling the indoor space 7 in the indoor unit 3 .
  • heat source side refrigerant for example, single refrigerants such as R-22, R-134a and R-32, pseudo-azeotropic refrigerant mixtures such as R-410A and R-404A, and non-azeotropic refrigerant mixtures such as R-407C are used.
  • the heat source side refrigerant for example, single refrigerants such as R-22, R-134a and R-32, pseudo-azeotropic refrigerant mixtures such as R-410A and R-404A, and non-azeotropic refrigerant mixtures such as R-407C are used.
  • refrigerants and refrigerant mixtures that have a relatively low global warming potential, such as CF3CF CH2, which contain double bonds in their chemical formulas.
  • natural refrigerants such as CO2 , propane, etc. can be used.
  • the heat medium for example, water, an antifreeze solution, a mixed solution of water and an antifreeze solution, a mixed solution of an additive having a
  • the outdoor unit 1 and the relay unit 2 are connected using two refrigerant pipes 5 .
  • the relay unit 2 and each indoor unit 3 are connected using two heat medium branch pipes 6 .
  • construction is facilitated.
  • FIG. 1 shows an example in which the relay unit 2 is arranged in a space 8 such as a ceiling space, which is inside the building 9 but different from the indoor space 7 .
  • the relay unit 2 may be placed in any place other than behind the ceiling or in the indoor space 7 as long as it is ventilated with the outdoors in some way. It is also possible to place it in a well-ventilated place.
  • the relay unit 2 can be arranged near the outdoor unit 1 .
  • the distance from the relay unit 2 to the indoor unit 3 is too long, the power for transporting the heat medium will be considerably increased, and the energy saving effect will be reduced.
  • the outdoor unit 1 is arranged outdoors as an example, but it is not limited to this.
  • the outdoor unit 1 may be placed in a place surrounded by walls such as a machine room with a ventilation port.
  • the outdoor unit 1 may be arranged inside the building 9 if waste heat can be discharged outside the building 9 through an exhaust duct.
  • the outdoor unit 1 may be arranged inside the building 9 even when the water-cooled outdoor unit 1 is used. Even if the outdoor unit 1 is arranged in such a place, no particular problem occurs.
  • the indoor unit 3 is a ceiling cassette type
  • the heating air or the cooling air can be blown out.
  • the number of connected outdoor units 1, indoor units 3, and relay units 2 is not limited to the number shown in FIG. You have to decide the number of units.
  • the plurality of relay units 2 When a plurality of relay units 2 are connected to one outdoor unit 1, the plurality of relay units 2 can be scattered in a shared space in a building 9 such as a building or in a space such as the ceiling space. can be done. By doing so, the heat exchanger related to heat medium in each relay unit 2 can cover the air conditioning load.
  • the indoor unit 3 can be arranged at a distance or height within the allowable transfer range of the heat medium transfer device in each relay unit 2, and can be arranged over the entire building 9 such as a building. Become.
  • FIG. 2 is a diagram showing the configuration of the air conditioner 100 according to Embodiment 1. As shown in FIG. Based on FIG. 2, the configuration of the equipment and the like included in the air conditioner 100 will be described.
  • the air conditioner 100 includes a heat source side refrigerant circulation circuit A that circulates a heat source side refrigerant, and a heat medium circulation circuit B that circulates a heat medium such as water that transfers and transfers heat. Then, air conditioning is performed by cooling, heating, or the like.
  • the heat source side refrigerant circulation circuit A functions as a heat source side device that heats or cools the heat medium in the heat medium circulation circuit B.
  • the air conditioner 100 has an outdoor unit 1, a relay unit 2 and an indoor unit 3.
  • the outdoor unit 1, relay unit 2 and indoor unit 3 will be described below.
  • the outdoor unit 1 conveys heat by circulating the heat source side refrigerant in the heat source side refrigerant circulation circuit A, and in the heat medium heat exchanger 20 of the relay unit 2, a unit that exchanges heat between the heat source side refrigerant and the heat medium. is.
  • the outdoor unit 1 has a compressor 10, a refrigerant flow switching device 11, a heat source side heat exchanger 12, an accumulator 13, and a heat source side blower 14 in a housing.
  • the compressor 10 draws in the heat source side refrigerant, compresses the heat source side refrigerant to a high temperature and high pressure state, and conveys it to the heat source side refrigerant circulation circuit A.
  • it is an inverter compressor whose capacity is controllable. Good to configure.
  • the refrigerant flow switching device 11 controls the flow of the heat source side refrigerant in the heating operation mode, which is the heating only operation mode and the heating main operation mode, and the cooling operation mode, which is the cooling only operation mode and the cooling main operation mode. and the flow of the heat source side refrigerant at.
  • the heat source side heat exchanger 12 functions as an evaporator during heating operation and as a condenser during cooling operation, and performs heat exchange between a fluid such as air supplied from the heat source side blower 14 and the heat source side refrigerant. , evaporates or condenses the heat source side refrigerant.
  • the accumulator 13 is provided on the suction side of the compressor 10 and stores excess refrigerant due to differences between heating operation and cooling operation, or excess refrigerant due to transient changes in operation.
  • the outdoor unit 1 further has a first connection pipe 15, a second connection pipe 16, a first backflow prevention device 17a, a first backflow prevention device 17b, a first backflow prevention device 17c, and a first backflow prevention device 17d.
  • check valves are used as the first backflow prevention devices 17a to 17d.
  • the first backflow prevention device 17a is provided in the refrigerant pipe 5 between the heat source side heat exchanger 12 and the relay unit 2, and allows the heat source side refrigerant to flow only in the direction from the outdoor unit 1 to the relay unit 2.
  • the first backflow prevention device 17a is a device that prevents the high-temperature and high-pressure gas refrigerant from flowing back from the first connection pipe 15 to the heat source side heat exchanger 12 in the heating only operation mode and the heating main operation mode. be.
  • the first backflow prevention device 17b is provided in the second connection pipe 16, and circulates the heat source side refrigerant returned from the relay unit 2 to the suction side of the compressor 10 during heating operation.
  • the first backflow prevention device 17b is a device that prevents the high-pressure liquid or gas-liquid two-phase refrigerant from flowing back from the first connection pipe 15 to the accumulator 13 during the cooling-only operation mode and the cooling-main operation mode. is.
  • the first backflow prevention device 17c is provided in the refrigerant pipe 5 between the relay unit 2 and the refrigerant flow switching device 11, and allows the heat source side refrigerant to flow only in the direction from the relay unit 2 to the outdoor unit 1.
  • the first backflow prevention device 17c is a device that prevents the high-pressure liquid or gas-liquid two-phase refrigerant from flowing back from the second connection pipe 16 to the accumulator 13 in the cooling only operation mode and the cooling main operation mode. is.
  • the first backflow prevention device 17d is provided in the first connection pipe 15 and allows the heat source side refrigerant discharged from the compressor 10 to flow to the relay unit 2 during heating operation.
  • the first backflow prevention device 17d prevents high-temperature and high-pressure gas refrigerant from flowing back from the flow path on the discharge side of the compressor 10 to the second connection pipe 16 during the heating-only operation mode and the heating-main operation mode. It is a device that
  • check valves are used as the first backflow prevention devices 17a to 17d, but any device that can prevent backflow of the refrigerant may be used.
  • an opening/closing device, a throttle device having a fully closing function, or the like can be used as the first backflow prevention device 17a to the first backflow prevention device 17d.
  • the first connection pipe 15 is the refrigerant pipe 5 between the refrigerant flow switching device 11 and the first backflow prevention device 17c, and the refrigerant pipe 5 between the first backflow prevention device 17a and the relay unit 2. and the pipe 5 are connected.
  • the second connection pipe 16 is the refrigerant pipe 5 between the first backflow prevention device 17c and the relay unit 2, and the refrigerant pipe 5 between the heat source side heat exchanger 12 and the first backflow prevention device 17a. and the pipe 5 are connected.
  • the first connection pipe 15, the second connection pipe 16, the first backflow prevention device 17a, the first backflow prevention device 17b, the first backflow prevention device 17c, and the first backflow prevention device 17d are provided. shown in the example. However, the present invention is not limited to these, and they do not necessarily have to be provided.
  • An indoor heat exchanger 30a is mounted on the indoor unit 3a.
  • An indoor heat exchanger 30b is mounted on the indoor unit 3b.
  • An indoor heat exchanger 30c is mounted on the indoor unit 3c.
  • the indoor heat exchanger 30a is connected to the main heat medium pipe 4 via the heat medium branch pipe 6a_1.
  • the indoor heat exchanger 30a is connected to the second heat medium flow switching device 26a by a heat medium branch pipe 6a_1.
  • a temperature sensor 40a is provided in the indoor heat exchanger 30a.
  • the temperature sensor 40a is provided in the indoor heat exchanger 30a, and measures the temperature of the air that flows into the indoor heat exchanger 30a and exchanges heat with the heat medium that flows through the indoor heat exchanger 30a.
  • the temperature of the air measured by the temperature sensor 40a is also referred to as the intake temperature or the first temperature.
  • the indoor heat exchanger 30a is connected to the first heat medium flow switching device 25a by the heat medium branch pipe 6a_2 via the heat medium flow control device 27a provided in the heat medium branch pipe 6a_2.
  • the indoor heat exchanger 30b is connected to the main heat medium pipe 4 via the heat medium branch pipe 6b_1.
  • the indoor heat exchanger 30b is connected to the second heat medium flow switching device 26b by a heat medium branch pipe 6b_1.
  • a temperature sensor 40b is provided in the indoor heat exchanger 30b.
  • the temperature sensor 40b is provided in the indoor heat exchanger 30b, and measures the temperature of the air that flows into the indoor heat exchanger 30b and exchanges heat with the heat medium that flows through the indoor heat exchanger 30b.
  • the temperature of the air measured by the temperature sensor 40b is also referred to as the intake temperature or the first temperature.
  • the indoor heat exchanger 30b is connected to the first heat medium flow switching device 25b by the heat medium branch pipe 6b_2 via the heat medium flow control device 27b provided in the heat medium branch pipe 6b_2.
  • the indoor heat exchanger 30c is connected to the main heat medium pipe 4 via the heat medium branch pipe 6c_1.
  • the indoor heat exchanger 30c is connected to the second heat medium flow switching device 26c by a heat medium branch pipe 6c_1.
  • a temperature sensor 40c is provided in the indoor heat exchanger 30c.
  • the temperature sensor 40c is provided in the indoor heat exchanger 30c and measures the intake temperature of the air flowing into the indoor heat exchanger 30c.
  • the indoor heat exchanger 30c is connected to the first heat medium flow switching device 25c by the heat medium branch pipe 6c_2 via the heat medium flow control device 27c provided in the heat medium branch pipe 6c_2.
  • the indoor heat exchangers 30a to 30c exchange heat between air supplied from a blower such as a fan (not shown) and a heat medium, and supply heating air or air to the indoor space 7. Generate cooling air.
  • ducts are attached to the indoor heat exchangers 30a to 30c.
  • a blower (not shown) can be used to take outside air into the indoor space 7 through a duct for ventilation.
  • FIG. 2 shows an example in which three indoor units 3 are connected to the relay unit 2, which are shown as indoor unit 3a, indoor unit 3b, and indoor unit 3c from the top of the paper.
  • the number of connected indoor units 3 is not limited to three as shown in FIG.
  • the relay unit 2 has three heat medium heat exchangers 20 . Also, the heat source side refrigerant circulation circuit A of the relay unit 2 has three expansion devices 22 , two opening/closing devices 23 , and three refrigerant flow switching devices 24 .
  • the heat medium circulation circuit B includes three pumps 21, three first heat medium flow switching devices 25, three second heat medium flow switching devices 26, and three heat medium flow rate adjusting devices 27. and two third heat medium flow switching devices 28 .
  • the three heat medium heat exchangers 20 exchange heat between the heat source side refrigerant and the heat medium.
  • the three heat medium heat exchangers 20 function as condensers (radiators) or evaporators.
  • the heat medium heat exchanger 20 has a first heat medium heat exchanger 20a, a second heat medium heat exchanger 20b and a third heat medium heat exchanger 20c.
  • the first heat medium heat exchanger 20a is provided between the expansion device 22a and the refrigerant flow switching device 24a in the heat source side refrigerant circulation circuit A, and heat exchange for cooling the heat medium in the cooling/heating mixed operation mode. Become a vessel.
  • the second heat medium heat exchanger 20b is provided between the throttle device 22b and the refrigerant flow switching device 24b in the heat source side refrigerant circulation circuit A, and heat that heats the heat medium is provided during the cooling and heating mixed operation mode. become an exchanger.
  • the third heat medium heat exchanger 20c is provided between the expansion device 22c and the refrigerant flow switching device 24c in the heat source side refrigerant circulation circuit A, detects the load or capacity of the indoor unit 3, and is a heat exchanger that cools or heats and regulates the load.
  • the three expansion devices 22 function as pressure reducing valves and expansion valves, and reduce the pressure of the heat source side refrigerant to expand it.
  • the diaphragm device 22 has a diaphragm device 22a, a diaphragm device 22b, and a diaphragm device 22c.
  • the throttle device 22a is connected to the first heat medium heat exchanger 20a and provided upstream of the first heat medium heat exchanger 20a in the flow of the heat source side refrigerant during the cooling only operation mode.
  • the expansion device 22b is connected to the second heat medium heat exchanger 20b and provided upstream of the second heat medium heat exchanger 20b in the flow of the heat source side refrigerant in the cooling only operation mode.
  • the expansion device 22c is connected to the third heat medium heat exchanger 20c and provided upstream of the third heat medium heat exchanger 20c in the flow of the heat source side refrigerant in the cooling only operation mode.
  • the three expansion devices 22 are composed of, for example, electronic expansion valves whose opening can be controlled.
  • the two opening/closing devices 23 are composed of two-way valves or the like, and open/close the refrigerant pipes 5 .
  • the switchgear 23 has a switchgear 23a and a switchgear 23b.
  • the opening/closing device 23a is provided in the refrigerant pipe 5a on the inlet side of the heat source side refrigerant.
  • the opening/closing device 23b is connected to the refrigerant pipe 5b that connects the outlet side of the heat source side refrigerant.
  • the opening/closing device 23 may be an electronic expansion valve such as a throttle device.
  • the three refrigerant flow switching devices 24 are composed of four-way valves, etc., and switch the flow of the heat source side refrigerant according to the operation mode.
  • the refrigerant flow switching device 24 has a refrigerant flow switching device 24a, a refrigerant flow switching device 24b, and a refrigerant flow switching device 24c.
  • the refrigerant flow switching device 24a is provided downstream of the first heat medium heat exchanger 20a in the flow of the heat source side refrigerant during the cooling only operation mode.
  • the refrigerant flow switching device 24b is provided downstream of the second heat medium heat exchanger 20b in the flow of the heat source side refrigerant during the cooling only operation mode.
  • the refrigerant flow switching device 24c is provided downstream of the third heat medium heat exchanger 20c in the flow of the heat source side refrigerant during the cooling only operation mode.
  • the refrigerant flow switching device 24c detects the load or capacity of the indoor unit and switches to a circuit for operation on the insufficient capacity side.
  • the three pumps 21 pressurize the heat medium passing through the heat medium main pipe 4 to circulate the heat medium circulation circuit B.
  • the pump 21 has a pump 21a, a pump 21b and a pump 21c.
  • the pump 21a is upstream of the first heat medium heat exchanger 20a, and between the first heat medium heat exchanger 20a and the first heat medium flow switching device 25 and the third heat medium flow switching device 28a. It is provided in the heat medium main pipe 4 in .
  • the pump 21b is provided in the heat medium main pipe 4 between the second heat medium heat exchanger 20b and the first heat medium flow switching device 25 and the third heat medium flow switching device 28b.
  • the pump 21c is provided in the main heat medium pipe 4 between the third heat medium heat exchanger 20 and the third heat medium flow switching device 28a.
  • the frequency of the pump 21c is controlled according to the heat load.
  • the pump 21c is stopped and the heat medium is not allowed to flow through the third heat medium heat exchanger 20c.
  • the first heat medium flow switching device 25 is composed of a three-way valve or the like, and switches the heat medium flow path.
  • the first heat medium flow switching device 25 includes a first heat medium flow switching device 25a, a first heat medium flow switching device 25b, and a first heat medium flow switching device 25c.
  • the number of first heat medium flow switching devices 25 is provided according to the number of indoor units 3 arranged, and in FIG. 2, three units are provided.
  • the first heat medium flow switching device 25 is provided in the heat medium main pipe 4 on the outlet side of the heat medium flow path in the indoor heat exchanger 30 .
  • One of the three flow paths of the first heat medium flow switching device 25 is connected to the first heat medium heat exchanger 20a.
  • Another one is connected to the second heat medium heat exchanger 20b.
  • Another one is connected to the heat medium flow control device 27 .
  • switching of the heat medium flow paths by the first heat medium flow switching device 25 includes not only complete switching from one to the other but also partial switching from one to the other.
  • the second heat medium flow switching device 26 is composed of a three-way valve or the like, and switches the heat medium flow path.
  • the second heat medium flow switching device 26 has a second heat medium flow switching device 26a, a second heat medium flow switching device 26b, and a second heat medium flow switching device 26c.
  • the number of the second heat medium flow switching devices 26 is provided according to the number of the indoor units 3 arranged, and in FIG. 2, three units are provided.
  • the second heat medium flow switching device 26 is provided on the inlet side of the heat medium flow path in the indoor heat exchanger 30 .
  • One of the three flow paths of the second heat medium flow switching device 26 is connected to the first heat medium heat exchanger 20a.
  • Another one is connected to the second heat medium heat exchanger 20b.
  • Another one is connected to the indoor heat exchanger 30 .
  • the switching of the heat medium flow paths by the second heat medium flow switching device 26 includes not only complete switching from one to the other but also partial switching from one to the other.
  • the heat medium flow rate adjusting device 27 is a device that adjusts the flow rate of the heat medium flowing through the indoor unit 3 .
  • the heat medium flow control device 27 has a heat medium flow control device 27a, a heat medium flow control device 27b, and a heat medium flow control device 27c.
  • the heat medium flow rate adjusting device 27 is composed of a two-way valve or the like that can control the opening area, and controls the flow rate flowing through the heat medium branch pipes 6 .
  • the number of heat medium flow control devices 27 is provided according to the number of indoor units 3 to be arranged. One end of the heat medium flow control device 27 is connected to the indoor heat exchanger 30 . The other is connected to the first heat medium flow switching device 25 .
  • the heat medium flow control device 27 is provided on the outlet side of the heat medium flow path in the indoor heat exchanger 30 .
  • the heat medium flow control device 27 may be provided on the inlet side of the heat medium flow path of the indoor heat exchanger 30 .
  • the heat medium supply to the indoor unit 3 can be stopped by fully closing the heat medium flow control device 27. This also applies to other operation modes described below.
  • the heat medium flow rate adjusting device 27 may be omitted. It is possible.
  • the third heat medium flow switching device 28 is composed of a three-way valve or the like, and switches the heat medium flow in the heat medium circulation circuit B according to the load during the cooling/heating mixed operation mode.
  • the third heat medium flow switching device 28 has a third heat medium flow switching device 28a and a third heat medium flow switching device 28b.
  • the third heat medium flow switching device 28a is provided on the upstream side of the pump 21c and connected to the upstream sides of the pumps 21a and 21b.
  • the third heat medium flow switching device 28a flows the heat medium flowing into the pump 21a or the heat medium flowing into the pump 21b to the third heat medium heat exchanger 20c via the pump 21c.
  • the third heat medium flow switching device 28b is provided downstream of the third heat medium heat exchanger 20c, and downstream of the first heat medium heat exchanger 20a and the second heat medium heat exchanger 20b. is connected with The third heat medium flow switching device 28b flows the heat medium output from the third heat medium heat exchanger 20c to the output side of the first heat medium heat exchanger 20a or the output side of the second heat medium heat exchanger 20b. .
  • the third heat medium flow switching device 28a and the third heat medium flow switching device 28b are switched to the cooling side, and the first heat The medium heat exchanger 20a and the third heat medium heat exchanger 20c are arranged in parallel.
  • the cooling load of the indoor unit 3 is equal to or less than the heating load
  • the third heat medium flow switching device 28a and the third heat medium flow switching device 28a are switched to the heating side, and the second heat medium heat exchanger 20b and 3rd heat-medium heat exchanger 20c becomes parallel.
  • the heat medium heat exchanger 20 the pump 21, the expansion device 22, the refrigerant flow switching device 24, and the third heat medium flow switching device 28 may be three or more.
  • the control device 50 centrally controls the operation of the air conditioner 100 .
  • the control device 50 performs the following control in addition to the processing according to the first embodiment.
  • switching of the refrigerant flow path of the first heat medium flow switching device 25 switching of the refrigerant flow path of the second heat medium flow switching device 26, adjustment of the heat medium flow rate of the heat medium flow control device 27, and adjustment of the heat medium flow rate of the heat medium flow control device 27.
  • control device 50 is mounted separately from the outdoor unit 1, the indoor unit 3, and the relay unit 2, it is not limited to this. It may be mounted on at least one of the relay units 2 . Also, it may be mounted on each of the outdoor unit 1, the indoor unit 3 and the relay unit 2 so as to be communicable.
  • the processing circuit of the control device 50 is dedicated hardware
  • the processing circuit is, for example, a single circuit, a composite circuit, an ASIC (Application Specific Integrated Circuit), an FPGA (Field Programmable Gate Array), or a combination thereof. is applicable.
  • Each functional unit implemented by the processing circuit may be implemented by separate hardware, or each functional unit may be implemented by one piece of hardware.
  • the processing circuit of the control device 50 is a CPU
  • each function executed by the processing circuit is implemented by software, firmware, or a combination of software and firmware.
  • Software and firmware are written as programs and stored in the storage unit of the control device 50 .
  • the CPU implements each function of the processing circuit by reading and executing the program stored in the storage unit.
  • a part of the functions of the processing circuit may be realized by dedicated hardware, and a part thereof may be realized by software or firmware.
  • the heat medium main pipes 4 that conduct the heat medium are connected to the first heat medium heat exchanger 20a, connected to the second heat medium heat exchanger 20b, and connected to the third heat medium heat exchanger 20c. connected to the The heat medium main pipe 4 is branched according to the number of indoor units 3 connected to the relay unit 2 (here, three branches each).
  • the heat medium main pipe 4 is connected to the first heat medium flow switching device 25 and the second heat medium flow switching device 26 .
  • the heat medium from the first heat medium heat exchanger 20a to the third heat medium heat exchanger 20c is subjected to indoor heat exchange. determines whether to flow into the vessel 30.
  • a heat source side refrigerant circulation circuit A is configured by connecting with a refrigerant pipe 5 .
  • heat medium heat exchanger 20 the pump 21, the first heat medium flow switching device 25, the heat medium flow rate adjusting device 27, the indoor heat exchanger 30, the second heat medium flow switching device 26, and the third heat medium flow
  • a heat medium circulation circuit B is configured by connecting the path switching device 28 with the heat medium main pipe 4 . That is, a plurality of indoor heat exchangers 30 are connected in parallel to each of the heat medium heat exchangers 20, and the heat medium circulation circuit B is configured as a plurality of systems.
  • the heat source side refrigerant circulating in the heat source side refrigerant circulation circuit A in the first heat medium heat exchanger 20a, the second heat medium heat exchanger 20b, and the third heat medium heat exchanger 20c and the heat medium circulation circuit A heat medium circulating through B exchanges heat.
  • the air conditioner 100 can realize the optimum cooling operation or heating operation according to the indoor load.
  • This air conditioner 100 is capable of cooling operation or heating operation in each indoor unit 3 based on instructions from each indoor unit 3 .
  • the air conditioner 100 can operate all of the indoor units 3 in the same manner, and can operate differently in each of the indoor units 3 .
  • the operation modes executed by the air conditioner 100 include a heating only operation mode, a cooling only operation mode, and a cooling/heating mixed operation mode.
  • a heating only operation mode all of the indoor units 3 that are being driven perform the heating operation.
  • the cooling only operation mode all of the indoor units 3 that are being driven perform the cooling operation.
  • the cooling/heating mixed operation mode includes a cooling main operation mode and a heating main operation mode.
  • the cooling load is larger than the heating load.
  • the heating-dominant operation mode the cooling load is equal to or less than the heating load.
  • Each operation mode will be described below together with the flow of the heat source side refrigerant and the heat medium.
  • FIG. 3 is a circuit diagram showing the flow of refrigerant and heat medium during cooling only operation of the air conditioner 100 according to Embodiment 1. As shown in FIG. In FIG. 3, the cooling only operation mode will be described by taking as an example the case where the cooling load is generated in all of the indoor heat exchangers 30a to 30c.
  • solid line arrows indicate the flow direction of the heat source side refrigerant
  • broken line arrows indicate the flow direction of the heat medium.
  • the outdoor unit 1 switches the refrigerant flow switching device 11 so that the heat source side refrigerant discharged from the compressor 10 flows into the heat source side heat exchanger 12 .
  • the pumps 21a, 21b, and 21c are driven, and the heat medium flow control devices 27a to 27c are opened. Further, the heat medium circulates between each of the first heat medium heat exchanger 20a, the second heat medium heat exchanger 20b, and the third heat medium heat exchanger 20c and the indoor heat exchangers 30a to 30c. do.
  • the refrigerant flow switching device 24a, the refrigerant flow switching device 24b, and the refrigerant flow switching device 24c are switched to the cooling side, the switching device 23a is open, and the switching device 23b is closed.
  • each port of the first heat medium flow switching device 25, the second heat medium flow switching device 26, and the third heat medium flow switching device 28 is switched to the cooling side.
  • switching to the cooling side means that, in FIG. Heating side.
  • the third heat medium flow switching device 28 the lower port is for the cooling side, and the upper port is for the heating side.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 10 flows into the heat source side heat exchanger 12 via the refrigerant flow switching device 11 .
  • the high-temperature and high-pressure gas refrigerant that has flowed into the heat source side heat exchanger 12 radiates heat to the surrounding air, condenses and liquefies to become a high-pressure liquid refrigerant.
  • the high-pressure liquid refrigerant flows out of the outdoor unit 1 through the first backflow prevention device 17a. Then, the high-pressure liquid refrigerant flows into the relay unit 2 through the refrigerant pipe 5a.
  • the refrigerant that has flowed into the relay unit 2 passes through the opening/closing device 23a and is branched to the expansion device 22a, the expansion device 22b, and the expansion device 22c.
  • the branched refrigerant expands in the expansion device 22a, the expansion device 22b, and the expansion device 22c to become a low-temperature, low-pressure two-phase refrigerant.
  • the low-temperature, low-pressure two-phase refrigerant expanded by the expansion device 22a flows into the first heat medium heat exchanger 20a that functions as an evaporator.
  • the low-temperature, low-pressure two-phase refrigerant expanded by the expansion device 22b flows into the second heat medium heat exchanger 20b acting as an evaporator.
  • the low-temperature, low-pressure two-phase refrigerant expanded by the expansion device 22c flows into the third heat medium heat exchanger 20c acting as an evaporator.
  • the low-temperature, low-pressure two-phase refrigerant that has flowed into the first heat medium heat exchanger 20a to the third heat medium heat exchanger 20c absorbs heat from the heat medium circulating in the heat medium circulation circuit B, and becomes a low-temperature, low-pressure gas refrigerant.
  • the gas refrigerant in the first heat medium heat exchanger 20a flows out from the relay unit 2 via the refrigerant flow switching device 24a.
  • the gas refrigerant in the second heat medium heat exchanger 20b flows out from the relay unit 2 via the refrigerant flow switching device 24b.
  • the gas refrigerant in the third heat medium heat exchanger 20c flows out from the relay unit 2 via the refrigerant flow switching device 24c.
  • the gas refrigerant flows into the outdoor unit 1 again through the refrigerant pipe 5b.
  • the refrigerant that has flowed into the outdoor unit 1 passes through the first backflow prevention device 17 c and is sucked into the compressor 10 again via the refrigerant flow switching device 11 and the accumulator 13 .
  • cold heat of the heat source side refrigerant is transferred to the heat medium in the first heat medium heat exchanger 20a to the third heat medium heat exchanger 20c, and the cooled heat medium is pressurized by the pump 21 and flows out. do.
  • the outflowing heat medium flows through the heat medium main pipe 4 and the heat medium branch pipe 6, passes through the second heat medium flow switching device 26a to the second heat medium flow switching device 26c, and enters the indoor heat exchanger 30a.
  • flows into the indoor heat exchanger 30c.
  • the indoor space 7 is cooled by the heat medium absorbing heat from the indoor air in the indoor heat exchangers 30a to 30c.
  • the heat medium flows out from the indoor heat exchangers 30a to 30c and flows into the heat medium flow rate adjusting devices 27a to 27c.
  • the flow rate of the heat medium is controlled to the flow rate necessary to cover the air conditioning load required in the room other than the indoor heat exchangers 30a to 30c. It flows into the indoor heat exchanger 30c.
  • the heat medium flowing out from the heat medium flow rate adjusting device 27a to the heat medium flow rate adjusting device 27c passes through the first heat medium flow switching device 25a to the first heat medium flow switching device 25c and then through the pumps 21a to 21c. and flows into the first heat medium heat exchanger 20a to the third heat medium heat exchanger 20c.
  • the amount of heat absorbed from the indoor space 7 through the indoor unit 3 is transferred to the refrigerant side.
  • the heat medium flow control devices 27a to 27c corresponding to the indoor heat exchangers 30a to 30c with no heat load are fully closed.
  • the heat medium flow control devices 27a to 27c corresponding to the indoor heat exchangers 30a to 30c having a heat load adjust the opening degrees, and the indoor heat exchangers 30a to 30c Adjust the heat load at 30c.
  • the first heat medium flow switching device 25 and the second heat medium flow switching device 26 are arranged so that the flow paths from the first heat medium heat exchanger 20a to the third heat medium heat exchanger 20c are secured. , the opening is controlled to an intermediate degree.
  • the first heat medium flow switching device 25 and the second heat medium flow switching device 26 are opened according to the heat medium temperature at the outlets of the first heat medium heat exchanger 20a to the third heat medium heat exchanger 20c. controlled to a degree.
  • FIG. 4 is a circuit diagram showing the flow of refrigerant and heat medium during full-warm operation of the air-conditioning apparatus 100 according to Embodiment 1. As shown in FIG. In FIG. 4, the heating only operation mode will be described by taking as an example a case where a thermal load is generated in all of the indoor heat exchangers 30a to 30c. In FIG. 4 , solid line arrows indicate the flow direction of the heat source side refrigerant, and broken line arrows indicate the flow direction of the heat medium.
  • the pumps 21a, 21b, and 21c are driven, and the heat medium flow control devices 27a to 27c are opened. This allows the heat medium to circulate between each of the first to third heat medium heat exchangers 20a to 20c and the indoor heat exchangers 30a to 30c. Further, the refrigerant flow switching device 24a, the refrigerant flow switching device 24b, and the refrigerant flow switching device 24c are switched to the heating side, the switching device 23a is closed, and the switching device 23b is open.
  • the first heat medium flow switching device 25, the second heat medium flow switching device 26, and the third heat medium flow switching device 28 are switched to the heating side.
  • switching to the heating side means that, in FIG. Cooling side.
  • the third heat medium flow switching device 28 the upper port is for the heating side, and the lower port is for the cooling side.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 10 passes through the first connection pipe 15 and the first backflow prevention device 17d via the refrigerant flow switching device 11, and flows out of the outdoor unit 1. do. Then, it flows into the relay unit 2 through the refrigerant pipe 5a.
  • the refrigerant flowing into the relay unit 2 passes through the refrigerant flow switching device 24a, the refrigerant flow switching device 24b, and the refrigerant flow switching device 24c to the first heat medium heat exchanger 20a and the second heat medium heat exchanger. 20b and the third heat medium heat exchanger 20c.
  • the refrigerant that has flowed into the first heat medium heat exchanger 20a, the second heat medium heat exchanger 20b, and the third heat medium heat exchanger 20c radiates heat to the heat medium circulating in the heat medium circulation circuit B, resulting in a high-pressure liquid refrigerant. becomes.
  • the high-pressure liquid refrigerant expands in the expansion devices 22a, 22b, and 22c to become a low-temperature, low-pressure two-phase refrigerant, and flows out of the relay unit 2 through the opening/closing device 23b. Then, it flows into the outdoor unit 1 again through the refrigerant pipe 5 .
  • the refrigerant that has flowed into the outdoor unit 1 passes through the second connection pipe 16 and the first backflow prevention device 17b, flows into the heat source side heat exchanger 12 acting as an evaporator, absorbs heat from the surrounding air, and becomes a low-temperature low-pressure refrigerant. It becomes a gas refrigerant.
  • the gas refrigerant is sucked into the compressor 10 again through the refrigerant flow switching device 11 and the accumulator 13 .
  • the operation of the heat medium in the heat medium circulation circuit B is the same as in the cooling only operation mode.
  • the heat medium is heated by the refrigerant in the first heat medium heat exchanger 20a to the third heat medium heat exchanger 20c, and heat is released to the indoor air in the indoor heat exchangers 30a to 30c. to heat the air-conditioned space.
  • FIG. 5 is a circuit diagram showing the flow of refrigerant in the cooling main operation mode of the air conditioner 100 according to Embodiment 1.
  • the cooling main operation mode in the cooling/heating mixed operation mode when the cold load and the thermal load are generated in the indoor heat exchangers 30a to 30c and the cold load is larger than the thermal load will be described.
  • solid line arrows indicate the flow direction of the heat source side refrigerant
  • broken line arrows indicate the flow direction of the heat medium.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 10 flows into the heat source side heat exchanger 12 via the refrigerant flow switching device 11 .
  • the gas refrigerant that has flowed into the heat source side heat exchanger 12 radiates heat to the surrounding air, condenses, becomes a two-phase refrigerant, and flows out of the outdoor unit 1 through the first backflow prevention device 17a. Then, the two-phase refrigerant flowing out of the outdoor unit 1 flows into the relay unit 2 through the refrigerant pipe 5a.
  • the refrigerant that has flowed into the relay unit 2 passes through the refrigerant flow switching device 24b and flows into the second heat medium heat exchanger 20b acting as a condenser. liquid refrigerant.
  • the high-pressure liquid refrigerant is expanded by the expansion device 22b to become a low-temperature, low-pressure two-phase refrigerant.
  • the two-phase refrigerant flows through the throttle device 22a into the first heat medium heat exchanger 20a acting as an evaporator.
  • the refrigerant that has flowed into the first heat medium heat exchanger 20a absorbs heat from the heat medium circulating in the heat medium circulation circuit B, becomes a low-pressure gas refrigerant, and flows out of the relay unit 2 via the refrigerant flow switching device 24a.
  • FIG. 5 shows a case where the third heat medium heat exchanger 20c acts as an evaporator and the refrigerant flow switching device 24c is switched to the cooling side.
  • the two-phase refrigerant flows through the throttle device 22c into the third heat medium heat exchanger 20c acting as an evaporator.
  • the refrigerant flowing into the third heat medium heat exchanger 20c absorbs heat from the heat medium circulating in the heat medium circulation circuit B, becomes a low-pressure gas refrigerant, and flows out of the relay unit 2 via the refrigerant flow switching device 24c.
  • the refrigerant that has flowed out of the relay unit 2 flows into the outdoor unit 1 again through the refrigerant pipe 5b.
  • the refrigerant that has flowed into the outdoor unit 1 passes through the first backflow prevention device 17 c and is sucked into the compressor 10 again via the refrigerant flow switching device 11 and the accumulator 13 .
  • the heat of the refrigerant is transferred to the heat medium in the second heat medium heat exchanger 20b. Then, the heated heat medium flows through the main heat medium pipe 4 and the heat medium branch pipe 6 by the pump 21b.
  • the first heat medium flow switching device 25a to the first heat medium flow switching device 25c and the second heat medium flow switching device 26a to the second heat medium flow switching device 26c are controlled, and indoor heat exchange with a heating request
  • the heat medium flowing into the unit 30a to the indoor heat exchanger 30c is radiated to the indoor air.
  • the indoor air is heated to heat the air-conditioned space.
  • cold heat of the refrigerant is transferred to the heat medium in the first heat medium heat exchanger 20a and the third heat medium heat exchanger 20c.
  • the cooled heat medium flows through the heat medium main pipe 4 and the heat medium branch pipe 6 by the pumps 21a and 21c.
  • the heat medium heat-exchanged in the third heat medium heat exchanger 20c is switched by the third heat medium flow switching device 28a and the third heat medium flow switching device 28 corresponding to the switching of the refrigerant flow switching device 24c. be done.
  • the third heat medium flow switching device 28a and the third heat medium flow switching device 28 are switched to the cooling side.
  • the third heat medium flow switching device 28a opens the valve leading to the heat medium main pipe 4 connected to the upstream side of the pump 21a, and opens the heat medium main pipe upstream of the pump 21b. Close the valve leading to 4.
  • the third heat medium flow switching device 28b opens the valve leading to the heat medium main pipe 4 connected to the output side of the first heat medium heat exchanger 20a, and the output side of the second heat medium heat exchanger 20b. A valve leading to the connected main heat medium pipe 4 is closed.
  • the first heat medium flow switching device 25a to the first heat medium flow switching device 25c and the second heat medium flow switching device 26a to the second heat medium flow switching device 26c are controlled, and indoor heat exchange with cooling demand
  • the heat medium that has flowed into the unit 30a to the indoor heat exchanger 30c absorbs heat from the indoor air.
  • the indoor air is cooled to cool the air-conditioned space.
  • the heat medium flow control devices 27a to 27c corresponding to the indoor heat exchangers 30a to 30c with no heat load are fully closed.
  • the heat medium flow rate adjusting devices 27a to 27c corresponding to the indoor heat exchangers 30a to 30c having a heat load adjust the opening degrees, and the heat loads at the indoor heat exchangers 30a to 30c are adjusted. adjust the
  • FIG. 6 is a circuit diagram showing the flow of refrigerant in the heating main operation mode of the air conditioner 100 according to Embodiment 1. As shown in FIG. In FIG. 6, a cooling load and a thermal load are generated in the indoor heat exchangers 30a to 30c, and the cooling load is less than the thermal load. In FIG. 6 , solid line arrows indicate the flow direction of the heat source side refrigerant, and broken line arrows indicate the flow direction of the heat medium.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 10 passes through the refrigerant flow switching device 11, the first connection pipe 15, and the first backflow prevention device 17b, and then from the outdoor unit 1. leak.
  • the high-temperature and high-pressure gas refrigerant flowing out of the outdoor unit 1 flows into the relay unit 2 through the refrigerant pipe 5a.
  • the refrigerant that has flowed into the relay unit 2 passes through the refrigerant flow switching device 24b and flows into the second heat medium heat exchanger 20b acting as a condenser. liquid refrigerant.
  • the high-pressure liquid refrigerant is expanded by the expansion device 22b to become a low-temperature, low-pressure two-phase refrigerant.
  • the two-phase refrigerant flows through the throttle device 22a into the first heat medium heat exchanger 20a acting as an evaporator.
  • the refrigerant flowing into the first heat medium heat exchanger 20a absorbs heat from the heat medium circulating in the heat medium circulation circuit B, and flows out of the relay unit 2 via the refrigerant flow switching device 24a.
  • FIG. 6 shows a case where the third heat medium heat exchanger 20c acts as a condenser and the refrigerant flow switching device 24c is switched to the heating side.
  • the high-temperature and high-pressure gas refrigerant flows through the refrigerant flow switching device 24c into the third heat medium heat exchanger 20c acting as a condenser.
  • the refrigerant that has flowed into the third heat medium heat exchanger 20c radiates heat to the heat medium circulating in the heat medium circulation circuit B and becomes a high-pressure liquid refrigerant.
  • the high-pressure liquid refrigerant is expanded by the expansion device 22c to become a low-temperature, low-pressure two-phase refrigerant.
  • the two-phase refrigerant flows through the throttle device 22a into the first heat medium heat exchanger 20a acting as an evaporator.
  • the refrigerant flowing into the first heat medium heat exchanger 20a absorbs heat from the heat medium circulating in the heat medium circulation circuit B, and flows out of the relay unit 2 via the refrigerant flow switching device 24a.
  • the refrigerant that has flowed out of the relay unit 2 flows into the outdoor unit 1 again through the refrigerant pipe 5b.
  • the refrigerant that has flowed into the outdoor unit 1 passes through the second connection pipe 16 and the first backflow prevention device 17b, flows into the heat source side heat exchanger 12 acting as an evaporator, absorbs heat from the surrounding air, and cools down to low temperature and low pressure.
  • gas refrigerant The gas refrigerant is sucked into the compressor 10 again through the refrigerant flow switching device 11 and the accumulator 13 .
  • the operation of the heat medium in the heat medium circulation circuit B, the operation of the pump 21, the first heat medium flow switching device 25, the second heat medium flow switching device 26, the heat medium flow control device 27, and the indoor heat exchanger 30 is the same as the cooling main operation mode.
  • the third heat medium flow switching device 28a and the third heat medium flow switching device 28b contrary to the cooling main operation mode, the second heat medium heat exchanger 20b side is opened, and the first heat medium heat exchanger is opened. 20a side is closed.
  • FIG. 7 is a diagram showing a flowchart for determining whether the third heat medium heat exchanger 20c is used for heating or cooling in the cooling/heating operation mode of the air conditioner 100 according to Embodiment 1.
  • the control device 50 controls the cooling load of the plurality of indoor units 3 and 3 is obtained (step S1).
  • the cooling load and heating load are capacities determined by the rating of the indoor unit 3 .
  • the cooling load and heating load may be obtained by comparing the temperature of the heat medium flowing out of the indoor unit 3 and the target temperature instead of the intake temperature.
  • step S2 it is determined whether the obtained cooling load is greater than the obtained heating load (step S2). If the cooling load is greater than the calculated heating load (YES in step S2), the third heat medium heat exchanger 20c is used for cooling. Specifically, the control device 50 switches the refrigerant flow switching device 24b, the third heat medium flow switching device 28a, and the third heat medium flow switching device 28b to the cooling side (step S3). On the other hand, if the cooling load is less than or equal to the heating load (NO in step S2), the third heat medium heat exchanger 20c is used for heating. Specifically, the control device 50 switches the refrigerant flow switching device 24b, the third heat medium flow switching device 28a, and the third heat medium flow switching device 28b to the heating side (step S4).
  • step S3 or step S4 the pump 21 is driven (step S5).
  • step S6 it is determined whether the detection time has elapsed since the cooling/heating operation mode was started (step S6). If it is the detection time (YES in step S6), the difference between the suction temperature and the target temperature of the indoor unit 3 is the largest in accordance with the operation mode of the indoor unit 3, and the third heat medium heat exchanger 20c is turned on. It is used for cooling or heating (step S7). After that, the process returns to the process of step S1. If it is not the detection time (NO in step S6), the determination in step S6 as to whether it is the detection time is continued.
  • FIG. 8 is a flowchart of a modified example for determining whether to use the third heat medium heat exchanger 20c for heating or cooling in the cooling/heating operation mode of the air conditioner 100 according to Embodiment 1.
  • FIG. 8 the description of steps that are the same as those in FIG. 7 will be omitted, and the different step S7_1 will be described here.
  • step S7_1 the first temperature difference, which is the difference in the first detection time between the suction temperature measured by the temperature sensor 40 and the target temperature of the indoor unit 3, the suction temperature measured by the temperature sensor 40, and the indoor unit 3
  • the second temperature difference which is the difference at the second detection time after the first detection time
  • the heat medium heat exchanger 20c is used for cooling or heating.
  • the second temperature difference at the second detection time after the first detection time is a small value with respect to the first temperature difference at the first detection time, and the first temperature difference and the second temperature difference increases.
  • the difference between the first temperature difference and the second temperature difference is small in the indoor unit 3 with insufficient cooling capacity or heating capacity. Therefore, in step S7_2, the third heat medium heat exchanger is operated in accordance with the operation mode of the indoor unit 3 in which the difference between the first temperature difference and the second temperature difference is the smallest, that is, the cooling capacity or the heating capacity is insufficient. 20c has been determined.
  • FIG. 9 is a flowchart of modification 2 for determining whether the third heat medium heat exchanger 20c is used for heating or cooling in the cooling/heating operation mode of the air conditioner 100 according to the first embodiment.
  • the description of steps that are the same as those in FIGS. 7 and 8 will be omitted, and the different step S7_2 will be described here.
  • the third heat medium heat exchanger 20c is used for cooling or heating according to the operation mode of the indoor unit 3 in which the difference between the suction temperature and the target temperature of the indoor unit 3 is the largest. (step S7).
  • step S7_2 it is determined whether the time condition is satisfied or whether the temperature difference between the target temperature and the intake temperature of the temperature sensor 40 is equal to or less than a specific threshold (step S7_2). If it is determined in step S7_2 that the time condition is not satisfied, or if it is determined that the temperature difference between the target temperature and the intake temperature of the temperature sensor 40 is not equal to or less than a specific threshold (NO in step S7_2), step S1 return to the process of
  • step S7_2 if it is determined in step S7_2 that the time condition is satisfied or if the temperature difference between the target temperature and the intake temperature of the temperature sensor 40 is determined to be greater than a specific threshold (YES in step S7_2), the temperature is determined to be higher than the specified threshold.
  • a specific threshold YES in step S7_2
  • the temperature is determined to be higher than the specified threshold.
  • step S7 the first control shown in step S7 is performed.
  • a use of the heat medium heat exchanger 20c is determined.
  • the time condition shown in step S7_2 is, for example, the elapsed time from the start of the first control in step S7.
  • step S7_1 determines the use of the third heat medium heat exchanger 20c.
  • the specific threshold value shown in step S7_2 can be a value common to each indoor unit 3 .
  • the air conditioner 100 according to Embodiment 1 when the cooling load is greater than the heating load, the third heat medium heat exchanger 20c is used for cooling, and when the cooling load is equal to or less than the heating load , the third heat medium heat exchanger 20c is used for heating.
  • the third heat medium heat exchanger 20c is used for heating.
  • the relay unit 2 incorporates three or more combinations of the pumps 21 and the heat medium heat exchangers 20, and according to the load on the indoor unit side, by using a plurality of pumps 21 on the high load side, Efficient operation can be performed accordingly. Furthermore, it is possible to eliminate the lack of ability (uncool and unwarm) and maintain comfort.
  • the heat medium heat exchanger 20 is selectively used for both cooling, heating, and cooling and heating during the cooling and heating mixed operation mode.
  • a third heat medium flow switching device 28 is connected to the heat medium circulation circuit B for both cooling and heating, and a refrigerant flow switching device 24 is connected to the heat source side refrigerant circulation circuit A to cool the heat medium heat exchanger 20. It is used separately for the side and the heating side. As a result, the capacity in the cooling/heating mixed operation mode is improved, and comfortable operation can be provided regardless of the load on the indoor unit 3.
  • FIG. 10 is a diagram showing the configuration of an air conditioner 100 according to Embodiment 2. As shown in FIG. The heat source side refrigerant circulation circuit A of the outdoor unit 1, the indoor unit 3, and the relay unit 2 is the same as in FIG. 2 of the first embodiment.
  • one pump 21 is provided upstream of each of the heat medium heat exchangers 20 .
  • two pumps 21 (pump 21a, pump 21b) are connected to three heat medium heat exchangers 20 (first heat medium heat exchanger 20a, second heat medium heat exchanger). 20b, third heat medium heat exchanger 20c), two pumps 21 convey the heat medium.
  • the third heat medium flow switching device 28 (the third heat medium flow switching device 28a, the third heat medium flow switching device 28b) is composed of a three-way valve or the like, and in the cooling/heating mixed operation mode, The flow of the heat medium in the heat medium circulation circuit B is switched according to the load of .
  • the third heat medium flow switching device 28a is located downstream of each of the pumps 21a and 21b and upstream of the third heat medium heat exchanger 20c.
  • the third heat medium flow switching device 28a flows the heat medium flowing into the pump 21a or the heat medium flowing into the pump 21b to the third heat medium heat exchanger 20c.
  • the third heat medium flow switching device 28b is provided downstream of the third heat medium heat exchanger 20c, and is downstream of each of the first heat medium heat exchanger 20a and the second heat medium heat exchanger 20b. connected to the side.
  • the third heat medium flow switching device 28b switches the heat medium output from the third heat medium heat exchanger 20c to the heat medium main pipe 4 on the output side of the first heat medium heat exchanger 20a or the second heat medium heat exchanger. 20b into the heat medium main pipe 4 on the output side.
  • the third heat medium flow switching device 28a and the third heat medium flow switching device 28b are switched to the cooling side, and the first heat medium flow switching device 28a and 28b are switched to the cooling side.
  • the heat exchanger 20a and the third heat medium heat exchanger 20c are arranged in parallel.
  • the cooling load of the indoor unit 3 is equal to or less than the heating load
  • the third heat medium flow switching device 28a and the third heat medium flow switching device 28b are switched to the heating side
  • the second heat medium heat exchanger 20b and the second heat medium heat exchanger 20b are switched to the heating side.
  • 3 and the heat medium heat exchanger 20c are arranged in parallel.
  • the heat medium heat exchanger 20, the expansion device 22, the refrigerant flow switching device 24, and the third heat medium flow switching device 28 may be three or more.
  • FIG. 11 is a diagram showing a flowchart for explaining the operation in the cooling/heating operation mode of the air conditioner 100 according to the second embodiment.
  • the control device 50 controls the cooling load of the plurality of indoor units 3 and 3 is obtained (step S21).
  • the cooling load and heating load are capacities determined by the rating of the indoor unit 3 .
  • step S22 it is determined whether the obtained cooling load is greater than the obtained heating load (step S22). If the cooling load is greater than the obtained heating load (YES in step S22), the control device 50 switches the third heat medium flow switching device 28a and the third heat medium flow switching device 28b to the cooling side (step S23). On the other hand, if the cooling load is equal to or less than the heating load (NO in step S22), the control device 50 switches the third heat medium flow switching device 28a and the third heat medium flow switching device 28b to the heating side (step S24). ).
  • step S25 it is determined whether the detection time has elapsed since the cooling/heating operation mode was started (step S25). If it is the detection time (YES in step S25), the difference between the suction temperature and the target temperature of the indoor unit 3 is the largest in accordance with the operation mode of the indoor unit 3, and the third heat medium heat exchanger 20c is turned on. It is used for cooling or heating (step S26). After that, the process returns to the process of step S21. If it is not the detection time (NO in step S25), the determination in step S25 as to whether it is the detection time is continued.
  • FIG. 12 is a flowchart of a modification that determines whether the third heat medium heat exchanger 20c is used for heating or cooling in the cooling/heating operation mode of the air conditioner 100 according to Embodiment 2.
  • FIG. 12 the description of steps that are the same as those in FIG. 11 will be omitted, and the different step S26_1 will be described here.
  • step S26_1 the difference in the first detection time between the suction temperature measured by the temperature sensor 40 and the target temperature of the indoor unit 3, and the difference between the suction temperature measured by the temperature sensor 40 and the target temperature of the indoor unit 3 are detected.
  • the third heat medium heat exchanger 20c is used for cooling or heating according to the operation mode of the indoor unit 3 among the plurality of indoor units 3 in which the difference from the difference at the second detection time after the first detection time is the smallest. use as After that, the process returns to the process of step S21.
  • the air conditioner 100 according to Embodiment 2 compared to the air conditioner 100 according to Embodiment 1, it is possible to reduce the number of pumps 21 and reduce costs. Moreover, according to the air conditioner 100 according to Embodiment 2, even when the load is unbalanced, efficient operation can be performed according to the cooling or heating load, and comfort can be maintained on the load side.
  • FIG. 13 is a diagram showing the configuration of an air conditioner 100 according to Embodiment 3. As shown in FIG. The outdoor unit 1 and the indoor unit 3 are the same as in FIG. 2 of the first embodiment.
  • Embodiment 1 as shown in FIG. 2, a third heat medium heat exchanger 20c, an expansion device 22c, and a refrigerant flow switching device 24c are provided.
  • Embodiment 3 as shown in FIG. 13, the third heat medium heat exchanger 20c, expansion device 22c, and refrigerant flow switching device 24c are not provided.
  • the third heat medium flow switching device 28a is provided on the upstream side of each of the pumps 21a and 21b, and between the first heat medium heat exchanger 20a, the second heat medium heat exchanger 20b, and the second heat medium heat exchanger 20b. It is connected to the upstream heat medium main pipe 4 .
  • the third heat medium flow switching device 28a allows the heat medium flowing into the pump 21a or the heat medium flowing into the pump 21b to flow to the pump 21c.
  • the third heat medium flow switching device 28b is connected to the heat medium main pipe 4 on the downstream side of the pump 21c, and is connected to the heat medium main pipes 4 on the downstream side of the pumps 21a and 21b.
  • the third heat medium flow switching device 28b switches the heat medium flowing from the pump 21 to the heat medium main pipe 4 on the inflow side of the first heat medium heat exchanger 20a or the heat medium on the inflow side of the second heat medium heat exchanger 20b. It flows into the main pipe 4.
  • the pump 21a is provided in the main heat medium pipe 4 on the upstream side of the first heat medium heat exchanger 20a.
  • the pump 21b is provided in the main heat medium pipe 4 on the upstream side of the second heat medium heat exchanger 20b.
  • the pump 21c is provided in the main heat medium pipe 4 between the third heat medium flow switching device 28a and the third heat medium flow switching device 28b.
  • the third heat medium flow switching device 28a and the third heat medium flow switching device 28b are switched to the cooling side, and the pump 21a and the pump 21c are parallel.
  • the cooling load of the indoor unit 3 is equal to or less than the heating load
  • the third heat medium flow switching device 28a and the third heat medium flow switching device 28b are switched to the heating side, and the pumps 21b and 21c are connected in parallel.
  • the heat medium heat exchanger 20, the expansion device 22, the refrigerant flow switching device 24, and the third heat medium flow switching device 28 may be three or more.
  • FIG. 14 is a diagram showing a flowchart for explaining the operation in the cooling/heating operation mode of the air conditioner 100 according to the third embodiment.
  • the control device 50 controls the cooling load of the plurality of indoor units 3 and 3 is obtained (step S31).
  • the cooling load and heating load are capacities determined by the rating of the indoor unit 3 .
  • step S32 it is determined whether the obtained cooling load is greater than the obtained heating load (step S32). If the cooling load is greater than the obtained heating load (YES in step S32), the control device 50 switches the third heat medium flow switching device 28a and the third heat medium flow switching device 28b to the cooling side (step S33). On the other hand, if the cooling load is less than or equal to the heating load (NO in step S32), the control device 50 switches the third heat medium flow switching device 28a and the third heat medium flow switching device 28b to the heating side (step S34). ).
  • step S33 or step S34 the pump 21 is driven (step S35).
  • step S36 it is determined whether the detection time has elapsed since the cooling/heating operation mode was started (step S36). If it is the detection time (YES in step S36), the difference between the suction temperature and the target temperature of the indoor unit 3 is the largest, and the third heat medium heat exchanger 20c is operated according to the operation mode of the indoor unit 3. It is used for cooling or heating (step S37). After that, the process returns to the process of step S31. If it is not the detection time (NO in step S36), the determination in step S36 as to whether it is the detection time is continued.
  • FIG. 15 is a flowchart of a modification that determines whether the third heat medium heat exchanger 20c is used for heating or cooling in the cooling/heating operation mode of the air conditioner 100 according to Embodiment 3.
  • FIG. 15 the description of steps that are the same as those in FIG. 14 is omitted, and the different step S37_1 will be described here.
  • step S37_1 the difference in the first detection time between the suction temperature measured by the temperature sensor 40 and the target temperature of the indoor unit 3, and the difference between the suction temperature measured by the temperature sensor 40 and the target temperature of the indoor unit 3
  • the third heat medium heat exchanger 20c is used for cooling or heating according to the operation mode of the indoor unit 3 among the plurality of indoor units 3 in which the difference from the difference at the second detection time after the first detection time is the smallest. use as After that, the process returns to the process of step S31.
  • the number of the heat medium heat exchangers 20 is reduced to reduce the cost, and even when the load is unbalanced, efficient operation according to the cooling or heating load is performed. and maintain comfort on the load side.
  • the third heat medium flow switching device 28a is also called an upstream heat medium flow switching device, and the third heat medium flow switching device 28b is also called a downstream heat medium flow switching device.
  • the pump 21a is also called a first pump, the pump 21b is called a second pump, and the pump 21c is called a third pump.
  • Embodiments 1 to 3 the case where there are two refrigerant pipes 5 flowing from the outdoor unit 1 to the indoor unit 3 has been described.
  • the idea of controlling the heat medium heat exchanger 20 of the air conditioner 100 according to Embodiments 1 to 3 is to provide a forward pipe and a return pipe for cooling and a forward pipe and a return pipe for heating. It is also applicable to the air conditioner 100 using a tube chiller. Similarly, it can be applied to the air conditioner 100 for buildings using a three-pipe chiller.

Abstract

In this air-conditioning device, indoor units each comprise a temperature sensor that measures a first temperature, which is a temperature of air for exchanging heat with a heat medium using an indoor heat exchanger, and a control device performs first control in a cooling/heating mixed operation mode in which a third heat-medium heat exchanger is used for cooling if an indoor unit having the largest difference between the first temperature measured by the temperature sensor and a target temperature of the indoor unit is performing a cooling operation, and the third heat-medium heat exchanger is used for heating if the indoor unit having the largest difference thereof is performing a heating operation.

Description

空気調和装置air conditioner
 本開示は、冷房及び暖房の混在運転可能な空気調和装置に関する。 The present disclosure relates to an air conditioner capable of mixed cooling and heating operation.
 室外ユニットと中継ユニットとの間を配管接続して熱源側冷媒を循環させる冷媒循環回路と、中継ユニットと室内ユニットとの間を配管接続して屋内側冷媒である熱媒体を循環させる熱媒体循環回路とを有する空気調和装置がある。上記のような空気調和装置においては、特許文献1に示すように、中継ユニット内に熱源側冷媒と熱媒体を熱交換する熱媒体熱交換器が2台及び熱媒体を室内ユニットに搬送するポンプが2台ある。 A refrigerant circulation circuit that connects the outdoor unit and the relay unit with piping to circulate the heat source side refrigerant, and a heat medium circulation circuit that connects the relay unit and the indoor unit with piping to circulate the heat medium that is the indoor side refrigerant. There is an air conditioner having a circuit. In the air conditioner as described above, as shown in Patent Document 1, two heat medium heat exchangers that exchange heat between the heat source side refrigerant and the heat medium are provided in the relay unit, and a pump that conveys the heat medium to the indoor unit. There are two
 特許文献1では、冷房と暖房の混在運転時には、冷房側で使用する熱媒体熱交換器及びその熱媒体を搬送するポンプを有する1つの熱媒体循環回路と、暖房側で使用する熱媒体熱交換器及びその熱媒体を搬送するポンプとを有する1つの熱媒体循環回路とがある。 In Patent Document 1, during mixed operation of cooling and heating, one heat medium circulation circuit having a heat medium heat exchanger used on the cooling side and a pump that conveys the heat medium, and a heat medium heat exchange used on the heating side There is one heat carrier circulation circuit comprising a vessel and a pump for conveying the heat carrier.
特許第6095764号公報Japanese Patent No. 6095764
 従来の空気調和装置では、冷房と暖房の混在運転時において、冷房又は暖房のいずれかの負荷が大きい負荷アンバランス時は、冷房又は暖房において使用できる熱媒体熱交換器及びポンプの組合せが1台ずつのため、高負荷側は能力が不足し、低負荷側は能力が過剰となる。 In conventional air conditioners, during mixed operation of cooling and heating, when the load of either cooling or heating is large and the load is unbalanced, only one combination of heat medium heat exchanger and pump can be used for cooling or heating. Therefore, the capacity of the high load side is insufficient, and the capacity of the low load side is excessive.
 従って、冷房又は暖房負荷に応じた効率の良い運転ができず、かつ、室内ユニット側においては能力不足により快適性が損なわれ易い。 Therefore, efficient operation according to the cooling or heating load cannot be performed, and comfort is likely to be impaired due to insufficient capacity on the indoor unit side.
 本開示は、上記実情に鑑みてなされたものであり、負荷アンバランス時においても、冷房又は暖房負荷に応じた効率の良い運転を行なうことができ、かつ、室内ユニット側において快適性を維持できる空気調和装置を提供することを目的とする。 The present disclosure has been made in view of the above circumstances, and enables efficient operation according to the cooling or heating load even during load imbalance, and maintains comfort on the indoor unit side. An object of the present invention is to provide an air conditioner.
 本開示に係る空気調和装置は、圧縮機を有し、前記圧縮機により圧縮された冷媒を冷媒配管に出力する室外ユニットと、前記室外ユニットと前記冷媒配管により接続され、前記冷媒配管を流れる前記冷媒と熱媒体主配管を流れる熱媒体との間で熱交換させる中継ユニットと、前記中継ユニットの前記熱媒体主配管に熱媒体枝配管を介して接続された室内熱交換器を有する室内ユニットと、前記室外ユニット、前記中継ユニット及び前記室内ユニットを制御する制御装置とを具備し、前記中継ユニットは、前記室外ユニットから前記冷媒配管に出力された冷媒と、前記熱媒体主配管に流れる熱媒体との熱交換を行なう第1熱媒体熱交換器と、前記室外ユニットから前記冷媒配管に出力された冷媒と、前記熱媒体主配管に流れる熱媒体との熱交換を行なう第2熱媒体熱交換器と、前記室外ユニットから前記冷媒配管に出力された冷媒と、前記熱媒体主配管に流れる熱媒体との熱交換を行なう第3熱媒体熱交換器とを具備し、前記室内ユニットは複数であり、前記制御装置は、冷房暖房混在運転モードにおいて、前記複数の室内ユニットの冷房負荷と、前記複数の室内ユニットの暖房負荷とを求め、前記求められた冷房負荷が、前記求められた暖房負荷よりも大きい場合、前記第3熱媒体熱交換器を冷房用として使用し、前記求められた冷房負荷が、前記暖房負荷以下の場合、前記第3熱媒体熱交換器を暖房用として使用し、前記室内ユニットは、前記室内熱交換器で前記熱媒体と熱交換する空気の温度である第1温度を測定する温度センサを備え、前記制御装置は、前記冷房暖房混在運転モードにおいて、前記温度センサにより測定された前記第1温度と、前記室内ユニットの目標温度との差が、最も大きい前記室内ユニットが冷房運転を行なっている場合は、前記第3熱媒体熱交換器を冷房用として使用し、前記最も大きい前記室内ユニットが暖房運転を行なっている場合は、前記第3熱媒体熱交換器を暖房用として使用する第1制御を行なう。 An air conditioner according to the present disclosure includes a compressor, an outdoor unit that outputs a refrigerant compressed by the compressor to a refrigerant pipe, and the outdoor unit and the refrigerant pipe that flow through the refrigerant pipe. a relay unit for exchanging heat between a refrigerant and a heat medium flowing through a heat medium main pipe; and an indoor unit having an indoor heat exchanger connected to the heat medium main pipe of the relay unit via a heat medium branch pipe. , a controller for controlling the outdoor unit, the relay unit, and the indoor unit, wherein the relay unit controls the refrigerant output from the outdoor unit to the refrigerant pipe and the heat medium flowing through the heat medium main pipe. and a second heat medium heat exchanger that performs heat exchange between the refrigerant output from the outdoor unit to the refrigerant pipe and the heat medium flowing through the main heat medium pipe. and a third heat medium heat exchanger for exchanging heat between the refrigerant output from the outdoor unit to the refrigerant pipe and the heat medium flowing through the main heat medium pipe, wherein the indoor units are plural. wherein, in a cooling/heating mixed operation mode, the control device obtains the cooling load of the plurality of indoor units and the heating load of the plurality of indoor units, and the obtained cooling load is equal to the obtained heating load. If it is greater than, use the third heat medium heat exchanger for cooling, and if the obtained cooling load is equal to or less than the heating load, use the third heat medium heat exchanger for heating, The indoor unit includes a temperature sensor that measures a first temperature, which is the temperature of air heat-exchanging with the heat medium in the indoor heat exchanger, and the control device controls the temperature sensor in the cooling/heating mixed operation mode. When the indoor unit having the largest difference between the first temperature measured by and the target temperature of the indoor unit is performing cooling operation, the third heat medium heat exchanger is used for cooling. When the largest indoor unit is performing heating operation, first control is performed to use the third heat medium heat exchanger for heating.
 本開示によれば、冷房負荷が、暖房負荷よりも大きい場合、第3熱媒体熱交換器を冷房用として使用し、冷房負荷が、暖房負荷以下の場合、第3熱媒体熱交換器を暖房用として使用する。従って、室内ユニット側の負荷アンバランス時においても、冷房又は暖房負荷に応じた効率の良い運転を行なうことができ、かつ、室内ユニットにおいて快適性を維持できる。 According to the present disclosure, when the cooling load is greater than the heating load, the third heat medium heat exchanger is used for cooling, and when the cooling load is less than or equal to the heating load, the third heat medium heat exchanger is used for heating. use as Therefore, even when the load on the indoor unit side is unbalanced, efficient operation can be performed according to the cooling or heating load, and comfort can be maintained in the indoor unit.
実施形態1に係る空気調和装置の配置例を示す概略図である。1 is a schematic diagram showing an arrangement example of an air conditioner according to Embodiment 1. FIG. 実施形態1に係る空気調和装置の構成を示す図である。1 is a diagram showing the configuration of an air conditioner according to Embodiment 1. FIG. 実施形態1に係る空気調和装置の全冷房運転時の冷媒及び熱媒体の流れを示す回路図である。FIG. 2 is a circuit diagram showing flows of refrigerant and heat medium during cooling only operation of the air conditioner according to Embodiment 1; 実施形態1に係る空気調和装置の全暖運転時の冷媒及び熱媒体の流れを示す回路図である。3 is a circuit diagram showing the flows of refrigerant and heat medium during full-warm operation of the air conditioner according to Embodiment 1. FIG. 実施形態1に係る空気調和装置の冷房主体運転モード時の冷媒の流れを示す回路図である。FIG. 4 is a circuit diagram showing the flow of refrigerant in the cooling-main operation mode of the air conditioner according to Embodiment 1; 実施形態1に係る空気調和装置の暖房主体運転モード時の冷媒の流れを示す回路図である。FIG. 3 is a circuit diagram showing the flow of refrigerant in the heating main operation mode of the air conditioner according to Embodiment 1; 実施形態1に係る空気調和装置における冷房暖房運転モードにおいて第3熱媒体熱交換器を暖房用又は冷房用として使用するかを決めるフローチャートを示す図である。4 is a diagram showing a flowchart for determining whether to use the third heat medium heat exchanger for heating or cooling in the cooling/heating operation mode of the air conditioner according to Embodiment 1. FIG. 実施形態1に係る空気調和装置における冷房暖房運転モードにおいて第3熱媒体熱交換器を暖房用又は冷房用として使用するかを決める変形例のフローチャートである。4 is a flowchart of a modified example for determining whether to use the third heat medium heat exchanger for heating or cooling in the cooling/heating operation mode of the air conditioner according to Embodiment 1. FIG. 実施形態1に係る空気調和装置における冷房暖房運転モードにおいて第3熱媒体熱交換器を暖房用又は冷房用として使用するかを決める第2変形例のフローチャートである。4 is a flow chart of a second modified example for determining whether to use the third heat medium heat exchanger for heating or cooling in the cooling/heating operation mode of the air conditioner according to Embodiment 1. FIG. 実施形態2に係る空気調和装置の構成を示す図である。FIG. 3 is a diagram showing the configuration of an air conditioner according to Embodiment 2; 実施形態2に係る空気調和装置における冷房暖房運転モードにおける動作を説明するためのフローチャートを示す図である。FIG. 9 is a diagram showing a flowchart for explaining the operation in the cooling/heating operation mode of the air conditioner according to Embodiment 2; 実施形態2に係る空気調和装置における冷房暖房運転モードにおいて第3熱媒体熱交換器を暖房用又は冷房用として使用するかを決める変形例のフローチャートである。10 is a flowchart of a modification for determining whether to use the third heat medium heat exchanger for heating or cooling in the cooling/heating operation mode of the air conditioner according to Embodiment 2. FIG. 実施形態3に係る空気調和装置の構成を示す図である。FIG. 10 is a diagram showing the configuration of an air conditioner according to Embodiment 3; 実施形態3に係る空気調和装置における冷房暖房運転モードにおける動作を説明するためのフローチャートを示す図である。FIG. 10 is a diagram showing a flowchart for explaining the operation in the cooling/heating operation mode of the air conditioner according to Embodiment 3; 実施形態3に係る空気調和装置における冷房暖房運転モードにおいて第3熱媒体熱交換器を暖房用又は冷房用として使用するかを決める変形例のフローチャートである。10 is a flowchart of a modification for determining whether to use the third heat medium heat exchanger for heating or cooling in the cooling/heating operation mode of the air conditioner according to Embodiment 3. FIG.
 以下、図面を参照して、実施形態に係る空気調和装置について説明する。なお、図面において、同一の構成要素には同一符号を付して説明し、重複説明は必要な場合にのみ行なう。本開示は、以下の各実施形態で説明する構成のうち、組合せ可能な構成のあらゆる組合せを含み得る。 An air conditioner according to an embodiment will be described below with reference to the drawings. In the drawings, the same components are denoted by the same reference numerals, and redundant description is given only when necessary. The present disclosure may include any combination of configurations that can be combined among the configurations described in each of the following embodiments.
 また、各図において、同一の符号を付したものは、同一の又はこれに相当するものであり、これは明細書の全文において共通している。また、以下の実施形態では、複数設けられている構成要素については、当該構成要素の符号の末尾にローマ字を付加することで互いに区別する。複数の当該構成要素をまとめて説明する場合、又は、当該構成要素のうちの1つを代表として説明する場合には、ローマ字を付けずに説明を行うこととする。 Also, in each figure, the same reference numerals are the same or equivalent, and this is common throughout the specification. Further, in the following embodiments, a plurality of constituent elements are distinguished from each other by adding Roman letters to the end of the reference numerals of the constituent elements. When a plurality of constituent elements are collectively explained, or when one of the constituent elements is explained as a representative, the explanation will be given without using Roman letters.
実施形態1.
 図1は、実施形態1に係る空気調和装置100の配置例を示す概略図である。図1に基づいて、空気調和装置100の配置例について説明する。
Embodiment 1.
FIG. 1 is a schematic diagram showing an arrangement example of an air conditioner 100 according to Embodiment 1. FIG. An arrangement example of the air conditioner 100 will be described based on FIG. 1 .
 この空気調和装置100は、熱源側冷媒を循環させる冷凍サイクルである熱源側冷媒循環回路A(図2参照)及び熱媒体を循環させる冷凍サイクルである熱媒体循環回路B(図2参照)を有する。そして、室内ユニット3a、室内ユニット3b及び室内ユニット3cが、熱源側冷媒循環回路A及び熱媒体循環回路Bを利用することで、運転モードとして冷房モード、暖房モード又は冷暖房混在モードを自由に選択できるようになっている。図1では、3台の室内ユニット3を接続している空気調和装置100の全体を概略的に示している。なお、図1を含め、以下の図面では各構成部材の大きさの関係が実際のものとは異なる場合がある。 This air conditioner 100 has a heat source side refrigerant circulation circuit A (see FIG. 2), which is a refrigeration cycle for circulating a heat source side refrigerant, and a heat medium circulation circuit B (see FIG. 2), which is a refrigeration cycle for circulating a heat medium. . Then, the indoor unit 3a, the indoor unit 3b, and the indoor unit 3c use the heat source side refrigerant circulation circuit A and the heat medium circulation circuit B, so that the cooling mode, the heating mode, or the mixed cooling and heating mode can be freely selected as the operation mode. It's like FIG. 1 schematically shows an overall air conditioner 100 connecting three indoor units 3 . In addition, in the following drawings including FIG. 1, the size relationship of each component may differ from the actual size.
 図1においては、実施形態1に係る空気調和装置100は、熱源機である室外ユニット1と、3台の室内ユニット3と、室外ユニット1と室内ユニット3との間に介在する1台の中継ユニット2とを有している。中継ユニット2は、熱源側冷媒と熱媒体とで熱交換を行なう。室外ユニット1と中継ユニット2とは、熱源側冷媒を導通する冷媒配管5で接続されている。中継ユニット2と室内ユニット3aとは、熱媒体を導通する熱媒体枝配管6aで接続されている。中継ユニット2と室内ユニット3bとは、熱媒体を導通する熱媒体枝配管6bで接続されている。中継ユニット2と室内ユニット3cとは、熱媒体を導通する熱媒体枝配管6cで接続されている。そして、室外ユニット1で生成された冷熱又は温熱は、中継ユニット2を介して室内ユニット3に配送されるようになっている。 In FIG. 1, an air conditioner 100 according to Embodiment 1 includes an outdoor unit 1 which is a heat source, three indoor units 3, and one relay interposed between the outdoor unit 1 and the indoor unit 3. a unit 2; The relay unit 2 exchanges heat between the heat source side refrigerant and the heat medium. The outdoor unit 1 and the relay unit 2 are connected by a refrigerant pipe 5 that conducts the heat source side refrigerant. The relay unit 2 and the indoor unit 3a are connected by a heat medium branch pipe 6a that conducts the heat medium. The relay unit 2 and the indoor unit 3b are connected by a heat medium branch pipe 6b that conducts the heat medium. The relay unit 2 and the indoor unit 3c are connected by a heat medium branch pipe 6c that conducts the heat medium. Cold heat or heat generated in the outdoor unit 1 is delivered to the indoor unit 3 via the relay unit 2 .
 室外ユニット1は、通常、ビル等の建物9の外の屋上等の室外に配置され、中継ユニット2を介して室内ユニット3に冷熱又は温熱を供給する。室内ユニット3は、建物9の内部の居室等の室内空間7に冷房用空気又は暖房用空気を供給できる位置に配置され、空調対象である室内空間7に冷房用空気又は暖房用空気を供給する。中継ユニット2は、室外ユニット1及び室内ユニット3とは別筐体として、室外及び室内空間7とは別の位置に配置できるように構成されている。中継ユニット2は、室外ユニット1に冷媒配管5で接続され、室内ユニット3に熱媒体枝配管6で接続されている。中継ユニット2は、室外ユニット1から供給される冷熱又は温熱を室内ユニット3に伝達する。 The outdoor unit 1 is normally placed outdoors, such as on the roof of a building 9 such as a building, and supplies cold or hot heat to the indoor unit 3 via the relay unit 2 . The indoor unit 3 is arranged at a position capable of supplying cooling air or heating air to an indoor space 7 such as a living room inside the building 9, and supplies cooling air or heating air to the indoor space 7 to be air-conditioned. . The relay unit 2 is configured as a separate housing from the outdoor unit 1 and the indoor unit 3 so that it can be arranged at a position separate from the outdoor and indoor spaces 7 . The relay unit 2 is connected to the outdoor unit 1 by a refrigerant pipe 5 and is connected to the indoor unit 3 by a heat medium branch pipe 6 . The relay unit 2 transfers cold heat or heat supplied from the outdoor unit 1 to the indoor unit 3 .
 実施形態1に係る空気調和装置100の動作を簡単に説明する。 The operation of the air conditioner 100 according to Embodiment 1 will be briefly described.
 熱源側冷媒は、室外ユニット1から中継ユニット2に冷媒配管5を通して搬送される。搬送された熱源側冷媒は、中継ユニット2内の熱媒体熱交換器20(図2参照)にて熱媒体と熱交換を行ない、熱媒体を加温又は冷却する。つまり、熱媒体熱交換器20で、温水又は冷水が作り出される。中継ユニット2にて作られた温水又は冷水は、室内ユニット3へ搬送される。室内ユニット3へ搬送された温水又は冷水は、室内ユニット3にて室内空間7に対する暖房運転又は冷房運転に供される。 The heat source side refrigerant is conveyed from the outdoor unit 1 to the relay unit 2 through the refrigerant pipe 5 . The transported heat source side refrigerant exchanges heat with the heat medium in the heat medium heat exchanger 20 (see FIG. 2) in the relay unit 2 to heat or cool the heat medium. That is, the heat medium heat exchanger 20 produces hot water or cold water. Hot water or cold water produced by the relay unit 2 is conveyed to the indoor unit 3 . The hot water or cold water conveyed to the indoor unit 3 is used for heating or cooling the indoor space 7 in the indoor unit 3 .
 熱源側冷媒としては、例えばR-22、R-134a、R-32等の単一冷媒、R-410A、R-404A等の擬似共沸混合冷媒、R-407C等の非共沸混合冷媒を含む。また、化学式内に二重結合を含む、CF3CF=CH2等の地球温暖化係数が比較的小さい値とされている冷媒及び冷媒の混合物を含む。さらに、CO、プロパン等の自然冷媒を用いることができる。熱媒体としては、例えば水、不凍液、水と不凍液との混合液、防食効果が高い添加剤と水との混合液等を用いることができる。 As the heat source side refrigerant, for example, single refrigerants such as R-22, R-134a and R-32, pseudo-azeotropic refrigerant mixtures such as R-410A and R-404A, and non-azeotropic refrigerant mixtures such as R-407C are used. include. It also includes refrigerants and refrigerant mixtures that have a relatively low global warming potential, such as CF3CF=CH2, which contain double bonds in their chemical formulas. In addition, natural refrigerants such as CO2 , propane, etc. can be used. As the heat medium, for example, water, an antifreeze solution, a mixed solution of water and an antifreeze solution, a mixed solution of an additive having a high anticorrosion effect and water, or the like can be used.
 図1に示すように、実施形態1に係る空気調和装置100においては、室外ユニット1と中継ユニット2とが2本の冷媒配管5を用いて接続されている。中継ユニット2と各室内ユニット3とが2本の熱媒体枝配管6を用いて接続されている。このように、実施形態1に係る空気調和装置100では、冷媒配管5及び熱媒体枝配管6を用いて室外ユニット1、室内ユニット3及び中継ユニット2を接続することにより、施工が容易となっている。 As shown in FIG. 1 , in the air conditioner 100 according to Embodiment 1, the outdoor unit 1 and the relay unit 2 are connected using two refrigerant pipes 5 . The relay unit 2 and each indoor unit 3 are connected using two heat medium branch pipes 6 . As described above, in the air conditioner 100 according to Embodiment 1, by connecting the outdoor unit 1, the indoor unit 3, and the relay unit 2 using the refrigerant pipe 5 and the heat medium branch pipe 6, construction is facilitated. there is
 なお、図1においては、中継ユニット2が、建物9の内部ではあるが室内空間7とは別の天井裏等の空間8に配置されている状態を例に示している。中継ユニット2の配置は、天井裏以外でも、室内空間7以外であり、屋外と何らかの通気がなされている場所であれば、どんな場所に配置してもよく、例えばエレベーター等がある共用場所で屋外と通気がなされている場所に配置することも可能である。また、中継ユニット2は、室外ユニット1の近傍に配置することもできる。ただし、中継ユニット2から室内ユニット3までの距離が長すぎると、熱媒体の搬送動力がかなり大きくなるため、省エネルギー化の効果は薄れることに留意が必要である。 Note that FIG. 1 shows an example in which the relay unit 2 is arranged in a space 8 such as a ceiling space, which is inside the building 9 but different from the indoor space 7 . The relay unit 2 may be placed in any place other than behind the ceiling or in the indoor space 7 as long as it is ventilated with the outdoors in some way. It is also possible to place it in a well-ventilated place. Also, the relay unit 2 can be arranged near the outdoor unit 1 . However, it should be noted that if the distance from the relay unit 2 to the indoor unit 3 is too long, the power for transporting the heat medium will be considerably increased, and the energy saving effect will be reduced.
 図1においては、室外ユニット1が室外に配置されている場合を例に示しているが、これに限定するものではない。例えば、室外ユニット1は、換気口付の機械室等の壁で囲まれた場所に配置しても良い。室外ユニット1は、排気ダクトで廃熱を建物9の外に排気できれば建物9の内部に配置しても良い。また、室外ユニット1は、水冷式の室外ユニット1を用いる場合にも建物9の内部に配置するようにしても良い。このような場所に室外ユニット1を配置するとしても、特段の問題が発生することはない。 In FIG. 1, the case where the outdoor unit 1 is arranged outdoors is shown as an example, but it is not limited to this. For example, the outdoor unit 1 may be placed in a place surrounded by walls such as a machine room with a ventilation port. The outdoor unit 1 may be arranged inside the building 9 if waste heat can be discharged outside the building 9 through an exhaust duct. The outdoor unit 1 may be arranged inside the building 9 even when the water-cooled outdoor unit 1 is used. Even if the outdoor unit 1 is arranged in such a place, no particular problem occurs.
 図1においては、室内ユニット3が天井カセット型である場合を例に示してあるが、これに限定するものではなく、天井埋込型又は天井吊下式等、室内空間7に直接又はダクト等により、暖房用空気又は冷房用空気を吹き出せるようになっていれば良い。 In FIG. 1, the case where the indoor unit 3 is a ceiling cassette type is shown as an example, but it is not limited to this. It is sufficient that the heating air or the cooling air can be blown out.
 さらに、室外ユニット1、室内ユニット3及び中継ユニット2の接続台数を図1に図示してある台数に限定するものではなく、実施形態1に係る空気調和装置100が配置される建物9に応じて台数を決定すれば良い。 Furthermore, the number of connected outdoor units 1, indoor units 3, and relay units 2 is not limited to the number shown in FIG. You have to decide the number of units.
 1台の室外ユニット1に対して複数台の中継ユニット2を接続する場合、その複数台の中継ユニット2をビル等の建物9における共用場所又は天井裏等の場所に点在して配置することができる。そうすることにより、各中継ユニット2内の熱媒体間熱交換器で空調負荷を賄うことができる。また、室内ユニット3を、各中継ユニット2内における熱媒体搬送装置の搬送許容範囲内の距離又は高さに配置することが可能であり、ビル等の建物9全体へ対しての配置が可能となる。 When a plurality of relay units 2 are connected to one outdoor unit 1, the plurality of relay units 2 can be scattered in a shared space in a building 9 such as a building or in a space such as the ceiling space. can be done. By doing so, the heat exchanger related to heat medium in each relay unit 2 can cover the air conditioning load. In addition, the indoor unit 3 can be arranged at a distance or height within the allowable transfer range of the heat medium transfer device in each relay unit 2, and can be arranged over the entire building 9 such as a building. Become.
 図2は、実施形態1に係る空気調和装置100の構成を示す図である。図2に基づいて、空気調和装置100が有する機器等の構成について説明する。 FIG. 2 is a diagram showing the configuration of the air conditioner 100 according to Embodiment 1. As shown in FIG. Based on FIG. 2, the configuration of the equipment and the like included in the air conditioner 100 will be described.
 空気調和装置100は、熱源側冷媒を循環させる熱源側冷媒循環回路A及び熱の授受、搬送等を行う、水等の熱媒体を循環させる熱媒体循環回路Bを備える。そして、冷房、暖房等により空気調和を行う。熱源側冷媒循環回路Aは、熱媒体循環回路B内の熱媒体を加熱又は冷却する熱源側装置として機能する。 The air conditioner 100 includes a heat source side refrigerant circulation circuit A that circulates a heat source side refrigerant, and a heat medium circulation circuit B that circulates a heat medium such as water that transfers and transfers heat. Then, air conditioning is performed by cooling, heating, or the like. The heat source side refrigerant circulation circuit A functions as a heat source side device that heats or cools the heat medium in the heat medium circulation circuit B.
 図2に示すように、空気調和装置100は、室外ユニット1、中継ユニット2及び室内ユニット3を有する。以下、室外ユニット1、中継ユニット2及び室内ユニット3について説明する。 As shown in FIG. 2, the air conditioner 100 has an outdoor unit 1, a relay unit 2 and an indoor unit 3. The outdoor unit 1, relay unit 2 and indoor unit 3 will be described below.
<室外ユニット1>
 室外ユニット1は、熱源側冷媒循環回路Aにおいて熱源側冷媒を循環させて熱を搬送し、中継ユニット2の熱媒体熱交換器20において、熱源側冷媒と熱媒体との熱交換を行わせるユニットである。室外ユニット1は、筐体内に、圧縮機10、冷媒流路切替装置11、熱源側熱交換器12、アキュムレータ13及び熱源側送風機14を有する。
<Outdoor unit 1>
The outdoor unit 1 conveys heat by circulating the heat source side refrigerant in the heat source side refrigerant circulation circuit A, and in the heat medium heat exchanger 20 of the relay unit 2, a unit that exchanges heat between the heat source side refrigerant and the heat medium. is. The outdoor unit 1 has a compressor 10, a refrigerant flow switching device 11, a heat source side heat exchanger 12, an accumulator 13, and a heat source side blower 14 in a housing.
 圧縮機10は、熱源側冷媒を吸入し、その熱源側冷媒を圧縮して高温及び高圧の状態にして熱源側冷媒循環回路Aに搬送するものであり、例えば容量制御可能なインバータ圧縮機等で構成すると良い。冷媒流路切替装置11は、全暖房運転モード時及び暖房主体運転モード時である暖房運転モード時における熱源側冷媒の流れと、全冷房運転モード時及び冷房主体運転モード時である冷房運転モード時における熱源側冷媒の流れとを切り替える。 The compressor 10 draws in the heat source side refrigerant, compresses the heat source side refrigerant to a high temperature and high pressure state, and conveys it to the heat source side refrigerant circulation circuit A. For example, it is an inverter compressor whose capacity is controllable. Good to configure. The refrigerant flow switching device 11 controls the flow of the heat source side refrigerant in the heating operation mode, which is the heating only operation mode and the heating main operation mode, and the cooling operation mode, which is the cooling only operation mode and the cooling main operation mode. and the flow of the heat source side refrigerant at.
 熱源側熱交換器12は、暖房運転時には蒸発器として機能し、冷房運転時には凝縮器として機能し、熱源側送風機14から供給される空気等の流体と熱源側冷媒との間で熱交換を行ない、その熱源側冷媒を蒸発ガス化又は凝縮液化する。アキュムレータ13は、圧縮機10の吸入側に設けられており、暖房運転時と冷房運転時との違いによる余剰冷媒、又は過渡的な運転の変化に対する余剰冷媒を蓄える。 The heat source side heat exchanger 12 functions as an evaporator during heating operation and as a condenser during cooling operation, and performs heat exchange between a fluid such as air supplied from the heat source side blower 14 and the heat source side refrigerant. , evaporates or condenses the heat source side refrigerant. The accumulator 13 is provided on the suction side of the compressor 10 and stores excess refrigerant due to differences between heating operation and cooling operation, or excess refrigerant due to transient changes in operation.
 室外ユニット1は、さらに、第1接続配管15、第2接続配管16、第1逆流防止装置17a、第1逆流防止装置17b、第1逆流防止装置17c及び第1逆流防止装置17dを有する。ここでは、第1逆流防止装置17a~第1逆流防止装置17dとして、逆止弁が用いられている。 The outdoor unit 1 further has a first connection pipe 15, a second connection pipe 16, a first backflow prevention device 17a, a first backflow prevention device 17b, a first backflow prevention device 17c, and a first backflow prevention device 17d. Here, check valves are used as the first backflow prevention devices 17a to 17d.
 第1逆流防止装置17aは、熱源側熱交換器12と中継ユニット2との間における冷媒配管5に設けられ、室外ユニット1から中継ユニット2への方向のみに熱源側冷媒の流れを許容する。第1逆流防止装置17aは、全暖房運転モード及び暖房主体運転モードの際に、第1接続配管15から熱源側熱交換器12に、高温及び高圧のガス冷媒が逆流することを防止する装置である。 The first backflow prevention device 17a is provided in the refrigerant pipe 5 between the heat source side heat exchanger 12 and the relay unit 2, and allows the heat source side refrigerant to flow only in the direction from the outdoor unit 1 to the relay unit 2. The first backflow prevention device 17a is a device that prevents the high-temperature and high-pressure gas refrigerant from flowing back from the first connection pipe 15 to the heat source side heat exchanger 12 in the heating only operation mode and the heating main operation mode. be.
 第1逆流防止装置17bは、第2接続配管16に設けられ、暖房運転時において中継ユニット2から戻ってきた熱源側冷媒を圧縮機10の吸入側に流通させる。第1逆流防止装置17bは、全冷房運転モード及び冷房主体運転モードの際に、第1接続配管15からアキュムレータ13に、高圧の液又は気液二相状態の冷媒が逆流することを防止する装置である。 The first backflow prevention device 17b is provided in the second connection pipe 16, and circulates the heat source side refrigerant returned from the relay unit 2 to the suction side of the compressor 10 during heating operation. The first backflow prevention device 17b is a device that prevents the high-pressure liquid or gas-liquid two-phase refrigerant from flowing back from the first connection pipe 15 to the accumulator 13 during the cooling-only operation mode and the cooling-main operation mode. is.
 第1逆流防止装置17cは、中継ユニット2と冷媒流路切替装置11との間における冷媒配管5に設けられ、中継ユニット2から室外ユニット1への方向のみに熱源側冷媒の流れを許容する。第1逆流防止装置17cは、全冷房運転モード及び冷房主体運転モードの際に、第2接続配管16からアキュムレータ13に、高圧の液又は気液二相状態の冷媒が逆流することを防止する装置である。 The first backflow prevention device 17c is provided in the refrigerant pipe 5 between the relay unit 2 and the refrigerant flow switching device 11, and allows the heat source side refrigerant to flow only in the direction from the relay unit 2 to the outdoor unit 1. The first backflow prevention device 17c is a device that prevents the high-pressure liquid or gas-liquid two-phase refrigerant from flowing back from the second connection pipe 16 to the accumulator 13 in the cooling only operation mode and the cooling main operation mode. is.
 第1逆流防止装置17dは、第1接続配管15に設けられ、暖房運転時において圧縮機10から吐出された熱源側冷媒を中継ユニット2に流通させる。第1逆流防止装置17dは、全暖房運転モード及び暖房主体運転モードの際に、圧縮機10の吐出側の流路から第2接続配管16に、高温及び高圧のガス冷媒が逆流することを防止する装置である。 The first backflow prevention device 17d is provided in the first connection pipe 15 and allows the heat source side refrigerant discharged from the compressor 10 to flow to the relay unit 2 during heating operation. The first backflow prevention device 17d prevents high-temperature and high-pressure gas refrigerant from flowing back from the flow path on the discharge side of the compressor 10 to the second connection pipe 16 during the heating-only operation mode and the heating-main operation mode. It is a device that
 このように、第1接続配管15、第2接続配管16及び第1逆流防止装置17a~第1逆流防止装置17dを設けることにより、室内ユニット3の要求する運転に関わらず、中継ユニット2に流入させる冷媒の流れを一定方向にすることができる。ここでは、第1逆流防止装置17a~第1逆流防止装置17dとして逆止弁が用いられているが、冷媒の逆流を防止できるものであれば良い。例えば、第1逆流防止装置17a~第1逆流防止装置17dとして、開閉装置、全閉機能を有する絞り装置等を用いることもできる。 Thus, by providing the first connection pipe 15, the second connection pipe 16, and the first backflow prevention device 17a to the first backflow prevention device 17d, the flow into the relay unit 2 regardless of the operation requested by the indoor unit 3. It is possible to make the flow of the cooling medium to be unidirectional. Here, check valves are used as the first backflow prevention devices 17a to 17d, but any device that can prevent backflow of the refrigerant may be used. For example, as the first backflow prevention device 17a to the first backflow prevention device 17d, an opening/closing device, a throttle device having a fully closing function, or the like can be used.
 第1接続配管15は、室外ユニット1内において、冷媒流路切替装置11と第1逆流防止装置17cとの間における冷媒配管5と、第1逆流防止装置17aと中継ユニット2との間における冷媒配管5と、を接続する。第2接続配管16は、室外ユニット1内において、第1逆流防止装置17cと中継ユニット2との間における冷媒配管5と、熱源側熱交換器12と第1逆流防止装置17aとの間における冷媒配管5と、を接続する。なお、図2では、第1接続配管15、第2接続配管16、第1逆流防止装置17a、第1逆流防止装置17b、第1逆流防止装置17c及び第1逆流防止装置17dを設けた場合を例に示した。しかし、これらに限定するものではなく、これらを必ずしも設ける必要はない。 In the outdoor unit 1, the first connection pipe 15 is the refrigerant pipe 5 between the refrigerant flow switching device 11 and the first backflow prevention device 17c, and the refrigerant pipe 5 between the first backflow prevention device 17a and the relay unit 2. and the pipe 5 are connected. In the outdoor unit 1, the second connection pipe 16 is the refrigerant pipe 5 between the first backflow prevention device 17c and the relay unit 2, and the refrigerant pipe 5 between the heat source side heat exchanger 12 and the first backflow prevention device 17a. and the pipe 5 are connected. 2, the first connection pipe 15, the second connection pipe 16, the first backflow prevention device 17a, the first backflow prevention device 17b, the first backflow prevention device 17c, and the first backflow prevention device 17d are provided. shown in the example. However, the present invention is not limited to these, and they do not necessarily have to be provided.
<室内ユニット3>
 室内ユニット3aには、室内熱交換器30aが搭載されている。室内ユニット3bには、室内熱交換器30bが搭載されている。室内ユニット3cには、室内熱交換器30cが搭載されている。
<Indoor unit 3>
An indoor heat exchanger 30a is mounted on the indoor unit 3a. An indoor heat exchanger 30b is mounted on the indoor unit 3b. An indoor heat exchanger 30c is mounted on the indoor unit 3c.
 室内熱交換器30aは、熱媒体枝配管6a_1を介して熱媒体主配管4に接続されている。室内熱交換器30aは、熱媒体枝配管6a_1により、第2熱媒体流路切替装置26aに接続されている。室内熱交換器30aには、温度センサ40aが設けられている。温度センサ40aは、室内熱交換器30aに設けられ、室内熱交換器30aに流入して室内熱交換器30aを流れる熱媒体と熱交換する空気の温度を測定する。温度センサ40aが測定する空気の温度を吸込み温度又は第1温度ともいう。また、室内熱交換器30aは、熱媒体枝配管6a_2により、熱媒体枝配管6a_2に設けられた熱媒体流量調整装置27aを介して、第1熱媒体流路切替装置25aに接続されている。室内熱交換器30bは、熱媒体枝配管6b_1を介して熱媒体主配管4に接続されている。室内熱交換器30bは、熱媒体枝配管6b_1により、第2熱媒体流路切替装置26bに接続されている。室内熱交換器30bには、温度センサ40bが設けられている。温度センサ40bは、室内熱交換器30bに設けられ、室内熱交換器30bに流入して室内熱交換器30bを流れる熱媒体と熱交換する空気の温度を測定する。温度センサ40bが測定する空気の温度を吸込み温度又は第1温度ともいう。また、室内熱交換器30bは、熱媒体枝配管6b_2により、熱媒体枝配管6b_2に設けられた熱媒体流量調整装置27bを介して、第1熱媒体流路切替装置25bに接続されている。室内熱交換器30cは、熱媒体枝配管6c_1を介して熱媒体主配管4に接続されている。室内熱交換器30cは、熱媒体枝配管6c_1により、第2熱媒体流路切替装置26cに接続されている。室内熱交換器30cには、温度センサ40cが設けられている。温度センサ40cは、室内熱交換器30cに設けられ、室内熱交換器30cに流入する空気の吸込み温度を測定する。また、室内熱交換器30cは、熱媒体枝配管6c_2により、熱媒体枝配管6c_2に設けられた熱媒体流量調整装置27cを介して、第1熱媒体流路切替装置25cに接続されている。 The indoor heat exchanger 30a is connected to the main heat medium pipe 4 via the heat medium branch pipe 6a_1. The indoor heat exchanger 30a is connected to the second heat medium flow switching device 26a by a heat medium branch pipe 6a_1. A temperature sensor 40a is provided in the indoor heat exchanger 30a. The temperature sensor 40a is provided in the indoor heat exchanger 30a, and measures the temperature of the air that flows into the indoor heat exchanger 30a and exchanges heat with the heat medium that flows through the indoor heat exchanger 30a. The temperature of the air measured by the temperature sensor 40a is also referred to as the intake temperature or the first temperature. Also, the indoor heat exchanger 30a is connected to the first heat medium flow switching device 25a by the heat medium branch pipe 6a_2 via the heat medium flow control device 27a provided in the heat medium branch pipe 6a_2. The indoor heat exchanger 30b is connected to the main heat medium pipe 4 via the heat medium branch pipe 6b_1. The indoor heat exchanger 30b is connected to the second heat medium flow switching device 26b by a heat medium branch pipe 6b_1. A temperature sensor 40b is provided in the indoor heat exchanger 30b. The temperature sensor 40b is provided in the indoor heat exchanger 30b, and measures the temperature of the air that flows into the indoor heat exchanger 30b and exchanges heat with the heat medium that flows through the indoor heat exchanger 30b. The temperature of the air measured by the temperature sensor 40b is also referred to as the intake temperature or the first temperature. Also, the indoor heat exchanger 30b is connected to the first heat medium flow switching device 25b by the heat medium branch pipe 6b_2 via the heat medium flow control device 27b provided in the heat medium branch pipe 6b_2. The indoor heat exchanger 30c is connected to the main heat medium pipe 4 via the heat medium branch pipe 6c_1. The indoor heat exchanger 30c is connected to the second heat medium flow switching device 26c by a heat medium branch pipe 6c_1. A temperature sensor 40c is provided in the indoor heat exchanger 30c. The temperature sensor 40c is provided in the indoor heat exchanger 30c and measures the intake temperature of the air flowing into the indoor heat exchanger 30c. Also, the indoor heat exchanger 30c is connected to the first heat medium flow switching device 25c by the heat medium branch pipe 6c_2 via the heat medium flow control device 27c provided in the heat medium branch pipe 6c_2.
 室内熱交換器30a~室内熱交換器30cは、図示省略のファン等の送風装置から供給される空気と熱媒体との間で熱交換を行ない、室内空間7に供給するための暖房用空気又は冷房用空気を生成する。 The indoor heat exchangers 30a to 30c exchange heat between air supplied from a blower such as a fan (not shown) and a heat medium, and supply heating air or air to the indoor space 7. Generate cooling air.
 また、室内ユニット3においては、図示省略のダクト等を室内熱交換器30a~室内熱交換器30cに付属するようにしている。そして、図示省略している送風装置を用いて室内空間7へ対してダクトを介して外気を取り入れ、換気を行うことも可能としている。 Further, in the indoor unit 3, ducts (not shown) are attached to the indoor heat exchangers 30a to 30c. A blower (not shown) can be used to take outside air into the indoor space 7 through a duct for ventilation.
 この図2では、3台の室内ユニット3が中継ユニット2に接続されている場合を例に示しており、紙面上側から室内ユニット3a、室内ユニット3b及び室内ユニット3cとして図示している。なお、図1と同様に、室内ユニット3の接続台数を図2に示す3台に限定するものではない。 FIG. 2 shows an example in which three indoor units 3 are connected to the relay unit 2, which are shown as indoor unit 3a, indoor unit 3b, and indoor unit 3c from the top of the paper. As in FIG. 1, the number of connected indoor units 3 is not limited to three as shown in FIG.
<中継ユニット2>
 中継ユニット2は、3台の熱媒体熱交換器20を有する。また、中継ユニット2の熱源側冷媒循環回路Aは、3台の絞り装置22、2台の開閉装置23、3台の冷媒流路切替装置24を有する。また、熱媒体循環回路Bは、3台のポンプ21、3台の第1熱媒体流路切替装置25、3台の第2熱媒体流路切替装置26、3台の熱媒体流量調整装置27及び2台の第3熱媒体流路切替装置28を有する。
<Relay unit 2>
The relay unit 2 has three heat medium heat exchangers 20 . Also, the heat source side refrigerant circulation circuit A of the relay unit 2 has three expansion devices 22 , two opening/closing devices 23 , and three refrigerant flow switching devices 24 . The heat medium circulation circuit B includes three pumps 21, three first heat medium flow switching devices 25, three second heat medium flow switching devices 26, and three heat medium flow rate adjusting devices 27. and two third heat medium flow switching devices 28 .
 3台の熱媒体熱交換器20は、熱源側冷媒と熱媒体との熱交換を行なう。3台の熱媒体熱交換器20は、凝縮器(放熱器)又は蒸発器として機能する。熱媒体熱交換器20は、第1熱媒体熱交換器20a、第2熱媒体熱交換器20b及び第3熱媒体熱交換器20cを有する。 The three heat medium heat exchangers 20 exchange heat between the heat source side refrigerant and the heat medium. The three heat medium heat exchangers 20 function as condensers (radiators) or evaporators. The heat medium heat exchanger 20 has a first heat medium heat exchanger 20a, a second heat medium heat exchanger 20b and a third heat medium heat exchanger 20c.
 第1熱媒体熱交換器20aは、熱源側冷媒循環回路Aにおける絞り装置22aと冷媒流路切替装置24aとの間に設けられており、冷房暖房混在運転モード時において熱媒体を冷却する熱交換器となる。第2熱媒体熱交換器20bは、熱源側冷媒循環回路Aにおける絞り装置22bと冷媒流路切替装置24bとの間に設けられており、冷房暖房混在運転モード時において、熱媒体を加熱する熱交換器となる。第3熱媒体熱交換器20cは、熱源側冷媒循環回路Aにおける絞り装置22cと冷媒流路切替装置24cとの間に設けられており、室内ユニット3の負荷又は能力を検知して、熱媒体を冷却又は加熱して、負荷を調整する熱交換器となる。 The first heat medium heat exchanger 20a is provided between the expansion device 22a and the refrigerant flow switching device 24a in the heat source side refrigerant circulation circuit A, and heat exchange for cooling the heat medium in the cooling/heating mixed operation mode. Become a vessel. The second heat medium heat exchanger 20b is provided between the throttle device 22b and the refrigerant flow switching device 24b in the heat source side refrigerant circulation circuit A, and heat that heats the heat medium is provided during the cooling and heating mixed operation mode. become an exchanger. The third heat medium heat exchanger 20c is provided between the expansion device 22c and the refrigerant flow switching device 24c in the heat source side refrigerant circulation circuit A, detects the load or capacity of the indoor unit 3, and is a heat exchanger that cools or heats and regulates the load.
 3台の絞り装置22は、減圧弁及び膨張弁としての機能を有し、熱源側冷媒を減圧して膨張させる。絞り装置22は、絞り装置22a、絞り装置22b及び絞り装置22cを有する。 The three expansion devices 22 function as pressure reducing valves and expansion valves, and reduce the pressure of the heat source side refrigerant to expand it. The diaphragm device 22 has a diaphragm device 22a, a diaphragm device 22b, and a diaphragm device 22c.
 絞り装置22aは、第1熱媒体熱交換器20aに接続され、全冷房運転モード転時の熱源側冷媒の流れにおいて第1熱媒体熱交換器20aの上流側に設けられている。絞り装置22bは、第2熱媒体熱交換器20bに接続され、全冷房運転モード時の熱源側冷媒の流れにおいて第2熱媒体熱交換器20bの上流側に設けられている。絞り装置22cは、第3熱媒体熱交換器20cに接続され、全冷房運転モード時の熱源側冷媒の流れにおいて第3熱媒体熱交換器20cの上流側に設けられている。3台の絞り装置22は、例えば、開度を制御することができる電子式膨張弁等で構成される。 The throttle device 22a is connected to the first heat medium heat exchanger 20a and provided upstream of the first heat medium heat exchanger 20a in the flow of the heat source side refrigerant during the cooling only operation mode. The expansion device 22b is connected to the second heat medium heat exchanger 20b and provided upstream of the second heat medium heat exchanger 20b in the flow of the heat source side refrigerant in the cooling only operation mode. The expansion device 22c is connected to the third heat medium heat exchanger 20c and provided upstream of the third heat medium heat exchanger 20c in the flow of the heat source side refrigerant in the cooling only operation mode. The three expansion devices 22 are composed of, for example, electronic expansion valves whose opening can be controlled.
 2台の開閉装置23は、二方弁等で構成されており、冷媒配管5を開閉する。開閉装置23は、開閉装置23a及び開閉装置23bを有する。開閉装置23aは、熱源側冷媒の流入口側における冷媒配管5aに設けられている。開閉装置23bは、熱源側冷媒の出口側を接続する冷媒配管5bに接続される。開閉装置23は、絞り装置のような電子式膨張弁でも良い。 The two opening/closing devices 23 are composed of two-way valves or the like, and open/close the refrigerant pipes 5 . The switchgear 23 has a switchgear 23a and a switchgear 23b. The opening/closing device 23a is provided in the refrigerant pipe 5a on the inlet side of the heat source side refrigerant. The opening/closing device 23b is connected to the refrigerant pipe 5b that connects the outlet side of the heat source side refrigerant. The opening/closing device 23 may be an electronic expansion valve such as a throttle device.
 3台の冷媒流路切替装置24は、四方弁等で構成され、運転モードに応じて熱源側冷媒の流れを切り替える。冷媒流路切替装置24は、冷媒流路切替装置24a、冷媒流路切替装置24b及び冷媒流路切替装置24cを有する。 The three refrigerant flow switching devices 24 are composed of four-way valves, etc., and switch the flow of the heat source side refrigerant according to the operation mode. The refrigerant flow switching device 24 has a refrigerant flow switching device 24a, a refrigerant flow switching device 24b, and a refrigerant flow switching device 24c.
 冷媒流路切替装置24aは、全冷房運転モード時の熱源側冷媒の流れにおいて第1熱媒体熱交換器20aの下流側に設けられている。冷媒流路切替装置24bは、全冷房運転モード時の熱源側冷媒の流れにおいて第2熱媒体熱交換器20bの下流側に設けられている。冷媒流路切替装置24cは、全冷房運転モード時の熱源側冷媒の流れにおいて第3熱媒体熱交換器20cの下流側に設けられている。また、冷媒流路切替装置24cは、冷房暖房混在運転モード時には、室内機の負荷又は能力検知して、能力不足側の運転の回路に切替えられる。 The refrigerant flow switching device 24a is provided downstream of the first heat medium heat exchanger 20a in the flow of the heat source side refrigerant during the cooling only operation mode. The refrigerant flow switching device 24b is provided downstream of the second heat medium heat exchanger 20b in the flow of the heat source side refrigerant during the cooling only operation mode. The refrigerant flow switching device 24c is provided downstream of the third heat medium heat exchanger 20c in the flow of the heat source side refrigerant during the cooling only operation mode. In addition, in the cooling/heating mixed operation mode, the refrigerant flow switching device 24c detects the load or capacity of the indoor unit and switches to a circuit for operation on the insufficient capacity side.
 次に、中継ユニット2における熱媒体循環回路Bについて説明する。 Next, the heat medium circulation circuit B in the relay unit 2 will be explained.
 3台のポンプ21は、熱媒体主配管4を導通する熱媒体を加圧して、熱媒体循環回路Bを循環させる。ポンプ21は、ポンプ21a、ポンプ21b及びポンプ21cを有する。 The three pumps 21 pressurize the heat medium passing through the heat medium main pipe 4 to circulate the heat medium circulation circuit B. The pump 21 has a pump 21a, a pump 21b and a pump 21c.
 ポンプ21aは、第1熱媒体熱交換器20aの上流側であり、第1熱媒体熱交換器20aと、第1熱媒体流路切替装置25及び第3熱媒体流路切替装置28aとの間における熱媒体主配管4に設けられている。ポンプ21bは、第2熱媒体熱交換器20bと、第1熱媒体流路切替装置25及び第3熱媒体流路切替装置28bとの間における熱媒体主配管4に設けられている。ポンプ21cは、第3熱媒体熱交換器20と、第3熱媒体流路切替装置28aとの間における熱媒体主配管4に設けられている。 The pump 21a is upstream of the first heat medium heat exchanger 20a, and between the first heat medium heat exchanger 20a and the first heat medium flow switching device 25 and the third heat medium flow switching device 28a. It is provided in the heat medium main pipe 4 in . The pump 21b is provided in the heat medium main pipe 4 between the second heat medium heat exchanger 20b and the first heat medium flow switching device 25 and the third heat medium flow switching device 28b. The pump 21c is provided in the main heat medium pipe 4 between the third heat medium heat exchanger 20 and the third heat medium flow switching device 28a.
 なお、ポンプ21cは、熱負荷に応じて、周波数が制御される。第1熱媒体熱交換器20a、第2熱媒体熱交換器20bで負荷を補える場合は、ポンプ21cを停止し、第3熱媒体熱交換器20cには熱媒体を流さないようにする。 The frequency of the pump 21c is controlled according to the heat load. When the load can be supplemented by the first heat medium heat exchanger 20a and the second heat medium heat exchanger 20b, the pump 21c is stopped and the heat medium is not allowed to flow through the third heat medium heat exchanger 20c.
 第1熱媒体流路切替装置25は、三方弁等で構成されており、熱媒体の流路を切り替える。第1熱媒体流路切替装置25は、第1熱媒体流路切替装置25a、第1熱媒体流路切替装置25b及び第1熱媒体流路切替装置25cを有する。 The first heat medium flow switching device 25 is composed of a three-way valve or the like, and switches the heat medium flow path. The first heat medium flow switching device 25 includes a first heat medium flow switching device 25a, a first heat medium flow switching device 25b, and a first heat medium flow switching device 25c.
 第1熱媒体流路切替装置25は、室内ユニット3の配置台数に応じた数量が設けられ、図2においては、3台設けられている。第1熱媒体流路切替装置25は、室内熱交換器30における熱媒体流路の出口側の熱媒体主配管4に設けられている。第1熱媒体流路切替装置25は、三方の流路のうち、1つが第1熱媒体熱交換器20aに接続される。また、他の1つが第2熱媒体熱交換器20bに接続される。そして、もう1つが熱媒体流量調整装置27に接続される。また、第1熱媒体流路切替装置25による熱媒体流路の切替には、一方から他方への完全な切替だけでなく、一方から他方への部分的な切替も含んでいるものとする。 The number of first heat medium flow switching devices 25 is provided according to the number of indoor units 3 arranged, and in FIG. 2, three units are provided. The first heat medium flow switching device 25 is provided in the heat medium main pipe 4 on the outlet side of the heat medium flow path in the indoor heat exchanger 30 . One of the three flow paths of the first heat medium flow switching device 25 is connected to the first heat medium heat exchanger 20a. Another one is connected to the second heat medium heat exchanger 20b. Another one is connected to the heat medium flow control device 27 . Further, switching of the heat medium flow paths by the first heat medium flow switching device 25 includes not only complete switching from one to the other but also partial switching from one to the other.
 第2熱媒体流路切替装置26は、三方弁等で構成されており、熱媒体の流路を切り替える。第2熱媒体流路切替装置26は、第2熱媒体流路切替装置26a、第2熱媒体流路切替装置26b及び第2熱媒体流路切替装置26cを有する。 The second heat medium flow switching device 26 is composed of a three-way valve or the like, and switches the heat medium flow path. The second heat medium flow switching device 26 has a second heat medium flow switching device 26a, a second heat medium flow switching device 26b, and a second heat medium flow switching device 26c.
 第2熱媒体流路切替装置26は、室内ユニット3の配置台数に応じた数量が設けられ、図2においては、3台設けられている。第2熱媒体流路切替装置26は、室内熱交換器30における熱媒体流路の入口側に設けられている。第2熱媒体流路切替装置26は、三方の流路の1つが第1熱媒体熱交換器20aに接続される。また、他の1つが第2熱媒体熱交換器20bに接続される。そして、もう1つが室内熱交換器30に接続される。また、第2熱媒体流路切替装置26による熱媒体流路の切替には、一方から他方への完全な切替だけでなく、一方から他方への部分的な切替も含んでいるものとする。 The number of the second heat medium flow switching devices 26 is provided according to the number of the indoor units 3 arranged, and in FIG. 2, three units are provided. The second heat medium flow switching device 26 is provided on the inlet side of the heat medium flow path in the indoor heat exchanger 30 . One of the three flow paths of the second heat medium flow switching device 26 is connected to the first heat medium heat exchanger 20a. Another one is connected to the second heat medium heat exchanger 20b. Another one is connected to the indoor heat exchanger 30 . In addition, the switching of the heat medium flow paths by the second heat medium flow switching device 26 includes not only complete switching from one to the other but also partial switching from one to the other.
 熱媒体流量調整装置27は、室内ユニット3に流れる熱媒体の流量を調整する装置である。熱媒体流量調整装置27は、熱媒体流量調整装置27a、熱媒体流量調整装置27b及び熱媒体流量調整装置27cを有する。 The heat medium flow rate adjusting device 27 is a device that adjusts the flow rate of the heat medium flowing through the indoor unit 3 . The heat medium flow control device 27 has a heat medium flow control device 27a, a heat medium flow control device 27b, and a heat medium flow control device 27c.
 熱媒体流量調整装置27は、開口面積を制御できる二方弁等で構成されており、熱媒体枝配管6に流れる流量を制御する。熱媒体流量調整装置27は、室内ユニット3の配置台数に応じた数量が設けられる。熱媒体流量調整装置27は、一端が室内熱交換器30に接続される。また、他方が第1熱媒体流路切替装置25に接続される。ここでは、熱媒体流量調整装置27は、室内熱交換器30における熱媒体流路の出口側に設けられている。ただし、熱媒体流量調整装置27が室内熱交換器30の熱媒体流路の入口側に設けられても良い。さらに、室内ユニット3において、停止及びサーモOFF等の負荷を必要としていないときは、熱媒体流量調整装置27を全閉にすることにより、室内ユニット3への熱媒体供給を止めることができる。これについては、以下で説明する他の運転モードでも同様である。 The heat medium flow rate adjusting device 27 is composed of a two-way valve or the like that can control the opening area, and controls the flow rate flowing through the heat medium branch pipes 6 . The number of heat medium flow control devices 27 is provided according to the number of indoor units 3 to be arranged. One end of the heat medium flow control device 27 is connected to the indoor heat exchanger 30 . The other is connected to the first heat medium flow switching device 25 . Here, the heat medium flow control device 27 is provided on the outlet side of the heat medium flow path in the indoor heat exchanger 30 . However, the heat medium flow control device 27 may be provided on the inlet side of the heat medium flow path of the indoor heat exchanger 30 . Further, in the indoor unit 3, when the load such as stoppage and thermo-OFF is not required, the heat medium supply to the indoor unit 3 can be stopped by fully closing the heat medium flow control device 27. This also applies to other operation modes described below.
 なお、第1熱媒体流路切替装置25又は第2熱媒体流路切替装置26において、熱媒体流量調整装置27の機能を付加したものを用いれば、熱媒体流量調整装置27を省略することも可能である。 If the first heat medium flow switching device 25 or the second heat medium flow switching device 26 is added with the function of the heat medium flow rate adjusting device 27, the heat medium flow rate adjusting device 27 may be omitted. It is possible.
 第3熱媒体流路切替装置28は、三方弁等で構成され、冷房暖房混在運転モード時の負荷に応じて、熱媒体循環回路Bでの熱媒体の流れを切り替える。第3熱媒体流路切替装置28は、第3熱媒体流路切替装置28a及び第3熱媒体流路切替装置28bを有する。 The third heat medium flow switching device 28 is composed of a three-way valve or the like, and switches the heat medium flow in the heat medium circulation circuit B according to the load during the cooling/heating mixed operation mode. The third heat medium flow switching device 28 has a third heat medium flow switching device 28a and a third heat medium flow switching device 28b.
 第3熱媒体流路切替装置28aは、ポンプ21cの上流側に設けられており、かつポンプ21a及びポンプ21bの上流側と接続されている。第3熱媒体流路切替装置28aは、ポンプ21aに流入する熱媒体又はポンプ21bに流入する熱媒体をポンプ21cを介して第3熱媒体熱交換器20cに流す。また、第3熱媒体流路切替装置28bは、第3熱媒体熱交換器20cの下流側に設けられており、第1熱媒体熱交換器20a及び第2熱媒体熱交換器20bの下流側と接続されている。第3熱媒体流路切替装置28bは、第3熱媒体熱交換器20cから出力した熱媒体を第1熱媒体熱交換器20aの出力側又は第2熱媒体熱交換器20bの出力側に流す。 The third heat medium flow switching device 28a is provided on the upstream side of the pump 21c and connected to the upstream sides of the pumps 21a and 21b. The third heat medium flow switching device 28a flows the heat medium flowing into the pump 21a or the heat medium flowing into the pump 21b to the third heat medium heat exchanger 20c via the pump 21c. Further, the third heat medium flow switching device 28b is provided downstream of the third heat medium heat exchanger 20c, and downstream of the first heat medium heat exchanger 20a and the second heat medium heat exchanger 20b. is connected with The third heat medium flow switching device 28b flows the heat medium output from the third heat medium heat exchanger 20c to the output side of the first heat medium heat exchanger 20a or the output side of the second heat medium heat exchanger 20b. .
 冷房暖房混在運転モード時に、室内ユニット3の冷房負荷が暖房負荷よりも大きい場合、第3熱媒体流路切替装置28a及び第3熱媒体流路切替装置28bは、冷房側に切り替わり、第1熱媒体熱交換器20aと第3熱媒体熱交換器20cとが並列になる。一方、室内ユニット3の冷房負荷が暖房負荷以下の場合、第3熱媒体流路切替装置28a及び第3熱媒体流路切替装置28aは、暖房側に切り替わり、第2熱媒体熱交換器20bと第3熱媒体熱交換器20cとが並列になる。 In the cooling/heating mixed operation mode, when the cooling load of the indoor unit 3 is greater than the heating load, the third heat medium flow switching device 28a and the third heat medium flow switching device 28b are switched to the cooling side, and the first heat The medium heat exchanger 20a and the third heat medium heat exchanger 20c are arranged in parallel. On the other hand, when the cooling load of the indoor unit 3 is equal to or less than the heating load, the third heat medium flow switching device 28a and the third heat medium flow switching device 28a are switched to the heating side, and the second heat medium heat exchanger 20b and 3rd heat-medium heat exchanger 20c becomes parallel.
 なお、中継ユニット2において、熱媒体熱交換器20、ポンプ21、絞り装置22、冷媒流路切替装置24及び第3熱媒体流路切替装置28は、3台以上あっても良い。 In addition, in the relay unit 2, the heat medium heat exchanger 20, the pump 21, the expansion device 22, the refrigerant flow switching device 24, and the third heat medium flow switching device 28 may be three or more.
 制御装置50は、空気調和装置100の動作を統括制御する。制御装置50は、実施形態1に係る処理の他、以下の制御を行なう。圧縮機10の駆動周波数、熱源側送風機14の回転数、冷媒流路切替装置11の切り替え、ポンプ21の駆動周波数、絞り装置22の開度、開閉装置23の開閉、冷媒流路切替装置24の冷媒流路の切替えの制御である。また、第1熱媒体流路切替装置25の冷媒流路の切替え、第2熱媒体流路切替装置26の冷媒流路の切替え、熱媒体流量調整装置27の熱媒体流量の調整、第3熱媒体流路切替装置28の冷媒流路の切替えの制御である。 The control device 50 centrally controls the operation of the air conditioner 100 . The control device 50 performs the following control in addition to the processing according to the first embodiment. The driving frequency of the compressor 10, the rotation speed of the heat source side blower 14, the switching of the refrigerant flow switching device 11, the driving frequency of the pump 21, the opening degree of the expansion device 22, the opening and closing of the opening and closing device 23, and the switching of the refrigerant flow switching device 24. This is control of switching of the refrigerant flow path. Also, switching of the refrigerant flow path of the first heat medium flow switching device 25, switching of the refrigerant flow path of the second heat medium flow switching device 26, adjustment of the heat medium flow rate of the heat medium flow control device 27, and adjustment of the heat medium flow rate of the heat medium flow control device 27. This is control of switching of the refrigerant flow path of the medium flow switching device 28 .
 なお、制御装置50が、室外ユニット1、室内ユニット3及び中継ユニット2とは別に搭載されている状態を例に示しているが、これに限定するものではなく、室外ユニット1、室内ユニット3及び中継ユニット2の少なくとも1つに搭載しても良い。また、各室外ユニット1、室内ユニット3及び中継ユニット2に通信可能に搭載するようにしても良い。 Although the control device 50 is mounted separately from the outdoor unit 1, the indoor unit 3, and the relay unit 2, it is not limited to this. It may be mounted on at least one of the relay units 2 . Also, it may be mounted on each of the outdoor unit 1, the indoor unit 3 and the relay unit 2 so as to be communicable.
 制御装置50の処理回路が専用のハードウェアである場合、処理回路は、例えば、単一回路、複合回路、ASIC(Application Specific Integrated Circuit)、FPGA(Field Programmable Gate Array)、又はこれらを組み合わせたものが該当する。処理回路が実現する各機能部のそれぞれを、個別のハードウェアで実現しても良いし、各機能部が一つのハードウェアで実現されても良い。制御装置50の処理回路がCPUの場合、処理回路が実行する各機能は、ソフトウェア、ファームウェア、又はソフトウェアとファームウェアとの組み合わせにより実現される。ソフトウェア及びファームウェアはプログラムとして記述され、制御装置50の記憶部に格納される。CPUは、記憶部に格納されたプログラムを読み出して実行することにより、処理回路の各機能を実現する。なお、処理回路の機能の一部を専用のハードウェアで実現し、一部をソフトウェア又はファームウェアで実現するようにしても良い。 When the processing circuit of the control device 50 is dedicated hardware, the processing circuit is, for example, a single circuit, a composite circuit, an ASIC (Application Specific Integrated Circuit), an FPGA (Field Programmable Gate Array), or a combination thereof. is applicable. Each functional unit implemented by the processing circuit may be implemented by separate hardware, or each functional unit may be implemented by one piece of hardware. When the processing circuit of the control device 50 is a CPU, each function executed by the processing circuit is implemented by software, firmware, or a combination of software and firmware. Software and firmware are written as programs and stored in the storage unit of the control device 50 . The CPU implements each function of the processing circuit by reading and executing the program stored in the storage unit. A part of the functions of the processing circuit may be realized by dedicated hardware, and a part thereof may be realized by software or firmware.
 熱媒体を導通する熱媒体主配管4は、第1熱媒体熱交換器20aに接続されるものと、第2熱媒体熱交換器20bに接続されるものと、第3熱媒体熱交換器20cに接続されるものとで構成されている。熱媒体主配管4は、中継ユニット2に接続される室内ユニット3の台数に応じて分岐(ここでは、各3分岐)されている。そして、熱媒体主配管4は、第1熱媒体流路切替装置25及び第2熱媒体流路切替装置26に接続されている。第1熱媒体流路切替装置25及び第2熱媒体流路切替装置26を制御することで、第1熱媒体熱交換器20a~第3熱媒体熱交換器20cからの熱媒体を室内熱交換器30に流入させるかを決定する。 The heat medium main pipes 4 that conduct the heat medium are connected to the first heat medium heat exchanger 20a, connected to the second heat medium heat exchanger 20b, and connected to the third heat medium heat exchanger 20c. connected to the The heat medium main pipe 4 is branched according to the number of indoor units 3 connected to the relay unit 2 (here, three branches each). The heat medium main pipe 4 is connected to the first heat medium flow switching device 25 and the second heat medium flow switching device 26 . By controlling the first heat medium flow switching device 25 and the second heat medium flow switching device 26, the heat medium from the first heat medium heat exchanger 20a to the third heat medium heat exchanger 20c is subjected to indoor heat exchange. determines whether to flow into the vessel 30.
 空気調和装置100では、圧縮機10、冷媒流路切替装置11、熱源側熱交換器12、開閉装置23、冷媒流路切替装置24、熱媒体熱交換器20、絞り装置22及びアキュムレータ13を、冷媒配管5で接続して熱源側冷媒循環回路Aを構成している。 In the air conditioner 100, the compressor 10, the refrigerant flow switching device 11, the heat source side heat exchanger 12, the switching device 23, the refrigerant flow switching device 24, the heat medium heat exchanger 20, the expansion device 22, and the accumulator 13, A heat source side refrigerant circulation circuit A is configured by connecting with a refrigerant pipe 5 .
 また、熱媒体熱交換器20、ポンプ21、第1熱媒体流路切替装置25、熱媒体流量調整装置27、室内熱交換器30、第2熱媒体流路切替装置26及び第3熱媒体流路切替装置28を、熱媒体主配管4で接続して熱媒体循環回路Bを構成している。つまり、熱媒体熱交換器20のそれぞれに複数台の室内熱交換器30が並列に接続され、熱媒体循環回路Bを複数系統としている。 Also, the heat medium heat exchanger 20, the pump 21, the first heat medium flow switching device 25, the heat medium flow rate adjusting device 27, the indoor heat exchanger 30, the second heat medium flow switching device 26, and the third heat medium flow A heat medium circulation circuit B is configured by connecting the path switching device 28 with the heat medium main pipe 4 . That is, a plurality of indoor heat exchangers 30 are connected in parallel to each of the heat medium heat exchangers 20, and the heat medium circulation circuit B is configured as a plurality of systems.
 空気調和装置100では、第1熱媒体熱交換器20a、第2熱媒体熱交換器20b及び第3熱媒体熱交換器20cで熱源側冷媒循環回路Aを循環する熱源側冷媒と熱媒体循環回路Bを循環する熱媒体とが熱交換するようになっている。このような構成を用いることで、空気調和装置100は、室内負荷に応じた最適な冷房運転又は暖房運転を実現することができる。 In the air conditioner 100, the heat source side refrigerant circulating in the heat source side refrigerant circulation circuit A in the first heat medium heat exchanger 20a, the second heat medium heat exchanger 20b, and the third heat medium heat exchanger 20c and the heat medium circulation circuit A heat medium circulating through B exchanges heat. By using such a configuration, the air conditioner 100 can realize the optimum cooling operation or heating operation according to the indoor load.
<運転モード>
 空気調和装置100が実行する各運転モードについて説明する。この空気調和装置100は、各室内ユニット3からの指示に基づいて、その室内ユニット3で冷房運転又は暖房運転が可能になっている。つまり、空気調和装置100は、室内ユニット3の全部で同一運転をすることができ、室内ユニット3のそれぞれで異なる運転をすることができる。
<Driving mode>
Each operation mode executed by the air conditioner 100 will be described. This air conditioner 100 is capable of cooling operation or heating operation in each indoor unit 3 based on instructions from each indoor unit 3 . In other words, the air conditioner 100 can operate all of the indoor units 3 in the same manner, and can operate differently in each of the indoor units 3 .
 空気調和装置100が実行する運転モードには、全暖房運転モード、全冷房運転モード及び冷房暖房混在運転モードがある。全暖房運転モードは、駆動している室内ユニット3の全てが暖房運転を実行する。全冷房運転モードは、駆動している室内ユニット3の全てが冷房運転を実行する。 The operation modes executed by the air conditioner 100 include a heating only operation mode, a cooling only operation mode, and a cooling/heating mixed operation mode. In the heating only operation mode, all of the indoor units 3 that are being driven perform the heating operation. In the cooling only operation mode, all of the indoor units 3 that are being driven perform the cooling operation.
 冷房暖房混在運転モードには、冷房主体運転モード及び暖房主体運転モードがある。冷房主体運転モードは、冷房負荷の方が暖房負荷よりも大きい。暖房主体運転モードは、冷房負荷が暖房負荷以下である。以下に、各運転モードについて、熱源側冷媒及び熱媒体の流れとともについて説明する。
<全冷房運転モード>
 図3は、実施形態1に係る空気調和装置100の全冷房運転時の冷媒及び熱媒体の流れを示す回路図である。この図3では、室内熱交換器30a~室内熱交換器30cの全部で冷熱負荷が発生している場合を例に全冷房運転モードについて説明する。なお、図3では、熱源側冷媒の流れ方向を実線矢印で、熱媒体の流れ方向を破線矢印で示している。
The cooling/heating mixed operation mode includes a cooling main operation mode and a heating main operation mode. In the cooling main operation mode, the cooling load is larger than the heating load. In the heating-dominant operation mode, the cooling load is equal to or less than the heating load. Each operation mode will be described below together with the flow of the heat source side refrigerant and the heat medium.
<Cooling only operation mode>
FIG. 3 is a circuit diagram showing the flow of refrigerant and heat medium during cooling only operation of the air conditioner 100 according to Embodiment 1. As shown in FIG. In FIG. 3, the cooling only operation mode will be described by taking as an example the case where the cooling load is generated in all of the indoor heat exchangers 30a to 30c. In FIG. 3 , solid line arrows indicate the flow direction of the heat source side refrigerant, and broken line arrows indicate the flow direction of the heat medium.
 全冷房運転モードの場合、室外ユニット1では、冷媒流路切替装置11を、圧縮機10から吐出された熱源側冷媒を熱源側熱交換器12へ流入させるように切り替える。 In the case of the cooling only operation mode, the outdoor unit 1 switches the refrigerant flow switching device 11 so that the heat source side refrigerant discharged from the compressor 10 flows into the heat source side heat exchanger 12 .
 中継ユニット2では、ポンプ21a、ポンプ21b及びポンプ21cを駆動させ、熱媒体流量調整装置27a~熱媒体流量調整装置27cを開放する。また、第1熱媒体熱交換器20a、第2熱媒体熱交換器20b及び第3熱媒体熱交換器20cのそれぞれと室内熱交換器30a~室内熱交換器30cとの間を熱媒体が循環する。冷媒流路切替装置24a、冷媒流路切替装置24b及び冷媒流路切替装置24cは冷房側に切り替えられており、開閉装置23aは開、開閉装置23bは閉となっている。 In the relay unit 2, the pumps 21a, 21b, and 21c are driven, and the heat medium flow control devices 27a to 27c are opened. Further, the heat medium circulates between each of the first heat medium heat exchanger 20a, the second heat medium heat exchanger 20b, and the third heat medium heat exchanger 20c and the indoor heat exchangers 30a to 30c. do. The refrigerant flow switching device 24a, the refrigerant flow switching device 24b, and the refrigerant flow switching device 24c are switched to the cooling side, the switching device 23a is open, and the switching device 23b is closed.
 また、第1熱媒体流路切替装置25、第2熱媒体流路切替装置26及び第3熱媒体流路切替装置28は、各ポートの状態が、冷房側に切替えられている。ここで、冷房側への切替えとは、図3において、第1熱媒体流路切替装置25及び第2熱媒体流路切替装置26については、上側のポートが冷房側であり、左側のポートが暖房側となる。第3熱媒体流路切替装置28については、下側のポートが冷房側であり、上側のポートが暖房側となる。 Also, the state of each port of the first heat medium flow switching device 25, the second heat medium flow switching device 26, and the third heat medium flow switching device 28 is switched to the cooling side. Here, switching to the cooling side means that, in FIG. Heating side. As for the third heat medium flow switching device 28, the lower port is for the cooling side, and the upper port is for the heating side.
 まず始めに、熱源側冷媒循環回路Aにおける熱源側冷媒の流れについて説明する。 First, the flow of the heat source side refrigerant in the heat source side refrigerant circulation circuit A will be described.
 全冷房運転モード時は、圧縮機10から吐出された高温高圧のガス冷媒は、冷媒流路切替装置11を介して、熱源側熱交換器12へ流入する。熱源側熱交換器12へ流入した高温高圧のガス冷媒は、周囲の空気に放熱して凝縮液化し、高圧液冷媒となる。高圧液冷媒は、第1逆流防止装置17aを通って室外ユニット1から流出する。そして、高圧液冷媒は、冷媒配管5aを通って中継ユニット2に流入する。 During the cooling only operation mode, the high-temperature and high-pressure gas refrigerant discharged from the compressor 10 flows into the heat source side heat exchanger 12 via the refrigerant flow switching device 11 . The high-temperature and high-pressure gas refrigerant that has flowed into the heat source side heat exchanger 12 radiates heat to the surrounding air, condenses and liquefies to become a high-pressure liquid refrigerant. The high-pressure liquid refrigerant flows out of the outdoor unit 1 through the first backflow prevention device 17a. Then, the high-pressure liquid refrigerant flows into the relay unit 2 through the refrigerant pipe 5a.
 中継ユニット2に流入した冷媒は、開閉装置23aを通り、絞り装置22a、絞り装置22b及び絞り装置22cへ分岐される。分岐された冷媒は、絞り装置22a、絞り装置22b及び絞り装置22cで、膨張して低温低圧の二相冷媒となる。 The refrigerant that has flowed into the relay unit 2 passes through the opening/closing device 23a and is branched to the expansion device 22a, the expansion device 22b, and the expansion device 22c. The branched refrigerant expands in the expansion device 22a, the expansion device 22b, and the expansion device 22c to become a low-temperature, low-pressure two-phase refrigerant.
 絞り装置22aで膨張した低温低圧の二相冷媒は、蒸発器として作用する第1熱媒体熱交換器20aに流入する。絞り装置22bで膨張した低温低圧の二相冷媒は、蒸発器として作用する第2熱媒体熱交換器20bに流入する。絞り装置22cで膨張した低温低圧の二相冷媒は、蒸発器として作用する第3熱媒体熱交換器20cに流入する。 The low-temperature, low-pressure two-phase refrigerant expanded by the expansion device 22a flows into the first heat medium heat exchanger 20a that functions as an evaporator. The low-temperature, low-pressure two-phase refrigerant expanded by the expansion device 22b flows into the second heat medium heat exchanger 20b acting as an evaporator. The low-temperature, low-pressure two-phase refrigerant expanded by the expansion device 22c flows into the third heat medium heat exchanger 20c acting as an evaporator.
 第1熱媒体熱交換器20a~第3熱媒体熱交換器20cに流入した低温低圧の二相冷媒は、熱媒体循環回路Bを循環する熱媒体から吸熱し、低温低圧のガス冷媒となる。第1熱媒体熱交換器20aにおけるガス冷媒は、冷媒流路切替装置24aを介して中継ユニット2から流出する。第2熱媒体熱交換器20bにおけるガス冷媒は、冷媒流路切替装置24bを介して中継ユニット2から流出する。第3熱媒体熱交換器20cにおけるガス冷媒は、冷媒流路切替装置24cを介して中継ユニット2から流出する。 The low-temperature, low-pressure two-phase refrigerant that has flowed into the first heat medium heat exchanger 20a to the third heat medium heat exchanger 20c absorbs heat from the heat medium circulating in the heat medium circulation circuit B, and becomes a low-temperature, low-pressure gas refrigerant. The gas refrigerant in the first heat medium heat exchanger 20a flows out from the relay unit 2 via the refrigerant flow switching device 24a. The gas refrigerant in the second heat medium heat exchanger 20b flows out from the relay unit 2 via the refrigerant flow switching device 24b. The gas refrigerant in the third heat medium heat exchanger 20c flows out from the relay unit 2 via the refrigerant flow switching device 24c.
 そして、ガス冷媒は、冷媒配管5bを通って再び室外ユニット1へ流入する。室外ユニット1へ流入した冷媒は、第1逆流防止装置17cを通って、冷媒流路切替装置11及びアキュムレータ13を介して、圧縮機10へ再度吸入される。 Then, the gas refrigerant flows into the outdoor unit 1 again through the refrigerant pipe 5b. The refrigerant that has flowed into the outdoor unit 1 passes through the first backflow prevention device 17 c and is sucked into the compressor 10 again via the refrigerant flow switching device 11 and the accumulator 13 .
 次に、熱媒体循環回路Bにおける熱媒体の流れについて説明する。 Next, the flow of the heat medium in the heat medium circulation circuit B will be explained.
 全冷房運転モードでは、第1熱媒体熱交換器20a~第3熱媒体熱交換器20cで熱源側冷媒の冷熱が熱媒体に伝えられ、冷却された熱媒体がポンプ21で加圧されて流出する。流出した熱媒体は、熱媒体主配管4及び熱媒体枝配管6内を流動し、第2熱媒体流路切替装置26a~第2熱媒体流路切替装置26cを介して、室内熱交換器30a~室内熱交換器30cに流入する。そして、熱媒体が室内熱交換器30a~室内熱交換器30cで室内空気から吸熱することで、室内空間7の冷房を行う。 In the cooling only operation mode, cold heat of the heat source side refrigerant is transferred to the heat medium in the first heat medium heat exchanger 20a to the third heat medium heat exchanger 20c, and the cooled heat medium is pressurized by the pump 21 and flows out. do. The outflowing heat medium flows through the heat medium main pipe 4 and the heat medium branch pipe 6, passes through the second heat medium flow switching device 26a to the second heat medium flow switching device 26c, and enters the indoor heat exchanger 30a. ~ flows into the indoor heat exchanger 30c. Then, the indoor space 7 is cooled by the heat medium absorbing heat from the indoor air in the indoor heat exchangers 30a to 30c.
 それから、熱媒体は、室内熱交換器30a~室内熱交換器30cから流出して熱媒体流量調整装置27a~熱媒体流量調整装置27cに流入する。この時、熱媒体流量調整装置27a~熱媒体流量調整装置27cの作用によって熱媒体の流量他室内にて必要とされる空調負荷を賄うのに必要な流量に制御されて室内熱交換器30a~室内熱交換器30cに流入するようになっている。熱媒体流量調整装置27a~熱媒体流量調整装置27cから流出した熱媒体は、第1熱媒体流路切替装置25a~第1熱媒体流路切替装置25cを通って、ポンプ21a~ポンプ21cを介して、第1熱媒体熱交換器20a~第3熱媒体熱交換器20cへ流入する。第1熱媒体熱交換器20a~第3熱媒体熱交換器20cでは、室内ユニット3を通じて室内空間7から吸熱した分の熱量を冷媒側へ渡す。 Then, the heat medium flows out from the indoor heat exchangers 30a to 30c and flows into the heat medium flow rate adjusting devices 27a to 27c. At this time, due to the action of the heat medium flow rate adjusting devices 27a to 27c, the flow rate of the heat medium is controlled to the flow rate necessary to cover the air conditioning load required in the room other than the indoor heat exchangers 30a to 30c. It flows into the indoor heat exchanger 30c. The heat medium flowing out from the heat medium flow rate adjusting device 27a to the heat medium flow rate adjusting device 27c passes through the first heat medium flow switching device 25a to the first heat medium flow switching device 25c and then through the pumps 21a to 21c. and flows into the first heat medium heat exchanger 20a to the third heat medium heat exchanger 20c. In the first to third heat medium heat exchangers 20a to 20c, the amount of heat absorbed from the indoor space 7 through the indoor unit 3 is transferred to the refrigerant side.
 なお、熱負荷のない室内熱交換器30a~室内熱交換器30cに対応する熱媒体流量調整装置27a~熱媒体流量調整装置27cは全閉とする。また、熱負荷のある室内熱交換器30a~室内熱交換器30cに対応する熱媒体流量調整装置27a~熱媒体流量調整装置27cは開度を調整し、室内熱交換器30a~室内熱交換器30cでの熱負荷を調節する。 The heat medium flow control devices 27a to 27c corresponding to the indoor heat exchangers 30a to 30c with no heat load are fully closed. In addition, the heat medium flow control devices 27a to 27c corresponding to the indoor heat exchangers 30a to 30c having a heat load adjust the opening degrees, and the indoor heat exchangers 30a to 30c Adjust the heat load at 30c.
 この時、第1熱媒体流路切替装置25及び第2熱媒体流路切替装置26は、第1熱媒体熱交換器20a~第3熱媒体熱交換器20cへ流れる流路が確保されるように、中間的な開度に制御される。又は、第1熱媒体流路切替装置25及び第2熱媒体流路切替装置26は、第1熱媒体熱交換器20a~第3熱媒体熱交換器20cの出口の熱媒体温度に応じた開度に制御されている。 At this time, the first heat medium flow switching device 25 and the second heat medium flow switching device 26 are arranged so that the flow paths from the first heat medium heat exchanger 20a to the third heat medium heat exchanger 20c are secured. , the opening is controlled to an intermediate degree. Alternatively, the first heat medium flow switching device 25 and the second heat medium flow switching device 26 are opened according to the heat medium temperature at the outlets of the first heat medium heat exchanger 20a to the third heat medium heat exchanger 20c. controlled to a degree.
<全暖房運転モード>
 図4は、実施形態1に係る空気調和装置100の全暖運転時の冷媒及び熱媒体の流れを示す回路図である。この図4では、室内熱交換器30a~室内熱交換器30cの全部で温熱負荷が発生している場合を例に全暖房運転モードについて説明する。なお、図4では、熱源側冷媒の流れ方向を実線矢印で、熱媒体の流れ方向を破線矢印で示している。
<All heating operation mode>
FIG. 4 is a circuit diagram showing the flow of refrigerant and heat medium during full-warm operation of the air-conditioning apparatus 100 according to Embodiment 1. As shown in FIG. In FIG. 4, the heating only operation mode will be described by taking as an example a case where a thermal load is generated in all of the indoor heat exchangers 30a to 30c. In FIG. 4 , solid line arrows indicate the flow direction of the heat source side refrigerant, and broken line arrows indicate the flow direction of the heat medium.
 図4に示す全暖房運転モードの場合、室外ユニット1では、冷媒流路切替装置11を、圧縮機10から吐出された熱源側冷媒を熱源側熱交換器12を経由させずに中継ユニット2へ流入させるように切り替える。 In the case of the heating only operation mode shown in FIG. Switch to flow.
 中継ユニット2では、ポンプ21a、ポンプ21b及びポンプ21cを駆動させ、熱媒体流量調整装置27a~熱媒体流量調整装置27cを開放する。これにより、第1熱媒体熱交換器20a~第3熱媒体熱交換器20cのそれぞれと室内熱交換器30a~室内熱交換器30cとの間を熱媒体が循環するようにしている。また、冷媒流路切替装置24a、冷媒流路切替装置24b及び冷媒流路切替装置24cは暖房側に切り替えられており、開閉装置23aは閉、開閉装置23bは開となっている。 In the relay unit 2, the pumps 21a, 21b, and 21c are driven, and the heat medium flow control devices 27a to 27c are opened. This allows the heat medium to circulate between each of the first to third heat medium heat exchangers 20a to 20c and the indoor heat exchangers 30a to 30c. Further, the refrigerant flow switching device 24a, the refrigerant flow switching device 24b, and the refrigerant flow switching device 24c are switched to the heating side, the switching device 23a is closed, and the switching device 23b is open.
 また、第1熱媒体流路切替装置25、第2熱媒体流路切替装置26及び第3熱媒体流路切替装置28は、暖房側に切替えられている。ここで、暖房側への切替えとは、図3において、第1熱媒体流路切替装置25及び第2熱媒体流路切替装置26については、左側のポートが暖房側であり、上側のポートが冷房側となる。第3熱媒体流路切替装置28については、上側のポートが暖房側であり、下側のポートが冷房側となる。 Also, the first heat medium flow switching device 25, the second heat medium flow switching device 26, and the third heat medium flow switching device 28 are switched to the heating side. Here, switching to the heating side means that, in FIG. Cooling side. As for the third heat medium flow switching device 28, the upper port is for the heating side, and the lower port is for the cooling side.
 まず始めに、熱源側冷媒循環回路Aにおける熱源側冷媒の流れについて説明する。 First, the flow of the heat source side refrigerant in the heat source side refrigerant circulation circuit A will be described.
 全暖運転モード時は、圧縮機10から吐出された高温高圧のガス冷媒は、冷媒流路切替装置11を介して第1接続配管15、第1逆流防止装置17dを通り、室外ユニット1から流出する。そして、冷媒配管5aを通って中継ユニット2に流入する。 In the full-warm operation mode, the high-temperature and high-pressure gas refrigerant discharged from the compressor 10 passes through the first connection pipe 15 and the first backflow prevention device 17d via the refrigerant flow switching device 11, and flows out of the outdoor unit 1. do. Then, it flows into the relay unit 2 through the refrigerant pipe 5a.
 中継ユニット2に流入した冷媒は、冷媒流路切替装置24a、冷媒流路切替装置24b、及び冷媒流路切替装置24cを通って、第1熱媒体熱交換器20a、第2熱媒体熱交換器20b及び第3熱媒体熱交換器20cのそれぞれに流入する。第1熱媒体熱交換器20a、第2熱媒体熱交換器20b及び第3熱媒体熱交換器20cに流入した冷媒は、熱媒体循環回路Bを循環する熱媒体に放熱し、高圧の液冷媒となる。高圧の液冷媒は、絞り装置22a、絞り装置22b、及び絞り装置22cで膨張して低温低圧の二相冷媒となり、開閉装置23bを通って、中継ユニット2から流出する。そして、冷媒配管5を通って再び室外ユニット1へ流入する。 The refrigerant flowing into the relay unit 2 passes through the refrigerant flow switching device 24a, the refrigerant flow switching device 24b, and the refrigerant flow switching device 24c to the first heat medium heat exchanger 20a and the second heat medium heat exchanger. 20b and the third heat medium heat exchanger 20c. The refrigerant that has flowed into the first heat medium heat exchanger 20a, the second heat medium heat exchanger 20b, and the third heat medium heat exchanger 20c radiates heat to the heat medium circulating in the heat medium circulation circuit B, resulting in a high-pressure liquid refrigerant. becomes. The high-pressure liquid refrigerant expands in the expansion devices 22a, 22b, and 22c to become a low-temperature, low-pressure two-phase refrigerant, and flows out of the relay unit 2 through the opening/closing device 23b. Then, it flows into the outdoor unit 1 again through the refrigerant pipe 5 .
 室外ユニット1へ流入した冷媒は、第2接続配管16及び第1逆流防止装置17bを通り、蒸発器として作用する熱源側熱交換器12に流入し、周囲の空気から吸熱して、低温低圧のガス冷媒となる。ガス冷媒は、冷媒流路切替装置11及びアキュムレータ13を介して圧縮機10へ再度吸入される。 The refrigerant that has flowed into the outdoor unit 1 passes through the second connection pipe 16 and the first backflow prevention device 17b, flows into the heat source side heat exchanger 12 acting as an evaporator, absorbs heat from the surrounding air, and becomes a low-temperature low-pressure refrigerant. It becomes a gas refrigerant. The gas refrigerant is sucked into the compressor 10 again through the refrigerant flow switching device 11 and the accumulator 13 .
 なお、熱媒体循環回路Bにおける熱媒体の動作は、全冷房運転モードの場合と同じである。全暖房運転モードでは、第1熱媒体熱交換器20a~第3熱媒体熱交換器20cにおいて、熱媒体が冷媒によって加熱され、室内熱交換器30a~室内熱交換器30cで室内空気に放熱して、空調対象空間の暖房を行う。 Note that the operation of the heat medium in the heat medium circulation circuit B is the same as in the cooling only operation mode. In the heating only operation mode, the heat medium is heated by the refrigerant in the first heat medium heat exchanger 20a to the third heat medium heat exchanger 20c, and heat is released to the indoor air in the indoor heat exchangers 30a to 30c. to heat the air-conditioned space.
<冷房主体運転モード(冷房暖房混在運転モード)>
 図5は、実施形態1に係る空気調和装置100の冷房主体運転モード時の冷媒の流れを示す回路図である。この図5では、室内熱交換器30a~30cで冷熱負荷及び温熱負荷が発生し、冷熱負荷が温熱負荷よりも大きい場合の冷房暖房混在運転モードにおける冷房主体運転モードについて説明する。なお、図5では、熱源側冷媒の流れ方向を実線矢印で、熱媒体の流れ方向を破線矢印で示している。
<Cooling main operation mode (cooling/heating mixed operation mode)>
FIG. 5 is a circuit diagram showing the flow of refrigerant in the cooling main operation mode of the air conditioner 100 according to Embodiment 1. As shown in FIG. In FIG. 5, the cooling main operation mode in the cooling/heating mixed operation mode when the cold load and the thermal load are generated in the indoor heat exchangers 30a to 30c and the cold load is larger than the thermal load will be described. In FIG. 5 , solid line arrows indicate the flow direction of the heat source side refrigerant, and broken line arrows indicate the flow direction of the heat medium.
 冷房主体運転モード時は、圧縮機10から吐出された高温高圧のガス冷媒は、冷媒流路切替装置11を介して熱源側熱交換器12に流入する。熱源側熱交換器12に流入したガス冷媒は、周囲の空気に放熱して凝縮し、二相冷媒となり、第1逆流防止装置17aを通って、室外ユニット1から流出する。そして、室外ユニット1から流出した二相冷媒は、冷媒配管5aを通って中継ユニット2に流入する。 During the cooling main operation mode, the high-temperature and high-pressure gas refrigerant discharged from the compressor 10 flows into the heat source side heat exchanger 12 via the refrigerant flow switching device 11 . The gas refrigerant that has flowed into the heat source side heat exchanger 12 radiates heat to the surrounding air, condenses, becomes a two-phase refrigerant, and flows out of the outdoor unit 1 through the first backflow prevention device 17a. Then, the two-phase refrigerant flowing out of the outdoor unit 1 flows into the relay unit 2 through the refrigerant pipe 5a.
 中継ユニット2に流入した冷媒は、冷媒流路切替装置24bを通って凝縮器として作用する第2熱媒体熱交換器20bに流入し、熱媒体循環回路Bを循環する熱媒体に放熱して高圧の液冷媒となる。 The refrigerant that has flowed into the relay unit 2 passes through the refrigerant flow switching device 24b and flows into the second heat medium heat exchanger 20b acting as a condenser. liquid refrigerant.
 高圧の液冷媒は、絞り装置22bで膨張して低温低圧の二相冷媒となる。二相冷媒は、絞り装置22aを介して蒸発器として作用する第1熱媒体熱交換器20aに流入する。第1熱媒体熱交換器20aに流入した冷媒は、熱媒体循環回路Bを循環する熱媒体から吸熱して低圧のガス冷媒となり、冷媒流路切替装置24aを介して中継ユニット2から流出する。 The high-pressure liquid refrigerant is expanded by the expansion device 22b to become a low-temperature, low-pressure two-phase refrigerant. The two-phase refrigerant flows through the throttle device 22a into the first heat medium heat exchanger 20a acting as an evaporator. The refrigerant that has flowed into the first heat medium heat exchanger 20a absorbs heat from the heat medium circulating in the heat medium circulation circuit B, becomes a low-pressure gas refrigerant, and flows out of the relay unit 2 via the refrigerant flow switching device 24a.
 但し、熱負荷の状況に応じて、冷媒流路切替装置24cを切り替えて、第3熱媒体熱交換器20cで熱源側冷媒と熱交換する熱媒体を加熱するか、冷却するかを決める。図5では、第3熱媒体熱交換器20cが蒸発器として作用し、冷媒流路切替装置24cが冷房側に切替えられている場合を示している。この場合、二相冷媒は、絞り装置22cを介して蒸発器として作用する第3熱媒体熱交換器20cに流入する。第3熱媒体熱交換器20cに流入した冷媒は、熱媒体循環回路Bを循環する熱媒体から吸熱して低圧のガス冷媒となり、冷媒流路切替装置24cを介して中継ユニット2から流出する。 However, it is determined whether to heat or cool the heat medium that exchanges heat with the heat source side refrigerant in the third heat medium heat exchanger 20c by switching the refrigerant flow switching device 24c according to the heat load situation. FIG. 5 shows a case where the third heat medium heat exchanger 20c acts as an evaporator and the refrigerant flow switching device 24c is switched to the cooling side. In this case, the two-phase refrigerant flows through the throttle device 22c into the third heat medium heat exchanger 20c acting as an evaporator. The refrigerant flowing into the third heat medium heat exchanger 20c absorbs heat from the heat medium circulating in the heat medium circulation circuit B, becomes a low-pressure gas refrigerant, and flows out of the relay unit 2 via the refrigerant flow switching device 24c.
 そして、中継ユニット2から流出した冷媒は、冷媒配管5bを通って再び室外ユニット1へ流入する。室外ユニット1へ流入した冷媒は、第1逆流防止装置17cを通って、冷媒流路切替装置11及びアキュムレータ13を介して、圧縮機10へ再度吸入される。 Then, the refrigerant that has flowed out of the relay unit 2 flows into the outdoor unit 1 again through the refrigerant pipe 5b. The refrigerant that has flowed into the outdoor unit 1 passes through the first backflow prevention device 17 c and is sucked into the compressor 10 again via the refrigerant flow switching device 11 and the accumulator 13 .
 熱媒体循環回路Bにおいては、第2熱媒体熱交換器20bで冷媒の温熱が熱媒体に伝えられる。そして、暖められた熱媒体はポンプ21bによって熱媒体主配管4及び熱媒体枝配管6内を流動する。第1熱媒体流路切替装置25a~第1熱媒体流路切替装置25c及び第2熱媒体流路切替装置26a~第2熱媒体流路切替装置26cが制御され、暖房要求のある室内熱交換器30a~室内熱交換器30cに流入した熱媒体は、室内空気に放熱される。室内空気は加熱されて空調対象空間の暖房を行う。 In the heat medium circulation circuit B, the heat of the refrigerant is transferred to the heat medium in the second heat medium heat exchanger 20b. Then, the heated heat medium flows through the main heat medium pipe 4 and the heat medium branch pipe 6 by the pump 21b. The first heat medium flow switching device 25a to the first heat medium flow switching device 25c and the second heat medium flow switching device 26a to the second heat medium flow switching device 26c are controlled, and indoor heat exchange with a heating request The heat medium flowing into the unit 30a to the indoor heat exchanger 30c is radiated to the indoor air. The indoor air is heated to heat the air-conditioned space.
 一方、第1熱媒体熱交換器20a及び第3熱媒体熱交換器20cで冷媒の冷熱が熱媒体に伝えられる。そして、冷却された熱媒体はポンプ21a及びポンプ21cによって熱媒体主配管4及び熱媒体枝配管6内を流動する。第3熱媒体熱交換器20cで熱交換する熱媒体は、冷媒流路切替装置24cの切り替えに対応して、第3熱媒体流路切替装置28a及び第3熱媒体流路切替装置28が切り替えられる。冷房主体運転モードの場合、第3熱媒体流路切替装置28a及び第3熱媒体流路切替装置28は、冷房側に切替えられる。冷房側への切替においては、第3熱媒体流路切替装置28aは、ポンプ21aの上流側に接続された熱媒体主配管4に通じる弁を開にし、ポンプ21bの上流側の熱媒体主配管4に通じる弁を閉にする。第3熱媒体流路切替装置28bは、第1熱媒体熱交換器20aの出力側に接続された熱媒体主配管4に通じる弁を開にし、第2熱媒体熱交換器20bの出力側に接続された熱媒体主配管4に通じる弁を閉にする。 On the other hand, cold heat of the refrigerant is transferred to the heat medium in the first heat medium heat exchanger 20a and the third heat medium heat exchanger 20c. The cooled heat medium flows through the heat medium main pipe 4 and the heat medium branch pipe 6 by the pumps 21a and 21c. The heat medium heat-exchanged in the third heat medium heat exchanger 20c is switched by the third heat medium flow switching device 28a and the third heat medium flow switching device 28 corresponding to the switching of the refrigerant flow switching device 24c. be done. In the case of the cooling main operation mode, the third heat medium flow switching device 28a and the third heat medium flow switching device 28 are switched to the cooling side. In switching to the cooling side, the third heat medium flow switching device 28a opens the valve leading to the heat medium main pipe 4 connected to the upstream side of the pump 21a, and opens the heat medium main pipe upstream of the pump 21b. Close the valve leading to 4. The third heat medium flow switching device 28b opens the valve leading to the heat medium main pipe 4 connected to the output side of the first heat medium heat exchanger 20a, and the output side of the second heat medium heat exchanger 20b. A valve leading to the connected main heat medium pipe 4 is closed.
 第1熱媒体流路切替装置25a~第1熱媒体流路切替装置25c及び第2熱媒体流路切替装置26a~第2熱媒体流路切替装置26cが制御され、冷房要求のある室内熱交換器30a~室内熱交換器30cに流入した熱媒体は、室内空気から吸熱する。室内空気は冷却されて空調対象空間の冷房を行う。 The first heat medium flow switching device 25a to the first heat medium flow switching device 25c and the second heat medium flow switching device 26a to the second heat medium flow switching device 26c are controlled, and indoor heat exchange with cooling demand The heat medium that has flowed into the unit 30a to the indoor heat exchanger 30c absorbs heat from the indoor air. The indoor air is cooled to cool the air-conditioned space.
 なお、熱負荷のない室内熱交換器30a~室内熱交換器30cに対応する熱媒体流量調整装置27a~熱媒体流量調整装置27cは全閉とする。また、熱負荷のある室内熱交換器30a~室内熱交換器30cに対応する熱媒体流量調整装置27a~27cは開度を調整し、室内熱交換器30a~室内熱交換器30cでの熱負荷を調節する。 The heat medium flow control devices 27a to 27c corresponding to the indoor heat exchangers 30a to 30c with no heat load are fully closed. In addition, the heat medium flow rate adjusting devices 27a to 27c corresponding to the indoor heat exchangers 30a to 30c having a heat load adjust the opening degrees, and the heat loads at the indoor heat exchangers 30a to 30c are adjusted. adjust the
<暖房主体運転モード(冷房暖房混在運転モード)>
 図6は、実施形態1に係る空気調和装置100の暖房主体運転モード時の冷媒の流れを示す回路図である。この図6では、室内熱交換器30a~室内熱交換器30cで冷熱負荷及び温熱負荷が発生し、冷熱負荷は、温熱負荷以下の場合における冷房暖房混在運転モードにおける暖房主体運転モードについて説明する。なお、図6では、熱源側冷媒の流れ方向を実線矢印で、熱媒体の流れ方向を破線矢印で示している。
<Heating main operation mode (cooling/heating mixed operation mode)>
FIG. 6 is a circuit diagram showing the flow of refrigerant in the heating main operation mode of the air conditioner 100 according to Embodiment 1. As shown in FIG. In FIG. 6, a cooling load and a thermal load are generated in the indoor heat exchangers 30a to 30c, and the cooling load is less than the thermal load. In FIG. 6 , solid line arrows indicate the flow direction of the heat source side refrigerant, and broken line arrows indicate the flow direction of the heat medium.
 暖房主体運転時は、圧縮機10から吐出された高温高圧のガス冷媒は、冷媒流路切替装置11を介して、第1接続配管15及び第1逆流防止装置17bを通って、室外ユニット1から流出する。そして、室外ユニット1から流出した高温高圧のガス冷媒は、冷媒配管5aを通って中継ユニット2に流入する。 During heating-main operation, the high-temperature and high-pressure gas refrigerant discharged from the compressor 10 passes through the refrigerant flow switching device 11, the first connection pipe 15, and the first backflow prevention device 17b, and then from the outdoor unit 1. leak. The high-temperature and high-pressure gas refrigerant flowing out of the outdoor unit 1 flows into the relay unit 2 through the refrigerant pipe 5a.
 中継ユニット2に流入した冷媒は、冷媒流路切替装置24bを通って凝縮器として作用する第2熱媒体熱交換器20bに流入し、熱媒体循環回路Bを循環する熱媒体に放熱して高圧の液冷媒となる。 The refrigerant that has flowed into the relay unit 2 passes through the refrigerant flow switching device 24b and flows into the second heat medium heat exchanger 20b acting as a condenser. liquid refrigerant.
 高圧の液冷媒は、絞り装置22bで膨張して低温低圧の二相冷媒となる。二相冷媒は、絞り装置22aを介して蒸発器として作用する第1熱媒体熱交換器20aに流入する。第1熱媒体熱交換器20aに流入した冷媒は、熱媒体循環回路Bを循環する熱媒体から吸熱し、冷媒流路切替装置24aを介して中継ユニット2から流出する。 The high-pressure liquid refrigerant is expanded by the expansion device 22b to become a low-temperature, low-pressure two-phase refrigerant. The two-phase refrigerant flows through the throttle device 22a into the first heat medium heat exchanger 20a acting as an evaporator. The refrigerant flowing into the first heat medium heat exchanger 20a absorbs heat from the heat medium circulating in the heat medium circulation circuit B, and flows out of the relay unit 2 via the refrigerant flow switching device 24a.
 但し、熱負荷の状況に応じて、冷媒流路切替装置24cを切り替えて、第3熱媒体熱交換器20cで熱源側冷媒と熱交換する熱媒体を加熱するか、冷却するかを決める。図6では、第3熱媒体熱交換器20cが凝縮器として作用し、冷媒流路切替装置24cが暖房側に切替えられている場合を示している。この場合、高温高圧のガス冷媒は、冷媒流路切替装置24cを介して凝縮器として作用する第3熱媒体熱交換器20cに流入する。第3熱媒体熱交換器20cに流入した冷媒は、熱媒体循環回路Bを循環する熱媒体に放熱して、高圧の液冷媒となる。高圧の液冷媒は、絞り装置22cで膨張して低温低圧の二相冷媒となる。二相冷媒は、絞り装置22aを介して蒸発器として作用する第1熱媒体熱交換器20aに流入する。第1熱媒体熱交換器20aに流入した冷媒は、熱媒体循環回路Bを循環する熱媒体から吸熱し、冷媒流路切替装置24aを介して中継ユニット2から流出する。 However, it is determined whether to heat or cool the heat medium that exchanges heat with the heat source side refrigerant in the third heat medium heat exchanger 20c by switching the refrigerant flow switching device 24c according to the heat load situation. FIG. 6 shows a case where the third heat medium heat exchanger 20c acts as a condenser and the refrigerant flow switching device 24c is switched to the heating side. In this case, the high-temperature and high-pressure gas refrigerant flows through the refrigerant flow switching device 24c into the third heat medium heat exchanger 20c acting as a condenser. The refrigerant that has flowed into the third heat medium heat exchanger 20c radiates heat to the heat medium circulating in the heat medium circulation circuit B and becomes a high-pressure liquid refrigerant. The high-pressure liquid refrigerant is expanded by the expansion device 22c to become a low-temperature, low-pressure two-phase refrigerant. The two-phase refrigerant flows through the throttle device 22a into the first heat medium heat exchanger 20a acting as an evaporator. The refrigerant flowing into the first heat medium heat exchanger 20a absorbs heat from the heat medium circulating in the heat medium circulation circuit B, and flows out of the relay unit 2 via the refrigerant flow switching device 24a.
 そして、中継ユニット2から流出した冷媒は、冷媒配管5bを通って再び室外ユニット1へ流入する。室外ユニット1へ流入した冷媒は、第2接続配管16及び第1逆流防止装置17bを通って、蒸発器として作用する熱源側熱交換器12に流入し、周囲の空気から吸熱して、低温低圧のガス冷媒となる。ガス冷媒は、冷媒流路切替装置11及びアキュムレータ13を介して圧縮機10へ再度吸入される。 Then, the refrigerant that has flowed out of the relay unit 2 flows into the outdoor unit 1 again through the refrigerant pipe 5b. The refrigerant that has flowed into the outdoor unit 1 passes through the second connection pipe 16 and the first backflow prevention device 17b, flows into the heat source side heat exchanger 12 acting as an evaporator, absorbs heat from the surrounding air, and cools down to low temperature and low pressure. gas refrigerant. The gas refrigerant is sucked into the compressor 10 again through the refrigerant flow switching device 11 and the accumulator 13 .
 なお、熱媒体循環回路Bにおける熱媒体の動作、ポンプ21、第1熱媒体流路切替装置25、第2熱媒体流路切替装置26、熱媒体流量調整装置27及び室内熱交換器30の動作は冷房主体運転モードと同一である。第3熱媒体流路切替装置28a及び第3熱媒体流路切替装置28bについては、冷房主体運転モードとは逆に、第2熱媒体熱交換器20b側が開となり、第1熱媒体熱交換器20a側が閉となる。 Note that the operation of the heat medium in the heat medium circulation circuit B, the operation of the pump 21, the first heat medium flow switching device 25, the second heat medium flow switching device 26, the heat medium flow control device 27, and the indoor heat exchanger 30 is the same as the cooling main operation mode. Regarding the third heat medium flow switching device 28a and the third heat medium flow switching device 28b, contrary to the cooling main operation mode, the second heat medium heat exchanger 20b side is opened, and the first heat medium heat exchanger is opened. 20a side is closed.
 図7は、実施形態1に係る空気調和装置100における冷房暖房運転モードにおいて第3熱媒体熱交換器20cを暖房用又は冷房用として使用するかを決めるフローチャートを示す図である。 FIG. 7 is a diagram showing a flowchart for determining whether the third heat medium heat exchanger 20c is used for heating or cooling in the cooling/heating operation mode of the air conditioner 100 according to Embodiment 1.
 制御装置50は、冷房暖房混在運転モードにおいて、温度センサ40により測定された吸込み温度と、室内ユニット3の目標温度との差に基づいて、複数の室内ユニット3の冷房負荷と、複数の室内ユニット3の暖房負荷とを求める(ステップS1)。ここで、冷房負荷及び暖房負荷は、室内ユニット3の定格で定められた能力である。なお、冷房負荷及び暖房負荷は、吸込み温度ではなく、室内ユニット3から流出した熱媒体の温度と目標温度とを比較して求めても良い。 In the cooling/heating mixed operation mode, the control device 50 controls the cooling load of the plurality of indoor units 3 and 3 is obtained (step S1). Here, the cooling load and heating load are capacities determined by the rating of the indoor unit 3 . The cooling load and heating load may be obtained by comparing the temperature of the heat medium flowing out of the indoor unit 3 and the target temperature instead of the intake temperature.
 次に、求められた冷房負荷が、求められた暖房負荷よりも大きいかを判断する(ステップS2)。冷房負荷が、求められた暖房負荷よりも大きい場合(ステップS2のYES)、第3熱媒体熱交換器20cを冷房用として使用する。具体的には、制御装置50は、冷媒流路切替装置24b、第3熱媒体流路切替装置28a及び第3熱媒体流路切替装置28bを冷房側に切替える(ステップS3)。一方、冷房負荷が、暖房負荷以下の場合(ステップS2のNO)、第3熱媒体熱交換器20cを暖房用として使用する。具体的には、制御装置50は、冷媒流路切替装置24b、第3熱媒体流路切替装置28a及び第3熱媒体流路切替装置28bを暖房側に切替える(ステップS4)。 Next, it is determined whether the obtained cooling load is greater than the obtained heating load (step S2). If the cooling load is greater than the calculated heating load (YES in step S2), the third heat medium heat exchanger 20c is used for cooling. Specifically, the control device 50 switches the refrigerant flow switching device 24b, the third heat medium flow switching device 28a, and the third heat medium flow switching device 28b to the cooling side (step S3). On the other hand, if the cooling load is less than or equal to the heating load (NO in step S2), the third heat medium heat exchanger 20c is used for heating. Specifically, the control device 50 switches the refrigerant flow switching device 24b, the third heat medium flow switching device 28a, and the third heat medium flow switching device 28b to the heating side (step S4).
 ステップS3又はステップS4の後、ポンプ21を駆動する(ステップS5)。 After step S3 or step S4, the pump 21 is driven (step S5).
 次に、冷房暖房運転モード開始から検知時間が経過したかが判断される(ステップS6)。検知時間である場合には(ステップS6のYES)、吸込み温度と、室内ユニット3の目標温度との差が、最も大きい室内ユニット3の運転モードに合わせて、第3熱媒体熱交換器20cを冷房用又は暖房用として使用する(ステップS7)。その後、処理はステップS1の処理に戻る。検知時間でない場合には(ステップS6のNO)、検知時間であるかのステップS6の判断を継続する。 Next, it is determined whether the detection time has elapsed since the cooling/heating operation mode was started (step S6). If it is the detection time (YES in step S6), the difference between the suction temperature and the target temperature of the indoor unit 3 is the largest in accordance with the operation mode of the indoor unit 3, and the third heat medium heat exchanger 20c is turned on. It is used for cooling or heating (step S7). After that, the process returns to the process of step S1. If it is not the detection time (NO in step S6), the determination in step S6 as to whether it is the detection time is continued.
(変形例)
 図8は、実施形態1に係る空気調和装置100における冷房暖房運転モードにおいて第3熱媒体熱交換器20cを暖房用又は冷房用として使用するかを決める変形例のフローチャートである。図8において、図7と同一部分のステップについては説明を省略し、ここでは異なるステップS7_1について述べる。
(Modification)
FIG. 8 is a flowchart of a modified example for determining whether to use the third heat medium heat exchanger 20c for heating or cooling in the cooling/heating operation mode of the air conditioner 100 according to Embodiment 1. FIG. In FIG. 8, the description of steps that are the same as those in FIG. 7 will be omitted, and the different step S7_1 will be described here.
 ステップS7_1では、温度センサ40により測定された吸込み温度と室内ユニット3の目標温度との第1検知時間における差である第1温度差と、温度センサ40により測定された吸込み温度と、室内ユニット3の目標温度との第1検知時間の後の第2検知時間における差である第2温度差との差が、最も小さい複数の室内ユニット3のうちの室内ユニット3の運転モードに合わせて、第3熱媒体熱交換器20cを冷房用又は暖房用として使用する。その後、処理はステップS1の処理に戻る。空気調和装置100の運転時間の経過に伴って、各室内ユニット3の吸込み温度は目標温度に近づいていく。このため、冷房能力又は暖房能力が足りている室内ユニット3においては、第1検知時間における第1温度差に対し、その後の第2検知時間における第2温度差は小さな値となり、第1温度差と第2温度差との差が大きくなる。他方、冷房能力又は暖房能力が不足している室内ユニット3においては、第1温度差と第2温度差との差が小さくなる。したがって、ステップS7_2では、第1温度差と第2温度差との差が最も小さい、すなわち冷房能力又は暖房能力が不足している室内ユニット3の運転モードに合わせて、第3熱媒体熱交換器20cの用途を決定している。 In step S7_1, the first temperature difference, which is the difference in the first detection time between the suction temperature measured by the temperature sensor 40 and the target temperature of the indoor unit 3, the suction temperature measured by the temperature sensor 40, and the indoor unit 3 In accordance with the operation mode of the indoor unit 3 among the plurality of indoor units 3 having the smallest difference from the second temperature difference, which is the difference at the second detection time after the first detection time, from the target temperature of 3 The heat medium heat exchanger 20c is used for cooling or heating. After that, the process returns to the process of step S1. As the operation time of the air conditioner 100 elapses, the intake temperature of each indoor unit 3 approaches the target temperature. Therefore, in the indoor unit 3 with sufficient cooling capacity or heating capacity, the second temperature difference at the second detection time after the first detection time is a small value with respect to the first temperature difference at the first detection time, and the first temperature difference and the second temperature difference increases. On the other hand, the difference between the first temperature difference and the second temperature difference is small in the indoor unit 3 with insufficient cooling capacity or heating capacity. Therefore, in step S7_2, the third heat medium heat exchanger is operated in accordance with the operation mode of the indoor unit 3 in which the difference between the first temperature difference and the second temperature difference is the smallest, that is, the cooling capacity or the heating capacity is insufficient. 20c has been determined.
(変形例2)
 図7のステップS7の処理と、図8のステップS7_1の処理とは組み合わされていても良い。
(Modification 2)
The processing of step S7 in FIG. 7 and the processing of step S7_1 in FIG. 8 may be combined.
 図9は、実施形態1に係る空気調和装置100における冷房暖房運転モードにおいて第3熱媒体熱交換器20cを暖房用又は冷房用として使用するかを決める変形例2のフローチャートである。図9において、図7及び図8と同一部分のステップについては説明を省略し、ここでは異なるステップS7_2について述べる。 FIG. 9 is a flowchart of modification 2 for determining whether the third heat medium heat exchanger 20c is used for heating or cooling in the cooling/heating operation mode of the air conditioner 100 according to the first embodiment. In FIG. 9, the description of steps that are the same as those in FIGS. 7 and 8 will be omitted, and the different step S7_2 will be described here.
 図9に示すように、吸込み温度と、室内ユニット3の目標温度との差が、最も大きい室内ユニット3の運転モードに合わせて、第3熱媒体熱交換器20cを冷房用又は暖房用として使用する(ステップS7)。 As shown in FIG. 9, the third heat medium heat exchanger 20c is used for cooling or heating according to the operation mode of the indoor unit 3 in which the difference between the suction temperature and the target temperature of the indoor unit 3 is the largest. (step S7).
 次に、時間的な条件を満たすか又は目標温度と温度センサ40の吸込み温度との温度差が特定の閾値以下であるかが判断される(ステップS7_2)。ステップS7_2において、時間的な条件を満たさないと判断された場合又は目標温度と温度センサ40の吸込み温度との温度差が特定の閾値以下でないと判断された場合(ステップS7_2のNO)、ステップS1の処理に戻る。 Next, it is determined whether the time condition is satisfied or whether the temperature difference between the target temperature and the intake temperature of the temperature sensor 40 is equal to or less than a specific threshold (step S7_2). If it is determined in step S7_2 that the time condition is not satisfied, or if it is determined that the temperature difference between the target temperature and the intake temperature of the temperature sensor 40 is not equal to or less than a specific threshold (NO in step S7_2), step S1 return to the process of
 一方、ステップS7_2において、時間的な条件を満たすと判断された場合又は目標温度と温度センサ40の吸込み温度との温度差が特定の閾値より大きいと判断された場合(ステップS7_2のYES)、温度センサ40により測定された吸込み温度と室内ユニット3の目標温度との第1検知時間における差と、温度センサ40により測定された吸込み温度と、室内ユニット3の目標温度との第1検知時間の後の第2検知時間における差との差が、最も小さい複数の室内ユニット3のうちの室内ユニット3の運転モードに合わせて、第3熱媒体熱交換器20cを冷房用又は暖房用として使用する(ステップS7_1)。その後、処理はステップS1の処理に戻る。 On the other hand, if it is determined in step S7_2 that the time condition is satisfied or if the temperature difference between the target temperature and the intake temperature of the temperature sensor 40 is determined to be greater than a specific threshold (YES in step S7_2), the temperature is determined to be higher than the specified threshold. After the difference in the first detection time between the suction temperature measured by the sensor 40 and the target temperature of the indoor unit 3 and the first detection time between the suction temperature measured by the temperature sensor 40 and the target temperature of the indoor unit 3 The third heat medium heat exchanger 20c is used for cooling or heating in accordance with the operation mode of the indoor unit 3 among the plurality of indoor units 3 whose difference from the difference in the second detection time is the smallest ( Step S7_1). After that, the process returns to the process of step S1.
 すなわち、変形例2の冷房暖房混在運転モードでは、まず、ステップS7に示した第1制御を行うのであるが、その後に特定の条件(ステップS7_2)を満たす場合には、さらにステップS7_1により第3熱媒体熱交換器20cの用途を決定する。ここで、ステップS7_2に示した時間的な条件とは、例えば、ステップS7の第1制御を開始してからの経過時間が挙げられ、この経過時間が閾値時間を超えた場合には、ステップS7_1により第3熱媒体熱交換器20cの用途を決定する。また、ステップS7_2に示した特定の閾値は、各室内ユニット3に共通の値とすることができる。 That is, in the cooling/heating mixed operation mode of Modification 2, first, the first control shown in step S7 is performed. A use of the heat medium heat exchanger 20c is determined. Here, the time condition shown in step S7_2 is, for example, the elapsed time from the start of the first control in step S7. When this elapsed time exceeds the threshold time, step S7_1 determines the use of the third heat medium heat exchanger 20c. Also, the specific threshold value shown in step S7_2 can be a value common to each indoor unit 3 .
 従って、実施形態1に係る空気調和装置100によれば、冷房負荷が、暖房負荷よりも大きい場合、第3熱媒体熱交換器20cを冷房用として使用し、冷房負荷が、暖房負荷以下の場合、第3熱媒体熱交換器20cを暖房用として使用する。その結果、室内ユニット3側の負荷アンバランス時においても、冷房又は暖房負荷に応じた効率の良い運転を行なうことができ、かつ、室内ユニット3において快適性を維持できる。 Therefore, according to the air conditioner 100 according to Embodiment 1, when the cooling load is greater than the heating load, the third heat medium heat exchanger 20c is used for cooling, and when the cooling load is equal to or less than the heating load , the third heat medium heat exchanger 20c is used for heating. As a result, even when the load on the indoor unit 3 side is unbalanced, efficient operation according to the cooling or heating load can be performed, and comfort in the indoor unit 3 can be maintained.
 また、中継ユニット2に、ポンプ21と熱媒体熱交換器20の組合せを3つ以上内蔵し、室内機側の負荷に応じて、高負荷側のポンプ21を複数台にすることにより、負荷に応じた効率の良い運転が可能となる。さらに、能力不足(不冷及び不暖)を解消し、快適性を維持することができる。 In addition, the relay unit 2 incorporates three or more combinations of the pumps 21 and the heat medium heat exchangers 20, and according to the load on the indoor unit side, by using a plurality of pumps 21 on the high load side, Efficient operation can be performed accordingly. Furthermore, it is possible to eliminate the lack of ability (uncool and unwarm) and maintain comfort.
 実施形態1によれば、冷房暖房混在運転モード時に、熱媒体熱交換器20を冷房専用、暖房専用、冷房暖房兼用として使い分ける。冷房暖房兼用の熱媒体循環回路Bには第3熱媒体流路切替装置28を、熱源側冷媒循環回路Aには、冷媒流路切替装置24を接続して、熱媒体熱交換器20を冷房側と暖房側に切り分けて使用する。これにより、冷房暖房混在運転モード時の能力が向上し、室内ユニット3の負荷によらず快適な運転を提供できる。 According to Embodiment 1, the heat medium heat exchanger 20 is selectively used for both cooling, heating, and cooling and heating during the cooling and heating mixed operation mode. A third heat medium flow switching device 28 is connected to the heat medium circulation circuit B for both cooling and heating, and a refrigerant flow switching device 24 is connected to the heat source side refrigerant circulation circuit A to cool the heat medium heat exchanger 20. It is used separately for the side and the heating side. As a result, the capacity in the cooling/heating mixed operation mode is improved, and comfortable operation can be provided regardless of the load on the indoor unit 3.
実施形態2.
 図10は、実施形態2に係る空気調和装置100の構成を示す図である。室外ユニット1、室内ユニット3及び中継ユニット2の熱源側冷媒循環回路Aは実施形態1の図2と同じである。
Embodiment 2.
FIG. 10 is a diagram showing the configuration of an air conditioner 100 according to Embodiment 2. As shown in FIG. The heat source side refrigerant circulation circuit A of the outdoor unit 1, the indoor unit 3, and the relay unit 2 is the same as in FIG. 2 of the first embodiment.
 実施形態1では、図2に示すように、ポンプ21は、熱媒体熱交換器20の上流側にそれぞれ1台ずつ設けられていた。実施形態2では、図10に示すように、2台のポンプ21(ポンプ21a、ポンプ21b)が3台の熱媒体熱交換器20(第1熱媒体熱交換器20a、第2熱媒体熱交換器20b、第3熱媒体熱交換器20c)に設けられ、2台のポンプ21が熱媒体を搬送する。 In Embodiment 1, as shown in FIG. 2, one pump 21 is provided upstream of each of the heat medium heat exchangers 20 . In Embodiment 2, as shown in FIG. 10, two pumps 21 (pump 21a, pump 21b) are connected to three heat medium heat exchangers 20 (first heat medium heat exchanger 20a, second heat medium heat exchanger). 20b, third heat medium heat exchanger 20c), two pumps 21 convey the heat medium.
 実施形態2では、第3熱媒体流路切替装置28(第3熱媒体流路切替装置28a、第3熱媒体流路切替装置28b)は、三方弁等で構成され、冷房暖房混在運転モード時の負荷に応じて、熱媒体循環回路Bでの熱媒体の流れを切り替える。 In the second embodiment, the third heat medium flow switching device 28 (the third heat medium flow switching device 28a, the third heat medium flow switching device 28b) is composed of a three-way valve or the like, and in the cooling/heating mixed operation mode, The flow of the heat medium in the heat medium circulation circuit B is switched according to the load of .
 第3熱媒体流路切替装置28aは、ポンプ21a、ポンプ21bのそれぞれの下流側と、第3熱媒体熱交換器20cの上流にある。第3熱媒体流路切替装置28aは、ポンプ21aに流入する熱媒体又はポンプ21bに流入する熱媒体を第3熱媒体熱交換器20cに流す。また、第3熱媒体流路切替装置28bは、第3熱媒体熱交換器20cの下流側に設けており、第1熱媒体熱交換器20a、第2熱媒体熱交換器20bのそれぞれの下流側と繋がっている。第3熱媒体流路切替装置28bは、第3熱媒体熱交換器20cから出力した熱媒体を第1熱媒体熱交換器20aの出力側の熱媒体主配管4又は第2熱媒体熱交換器20bの出力側の熱媒体主配管4に流す。 The third heat medium flow switching device 28a is located downstream of each of the pumps 21a and 21b and upstream of the third heat medium heat exchanger 20c. The third heat medium flow switching device 28a flows the heat medium flowing into the pump 21a or the heat medium flowing into the pump 21b to the third heat medium heat exchanger 20c. Further, the third heat medium flow switching device 28b is provided downstream of the third heat medium heat exchanger 20c, and is downstream of each of the first heat medium heat exchanger 20a and the second heat medium heat exchanger 20b. connected to the side. The third heat medium flow switching device 28b switches the heat medium output from the third heat medium heat exchanger 20c to the heat medium main pipe 4 on the output side of the first heat medium heat exchanger 20a or the second heat medium heat exchanger. 20b into the heat medium main pipe 4 on the output side.
 冷房暖房混在運転モード時に、室内ユニット3の冷房負荷が暖房負荷よりも大きい場合、第3熱媒体流路切替装置28a及び第3熱媒体流路切替装置28bは冷房側に切り替わり、第1熱媒体熱交換器20aと第3熱媒体熱交換器20cとが並列になる。一方、室内ユニット3の冷房負荷が暖房負荷以下の場合、第3熱媒体流路切替装置28a及び第3熱媒体流路切替装置28bは暖房側に切り替わり、第2熱媒体熱交換器20bと第3熱媒体熱交換器20cとが並列になる。 In the cooling/heating mixed operation mode, when the cooling load of the indoor unit 3 is greater than the heating load, the third heat medium flow switching device 28a and the third heat medium flow switching device 28b are switched to the cooling side, and the first heat medium flow switching device 28a and 28b are switched to the cooling side. The heat exchanger 20a and the third heat medium heat exchanger 20c are arranged in parallel. On the other hand, when the cooling load of the indoor unit 3 is equal to or less than the heating load, the third heat medium flow switching device 28a and the third heat medium flow switching device 28b are switched to the heating side, and the second heat medium heat exchanger 20b and the second heat medium heat exchanger 20b are switched to the heating side. 3 and the heat medium heat exchanger 20c are arranged in parallel.
 熱媒体熱交換器20、絞り装置22、冷媒流路切替装置24、第3熱媒体流路切替装置28は、3台以上あっても良い。 The heat medium heat exchanger 20, the expansion device 22, the refrigerant flow switching device 24, and the third heat medium flow switching device 28 may be three or more.
 図11は、実施形態2に係る空気調和装置100における冷房暖房運転モードにおける動作を説明するためのフローチャートを示す図である。 FIG. 11 is a diagram showing a flowchart for explaining the operation in the cooling/heating operation mode of the air conditioner 100 according to the second embodiment.
 制御装置50は、冷房暖房混在運転モードにおいて、温度センサ40により測定された吸込み温度と、室内ユニット3の目標温度との差に基づいて、複数の室内ユニット3の冷房負荷と、複数の室内ユニット3の暖房負荷とを求める(ステップS21)。ここで、冷房負荷及び暖房負荷は、室内ユニット3の定格で定められた能力である。 In the cooling/heating mixed operation mode, the control device 50 controls the cooling load of the plurality of indoor units 3 and 3 is obtained (step S21). Here, the cooling load and heating load are capacities determined by the rating of the indoor unit 3 .
 次に、求められた冷房負荷が、求められた暖房負荷よりも大きいかを判断する(ステップS22)。冷房負荷が、求められた暖房負荷よりも大きい場合(ステップS22のYES)、制御装置50は、第3熱媒体流路切替装置28a及び第3熱媒体流路切替装置28bを冷房側に切替える(ステップS23)。一方、冷房負荷が、暖房負荷以下の場合(ステップS22のNO)、制御装置50は、第3熱媒体流路切替装置28a及び第3熱媒体流路切替装置28bを暖房側に切替える(ステップS24)。 Next, it is determined whether the obtained cooling load is greater than the obtained heating load (step S22). If the cooling load is greater than the obtained heating load (YES in step S22), the control device 50 switches the third heat medium flow switching device 28a and the third heat medium flow switching device 28b to the cooling side ( step S23). On the other hand, if the cooling load is equal to or less than the heating load (NO in step S22), the control device 50 switches the third heat medium flow switching device 28a and the third heat medium flow switching device 28b to the heating side (step S24). ).
 次に、冷房暖房運転モード開始から検知時間が経過したかが判断される(ステップS25)。検知時間である場合には(ステップS25のYES)、吸込み温度と、室内ユニット3の目標温度との差が、最も大きい室内ユニット3の運転モードに合わせて、第3熱媒体熱交換器20cを冷房用又は暖房用として使用する(ステップS26)。その後、処理はステップS21の処理に戻る。検知時間でない場合には(ステップS25のNO)、検知時間であるかのステップS25の判断を継続する。 Next, it is determined whether the detection time has elapsed since the cooling/heating operation mode was started (step S25). If it is the detection time (YES in step S25), the difference between the suction temperature and the target temperature of the indoor unit 3 is the largest in accordance with the operation mode of the indoor unit 3, and the third heat medium heat exchanger 20c is turned on. It is used for cooling or heating (step S26). After that, the process returns to the process of step S21. If it is not the detection time (NO in step S25), the determination in step S25 as to whether it is the detection time is continued.
(変形例)
 図12は、実施形態2に係る空気調和装置100における冷房暖房運転モードにおいて第3熱媒体熱交換器20cを暖房用又は冷房用として使用するかを決める変形例のフローチャートである。図12において、図11と同一部分のステップについては説明を省略し、ここでは異なるステップS26_1について述べる。
(Modification)
FIG. 12 is a flowchart of a modification that determines whether the third heat medium heat exchanger 20c is used for heating or cooling in the cooling/heating operation mode of the air conditioner 100 according to Embodiment 2. FIG. In FIG. 12, the description of steps that are the same as those in FIG. 11 will be omitted, and the different step S26_1 will be described here.
 ステップS26_1では、温度センサ40により測定された吸込み温度と室内ユニット3の目標温度との第1検知時間における差と、温度センサ40により測定された吸込み温度と、室内ユニット3の目標温度との第1検知時間の後の第2検知時間における差との差が、最も小さい複数の室内ユニット3のうちの室内ユニット3の運転モードに合わせて、第3熱媒体熱交換器20cを冷房用又は暖房用として使用する。その後、処理はステップS21の処理に戻る。 In step S26_1, the difference in the first detection time between the suction temperature measured by the temperature sensor 40 and the target temperature of the indoor unit 3, and the difference between the suction temperature measured by the temperature sensor 40 and the target temperature of the indoor unit 3 are detected. The third heat medium heat exchanger 20c is used for cooling or heating according to the operation mode of the indoor unit 3 among the plurality of indoor units 3 in which the difference from the difference at the second detection time after the first detection time is the smallest. use as After that, the process returns to the process of step S21.
 従って、実施形態2に係る空気調和装置100によれば、実施形態1に係る空気調和装置100に比して、ポンプ21の台数を少なくしてコストを抑えることができる。また、実施形態2に係る空気調和装置100によれば、負荷アンバランス時においても、冷房又は暖房負荷に応じた効率の良い運転を行なうことができ、かつ、負荷側において快適性を維持できる。 Therefore, according to the air conditioner 100 according to Embodiment 2, compared to the air conditioner 100 according to Embodiment 1, it is possible to reduce the number of pumps 21 and reduce costs. Moreover, according to the air conditioner 100 according to Embodiment 2, even when the load is unbalanced, efficient operation can be performed according to the cooling or heating load, and comfort can be maintained on the load side.
実施形態3.
 図13は、実施形態3に係る空気調和装置100の構成を示す図である。室外ユニット1及び室内ユニット3は実施形態1の図2と同じである。
Embodiment 3.
FIG. 13 is a diagram showing the configuration of an air conditioner 100 according to Embodiment 3. As shown in FIG. The outdoor unit 1 and the indoor unit 3 are the same as in FIG. 2 of the first embodiment.
 実施形態1では、図2に示すように、第3熱媒体熱交換器20c、絞り装置22c、冷媒流路切替装置24cが設けられていた。実施形態3では、図13に示すように、第3熱媒体熱交換器20c、絞り装置22c及び冷媒流路切替装置24cが設けられていない。 In Embodiment 1, as shown in FIG. 2, a third heat medium heat exchanger 20c, an expansion device 22c, and a refrigerant flow switching device 24c are provided. In Embodiment 3, as shown in FIG. 13, the third heat medium heat exchanger 20c, expansion device 22c, and refrigerant flow switching device 24c are not provided.
 実施形態3では、3台のポンプ21a、ポンプ21b及びポンプ21cが、熱媒体を搬送する。 In Embodiment 3, three pumps 21a, 21b and 21c transport the heat medium.
 第3熱媒体流路切替装置28aは、ポンプ21a及びポンプ21bのそれぞれの上流側と、第1熱媒体熱交換器20a、第2熱媒体熱交換器20b及び第2熱媒体熱交換器20bの上流の熱媒体主配管4に接続されている。第3熱媒体流路切替装置28aは、ポンプ21aに流入する熱媒体又はポンプ21bに流入する熱媒体をポンプ21cに流す。また、第3熱媒体流路切替装置28bは、ポンプ21cの下流側の熱媒体主配管4に接続され、ポンプ21a及びポンプ21bの下流側の熱媒体主配管4に接続されている。第3熱媒体流路切替装置28bは、ポンプ21から流れる熱媒体を第1熱媒体熱交換器20aの流入側の熱媒体主配管4又は第2熱媒体熱交換器20bの流入側の熱媒体主配管4に流す。 The third heat medium flow switching device 28a is provided on the upstream side of each of the pumps 21a and 21b, and between the first heat medium heat exchanger 20a, the second heat medium heat exchanger 20b, and the second heat medium heat exchanger 20b. It is connected to the upstream heat medium main pipe 4 . The third heat medium flow switching device 28a allows the heat medium flowing into the pump 21a or the heat medium flowing into the pump 21b to flow to the pump 21c. The third heat medium flow switching device 28b is connected to the heat medium main pipe 4 on the downstream side of the pump 21c, and is connected to the heat medium main pipes 4 on the downstream side of the pumps 21a and 21b. The third heat medium flow switching device 28b switches the heat medium flowing from the pump 21 to the heat medium main pipe 4 on the inflow side of the first heat medium heat exchanger 20a or the heat medium on the inflow side of the second heat medium heat exchanger 20b. It flows into the main pipe 4.
 ポンプ21aは、第1熱媒体熱交換器20aの上流側の熱媒体主配管4に設けられている。ポンプ21bは、第2熱媒体熱交換器20bの上流側の熱媒体主配管4に設けられている。ポンプ21cは、第3熱媒体流路切替装置28aと、第3熱媒体流路切替装置28bとの間の熱媒体主配管4に設けられている。 The pump 21a is provided in the main heat medium pipe 4 on the upstream side of the first heat medium heat exchanger 20a. The pump 21b is provided in the main heat medium pipe 4 on the upstream side of the second heat medium heat exchanger 20b. The pump 21c is provided in the main heat medium pipe 4 between the third heat medium flow switching device 28a and the third heat medium flow switching device 28b.
 冷房暖房混在運転モード時に、室内ユニット3の冷房負荷が暖房負荷よりも大きい場合、第3熱媒体流路切替装置28a及び第3熱媒体流路切替装置28bは冷房側に切り替わり、ポンプ21aとポンプ21cとが並列になる。一方、室内ユニット3の冷房負荷が暖房負荷以下の場合、第3熱媒体流路切替装置28a及び第3熱媒体流路切替装置28bは暖房側に切り替わり、ポンプ21bとポンプ21cとが並列になる。 In the cooling/heating mixed operation mode, when the cooling load of the indoor unit 3 is greater than the heating load, the third heat medium flow switching device 28a and the third heat medium flow switching device 28b are switched to the cooling side, and the pump 21a and the pump 21c are parallel. On the other hand, when the cooling load of the indoor unit 3 is equal to or less than the heating load, the third heat medium flow switching device 28a and the third heat medium flow switching device 28b are switched to the heating side, and the pumps 21b and 21c are connected in parallel. .
 なお、熱媒体熱交換器20、絞り装置22、冷媒流路切替装置24及び第3熱媒体流路切替装置28は、3台以上あっても良い。 The heat medium heat exchanger 20, the expansion device 22, the refrigerant flow switching device 24, and the third heat medium flow switching device 28 may be three or more.
 図14は、実施形態3に係る空気調和装置100における冷房暖房運転モードにおける動作を説明するためのフローチャートを示す図である。 FIG. 14 is a diagram showing a flowchart for explaining the operation in the cooling/heating operation mode of the air conditioner 100 according to the third embodiment.
 制御装置50は、冷房暖房混在運転モードにおいて、温度センサ40により測定された吸込み温度と、室内ユニット3の目標温度との差に基づいて、複数の室内ユニット3の冷房負荷と、複数の室内ユニット3の暖房負荷とを求める(ステップS31)。ここで、冷房負荷及び暖房負荷は、室内ユニット3の定格で定められた能力である。 In the cooling/heating mixed operation mode, the control device 50 controls the cooling load of the plurality of indoor units 3 and 3 is obtained (step S31). Here, the cooling load and heating load are capacities determined by the rating of the indoor unit 3 .
 次に、求められた冷房負荷が、求められた暖房負荷よりも大きいかを判断する(ステップS32)。冷房負荷が、求められた暖房負荷よりも大きい場合(ステップS32のYES)、制御装置50は、第3熱媒体流路切替装置28a及び第3熱媒体流路切替装置28bを冷房側に切替える(ステップS33)。一方、冷房負荷が、暖房負荷以下の場合(ステップS32のNO)、制御装置50は、第3熱媒体流路切替装置28a及び第3熱媒体流路切替装置28bを暖房側に切替える(ステップS34)。 Next, it is determined whether the obtained cooling load is greater than the obtained heating load (step S32). If the cooling load is greater than the obtained heating load (YES in step S32), the control device 50 switches the third heat medium flow switching device 28a and the third heat medium flow switching device 28b to the cooling side ( step S33). On the other hand, if the cooling load is less than or equal to the heating load (NO in step S32), the control device 50 switches the third heat medium flow switching device 28a and the third heat medium flow switching device 28b to the heating side (step S34). ).
 ステップS33又はステップS34の後、ポンプ21を駆動する(ステップS35)。 After step S33 or step S34, the pump 21 is driven (step S35).
 次に、冷房暖房運転モード開始から検知時間が経過したかが判断される(ステップS36)。検知時間である場合には(ステップS36のYES)、吸込み温度と、室内ユニット3の目標温度との差が、最も大きい室内ユニット3の運転モードに合わせて、第3熱媒体熱交換器20cを冷房用又は暖房用として使用する(ステップS37)。その後、処理はステップS31の処理に戻る。検知時間でない場合には(ステップS36のNO)、検知時間であるかのステップS36の判断を継続する。 Next, it is determined whether the detection time has elapsed since the cooling/heating operation mode was started (step S36). If it is the detection time (YES in step S36), the difference between the suction temperature and the target temperature of the indoor unit 3 is the largest, and the third heat medium heat exchanger 20c is operated according to the operation mode of the indoor unit 3. It is used for cooling or heating (step S37). After that, the process returns to the process of step S31. If it is not the detection time (NO in step S36), the determination in step S36 as to whether it is the detection time is continued.
(変形例)
 図15は、実施形態3に係る空気調和装置100における冷房暖房運転モードにおいて第3熱媒体熱交換器20cを暖房用又は冷房用として使用するかを決める変形例のフローチャートである。図15において、図14と同一部分のステップについては説明を省略し、ここでは異なるステップS37_1について述べる。
(Modification)
FIG. 15 is a flowchart of a modification that determines whether the third heat medium heat exchanger 20c is used for heating or cooling in the cooling/heating operation mode of the air conditioner 100 according to Embodiment 3. FIG. In FIG. 15, the description of steps that are the same as those in FIG. 14 is omitted, and the different step S37_1 will be described here.
 ステップS37_1では、温度センサ40により測定された吸込み温度と室内ユニット3の目標温度との第1検知時間における差と、温度センサ40により測定された吸込み温度と、室内ユニット3の目標温度との第1検知時間の後の第2検知時間における差との差が、最も小さい複数の室内ユニット3のうちの室内ユニット3の運転モードに合わせて、第3熱媒体熱交換器20cを冷房用又は暖房用として使用する。その後、処理はステップS31の処理に戻る。 In step S37_1, the difference in the first detection time between the suction temperature measured by the temperature sensor 40 and the target temperature of the indoor unit 3, and the difference between the suction temperature measured by the temperature sensor 40 and the target temperature of the indoor unit 3 The third heat medium heat exchanger 20c is used for cooling or heating according to the operation mode of the indoor unit 3 among the plurality of indoor units 3 in which the difference from the difference at the second detection time after the first detection time is the smallest. use as After that, the process returns to the process of step S31.
 従って、実施形態3に係る空気調和装置100によれば、熱媒体熱交換器20の台数を少なくしてコストを抑えつつ、負荷アンバランス時においても、冷房又は暖房負荷に応じた効率の良い運転を行なうことができ、かつ、負荷側において快適性を維持できる。 Therefore, according to the air conditioner 100 according to the third embodiment, the number of the heat medium heat exchangers 20 is reduced to reduce the cost, and even when the load is unbalanced, efficient operation according to the cooling or heating load is performed. and maintain comfort on the load side.
 実施形態1~実施形態3において、第3熱媒体流路切替装置28aは上流側熱媒体流路切替装置、第3熱媒体流路切替装置28bは、下流側熱媒体流路切替装置とも称する。また、ポンプ21aは第1ポンプ、ポンプ21bは第2ポンプ及びポンプ21cは第3ポンプとも称する。 In Embodiments 1 to 3, the third heat medium flow switching device 28a is also called an upstream heat medium flow switching device, and the third heat medium flow switching device 28b is also called a downstream heat medium flow switching device. The pump 21a is also called a first pump, the pump 21b is called a second pump, and the pump 21c is called a third pump.
 なお、実施形態1~実施形態3において、室外ユニット1から室内ユニット3へ流入する冷媒配管5が2本の場合について説明した。実施形態1~実施形態3に係る空気調和装置100の熱媒体熱交換器20の制御の思想は、冷房用の往き菅及び戻り菅と、暖房用の往き菅及び戻り菅とが設けられた4菅式のチラーを使用した空気調和装置100にも適用可能である。同様に、3菅式のチラーを使用したビル用の空気調和装置100にも適用することができる。 In Embodiments 1 to 3, the case where there are two refrigerant pipes 5 flowing from the outdoor unit 1 to the indoor unit 3 has been described. The idea of controlling the heat medium heat exchanger 20 of the air conditioner 100 according to Embodiments 1 to 3 is to provide a forward pipe and a return pipe for cooling and a forward pipe and a return pipe for heating. It is also applicable to the air conditioner 100 using a tube chiller. Similarly, it can be applied to the air conditioner 100 for buildings using a three-pipe chiller.
 実施形態は、例として提示したものであり、請求の範囲を限定することは意図していない。実施形態は、その他の様々な形態で実施されることが可能であり、実施形態の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行なうことができる。これら実施形態及びその変形は、実施形態の範囲及び要旨に含まれる。 The embodiments are presented as examples and are not intended to limit the scope of claims. Embodiments can be implemented in various other forms, and various omissions, replacements, and modifications can be made without departing from the gist of the embodiments. These embodiments and variations thereof are included within the scope and spirit of the embodiments.
 1 室外ユニット、2 中継ユニット、3、3a~3c 室内ユニット、4 熱媒体主配管、5、5a、5b 冷媒配管、6、6a~6c、6a_1、6a_2、6b_1、6b_2、6c_1、6c_2 熱媒体枝配管、7 室内空間、8 空間、9 建物、10 圧縮機、11 冷媒流路切替装置、12 熱源側熱交換器、13 アキュムレータ、14 熱源側送風機、15 第1接続配管、16 第2接続配管、17a~17d 第1逆流防止装置、20a 第1熱媒体熱交換器、20b 第2熱媒体熱交換器、20c 第3熱媒体熱交換器、21、21a~21c ポンプ、22、22a~22c 絞り装置、23、23a、23b 開閉装置、24、24a~24c 冷媒流路切替装置、25、25a~25c 第1熱媒体流路切替装置、26、26a~26c 第2熱媒体流路切替装置、27、27a~27c 熱媒体流量調整装置、28、28a、28b 第3熱媒体流路切替装置、30、30a~30c 室内熱交換器、40、40a~40c 温度センサ、50 制御装置、100 空気調和装置、A 熱源側冷媒循環回路、B 熱媒体循環回路。 1 outdoor unit, 2 relay unit, 3, 3a-3c indoor unit, 4 heat medium main pipe, 5, 5a, 5b refrigerant pipe, 6, 6a-6c, 6a_1, 6a_2, 6b_1, 6b_2, 6c_1, 6c_2 heat medium branch Piping, 7 Indoor space, 8 Space, 9 Building, 10 Compressor, 11 Refrigerant flow switching device, 12 Heat source side heat exchanger, 13 Accumulator, 14 Heat source side blower, 15 First connection pipe, 16 Second connection pipe, 17a to 17d first backflow prevention device, 20a first heat medium heat exchanger, 20b second heat medium heat exchanger, 20c third heat medium heat exchanger, 21, 21a to 21c pump, 22, 22a to 22c throttle device , 23, 23a, 23b opening/closing device, 24, 24a to 24c refrigerant flow switching device, 25, 25a to 25c first heat medium flow switching device, 26, 26a to 26c second heat medium flow switching device, 27, 27a to 27c heat medium flow control device, 28, 28a, 28b third heat medium flow switching device, 30, 30a to 30c indoor heat exchanger, 40, 40a to 40c temperature sensor, 50 controller, 100 air conditioner, A: Heat source side refrigerant circulation circuit, B: Heat medium circulation circuit.

Claims (6)

  1.  圧縮機を有し、前記圧縮機により圧縮された冷媒を冷媒配管に出力する室外ユニットと、
     前記室外ユニットと前記冷媒配管により接続され、前記冷媒配管を流れる前記冷媒と熱媒体主配管を流れる熱媒体との間で熱交換させる中継ユニットと、
     前記中継ユニットの前記熱媒体主配管に熱媒体枝配管を介して接続された室内熱交換器を有する室内ユニットと、
     前記室外ユニット、前記中継ユニット及び前記室内ユニットを制御する制御装置と
    を具備し、
     前記中継ユニットは、
     前記室外ユニットから前記冷媒配管に出力された冷媒と、前記熱媒体主配管に流れる熱媒体との熱交換を行なう第1熱媒体熱交換器と、
     前記室外ユニットから前記冷媒配管に出力された冷媒と、前記熱媒体主配管に流れる熱媒体との熱交換を行なう第2熱媒体熱交換器と、
     前記室外ユニットから前記冷媒配管に出力された冷媒と、前記熱媒体主配管に流れる熱媒体との熱交換を行なう第3熱媒体熱交換器と
    を具備し、
     前記室内ユニットは複数であり、
     前記制御装置は、
     冷房暖房混在運転モードにおいて、前記複数の室内ユニットの冷房負荷と、前記複数の室内ユニットの暖房負荷とを求め、
     前記求められた冷房負荷が、前記求められた暖房負荷よりも大きい場合、前記第3熱媒体熱交換器を冷房用として使用し、前記求められた冷房負荷が、前記暖房負荷以下の場合、前記第3熱媒体熱交換器を暖房用として使用し、
     前記室内ユニットは、前記室内熱交換器で前記熱媒体と熱交換する空気の温度である第1温度を測定する温度センサを備え、
     前記制御装置は、
     前記冷房暖房混在運転モードにおいて、前記温度センサにより測定された前記第1温度と、前記室内ユニットの目標温度との差が、最も大きい前記室内ユニットが冷房運転を行なっている場合は、前記第3熱媒体熱交換器を冷房用として使用し、前記最も大きい前記室内ユニットが暖房運転を行なっている場合は、前記第3熱媒体熱交換器を暖房用として使用する第1制御を行なう、
    空気調和装置。
    an outdoor unit having a compressor and outputting a refrigerant compressed by the compressor to a refrigerant pipe;
    a relay unit connected to the outdoor unit by the refrigerant pipe and exchanging heat between the refrigerant flowing through the refrigerant pipe and the heat medium flowing through the heat medium main pipe;
    an indoor unit having an indoor heat exchanger connected to the main heat medium pipe of the relay unit via a heat medium branch pipe;
    a controller for controlling the outdoor unit, the relay unit and the indoor unit;
    The relay unit is
    a first heat medium heat exchanger that exchanges heat between the refrigerant output from the outdoor unit to the refrigerant pipe and the heat medium flowing through the main heat medium pipe;
    a second heat medium heat exchanger that exchanges heat between the refrigerant output from the outdoor unit to the refrigerant pipe and the heat medium flowing through the main heat medium pipe;
    A third heat medium heat exchanger that exchanges heat between the refrigerant output from the outdoor unit to the refrigerant pipe and the heat medium flowing through the main heat medium pipe,
    a plurality of the indoor units,
    The control device is
    in a cooling/heating mixed operation mode, determining the cooling load of the plurality of indoor units and the heating load of the plurality of indoor units;
    When the determined cooling load is greater than the determined heating load, the third heat medium heat exchanger is used for cooling, and when the determined cooling load is equal to or less than the heating load, the Using the third heat medium heat exchanger for heating,
    The indoor unit includes a temperature sensor that measures a first temperature, which is the temperature of air heat-exchanging with the heat medium in the indoor heat exchanger,
    The control device is
    In the cooling/heating mixed operation mode, when the indoor unit having the largest difference between the first temperature measured by the temperature sensor and the target temperature of the indoor unit is performing the cooling operation, the third When the heat medium heat exchanger is used for cooling and the largest indoor unit is performing heating operation, a first control is performed to use the third heat medium heat exchanger for heating;
    Air conditioner.
  2.  圧縮機を有し、前記圧縮機により圧縮された冷媒を冷媒配管に出力する室外ユニットと、
     前記室外ユニットと前記冷媒配管により接続され、前記冷媒配管を流れる前記冷媒と熱媒体主配管を流れる熱媒体との間で熱交換させる中継ユニットと、
     前記中継ユニットの前記熱媒体主配管に熱媒体枝配管を介して接続された室内熱交換器を有する室内ユニットと、
     前記室外ユニット、前記中継ユニット及び前記室内ユニットを制御する制御装置と
    を具備し、
     前記中継ユニットは、
     前記室外ユニットから前記冷媒配管に出力された冷媒と、前記熱媒体主配管に流れる熱媒体との熱交換を行なう第1熱媒体熱交換器と、
     前記室外ユニットから前記冷媒配管に出力された冷媒と、前記熱媒体主配管に流れる熱媒体との熱交換を行なう第2熱媒体熱交換器と、
     前記室外ユニットから前記冷媒配管に出力された冷媒と、前記熱媒体主配管に流れる熱媒体との熱交換を行なう第3熱媒体熱交換器と
    を具備し、
     前記室内ユニットは複数であり、
     前記室内ユニットは、前記室内熱交換器で前記熱媒体と熱交換する空気の温度である第1温度を測定する温度センサを備え、
     前記制御装置は、
     冷房暖房混在運転モードにおいて、前記複数の室内ユニットの冷房負荷と、前記複数の室内ユニットの暖房負荷とを求め、
     前記求められた冷房負荷が、前記求められた暖房負荷よりも大きい場合、前記第3熱媒体熱交換器を冷房用として使用し、前記求められた冷房負荷が、前記暖房負荷以下の場合、前記第3熱媒体熱交換器を暖房用として使用し、
     前記温度センサにより測定された前記第1温度と前記室内ユニットの目標温度との第1検知時間における第1温度差と、前記温度センサにより測定された前記第1温度と、前記室内ユニットの目標温度との前記第1検知時間の後の第2検知時間における第2温度差とを求め、前記第1温度差と前記第2温度差との差が、最も小さい前記室内ユニットが冷房運転を行なっている場合は、前記第3熱媒体熱交換器を冷房用として使用し、前記最も小さい前記室内ユニットが暖房運転を行なっている場合は、前記第3熱媒体熱交換器を暖房用として使用する、
    空気調和装置。
    an outdoor unit having a compressor and outputting a refrigerant compressed by the compressor to a refrigerant pipe;
    a relay unit connected to the outdoor unit by the refrigerant pipe and exchanging heat between the refrigerant flowing through the refrigerant pipe and the heat medium flowing through the heat medium main pipe;
    an indoor unit having an indoor heat exchanger connected to the main heat medium pipe of the relay unit via a heat medium branch pipe;
    a controller for controlling the outdoor unit, the relay unit and the indoor unit;
    The relay unit is
    a first heat medium heat exchanger that exchanges heat between the refrigerant output from the outdoor unit to the refrigerant pipe and the heat medium flowing through the main heat medium pipe;
    a second heat medium heat exchanger that exchanges heat between the refrigerant output from the outdoor unit to the refrigerant pipe and the heat medium flowing through the main heat medium pipe;
    A third heat medium heat exchanger that exchanges heat between the refrigerant output from the outdoor unit to the refrigerant pipe and the heat medium flowing through the main heat medium pipe,
    a plurality of the indoor units,
    The indoor unit includes a temperature sensor that measures a first temperature, which is the temperature of air heat-exchanging with the heat medium in the indoor heat exchanger,
    The control device is
    in a cooling/heating mixed operation mode, determining the cooling load of the plurality of indoor units and the heating load of the plurality of indoor units;
    When the determined cooling load is greater than the determined heating load, the third heat medium heat exchanger is used for cooling, and when the determined cooling load is equal to or less than the heating load, the Using the third heat medium heat exchanger for heating,
    A first temperature difference between the first temperature measured by the temperature sensor and a target temperature of the indoor unit at a first detection time, the first temperature measured by the temperature sensor, and the target temperature of the indoor unit. and a second temperature difference at a second detection time after the first detection time, and the indoor unit having the smallest difference between the first temperature difference and the second temperature difference performs the cooling operation. When the indoor unit is the smallest, the third heat medium heat exchanger is used for cooling, and when the smallest indoor unit is performing heating operation, the third heat medium heat exchanger is used for heating.
    Air conditioner.
  3.  前記制御装置は、
     前記冷房暖房混在運転モードにおいて前記第1制御を行なった後、時間的な条件を満たす場合、又は前記室内ユニットの目標温度と前記温度センサが測定した前記第1温度との温度差が特定の閾値以下である場合、前記温度センサにより測定された前記第1温度と前記室内ユニットの目標温度との第1検知時間における第1温度差と、前記温度センサにより測定された前記第1温度と、前記室内ユニットの目標温度との前記第1検知時間の後の第2検知時間における第2温度差とを求め、前記第1温度差と前記第2温度差との差が、最も小さい前記室内ユニットが冷房運転を行なっている場合は、前記第3熱媒体熱交換器を冷房用として使用し、前記最も小さい前記室内ユニットが暖房運転を行なっている場合は、前記第3熱媒体熱交換器を暖房用として使用する、
    請求項1に記載の空気調和装置。
    The control device is
    After performing the first control in the cooling/heating mixed operation mode, if a time condition is satisfied, or if the temperature difference between the target temperature of the indoor unit and the first temperature measured by the temperature sensor is a specific threshold value. a first temperature difference between the first temperature measured by the temperature sensor and the target temperature of the indoor unit at a first detection time; the first temperature measured by the temperature sensor; A second temperature difference from the target temperature of the indoor unit at a second detection time after the first detection time is obtained, and the indoor unit having the smallest difference between the first temperature difference and the second temperature difference is determined. When the cooling operation is performed, the third heat medium heat exchanger is used for cooling, and when the smallest indoor unit is performing the heating operation, the third heat medium heat exchanger is used for heating. use as
    The air conditioner according to claim 1.
  4.  前記中継ユニットは、
     前記第1熱媒体熱交換器の上流側の前記熱媒体主配管に設けられた第1ポンプと、
     前記第2熱媒体熱交換器の上流側の前記熱媒体主配管に設けられた第2ポンプと、
     前記第3熱媒体熱交換器の上流側の前記熱媒体主配管に設けられた第3ポンプと、
     前記第1ポンプ及び前記第2ポンプの上流側の前記熱媒体主配管に設けられた上流側熱媒体流路切替装置と、
     前記第1ポンプ及び前記第2ポンプの下流側の前記熱媒体主配管に設けられた下流側熱媒体流路切替装置と
    を具備する請求項1~3のいずれか1項に記載の空気調和装置。
    The relay unit is
    a first pump provided in the main heat medium pipe on the upstream side of the first heat medium heat exchanger;
    a second pump provided in the main heat medium pipe on the upstream side of the second heat medium heat exchanger;
    a third pump provided in the main heat medium pipe on the upstream side of the third heat medium heat exchanger;
    an upstream heat medium flow switching device provided in the heat medium main pipe on the upstream side of the first pump and the second pump;
    The air conditioner according to any one of claims 1 to 3, further comprising a downstream side heat medium flow switching device provided in the heat medium main pipe downstream of the first pump and the second pump. .
  5.  前記中継ユニットは、
     前記第1熱媒体熱交換器の上流側の前記熱媒体主配管に設けられた第1ポンプと、
     前記第2熱媒体熱交換器の上流側の前記熱媒体主配管に設けられた第2ポンプと、
     前記第1ポンプ及び前記第2ポンプの下流側の前記熱媒体主配管に設けられ、前記第1ポンプに流入する熱媒体される熱媒体又は前記第2ポンプに流入する熱媒体を前記第3熱媒体熱交換器に流す上流側熱媒体流路切替装置と、
     前記第1ポンプ及び前記第2ポンプの下流側の前記熱媒体主配管に設けられ、前記第3熱媒体熱交換器から流出した熱媒体を前記第1熱媒体熱交換器の出力側の前記熱媒体主配管又は前記第2熱媒体熱交換器の出力側の前記熱媒体主配管に流す下流側熱媒体流路切替装置と
    を具備する請求項1~3のいずれか1項に記載の空気調和装置。
    The relay unit is
    a first pump provided in the main heat medium pipe on the upstream side of the first heat medium heat exchanger;
    a second pump provided in the main heat medium pipe on the upstream side of the second heat medium heat exchanger;
    The third heat medium is provided in the heat medium main pipe on the downstream side of the first pump and the second pump, and the heat medium flowing into the first pump or the heat medium flowing into the second pump is used as the heat medium. an upstream heat medium flow switching device for flowing to the medium heat exchanger;
    Provided in the heat medium main pipe on the downstream side of the first pump and the second pump, the heat medium flowing out of the third heat medium heat exchanger is transferred to the heat medium on the output side of the first heat medium heat exchanger. The air conditioner according to any one of claims 1 to 3, further comprising a downstream side heat medium flow switching device that flows through the main medium pipe or the main heat medium pipe on the output side of the second heat medium heat exchanger. Device.
  6.  圧縮機を有し、前記圧縮機により圧縮された冷媒を冷媒配管に出力する室外ユニットと、
     前記室外ユニットと前記冷媒配管により接続され、前記冷媒配管を流れる前記冷媒と熱媒体主配管を流れる熱媒体との間で熱交換させる中継ユニットと、
     前記中継ユニットの前記熱媒体主配管に熱媒体枝配管を介して接続された室内熱交換器を有する室内ユニットと、
     前記室外ユニット、前記中継ユニット及び前記室内ユニットを制御する制御装置と、
    を具備し、
     前記中継ユニットは、
     前記室外ユニットから前記冷媒配管に出力された冷媒と、前記熱媒体主配管に流れる熱媒体との熱交換を行なう第1熱媒体熱交換器と、
     前記室外ユニットから前記冷媒配管に出力された冷媒と、前記熱媒体主配管に流れる熱媒体との熱交換を行なう第2熱媒体熱交換器と、
     前記第1熱媒体熱交換器の上流側の前記熱媒体主配管に設けられた第1ポンプと、
     前記第2熱媒体熱交換器の上流側の前記熱媒体主配管に設けられた第2ポンプと、
     前記第1ポンプ及び前記第2ポンプの上流側の前記熱媒体主配管に設けられた上流側熱媒体流路切替装置と、
     前記第1ポンプ及び前記第2ポンプの下流側の前記熱媒体主配管に設けられた下流側熱媒体流路切替装置と、
     前記上流側熱媒体流路切替装置と、前記下流側熱媒体流路切替装置との間の前記熱媒体主配管に設けられた第3ポンプと
    を具備し、
     前記室内ユニットは複数であり、
     前記制御装置は、
     冷房暖房混在運転モードにおいて、前記複数の室内ユニットの冷房負荷と、前記複数の室内ユニットの暖房負荷とを求め、
     前記求められた冷房負荷が、前記求められた暖房負荷よりも大きい場合、前記上流側熱媒体流路切替装置及び前記下流側熱媒体流路切替装置を冷房側に制御して、前記第3ポンプを冷房用として使用し、前記求められた冷房負荷が、前記暖房負荷以下の場合、前記上流側熱媒体流路切替装置及び前記下流側熱媒体流路切替装置を暖房側に制御して、前記第3ポンプを暖房用として使用する、
    空気調和装置。
    an outdoor unit having a compressor and outputting a refrigerant compressed by the compressor to a refrigerant pipe;
    a relay unit connected to the outdoor unit by the refrigerant pipe and exchanging heat between the refrigerant flowing through the refrigerant pipe and the heat medium flowing through the heat medium main pipe;
    an indoor unit having an indoor heat exchanger connected to the main heat medium pipe of the relay unit via a heat medium branch pipe;
    a control device that controls the outdoor unit, the relay unit, and the indoor unit;
    and
    The relay unit is
    a first heat medium heat exchanger that exchanges heat between the refrigerant output from the outdoor unit to the refrigerant pipe and the heat medium flowing through the main heat medium pipe;
    a second heat medium heat exchanger that exchanges heat between the refrigerant output from the outdoor unit to the refrigerant pipe and the heat medium flowing through the main heat medium pipe;
    a first pump provided in the main heat medium pipe on the upstream side of the first heat medium heat exchanger;
    a second pump provided in the main heat medium pipe on the upstream side of the second heat medium heat exchanger;
    an upstream heat medium flow switching device provided in the heat medium main pipe on the upstream side of the first pump and the second pump;
    a downstream side heat medium flow switching device provided in the heat medium main pipe downstream of the first pump and the second pump;
    a third pump provided in the main heat medium pipe between the upstream heat medium flow switching device and the downstream heat medium flow switching device;
    a plurality of the indoor units,
    The control device is
    in a cooling/heating mixed operation mode, determining the cooling load of the plurality of indoor units and the heating load of the plurality of indoor units;
    When the determined cooling load is larger than the determined heating load, the upstream heat medium flow switching device and the downstream heat medium flow switching device are controlled to the cooling side, and the third pump is used for cooling, and when the obtained cooling load is equal to or less than the heating load, the upstream heat medium flow switching device and the downstream heat medium flow switching device are controlled to the heating side, and the using the third pump for heating,
    Air conditioner.
PCT/JP2022/009090 2021-02-25 2022-03-03 Air-conditioning device WO2023007803A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
GB2400849.2A GB2623036A (en) 2021-02-25 2022-03-03 Air-conditioning device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PCT/JP2021/028325 WO2023007700A1 (en) 2021-07-30 2021-07-30 Air conditioner
JPPCT/JP2021/028325 2021-07-30

Publications (1)

Publication Number Publication Date
WO2023007803A1 true WO2023007803A1 (en) 2023-02-02

Family

ID=85086615

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2021/028325 WO2023007700A1 (en) 2021-07-30 2021-07-30 Air conditioner
PCT/JP2022/009090 WO2023007803A1 (en) 2021-02-25 2022-03-03 Air-conditioning device

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/028325 WO2023007700A1 (en) 2021-07-30 2021-07-30 Air conditioner

Country Status (1)

Country Link
WO (2) WO2023007700A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009133644A1 (en) * 2008-04-30 2009-11-05 三菱電機株式会社 Air conditioner
JP2011112233A (en) * 2009-11-24 2011-06-09 Mitsubishi Electric Corp Air conditioning device
WO2016189599A1 (en) * 2015-05-22 2016-12-01 三菱電機株式会社 Air conditioning device
CN108870598A (en) * 2018-07-27 2018-11-23 南昌大学 A kind of separate heat pipe energy-storage air conditioner system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009133644A1 (en) * 2008-04-30 2009-11-05 三菱電機株式会社 Air conditioner
JP2011112233A (en) * 2009-11-24 2011-06-09 Mitsubishi Electric Corp Air conditioning device
WO2016189599A1 (en) * 2015-05-22 2016-12-01 三菱電機株式会社 Air conditioning device
CN108870598A (en) * 2018-07-27 2018-11-23 南昌大学 A kind of separate heat pipe energy-storage air conditioner system

Also Published As

Publication number Publication date
WO2023007700A1 (en) 2023-02-02

Similar Documents

Publication Publication Date Title
JP5306449B2 (en) Air conditioner
JP5784117B2 (en) Air conditioner
WO2016009748A1 (en) Air conditioner
JP5236080B2 (en) Air conditioner
JP5595521B2 (en) Heat pump equipment
JP5490245B2 (en) Air conditioner
WO2013008365A1 (en) Air-conditioning device
JPWO2011099065A1 (en) Air conditioner
JP5984960B2 (en) Air conditioner
JPWO2011064827A1 (en) Air conditioner
JPWO2012107947A1 (en) Air conditioner
WO2014132378A1 (en) Air conditioning device
JPWO2016194145A1 (en) Air conditioner
JP6120943B2 (en) Air conditioner
JP5955409B2 (en) Air conditioner
JP6576603B1 (en) Air conditioner
JP5312681B2 (en) Air conditioner
JP5312616B2 (en) Air conditioner
JP6537603B2 (en) Air conditioner
JPWO2011052050A1 (en) Air conditioner
WO2023007803A1 (en) Air-conditioning device
JP6429901B2 (en) Air conditioner
JP5791717B2 (en) Air conditioner
WO2011030420A1 (en) Air conditioning device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22848887

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 202400849

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20220303

NENP Non-entry into the national phase

Ref country code: DE