WO2014132378A1 - Air conditioning device - Google Patents

Air conditioning device Download PDF

Info

Publication number
WO2014132378A1
WO2014132378A1 PCT/JP2013/055294 JP2013055294W WO2014132378A1 WO 2014132378 A1 WO2014132378 A1 WO 2014132378A1 JP 2013055294 W JP2013055294 W JP 2013055294W WO 2014132378 A1 WO2014132378 A1 WO 2014132378A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
heat medium
refrigerant
source side
heat source
Prior art date
Application number
PCT/JP2013/055294
Other languages
French (fr)
Japanese (ja)
Inventor
嶋本 大祐
祐治 本村
孝好 本多
森本 修
小野 達生
浩二 西岡
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to EP13876128.3A priority Critical patent/EP2963359A4/en
Priority to PCT/JP2013/055294 priority patent/WO2014132378A1/en
Priority to JP2015502643A priority patent/JP5959716B2/en
Publication of WO2014132378A1 publication Critical patent/WO2014132378A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/06Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the arrangements for the supply of heat-exchange fluid for the subsequent treatment of primary air in the room units
    • F24F3/065Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the arrangements for the supply of heat-exchange fluid for the subsequent treatment of primary air in the room units with a plurality of evaporators or condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • F24F11/84Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers using valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • F24F11/85Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers using variable-flow pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/005Arrangement or mounting of control or safety devices of safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/32Responding to malfunctions or emergencies
    • F24F11/36Responding to malfunctions or emergencies to leakage of heat-exchange fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/003Indoor unit with water as a heat sink or heat source
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02732Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using two three-way valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02741Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using one four-way valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/031Sensor arrangements
    • F25B2313/0312Pressure sensors near the indoor heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/031Sensor arrangements
    • F25B2313/0314Temperature sensors near the indoor heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/031Sensor arrangements
    • F25B2313/0315Temperature sensors near the outdoor heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B25/00Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00
    • F25B25/005Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00 using primary and secondary systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/19Calculation of parameters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/26Problems to be solved characterised by the startup of the refrigeration cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2513Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1931Discharge pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1933Suction pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21151Temperatures of a compressor or the drive means therefor at the suction side of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21152Temperatures of a compressor or the drive means therefor at the discharge side of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2116Temperatures of a condenser
    • F25B2700/21161Temperatures of a condenser of the fluid heated by the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2116Temperatures of a condenser
    • F25B2700/21162Temperatures of a condenser of the refrigerant at the inlet of the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2116Temperatures of a condenser
    • F25B2700/21163Temperatures of a condenser of the refrigerant at the outlet of the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator
    • F25B2700/21171Temperatures of an evaporator of the fluid cooled by the evaporator
    • F25B2700/21173Temperatures of an evaporator of the fluid cooled by the evaporator at the outlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator
    • F25B2700/21174Temperatures of an evaporator of the refrigerant at the inlet of the evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator
    • F25B2700/21175Temperatures of an evaporator of the refrigerant at the outlet of the evaporator

Definitions

  • the present invention relates to an air conditioner applied to, for example, a building multi-air conditioner.
  • Some conventional air conditioners have heat source units (outdoor units) arranged outside the building and indoor units arranged inside the building, such as multi air conditioners for buildings.
  • the refrigerant circulating in the refrigerant circuit of such an air conditioner radiates heat (absorbs heat) to the air supplied to the heat exchanger of the indoor unit, and heats or cools the air.
  • the heated or cooled air is sent into the air-conditioning target space for heating or cooling.
  • an indoor unit in such a building multi-air conditioner is arranged and used in an indoor space where a person is present (for example, an office, a living room, a store, etc.). Therefore, if the refrigerant leaks from the indoor unit placed in the indoor space for some reason, it is flammable and toxic depending on the type of the refrigerant, which is problematic from the viewpoint of human influence and safety. . Moreover, even if it is a refrigerant
  • a secondary loop system is adopted for the air conditioner, and refrigerant is circulated in the primary loop (outdoor unit system), and water that is not harmful to the secondary loop (indoor unit system). It is conceivable to air-condition an indoor space where people are present using a brine (hereinafter referred to as a heat medium) (for example, see Patent Document 1).
  • a brine hereinafter referred to as a heat medium
  • Japanese Patent Laid-Open No. 2000-227242 (for example, refer to the summary, FIG. 1)
  • the refrigerant leakage to the indoor unit basically does not occur, but the heat exchange unit (heat) that exchanges heat between the refrigerant in the primary loop and the heat medium in the secondary loop.
  • the heat exchange unit heat
  • the heat exchanging portion when the heat exchanging portion is damaged and the refrigerant in the primary loop leaks to the secondary loop side, the refrigerant leaks to the indoor unit arranged in the indoor space.
  • the pressure of the secondary loop rises, and this pressure rise causes damage to the parts used in the secondary loop, and further, the refrigerant leakage diffuses due to the damage. there were.
  • the present invention has been made in order to solve the above-described problems.
  • a heat exchanging portion where heat is exchanged between the refrigerant in the primary loop and the heat medium in the secondary loop
  • the heat exchanging portion is damaged and Even when the refrigerant in the next loop leaks to the secondary loop side, the pressure in the secondary loop is suppressed, the damage to the parts used in the secondary loop causing the pressure increase is suppressed, and the diffusion of the refrigerant leak is suppressed.
  • the object is to provide an air conditioner.
  • the air conditioner according to the present invention includes a compressor, a heat source side heat exchanger, a throttling device, and a heat source side refrigerant flow path of the heat medium side heat exchanger connected in series to circulate the heat source side refrigerant.
  • the refrigerant circulation circuit and the heat medium circulation circuit are cascade-connected so that the heat source side refrigerant and the heat medium exchange heat in the inter-heat medium heat exchanger, and a relief valve is provided in the heat medium circulation circuit.
  • the relief valve operates when the heat source side refrigerant flows into the heat medium circulation circuit, and discharges the heat source side refrigerant and the heat medium.
  • the air conditioner according to the present invention has a relief valve and discharges the heat source side refrigerant mixed with the heat medium out of the secondary loop system even when the refrigerant in the primary loop leaks to the secondary loop side. Therefore, it is possible to suppress the pressure of the secondary loop, suppress the breakage of components used in the secondary loop that causes the pressure increase, and suppress the diffusion of the refrigerant leakage.
  • FIG. 1 is a schematic diagram illustrating an installation example of an air conditioner 100 according to an embodiment of the present invention.
  • the air conditioner 100 has a refrigeration cycle for circulating refrigerant, and each of the indoor units 2a to 2d can freely select a cooling mode or a heating mode as an operation mode.
  • the air-conditioning apparatus 100 includes, for example, a single refrigerant such as R-22, R-32, and R-134a, a pseudo-azeotropic refrigerant mixture such as R-410A and R-404A, and R-407C.
  • a heat source side refrigerant circulation circuit A (hereinafter also referred to as a primary loop) employing these natural refrigerants
  • a heat medium circulation circuit B (hereinafter also referred to as a secondary loop) employing water or the like as a heat medium. (See FIG. 2).
  • the air-conditioning apparatus 100 employs a system (indirect system) that indirectly uses a refrigerant (hereinafter referred to as a heat source side refrigerant). That is, the cold or warm heat stored in the heat source side refrigerant is transmitted to a refrigerant (hereinafter referred to as a heat medium) different from the heat source side refrigerant, and the air-conditioning target space is cooled or heated with the cold heat or heat stored in the heat medium. Further, the heat medium can be directly heat exchanged with another heat source such as outdoor air, room air, boiler exhaust heat, etc., and cold heat or heat can be stored in the heat medium.
  • a system indirect system
  • a heat source side refrigerant that indirectly uses a refrigerant (hereinafter referred to as a heat source side refrigerant). That is, the cold or warm heat stored in the heat source side refrigerant is transmitted to a refrigerant (hereinafter referred to as a heat medium) different from the heat source
  • an air-conditioning apparatus 100 includes one outdoor unit 1 that is a heat source unit and a plurality of indoor units 2a to 2d (hereinafter simply referred to as indoor unit 2). And a heat medium relay unit 3 interposed between the outdoor unit 1 and the indoor unit 2.
  • the heat medium relay unit 3 performs heat exchange between the heat source side refrigerant and the heat medium.
  • the outdoor unit 1 and the heat medium relay unit 3 are connected by a refrigerant pipe 4 for circulating the heat source side refrigerant.
  • the heat medium converter 3 and the indoor unit 2 are connected by a heat medium pipe 5 for circulating the heat medium.
  • the cold or warm heat generated by the outdoor unit 1 is delivered to the indoor unit 2 via the heat medium converter 3.
  • the outdoor unit 1 is normally disposed in an outdoor space 6 that is an external space (for example, a rooftop) of a building 9 such as a building, and supplies cold or hot energy to the indoor unit 2 via the heat medium converter 3. It is.
  • the indoor unit 2 is disposed at a position where cooling air or heating air can be supplied to the indoor space 7 that is a space (for example, a living room) inside the building 9, and the cooling air is supplied to the indoor space 7 that is the air-conditioning target space. Alternatively, heating air is supplied.
  • the heat medium relay unit 3 is a separate housing from the outdoor unit 1 and the indoor unit 2 and is installed at a position different from the outdoor space 6 and the indoor space 7.
  • the heat medium converter 3 is connected to the outdoor unit 1 via the refrigerant pipe 4 and the indoor unit 2 via the heat medium pipe 5, and cools or warms supplied from the outdoor unit 1 to the indoor unit 2. To communicate.
  • an outdoor unit 1 and a heat medium converter 3 are connected via two refrigerant pipes 4, and the heat medium converter 3 and each room Machines 2a to 2d are connected to each other through two heat medium pipes 5.
  • construction is facilitated by connecting each unit (the outdoor unit 1, the indoor unit 2, and the heat medium converter 3) via the refrigerant pipe 4 and the heat medium pipe 5. ing.
  • the heat medium relay unit 3 is installed in a space 9 such as the back of the ceiling, which is a space different from the indoor space 7 (for example, a space such as the back of the ceiling in the building 9). However, it may be installed in a common space where there is an elevator.
  • the indoor unit 2 is illustrated as an example of the ceiling cassette type, it is not limited to this. In other words, the indoor unit 2 can be of any type, such as a ceiling-embedded type or a ceiling-suspended type, as long as it can blow heating air or cooling air into the indoor space 7 directly or through a duct. But you can.
  • the heat medium converter 3 can also be installed in the vicinity of the outdoor unit 1. However, it should be noted that if the distance from the heat medium relay unit 3 to the indoor unit 2 is too long, the heat medium transport power becomes considerably large, and the energy saving effect is diminished.
  • FIG. 2 is a first refrigerant circuit configuration example of the air-conditioning apparatus 100 according to the embodiment of the present invention.
  • the outdoor unit 1 and the heat exchangers 15 a and 15 b provided in the heat medium converter 3 are connected to each other via the refrigerant pipe 4.
  • the indoor unit 2 and the heat exchangers between heat mediums 15a and 15b are also connected via the heat medium pipe 5, respectively.
  • the outdoor unit 1 stores a compressor 10 that compresses refrigerant, a first refrigerant flow switching device 11 that includes a four-way valve, a heat source side heat exchanger 12 that functions as an evaporator or a condenser, and excess refrigerant.
  • the accumulator 19 is connected and mounted by the refrigerant pipe 4.
  • check valves 13a to 13d are provided that can make the flow of the heat-source-side refrigerant flowing into the heat medium relay unit 3 in a certain direction regardless of the operation required by the indoor unit 2.
  • a check valve 13d is provided in the refrigerant pipe 4 between the heat exchangers 15a, 15b (hereinafter, simply referred to as the heat exchanger 15) and the first refrigerant flow switching device 11,
  • a check valve 13b is provided in the first connection pipe 4a
  • a check valve 13c is provided in the second connection pipe 4b
  • a check valve is provided in the refrigerant pipe 4 between the heat source side heat exchanger 12 and the heat exchangers 15a and 15b. 13a are provided.
  • the compressor 10 sucks the heat source side refrigerant and compresses the heat source side refrigerant to a high temperature / high pressure state, and may be configured by, for example, an inverter compressor capable of capacity control.
  • the first refrigerant flow switching device 11 has a flow of the heat source side refrigerant in the heating operation mode (in the heating only operation mode and in the heating main operation mode) and the cooling operation mode (in the cooling only operation mode and the cooling main operation mode). The flow of the heat source side refrigerant at the time) is switched.
  • the heat source side heat exchanger 12 functions as an evaporator during heating operation, functions as a condenser during cooling operation, and performs heat exchange between air supplied from a blower such as a fan (not shown) and the heat source side refrigerant. Is.
  • the all-cooling operation mode is a mode in which all the driven indoor units 2 execute a cooling operation
  • the all-heating operation mode is a mode in which all the driven indoor units 2 perform a heating operation
  • the main operation mode is a cooling / heating mixed operation mode in which both cooling operation and heating operation are mixed, the cooling load is larger, and the heating main operation mode is also the cooling / heating mixed operation mode, and the heating load is more It ’s a big mode.
  • the accumulator 19 is provided on the suction side of the compressor 10 and has a function of storing excess refrigerant and a function of separating liquid refrigerant and gas refrigerant.
  • the accumulator 19 should just be a container which can store an excessive refrigerant
  • a second pressure sensor 37 and a third pressure sensor 38 which are pressure detection devices, are provided before and after the compressor 10, and the rotational speed of the compressor 10, the second pressure sensor 37, and the third pressure sensor are provided.
  • the refrigerant flow rate from the compressor 10 can be calculated from the 38 detected values.
  • the four indoor units 2a to 2d are equipped with use side heat exchangers 26a to 26d (hereinafter sometimes simply referred to as use side heat exchangers 26), respectively.
  • the use-side heat exchanger 26 is connected to the heat medium flow control devices 25a to 25d (hereinafter simply referred to as the heat medium flow control device 25) provided in the heat medium converter 3 via the heat medium pipe 5.
  • the use side heat exchanger 26 performs heat exchange between air supplied from a blower such as a fan (not shown) and a heat medium, and generates cooling air or heating air to be supplied to the indoor space 7.
  • the indoor units 2a to 2d are respectively provided with intake air temperature detection devices 39a to 39d for detecting the intake temperature.
  • the heat medium relay unit 3 includes two heat exchangers 15a and 15b (hereinafter, simply referred to as the heat exchanger 15) that exchange heat between the refrigerant and the heat medium, and depressurize the refrigerant.
  • Two expansion devices 16a and 16b (hereinafter simply referred to as the expansion device 16), and two open / close devices 17a and 17b (hereinafter also simply referred to as the open / close device 17) for opening and closing the flow path of the refrigerant pipe 4.
  • Two second refrigerant flow switching devices 18a and 18b (hereinafter sometimes simply referred to as second refrigerant flow switching device 18) for switching the refrigerant flow channels, and two pumps 21a and 21b (hereinafter referred to as the second refrigerant flow switching device 18).
  • the first heat medium flow switching devices 22a to 22d (hereinafter simply referred to as the first heat medium flow switching device 22) connected to one of the heat medium pipes 5 (sometimes simply referred to as a pump 21).
  • heat Four second heat medium flow switching devices 23 connected to the other of the body piping 5, 4 connected to the heat medium piping 5 between the first heat medium flow switching device 22 and the use side heat exchanger 26.
  • the two relief valves 60a and 60b for discharging the heat medium to the outside of the system for example, inside the heat medium converter 3) when the pressure of the two heat medium flow control devices 25a to 25d and the secondary loop rises to a predetermined value.
  • relief valve 60 may be simply referred to as relief valve 60.
  • the two heat exchangers between heat mediums 15a and 15b function as condensers (radiators) or evaporators, perform heat exchange between the heat source side refrigerant and the heat medium, and are generated by the outdoor unit 1 and stored in the heat source side refrigerant. The generated cold or warm heat is transmitted to the heat medium.
  • the heat exchanger related to heat medium 15a is provided between the expansion device 16a and the second refrigerant flow switching device 18a in the heat source side refrigerant circulation circuit A, and cools the heat medium in the cooling / heating mixed operation mode. It is something to offer.
  • the heat exchanger related to heat medium 15b is provided between the expansion device 16b and the second refrigerant flow switching device 18b in the heat source side refrigerant circulation circuit A, and is used to heat the heat medium in the cooling / heating mixed operation mode. It is something to offer. In addition, it is good to comprise the heat exchangers 15a and 15b between heat media with a double-pipe heat exchanger and a plate heat exchanger, for example.
  • the two expansion devices 16a and 16b function as a pressure reducing valve and an expansion valve, and expand the heat source side refrigerant by reducing the pressure.
  • the expansion device 16a is provided on the upstream side of the heat exchanger related to heat medium 15a in the flow of the heat source side refrigerant in the cooling only operation mode.
  • the expansion device 16b is provided on the upstream side of the heat exchanger related to heat medium 15b in the flow of the heat source side refrigerant in the cooling only operation mode.
  • the two expansion devices 16 may be configured by a device whose opening degree can be variably controlled, for example, an electronic expansion valve.
  • the two opening / closing devices 17a and 17b open and close the refrigerant pipe 4, and may be constituted by, for example, a two-way valve.
  • the two second refrigerant flow switching devices 18a and 18b are configured by four-way valves or the like, and switch the flow of the heat source side refrigerant according to the operation mode.
  • the second refrigerant flow switching device 18a is provided on the downstream side of the heat exchanger related to heat medium 15a in the flow of the heat source side refrigerant in the cooling only operation mode.
  • the second refrigerant flow switching device 18b is provided on the downstream side of the heat exchanger related to heat medium 15b in the flow of the heat source side refrigerant in the cooling only operation mode.
  • the two pumps 21 a and 21 b circulate the heat medium in the heat medium pipe 5.
  • the pump 21 a is provided in the heat medium pipe 5 between the heat exchanger related to heat medium 15 a and the second heat medium flow switching device 23.
  • the pump 21 b is provided in the heat medium pipe 5 between the heat exchanger related to heat medium 15 b and the second heat medium flow switching device 23.
  • the two pumps 21 may be constituted by, for example, pumps capable of capacity control.
  • the pump 21a is connected to the heat medium pipe 5 between the heat exchanger related to heat medium 15a and the first heat medium flow switching device 22, and the pump 21b is switched to the heat exchanger related to heat medium 15b and the first heat medium flow switching. You may provide in the heat medium piping 5 between the apparatuses 22, respectively.
  • the four first heat medium flow switching devices 22a to 22d are configured by three-way valves or the like, and switch the heat medium flow paths.
  • the number of first heat medium flow switching devices 22 is set according to the number of indoor units 2 installed (four in the present embodiment).
  • the first heat medium flow switching device 22 includes one of the three heat transfer medium heat exchangers 15a, one of the other heat transfer medium heat exchangers 15b, and the other one of the heat medium flow control devices. 25 to the outlet side of the heat medium flow path of the use side heat exchanger 26, respectively.
  • the first heat medium flow switching devices 22a to 22d correspond to the indoor units 2a to 2d as the first heat medium flow switching devices 22a, 22b, 22c, and 22d from the lower side of the drawing, and they are heat medium conversions. Although it is illustrated as being installed in the machine 3, a larger number may be provided.
  • the four second heat medium flow switching devices 23a to 23d are configured by three-way valves or the like, and switch the flow path of the heat medium.
  • the second heat medium flow switching device 23 is provided with a number (four in the present embodiment) corresponding to the number of indoor units 2 installed.
  • one of the three sides is the heat exchanger related to heat medium 15 a
  • one of the other is the heat exchanger related to heat medium 15 b
  • the other is the use side heat exchanger. 26, and connected to the inlet side of the heat medium flow path of the use side heat exchanger 26, respectively.
  • the second heat medium flow switching devices 23a to 23d correspond to the indoor units 2a to 2d as the second heat medium flow switching devices 23a, 23b, 23c, and 23d from the lower side of the drawing, and they are heat medium conversions. Although it is illustrated as being installed in the machine 3, a larger number may be provided.
  • the four heat medium flow control devices 25a to 25d are configured by two-way valves or the like capable of controlling the opening area, and adjust the flow rate of the heat medium flowing through the heat medium pipe 5.
  • the number of heat medium flow control devices 25 according to the number of indoor units 2 installed (four in this embodiment) is provided.
  • One of the heat medium flow control devices 25 is connected to the use side heat exchanger 26 and the other is connected to the first heat medium flow switching device 22, and is connected to the outlet side of the heat medium flow channel of the use side heat exchanger 26.
  • Each is provided.
  • the heat medium flow control devices 25a to 25d correspond to the indoor units 2a to 2d from the bottom of the page to the heat medium flow control devices 25a, 25b, 25c, and 25d, and are installed in the heat medium converter 3. However, a larger number may be provided.
  • the heat medium flow control device 25 may be provided on the inlet side of the heat medium flow path of the use side heat exchanger 26.
  • the two relief valves 60a and 60b are respectively provided in the heat medium pipe 5 on the outlet side of the pumps 21a and 21b, and operate when the pressure of the secondary loop rises to a predetermined value (operating pressure). Is discharged out of the system.
  • the operating pressure of the relief valve 60 is determined from the type of heat source side refrigerant and the type of heat medium. Further, in the air conditioner 100 according to the present embodiment, the increase in the pressure of the secondary loop is caused by freezing of the heat medium on the secondary loop side, corrosion between the heat medium and the heat exchanger 15 between the heat medium, or the like. Thus, it is assumed that a communication hole is opened between the primary loop and the secondary loop of the heat exchanger related to heat medium 15.
  • Cv value (Cv [60a] + Cv [60b]), which is a coefficient representing the flow rate characteristic of the relief valve 60 is as follows.
  • Cv [60a] + Cv [60b] Cv1 ⁇ (P1-P2) 1/2 / (P2) 1/2
  • P1 Maximum pressure of the heat source side refrigerant (maximum pressure of the primary loop)
  • P2 Operating pressure of relief valve
  • Cv1 Cv value of communication hole opened between primary loop and secondary loop
  • P1 is 3.8 MPa when the refrigerant of the primary loop is R410A
  • P2 is 0.4 MPa, which is the sum of the average pressure of the heat medium 0.2 MPa and the maximum head loss 0.2 MPa of the pump 21.
  • P1 is 3.8 MPa when the refrigerant of the primary loop is R410A
  • P2 is 0.4 MPa, which is the sum
  • the Cv value of the relief valve 60 that is the sum of Cv [60a] + Cv [60b] is 3 mm 2 or more in total. Necessary. If the operating pressure of the relief valve 60 is determined according to the maximum pressure of only the heat medium, when the heat source side refrigerant leaks into the secondary loop, the relief valve 60 is activated as the secondary loop suddenly increases in pressure. However, there is a possibility that the pressure rise cannot be released and the pressure resistance of the parts used in the secondary loop is exceeded, resulting in damage.
  • the operating pressure of the relief valve 60 is determined based on the type of the heat medium and the type of the heat source side refrigerant in consideration of the pressure that varies depending on the type of the heat source side refrigerant.
  • the size of the relief valve 60 is selected according to the maximum pressure of the heat medium and the maximum pressure of the heat source side refrigerant, and the flow rate to be discharged out of the system is determined (adjusted), so that the secondary loop is adjusted to an appropriate pressure. I try to keep it.
  • FIG. 3 is a second refrigerant circuit configuration example of the air-conditioning apparatus 100 according to the embodiment of the present invention.
  • the relief valves 60a and 60b are provided in the heat medium pipes 5 on the outlet sides of the pumps 21a and 21b, respectively.
  • the relief valve 60b may be omitted by connecting the heat medium pipe 5 on the discharge side of the pump 21a and the heat medium pipe 5 on the discharge side of the pump 21b with a thin pipe.
  • a heat medium pressure detecting device 62 for detecting the pressure of the secondary loop may be provided in the heat medium pipe 5 on the outlet side of the pump 21b.
  • the heat medium relay 3 includes two first temperature sensors 31a and 31b (hereinafter simply referred to as the first temperature sensor 31) and four second temperature sensors 34a. 34d (hereinafter sometimes simply referred to as the second temperature sensor 34), four third temperature sensors 35a to 35d (hereinafter sometimes simply referred to as the third temperature sensor 35), a fourth temperature sensor 50, and Various detection means of the first pressure sensor 36 are provided.
  • Information for example, temperature information and pressure information
  • a control device 52 for overall control of the operation of the air conditioner 100, and the compressor 10 driving frequency, rotation speed of a blower (not shown) provided in the vicinity of the heat source side heat exchanger 12 and the use side heat exchanger 26, switching of the first refrigerant flow switching device 11, driving frequency of the pump 21, second This is used for control such as switching of the refrigerant flow switching device 18.
  • the heat medium relay 3 is provided with a refrigerant leakage detection device 61 at or near the heat exchanger 15 between the heat media, and the information is notified to the arithmetic device 52a shown below. .
  • the control device 52 is configured by a microcomputer or the like, and calculates an evaporation temperature, a condensation temperature, a saturation temperature, a superheat degree, and a supercooling degree based on the calculation result of the arithmetic device 52a. Then, based on the calculation results, the control device 52 determines the opening degree of the expansion device 16, the rotational speed of the compressor 10, and the fan speeds of the heat source side heat exchanger 12 and the use side heat exchanger 26 (ON / OFF Etc.) so that the performance of the air conditioner 100 is maximized.
  • control device 52 determines the drive frequency of the compressor 10, the rotational speed of the blower (including ON / OFF), the first refrigerant flow switching device 11 based on detection information from various detection means and instructions from the remote controller. Switching, driving of the pump 21, opening of the expansion device 16, opening and closing of the switching device 17, switching of the second refrigerant channel switching device 18, switching of the first heat medium channel switching device 22, switching of the second heat medium channel The switching of the device 23 and the opening degree of the heat medium flow control device 25 are controlled. That is, the control device 52 performs overall control of various devices in order to execute each operation mode described later.
  • control device 57 is also provided in the outdoor unit 1 and controls the actuator of the outdoor unit 1 based on information transmitted from the control device 52 of the heat medium relay unit 3.
  • control device 52 of the heat medium relay unit 3 is described as being separate from the arithmetic unit 57a provided in the outdoor unit 1, but may be the same unit.
  • the two first temperature sensors 31a and 31b detect the temperature of the heat medium flowing out from the intermediate heat exchanger 15, that is, the temperature of the heat medium at the outlet of the intermediate heat exchanger 15.
  • the thermistor It is good to comprise.
  • the first temperature sensor 31a is provided in the heat medium pipe 5 on the inlet side of the pump 21a.
  • the first temperature sensor 31b is provided in the heat medium pipe 5 on the inlet side of the pump 21b.
  • the four second temperature sensors 34 a to 34 d are respectively provided between the first heat medium flow switching device 22 and the heat medium flow control device 25, and from the use side heat exchanger (or heat recovery heat exchanger) 26. It detects the temperature of the heat medium that has flowed out, and may be composed of a thermistor or the like.
  • the number of the second temperature sensors 34 according to the number of installed indoor units 2 (four in the present embodiment) is provided.
  • the second temperature sensors 34a to 34d are shown as second temperature sensors 34a, 34b, 34c, and 34d from the lower side of the drawing corresponding to the indoor unit 2.
  • the four third temperature sensors 35a to 35d are provided on the inlet side or the outlet side of the heat source side refrigerant of the heat exchanger related to heat medium 15, and the temperature or heat medium of the heat source side refrigerant flowing into the heat exchanger related to heat medium 15
  • the temperature of the heat source side refrigerant that has flowed out of the intermediate heat exchanger 15 is detected, and it may be constituted by a thermistor or the like.
  • the third temperature sensor 35a is provided between the heat exchanger related to heat medium 15a and the second refrigerant flow switching device 18a.
  • the third temperature sensor 35b is provided between the heat exchanger related to heat medium 15a and the expansion device 16a.
  • the third temperature sensor 35c is provided between the heat exchanger related to heat medium 15b and the second refrigerant flow switching device 18b.
  • the third temperature sensor 35d is provided between the heat exchanger related to heat medium 15b and the expansion device 16b.
  • the fourth temperature sensor 50 obtains temperature information used when calculating the evaporation temperature and the dew point temperature, and is provided between the expansion device 16a and the expansion device 16b.
  • the first pressure sensor 36 obtains pressure information for conversion into a saturation temperature used when controlling the opening degree of the expansion device 16, and is provided between the heat exchanger related to heat medium 15b and the expansion device 16b. Is provided.
  • the heat medium pipe 5 for circulating the heat medium is composed of one connected to the heat exchanger related to heat medium 15a and one connected to the heat exchanger related to heat medium 15b. Each branch is branched (four branches in this embodiment) according to the number of indoor units 2 connected to the medium converter 3.
  • the heat medium pipe 5 connected to the inlet side of the heat exchanger related to heat medium 15a and the heat medium pipe 5 connected to the inlet side of the heat exchanger related to heat medium 15b are respectively connected to the first heat medium flow switching device.
  • the heat medium pipe 5 connected to the outlet side of the intermediate heat exchanger 15a and the heat medium pipe 5 connected to the outlet side of the intermediate heat exchanger 15b are respectively connected to the second heat medium flow. They are connected by a path switching device 23.
  • the heat medium from the heat exchanger related to heat medium 15a flows into the use-side heat exchanger 26, or It is determined whether the heat medium from the heat exchanger related to heat medium 15b is caused to flow into the use side heat exchanger 26 or not.
  • the air conditioner 100 includes a compressor 10, a first refrigerant flow switching device 11, a heat source side heat exchanger 12, an opening / closing device 17, an expansion device 16, a heat source side refrigerant flow path of the heat exchanger related to heat medium 15a, a second A refrigerant flow switching device 18 and an accumulator 19 are connected by a refrigerant pipe 4 to constitute a heat source side refrigerant circulation circuit A. Further, the heat medium flow path of the heat exchanger related to heat medium 15a, the pump 21, the second heat medium flow path switching device 23, the use side heat exchanger 26, the heat medium flow control device 25, and the first heat medium flow path.
  • the switching device 22 is connected by the heat medium pipe 5 to constitute the heat medium circulation circuit B. That is, a plurality of usage-side heat exchangers 26 are connected in parallel to the heat exchangers 15a and 15b, respectively, and the heat medium circulation circuit B has a plurality of systems.
  • the outdoor unit 1 and the heat medium relay unit 3 are connected via the heat exchangers 15a and 15b provided between the heat medium relay unit 3 and the heat medium relay unit 3
  • the indoor unit 2 are connected to each other via the heat exchangers 15a and 15b. That is, in the air conditioner 100, the heat source side refrigerant circulating in the heat source side refrigerant circulation circuit A and the heat medium circulating in the heat medium circulation circuit B exchange heat with each other between the heat exchangers 15a and 15b. It has become.
  • the air conditioner 100 can perform a cooling operation or a heating operation in the indoor unit 2 based on an instruction from each indoor unit 2. That is, the air conditioner 100 can perform the same operation for all the indoor units 2 and can perform different operations for each of the indoor units 2.
  • each operation mode executed by the air conditioner 100: a cooling only operation mode, a heating only operation mode, a cooling main operation mode, and a heating main operation mode.
  • a cooling only operation mode executed by the air conditioner 100: a cooling only operation mode, a heating only operation mode, a cooling main operation mode, and a heating main operation mode.
  • each operation mode will be described together with the flow of the heat source side refrigerant and the heat medium.
  • FIG. 4 is a refrigerant circuit diagram illustrating a refrigerant flow when the air-conditioning apparatus 100 illustrated in FIG. 2 is in the cooling only operation mode.
  • the cooling only operation mode will be described by taking as an example a case where a cooling load is generated in the indoor units 2 a and 2 b of the use side heat exchangers 26 a and 26 b.
  • the pipes represented by the thick lines indicate the pipes through which the refrigerant (heat source side refrigerant and heat medium) flows, the flow direction of the heat source side refrigerant is indicated by solid line arrows, and the flow direction of the heat medium is indicated by broken line arrows.
  • the first refrigerant flow switching device 11 in the cooling only operation mode shown in FIG. 4, in the outdoor unit 1, the first refrigerant flow switching device 11 is switched so that the heat source side refrigerant discharged from the compressor 10 flows into the heat source side heat exchanger 12.
  • the pumps 21 a and 21 b are driven, the heat medium flow control devices 25 a and 25 b are opened, the heat medium flow control devices 25 c and 25 d are closed, and the heat exchangers 15 a and 15 b and the use side
  • the heat medium circulates between the heat exchangers 26a and 26b.
  • the low-temperature and low-pressure refrigerant is compressed by the compressor 10 and discharged as a high-temperature and high-pressure gas refrigerant.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 10 flows into the heat source side heat exchanger 12 via the first refrigerant flow switching device 11. And it becomes a high-pressure liquid refrigerant, radiating heat to outdoor air with the heat source side heat exchanger 12.
  • the high-pressure refrigerant that has flowed out of the heat source side heat exchanger 12 flows out of the outdoor unit 1 through the check valve 13 a, and flows into the heat medium relay unit 3 through the refrigerant pipe 4.
  • the high-pressure refrigerant that has flowed into the heat medium relay unit 3 is branched into the expansion device 16a side and the expansion device 16b side after passing through the opening / closing device 17a. Then, it is expanded by the expansion devices 16a and 16b to become a low-temperature and low-pressure two-phase refrigerant.
  • the opening / closing device 17b is closed.
  • This two-phase refrigerant flows into each of the heat exchangers 15a and 15b acting as an evaporator and absorbs heat from the heat medium circulating in the heat medium circuit B, thereby cooling the heat medium at a low temperature / It becomes a low-pressure gas refrigerant.
  • the gas refrigerant flowing out of the heat exchangers 15a and 15b flows out of the heat medium converter 3 through the second refrigerant flow switching devices 18a and 18b, and flows into the outdoor unit 1 again through the refrigerant pipe 4. To do.
  • the refrigerant flowing into the outdoor unit 1 passes through the check valve 13d and is sucked into the compressor 10 again via the first refrigerant flow switching device 11 and the accumulator 19.
  • the second refrigerant flow switching devices 18a and 18b communicate with the low-pressure pipe.
  • the expansion device 16a has an opening degree so that a superheat (superheat degree) obtained as a difference between the temperature detected by the third temperature sensor 35a and the temperature detected by the third temperature sensor 35b is constant. Is controlled.
  • the opening degree of the expansion device 16b is controlled so that the superheat obtained as the difference between the temperature detected by the third temperature sensor 35c and the temperature detected by the third temperature sensor 35d becomes constant.
  • the flow of the heat medium in the heat medium circuit B will be described.
  • the cold heat of the heat source side refrigerant is transmitted to the heat medium in each of the heat exchangers 15a and 15b, and the cooled heat medium is caused to flow in the heat medium pipe 5 by the pumps 21a and 21b, respectively. It will be.
  • the heat medium pressurized and discharged by the pumps 21a and 21b flows into the use side heat exchangers 26a and 26b via the second heat medium flow switching devices 23a and 23b.
  • the heat medium absorbs heat from the indoor air in the use side heat exchangers 26a and 26b, thereby cooling the indoor space 7.
  • the heat medium flows out from the use side heat exchangers 26a and 26b and flows into the heat medium flow control devices 25a and 25b.
  • the flow rate of the heat medium is controlled to a flow rate necessary to cover the air conditioning load required indoors by the action of the heat medium flow rate adjusting devices 25a and 25b, and flows into the use side heat exchangers 26a and 26b. It is like that.
  • the heat medium flowing out of the heat medium flow control devices 25a and 25b flows into the heat exchangers 15a and 15b through the first heat medium flow switching devices 22a and 22b, and is sucked into the pumps 21a and 21b again. .
  • the first heat medium flow switching device from the second heat medium flow switching devices 23a and 23b via the heat medium flow control devices 25a and 25b.
  • the heat medium flows in the direction to 22a and 22b.
  • the air conditioning load required in the indoor space 7 includes the temperature detected by the first temperature sensor 31a, the temperature detected by the first temperature sensor 31b, and the second temperature sensor 34a (or the second temperature sensor 34b). ) Can be covered by controlling so as to keep the difference between the detected temperature and the target value as a target value.
  • the outlet temperature of the heat exchangers 15a and 15b the temperature of either the first temperature sensor 31a or 31b may be used, or the average temperature of these may be used.
  • the first heat medium flow switching device 22 and the second heat medium flow switching device 23 are provided with an intermediate opening so as to secure a flow path that flows to both the heat exchangers 15a and 15b. It is in degrees.
  • the cooling only operation mode When the cooling only operation mode is executed, it is not necessary to flow the heat medium to the use side heat exchanger 26 (including the thermo-off) having no heat load. The heat medium is prevented from flowing to the heat exchanger 26.
  • the use side heat exchangers 26 a and 26 b have a heat load, and thus a heat medium flows. However, since the use side heat exchangers 26 c and 26 d are not operated, the corresponding heat medium flow control devices 25 c and The heat medium flow control device 25d is fully closed.
  • the heat medium flow control device 25 When a heat load is generated in the use side heat exchanger 26 or when the heat recovery machine is operated, the heat medium flow control device 25 may be opened to circulate the heat medium. The same applies to the heating only operation mode, the cooling main operation mode, and the heating main operation mode.
  • the refrigerant whose temperature is detected by the fourth temperature sensor 50 is a liquid refrigerant, and the liquid inlet enthalpy is calculated by the arithmetic unit 52a based on this temperature information. Further, the temperature of the low-pressure two-phase temperature state is detected from the third temperature sensor 35d, and the saturated liquid enthalpy and saturated gas enthalpy are calculated by the arithmetic unit 52a based on this temperature information. Based on these pieces of information, the evaporation temperature Te * and the dew point temperature Tdew * are obtained by the method described later.
  • FIG. 5 is a refrigerant circuit diagram showing a refrigerant flow when the air-conditioning apparatus 100 shown in FIG. 2 is in the heating only operation mode.
  • the heating only operation mode will be described by taking as an example a case where a thermal load is generated in the use side heat exchangers 26 a and 26 b.
  • the pipes represented by the thick lines indicate the pipes through which the refrigerant flows, and the flow direction of the heat source side refrigerant is indicated by solid line arrows and the flow direction of the heat medium is indicated by broken line arrows.
  • the first refrigerant flow switching device 11 causes the heat source side refrigerant discharged from the compressor 10 to heat without passing through the heat source side heat exchanger 12. It switches so that it may flow into the media converter 3.
  • the pumps 21a and 21b are driven, the heat medium flow control devices 25a and 25b are opened, the heat medium flow control devices 25c and 25d are closed, and the heat exchangers 15a and 15b are used. The heat medium is circulated between the side heat exchangers 26a and 26b.
  • the low-temperature and low-pressure refrigerant is compressed by the compressor 10 and discharged as a high-temperature and high-pressure gas refrigerant.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 10 flows out of the outdoor unit 1 through the first refrigerant flow switching device 11 and the check valve 13b.
  • the high-temperature and high-pressure gas refrigerant that has flowed out of the outdoor unit 1 flows into the heat medium relay unit 3 through the refrigerant pipe 4.
  • the high-temperature and high-pressure gas refrigerant flowing into the heat medium relay unit 3 is branched into the second refrigerant flow switching device 18a side and the second refrigerant flow switching device 18b side. Then, the heat flows through the second refrigerant flow switching device 18a and the second refrigerant flow switching device 18b and flows into the heat exchangers 15a and 15b, respectively.
  • the high-temperature and high-pressure gas refrigerant flowing into the heat exchangers 15a and 15b becomes high-pressure liquid refrigerant while radiating heat to the heat medium circulating in the heat medium circuit B.
  • the liquid refrigerant flowing out of the heat exchangers between heat mediums 15a and 15b is expanded by the expansion devices 16a and 16b to become a low-temperature and low-pressure two-phase refrigerant.
  • the two-phase refrigerant flows out of the heat medium relay unit 3 through the opening / closing device 17b, and flows into the outdoor unit 1 through the refrigerant pipe 4 again.
  • the opening / closing device 17a is closed.
  • the refrigerant flowing into the outdoor unit 1 flows into the heat source side heat exchanger 12 acting as an evaporator through the check valve 13c. And the refrigerant
  • the low-temperature and low-pressure gas refrigerant flowing out from the heat source side heat exchanger 12 is again sucked into the compressor 10 via the first refrigerant flow switching device 11 and the accumulator 19.
  • the second refrigerant flow switching devices 18a and 18b communicate with the high-pressure pipe.
  • the expansion device 16a has a subcool (degree of subcooling) obtained as a difference between the value detected by the first pressure sensor 36 converted to the saturation temperature and the temperature detected by the third temperature sensor 35b.
  • the opening degree is controlled to be constant.
  • a subcool obtained as a difference between a value obtained by converting the pressure detected by the first pressure sensor 36 into a saturation temperature and a temperature detected by the third temperature sensor 35d is constant.
  • the opening degree is controlled. If the temperature at the intermediate position of the heat exchanger related to heat medium 15 can be measured, the temperature at the intermediate position may be used instead of the first pressure sensor 36, and the system can be configured at low cost.
  • the heat of the heat source side refrigerant is transmitted to the heat medium in each of the heat exchangers 15a and 15b, and the heated heat medium is caused to flow in the heat medium pipe 5 by the pumps 21a and 21b, respectively. It will be.
  • the heat medium pressurized and discharged by the pumps 21a and 21b flows into the use side heat exchangers 26a and 26b via the second heat medium flow switching devices 23a and 23b. Then, the indoor space 7 is heated by the heat medium radiating heat to the indoor air by the use side heat exchangers 26a and 26b.
  • the heat medium flows out from the use side heat exchangers 26a and 26b and flows into the heat medium flow control devices 25a and 25b.
  • the flow rate of the heat medium is controlled to a flow rate necessary to cover the air conditioning load required indoors by the action of the heat medium flow rate adjusting devices 25a and 25b, and flows into the use side heat exchangers 26a and 26b. It is like that.
  • the heat medium flowing out of the heat medium flow control devices 25a and 25b flows into the heat exchangers 15a and 15b through the first heat medium flow switching devices 22a and 22b, and is sucked into the pumps 21a and 21b again. .
  • the first heat medium flow switching device from the second heat medium flow switching devices 23a and 23b via the heat medium flow control devices 25a and 25b.
  • the heat medium flows in the direction to 22a and 22b.
  • the air conditioning load required in the indoor space 7 is detected by the temperature detected by the first temperature sensor 31a, the temperature detected by the first temperature sensor 31b, and the second temperature sensors 34a and 34b. This can be covered by controlling so as to keep the difference from the temperature as a target value.
  • the outlet temperature of the heat exchangers 15a and 15b the temperature of either the first temperature sensor 31a or 31b may be used, or the average temperature of these may be used.
  • the first heat medium flow switching device 22 and the second heat medium flow switching device 23 are provided with an intermediate opening so as to secure a flow path that flows to both the heat exchangers 15a and 15b. It is in degrees.
  • the usage-side heat exchanger 26 should be controlled by the temperature difference between the inlet and the outlet, but the temperature of the heat medium on the inlet side of the usage-side heat exchanger 26 is detected by the first temperature sensor 31b. By using the first temperature sensor 31b, the number of temperature sensors can be reduced and the system can be configured at low cost.
  • FIG. 6 is a refrigerant circuit diagram illustrating a refrigerant flow when the air-conditioning apparatus 100 illustrated in FIG. 2 is in the cooling main operation mode.
  • the cooling main operation mode will be described by taking as an example a case where a heating load is generated in the use side heat exchanger 26d and a cooling load is generated in the use side heat exchangers 26a to 26c.
  • the pipes represented by the bold lines indicate the pipes through which the refrigerant (heat source side refrigerant and heat medium) circulates, and the flow direction of the heat source side refrigerant is indicated by a solid line arrow and the flow direction of the heat medium is indicated by a broken line arrow. .
  • the first refrigerant flow switching device 11 is switched so that the heat source side refrigerant discharged from the compressor 10 flows into the heat source side heat exchanger 12.
  • the pumps 21a and 21b are driven to open the heat medium flow control devices 25a to 25d, and between the heat exchanger related to heat medium 15a and the use side heat exchangers 26a to 26c, and the heat medium.
  • the heat medium circulates between the intermediate heat exchanger 15b and the use side heat exchanger 26d.
  • the low-temperature and low-pressure refrigerant is compressed by the compressor 10 and discharged as a high-temperature and high-pressure gas refrigerant.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 10 flows into the heat source side heat exchanger 12 via the first refrigerant flow switching device 11. And it becomes a liquid refrigerant, dissipating heat to outdoor air with the heat source side heat exchanger 12.
  • the refrigerant that has flowed out of the heat source side heat exchanger 12 flows out of the outdoor unit 1 and flows into the heat medium relay unit 3 through the check valve 13 a and the refrigerant pipe 4.
  • the refrigerant that has flowed into the heat medium relay unit 3 flows into the heat exchanger related to heat medium 15b that acts as a condenser through the second refrigerant flow switching device 18b.
  • the refrigerant that has flowed into the heat exchanger related to heat medium 15b becomes a refrigerant whose temperature is further lowered while radiating heat to the heat medium circulating in the heat medium circuit B.
  • the refrigerant flowing out of the heat exchanger related to heat medium 15b is expanded by the expansion device 16b and becomes a low-pressure two-phase refrigerant.
  • This low-pressure two-phase refrigerant flows into the heat exchanger related to heat medium 15a acting as an evaporator via the expansion device 16a.
  • the low-pressure two-phase refrigerant that has flowed into the heat exchanger related to heat medium 15a absorbs heat from the heat medium circulating in the heat medium circuit B, and becomes a low-pressure gas refrigerant while cooling the heat medium.
  • the gas refrigerant flows out of the heat exchanger related to heat medium 15a, flows out of the heat medium converter 3 via the second refrigerant flow switching device 18a, and flows into the outdoor unit 1 again through the refrigerant pipe 4.
  • the refrigerant that has flowed into the outdoor unit 1 is again sucked into the compressor 10 via the check valve 13d, the first refrigerant flow switching device 11, and the accumulator 19.
  • the second refrigerant flow switching device 18a is in communication with the low pressure pipe, while the second refrigerant flow switching device 18b is in communication with the high pressure side piping.
  • the opening degree of the expansion device 16b is controlled so that the superheat obtained as the difference between the temperature detected by the third temperature sensor 35a and the temperature detected by the third temperature sensor 35b becomes constant.
  • the expansion device 16a is fully opened, and the opening / closing devices 17a and 17b are closed.
  • the expansion device 16b is configured so that a subcool obtained as a difference between a value obtained by converting the pressure detected by the first pressure sensor 36 into a saturation temperature and a temperature detected by the third temperature sensor 35d is constant.
  • the opening degree may be controlled.
  • the expansion device 16b may be fully opened, and the superheat or subcool may be controlled by the expansion device 16a.
  • the heat of the heat source side refrigerant is transmitted to the heat medium in the heat exchanger related to heat medium 15b, and the heated heat medium is caused to flow in the heat medium pipe 5 by the pump 21b.
  • the cold heat of the heat source side refrigerant is transmitted to the heat medium by the heat exchanger related to heat medium 15a, and the cooled heat medium is caused to flow in the heat medium pipe 5 by the pump 21a.
  • the heat medium pressurized and discharged by the pumps 21a and 21b flows into the use side heat exchangers 26a to 26d via the second heat medium flow switching devices 23a to 23d.
  • the heat medium radiates heat to the indoor air, thereby heating the indoor space 7.
  • the heat medium absorbs heat from the indoor air, thereby cooling the indoor space 7.
  • the flow rate of the heat medium is controlled to a flow rate necessary to cover the air conditioning load required indoors by the action of the heat medium flow rate adjusting devices 25a to 25d, and flows into the use side heat exchangers 26a to 26d. It is like that.
  • the heat medium that has passed through the use-side heat exchanger 26d and has slightly decreased in temperature passes through the heat medium flow control device 25d and the first heat medium flow switching device 22d, flows into the heat exchanger related to heat medium 15b, and again It is sucked into the pump 21b.
  • the heat medium that has passed through the use side heat exchangers 26a to 26c and slightly increased in temperature passes through the heat medium flow control devices 25a to 25c and the first heat medium flow switching devices 22a to 22c, and heat between the heat media. It flows into the exchanger 15a and is sucked into the pump 21a again.
  • the warm heat medium and the cold heat medium are respectively mixed with the heat load without being mixed by the action of the first heat medium flow switching device 22 and the second heat medium flow switching device 23. Then, it is introduced into the use side heat exchangers 26a to 26d having a cold load.
  • the first heat medium flow is supplied from the second heat medium flow switching device 23 via the heat medium flow control device 25 on both the heating side and the cooling side. A heat medium flows in the direction to the path switching device 22.
  • the air conditioning load required in the indoor space 7 is the difference between the temperature detected by the first temperature sensor 31b on the heating side and the temperature detected by the second temperature sensor 34d on the heating side, and the first on the cooling side. This can be covered by controlling the difference between the temperature detected by the two temperature sensors 34a to 34c and the temperature detected by the first temperature sensor 31a as a target value.
  • FIG. 7 is a refrigerant circuit diagram showing a refrigerant flow when the air-conditioning apparatus 100 shown in FIG. 2 is in the heating main operation mode.
  • the heating main operation mode will be described by taking as an example a case where a heat load is generated in the use side heat exchangers 26b to 26d and a heat load is generated in the use side heat exchanger 26a.
  • the pipes represented by the bold lines indicate the pipes through which the refrigerant (heat source side refrigerant and heat medium) circulates, and the flow direction of the heat source side refrigerant is indicated by a solid line arrow and the flow direction of the heat medium is indicated by a broken line arrow. .
  • the first refrigerant flow switching device 11 uses the heat source side refrigerant discharged from the compressor 10 without passing through the heat source side heat exchanger 12. It switches so that it may flow into converter 3.
  • the pumps 21a and 21b are driven, the heat medium flow control devices 25a to 25d are opened, the heat between the heat medium heat exchanger 15a and the use side heat exchanger 26a, and the heat between the heat mediums.
  • the heat medium circulates between the exchanger 15b and the use side heat exchangers 26b to 26d.
  • the low-temperature and low-pressure refrigerant is compressed by the compressor 10 and discharged as a high-temperature and high-pressure gas refrigerant.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 10 flows out of the outdoor unit 1 through the first refrigerant flow switching device 11 and the check valve 13b.
  • the high-temperature and high-pressure gas refrigerant that has flowed out of the outdoor unit 1 flows into the heat medium relay unit 3 through the refrigerant pipe 4.
  • the high-temperature and high-pressure gas refrigerant that has flowed into the heat medium relay unit 3 flows into the heat exchanger related to heat medium 15b that acts as a condenser through the second refrigerant flow switching device 18b.
  • the gas refrigerant flowing into the heat exchanger related to heat medium 15b becomes liquid refrigerant while dissipating heat to the heat medium circulating in the heat medium circuit B.
  • the refrigerant flowing out of the heat exchanger related to heat medium 15b is expanded by the expansion device 16b and becomes a low-pressure two-phase refrigerant.
  • This low-pressure two-phase refrigerant flows into the heat exchanger related to heat medium 15a acting as an evaporator via the expansion device 16a.
  • the low-pressure two-phase refrigerant that has flowed into the heat exchanger related to heat medium 15a evaporates by absorbing heat from the heat medium circulating in the heat medium circuit B, thereby cooling the heat medium.
  • the low-pressure two-phase refrigerant flows out of the heat exchanger related to heat medium 15a, flows out of the heat medium converter 3 through the second refrigerant flow switching device 18a, and flows into the outdoor unit 1 again.
  • the refrigerant that has flowed into the outdoor unit 1 passes through the check valve 13c and flows into the heat source side heat exchanger 12 that functions as an evaporator. And the refrigerant
  • the low-temperature and low-pressure gas refrigerant flowing out from the heat source side heat exchanger 12 is again sucked into the compressor 10 via the first refrigerant flow switching device 11 and the accumulator 19.
  • the second refrigerant flow switching device 18a is in communication with the low pressure side piping, while the second refrigerant flow switching device 18b is in communication with the high pressure side piping.
  • the expansion device 16b is configured so that a subcool obtained as a difference between a value obtained by converting the pressure detected by the first pressure sensor 36 into a saturation temperature and a temperature detected by the third temperature sensor 35b is constant. The opening is controlled. Further, the expansion device 16a is fully opened, and the opening / closing devices 17a and 17b are closed. Note that the expansion device 16b may be fully opened, and the subcooling may be controlled by the expansion device 16a.
  • the heat of the heat source side refrigerant is transmitted to the heat medium in the heat exchanger related to heat medium 15b, and the heated heat medium is caused to flow in the heat medium pipe 5 by the pump 21b.
  • the cold heat of the heat source side refrigerant is transmitted to the heat medium by the heat exchanger related to heat medium 15a, and the cooled heat medium is caused to flow in the heat medium pipe 5 by the pump 21a.
  • the heat medium pressurized and discharged by the pumps 21a and 21b flows into the use side heat exchangers 26a to 26d via the second heat medium flow switching devices 23a to 23d.
  • the heat medium absorbs heat from the indoor air, thereby cooling the indoor space 7. Further, in the use side heat exchangers 26b to 26d, the heat medium radiates heat to the indoor air, thereby heating the indoor space 7. At this time, the flow rate of the heat medium is controlled to a flow rate necessary to cover the air conditioning load required indoors by the action of the heat medium flow rate adjusting devices 25a to 25d, and flows into the use side heat exchangers 26a to 26d. It is like that.
  • the heat medium whose temperature has slightly increased after passing through the use side heat exchanger 26a flows into the heat exchanger related to heat medium 15a through the heat medium flow control device 25a and the first heat medium flow switching device 22a, and again.
  • the heat medium that has passed through the use side heat exchangers 26b to 26d and has been slightly lowered in temperature passes through the heat medium flow control devices 25b to 25d and the first heat medium flow switching devices 22b to 22d, and heat between the heat media. It flows into the exchanger 15b and is sucked into the pump 21b again.
  • the warm heat medium and the cold heat medium are respectively mixed with the heat load without being mixed by the action of the first heat medium flow switching device 22 and the second heat medium flow switching device 23. Then, it is introduced into the use side heat exchangers 26a to 26d having a cold load.
  • the first heat medium flow is supplied from the second heat medium flow switching device 23 via the heat medium flow control device 25 on both the heating side and the cooling side.
  • a heat medium flows in the direction to the path switching device 22.
  • the air conditioning load required in the indoor space 7 is the difference between the temperature detected by the first temperature sensor 31b on the heating side and the temperature detected by the second temperature sensors 34b to 34d on the cooling side. Can be covered by controlling the difference between the temperature detected by the second temperature sensor 34a and the temperature detected by the first temperature sensor 31a as a target value.
  • the flow path is closed by the heat medium flow control device 25, The heat medium is prevented from flowing to the use side heat exchanger 26.
  • a heat medium flows because all of the use side heat exchangers 26a to 26d have a heat load.
  • the corresponding heat medium flow rate adjustment is performed.
  • the device 25 is fully closed.
  • the operating pressure of the relief valve 60 is determined from the type of the heat medium and the type of the heat source side refrigerant, and the operating pressure of the relief valve 60 is determined based on the maximum pressure of the heat medium and the maximum pressure of the heat source side refrigerant.
  • the secondary loop is kept at an appropriate pressure. Further, the discharged heat source side refrigerant and the heat medium stay in the heat medium converter 3, and the refrigerant leakage detection device 61 detects this.
  • the leakage diffusion of the heat source side refrigerant to the indoor side can be further suppressed. it can.
  • the leakage of the heat source side refrigerant may be determined by a change in the refrigeration cycle of the primary loop, such as a decrease in the second pressure sensor 37 of the outdoor unit 1.
  • the second pressure sensor is in charge of the refrigerant leakage detection means.
  • a heat medium pressure detecting device 62 for detecting the pressure of the secondary loop may be provided (see FIG. 3), and the leakage of the heat source side refrigerant may be detected by an increase in the pressure of the secondary loop.
  • the heat medium pressure detection device 62 takes charge of the refrigerant leakage detection means.

Abstract

A heat source-side refrigerant circulation circuit (A) and a heat medium circulation circuit (B) are cascade-connected by an inter-heat medium heat exchanger (15) such that a heat source-side refrigerant and a heat medium exchange heat. A relief valve (60) is provided in the heat medium circulation circuit (B). The relief valve (60) discharges the heat source-side refrigerant and the heat medium and operates when the heat source-side refrigerant flows into the heat medium circulation circuit (B).

Description

空気調和装置Air conditioner
 本発明は、たとえばビル用マルチエアコンなどに適用される空気調和装置に関するものである。 The present invention relates to an air conditioner applied to, for example, a building multi-air conditioner.
 従来の空気調和装置において、ビル用マルチエアコンなどのように、熱源機(室外機)が建物外に配置され、室内機が建物の室内に配置されたものがある。このような空気調和装置の冷媒回路を循環する冷媒は、室内機の熱交換器に供給される空気に放熱(吸熱)し、当該空気を加熱または冷却する。そして、その加熱または冷却された空気が、空調対象空間に送り込まれて暖房または冷房が行われるようになっている。 Some conventional air conditioners have heat source units (outdoor units) arranged outside the building and indoor units arranged inside the building, such as multi air conditioners for buildings. The refrigerant circulating in the refrigerant circuit of such an air conditioner radiates heat (absorbs heat) to the air supplied to the heat exchanger of the indoor unit, and heats or cools the air. The heated or cooled air is sent into the air-conditioning target space for heating or cooling.
 このようなビル用マルチエアコンにおける室内機は、人が居る室内空間(たとえば、オフィス、居室、店舗など)に配置されて利用されることが一般的である。そのため、何らかの原因によって室内空間に配置された室内機から冷媒が漏れた場合、冷媒の種類によっては引火性、有毒性を有しているため、人体への影響および安全性の観点から問題となる。また、人体に有害ではない冷媒であったとしても、冷媒漏れによって室内空間の酸素濃度が低下し、人体に影響を及ぼすことが想定される。
 このような問題に対応するため、空気調和装置に2次ループ方式を採用し、1次ループ(室外機系統)には冷媒を循環させ、2次ループ(室内機系統)には有害でない水やブライン(以下、熱媒体と称する)を用いて人が居る室内空間を空調することが考えられる(たとえば、特許文献1参照)。
In general, an indoor unit in such a building multi-air conditioner is arranged and used in an indoor space where a person is present (for example, an office, a living room, a store, etc.). Therefore, if the refrigerant leaks from the indoor unit placed in the indoor space for some reason, it is flammable and toxic depending on the type of the refrigerant, which is problematic from the viewpoint of human influence and safety. . Moreover, even if it is a refrigerant | coolant which is not harmful to a human body, the oxygen concentration of indoor space falls by a refrigerant | coolant leak, and it is assumed that a human body is affected.
In order to deal with such problems, a secondary loop system is adopted for the air conditioner, and refrigerant is circulated in the primary loop (outdoor unit system), and water that is not harmful to the secondary loop (indoor unit system). It is conceivable to air-condition an indoor space where people are present using a brine (hereinafter referred to as a heat medium) (for example, see Patent Document 1).
特開2000-227242号公報(たとえば、要約、図1参照)Japanese Patent Laid-Open No. 2000-227242 (for example, refer to the summary, FIG. 1)
 特許文献1に記載のような空気調和装置において、基本的に室内機側への冷媒漏洩は発生しないが、1次ループの冷媒と2次ループの熱媒体とが熱交換する熱交換部(熱交換器)において、その熱交換部が破損して1次ループの冷媒が2次ループ側へ漏洩した場合は、室内空間に配置された室内機へ冷媒漏洩が発生してしまう。
 そして、上記のように冷媒漏洩が発生すると2次ループの圧力が上昇し、その圧力上昇によって2次ループに使用されている部品の破損を招き、さらにその破損によって冷媒漏洩が拡散するという課題があった。
In the air conditioner as described in Patent Document 1, the refrigerant leakage to the indoor unit basically does not occur, but the heat exchange unit (heat) that exchanges heat between the refrigerant in the primary loop and the heat medium in the secondary loop. In the exchanger), when the heat exchanging portion is damaged and the refrigerant in the primary loop leaks to the secondary loop side, the refrigerant leaks to the indoor unit arranged in the indoor space.
When the refrigerant leakage occurs as described above, the pressure of the secondary loop rises, and this pressure rise causes damage to the parts used in the secondary loop, and further, the refrigerant leakage diffuses due to the damage. there were.
 本発明は、以上のような課題を解決するためになされたもので、1次ループの冷媒と2次ループの熱媒体とが熱交換する熱交換部において、その熱交換部が破損して1次ループの冷媒が2次ループ側へ漏洩した場合でも、2次ループの圧力を抑制し、圧力上昇が招く2次ループに使用されている部品の破損を抑制し、冷媒漏洩の拡散を抑制する空気調和装置を提供することを目的としている。 The present invention has been made in order to solve the above-described problems. In a heat exchanging portion where heat is exchanged between the refrigerant in the primary loop and the heat medium in the secondary loop, the heat exchanging portion is damaged and Even when the refrigerant in the next loop leaks to the secondary loop side, the pressure in the secondary loop is suppressed, the damage to the parts used in the secondary loop causing the pressure increase is suppressed, and the diffusion of the refrigerant leak is suppressed. The object is to provide an air conditioner.
 本発明に係る空気調和装置は圧縮機、熱源側熱交換器、絞り装置、および、熱媒体間熱交換器の熱源側冷媒流路が直列に配管接続され、熱源側冷媒を循環させる熱源側冷媒循環回路と、ポンプ、利用側熱交換器、および、前記熱媒体間熱交換器の熱媒体流路が直列に配管接続され、熱媒体を循環させる熱媒体循環回路と、を備え、前記熱源側冷媒循環回路と前記熱媒体循環回路とは、前記熱媒体間熱交換器で前記熱源側冷媒と前記熱媒体とが熱交換を行うようにカスケード接続され、前記熱媒体循環回路にリリーフ弁を設け、該リリーフ弁は、前記熱源側冷媒が前記熱媒体循環回路に流入した際に作動し、前記熱源側冷媒と、前記熱媒体とを、排出するものである。 The air conditioner according to the present invention includes a compressor, a heat source side heat exchanger, a throttling device, and a heat source side refrigerant flow path of the heat medium side heat exchanger connected in series to circulate the heat source side refrigerant. A circulation circuit, a pump, a use-side heat exchanger, and a heat medium circulation circuit in which heat medium flow paths of the heat exchangers between heat mediums are connected in series to circulate the heat medium, and the heat source side The refrigerant circulation circuit and the heat medium circulation circuit are cascade-connected so that the heat source side refrigerant and the heat medium exchange heat in the inter-heat medium heat exchanger, and a relief valve is provided in the heat medium circulation circuit. The relief valve operates when the heat source side refrigerant flows into the heat medium circulation circuit, and discharges the heat source side refrigerant and the heat medium.
 本発明に係る空気調和装置によれば、リリーフ弁を有し、1次ループの冷媒が2次ループ側に漏洩した場合でも、熱媒体に混ざった熱源側冷媒を2次ループの系外に排出するため、2次ループの圧力を抑制し、圧力上昇が招く2次ループに使用されている部品の破損を抑制し、冷媒漏洩の拡散を抑制することができる。 The air conditioner according to the present invention has a relief valve and discharges the heat source side refrigerant mixed with the heat medium out of the secondary loop system even when the refrigerant in the primary loop leaks to the secondary loop side. Therefore, it is possible to suppress the pressure of the secondary loop, suppress the breakage of components used in the secondary loop that causes the pressure increase, and suppress the diffusion of the refrigerant leakage.
本発明の実施の形態に係る空気調和装置の設置例を示す概略図である。It is the schematic which shows the example of installation of the air conditioning apparatus which concerns on embodiment of this invention. 本発明の実施の形態に係る空気調和装置の第1の冷媒回路構成例である。It is a 1st refrigerant circuit structural example of the air conditioning apparatus which concerns on embodiment of this invention. 本発明の実施の形態に係る空気調和装置の第2の冷媒回路構成例である。It is a 2nd refrigerant circuit structural example of the air conditioning apparatus which concerns on embodiment of this invention. 図2に示す空気調和装置の全冷房運転モード時における冷媒の流れを示す冷媒回路図である。It is a refrigerant circuit figure which shows the flow of the refrigerant | coolant at the time of the cooling only operation mode of the air conditioning apparatus shown in FIG. 図2に示す空気調和装置の全暖房運転モード時における冷媒の流れを示す冷媒回路図である。It is a refrigerant circuit figure which shows the flow of the refrigerant | coolant at the time of the heating only operation mode of the air conditioning apparatus shown in FIG. 図2に示す空気調和装置の冷房主体運転モード時における冷媒の流れを示す冷媒回路図である。It is a refrigerant circuit diagram which shows the flow of the refrigerant | coolant at the time of the cooling main operation mode of the air conditioning apparatus shown in FIG. 図2に示す空気調和装置の暖房主体運転モード時における冷媒の流れを示す冷媒回路図である。It is a refrigerant circuit figure which shows the flow of the refrigerant | coolant at the time of heating main operation mode of the air conditioning apparatus shown in FIG.
 以下、本発明の実施の形態を図面に基づいて説明する。なお、以下に説明する実施の形態によって本発明が限定されるものではない。また、以下の図面では各構成部材の大きさの関係が実際のものとは異なる場合がある。
実施の形態.
 図1は、本発明の実施の形態に係る空気調和装置100の設置例を示す概略図である。
 以下、図1に基づいて空気調和装置100の設置例について説明する。
 この空気調和装置100は、冷媒を循環させる冷凍サイクルを有しており、各室内機2a~2dが運転モードとして冷房モードあるいは暖房モードを自由に選択できるものである。本実施の形態に係る空気調和装置100は、冷媒としてたとえばR-22、R-32、R-134aなどの単一冷媒、R-410A、R-404Aなどの擬似共沸混合冷媒、R-407Cなどの非共沸混合冷媒、化学式内に二重結合を含むCFCF=CHなどの地球温暖化係数が比較的小さい値とされている冷媒やその混合物、あるいはCOやプロパンなどの自然冷媒が採用されている。そして、それら自然冷媒が採用された熱源側冷媒循環回路A(以下、1次ループとも称する)、および熱媒体として水などが採用された熱媒体循環回路B(以下、2次ループとも称する)を有している(図2参照)。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. The present invention is not limited to the embodiments described below. Moreover, in the following drawings, the relationship of the size of each component may be different from the actual one.
Embodiment.
FIG. 1 is a schematic diagram illustrating an installation example of an air conditioner 100 according to an embodiment of the present invention.
Hereinafter, an installation example of the air conditioner 100 will be described with reference to FIG.
The air conditioner 100 has a refrigeration cycle for circulating refrigerant, and each of the indoor units 2a to 2d can freely select a cooling mode or a heating mode as an operation mode. The air-conditioning apparatus 100 according to the present embodiment includes, for example, a single refrigerant such as R-22, R-32, and R-134a, a pseudo-azeotropic refrigerant mixture such as R-410A and R-404A, and R-407C. Non-azeotropic refrigerants such as CF 3 CF = CH 2 containing a double bond in the chemical formula, or a refrigerant or mixture thereof having a relatively low global warming potential, or natural such as CO 2 or propane Refrigerant is used. Then, a heat source side refrigerant circulation circuit A (hereinafter also referred to as a primary loop) employing these natural refrigerants, and a heat medium circulation circuit B (hereinafter also referred to as a secondary loop) employing water or the like as a heat medium. (See FIG. 2).
 本実施の形態に係る空気調和装置100は、冷媒(以下、熱源側冷媒と称する)を間接的に利用する方式(間接方式)を採用している。すなわち、熱源側冷媒に貯えた冷熱または温熱を熱源側冷媒とは異なる冷媒(以下、熱媒体と称する)に伝達し、熱媒体に貯えた冷熱または温熱で空調対象空間を冷房または暖房する。また、熱媒体を室外空気、室内空気、ボイラー排熱などの別熱源と直接熱交換して、熱媒体に冷熱または温熱を貯えることができる。 The air-conditioning apparatus 100 according to the present embodiment employs a system (indirect system) that indirectly uses a refrigerant (hereinafter referred to as a heat source side refrigerant). That is, the cold or warm heat stored in the heat source side refrigerant is transmitted to a refrigerant (hereinafter referred to as a heat medium) different from the heat source side refrigerant, and the air-conditioning target space is cooled or heated with the cold heat or heat stored in the heat medium. Further, the heat medium can be directly heat exchanged with another heat source such as outdoor air, room air, boiler exhaust heat, etc., and cold heat or heat can be stored in the heat medium.
 図1に示すように、本実施の形態に係る空気調和装置100は、熱源機である1台の室外機1と、複数台の室内機2a~2d(以下、単に室内機2と称することがある)と、室外機1と室内機2との間に介在する熱媒体変換機3と、を有している。熱媒体変換機3は、熱源側冷媒と熱媒体とで熱交換を行うものである。室外機1と熱媒体変換機3とは、熱源側冷媒を循環させるための冷媒配管4で接続されている。熱媒体変換機3と室内機2とは、熱媒体を循環させるための熱媒体配管5で接続されている。そして、室外機1で生成された冷熱あるいは温熱は、熱媒体変換機3を介して室内機2に配送されるようになっている。 As shown in FIG. 1, an air-conditioning apparatus 100 according to the present embodiment includes one outdoor unit 1 that is a heat source unit and a plurality of indoor units 2a to 2d (hereinafter simply referred to as indoor unit 2). And a heat medium relay unit 3 interposed between the outdoor unit 1 and the indoor unit 2. The heat medium relay unit 3 performs heat exchange between the heat source side refrigerant and the heat medium. The outdoor unit 1 and the heat medium relay unit 3 are connected by a refrigerant pipe 4 for circulating the heat source side refrigerant. The heat medium converter 3 and the indoor unit 2 are connected by a heat medium pipe 5 for circulating the heat medium. The cold or warm heat generated by the outdoor unit 1 is delivered to the indoor unit 2 via the heat medium converter 3.
 室外機1は、通常、ビルなどの建物9の外部の空間(たとえば、屋上など)である室外空間6に配置され、熱媒体変換機3を介して室内機2に冷熱または温熱を供給するものである。
 室内機2は、建物9の内部の空間(たとえば、居室など)である室内空間7に冷房用空気または暖房用空気を供給できる位置に配置され、空調対象空間となる室内空間7に冷房用空気または暖房用空気を供給するものである。
 熱媒体変換機3は、室外機1および室内機2とは別筐体とし、室外空間6および室内空間7とは別の位置に設置されるものである。この熱媒体変換機3は、室外機1と冷媒配管4を介して、および室内機2と熱媒体配管5を介してそれぞれ接続され、室外機1から供給される冷熱または温熱を室内機2に伝達するものである。
The outdoor unit 1 is normally disposed in an outdoor space 6 that is an external space (for example, a rooftop) of a building 9 such as a building, and supplies cold or hot energy to the indoor unit 2 via the heat medium converter 3. It is.
The indoor unit 2 is disposed at a position where cooling air or heating air can be supplied to the indoor space 7 that is a space (for example, a living room) inside the building 9, and the cooling air is supplied to the indoor space 7 that is the air-conditioning target space. Alternatively, heating air is supplied.
The heat medium relay unit 3 is a separate housing from the outdoor unit 1 and the indoor unit 2 and is installed at a position different from the outdoor space 6 and the indoor space 7. The heat medium converter 3 is connected to the outdoor unit 1 via the refrigerant pipe 4 and the indoor unit 2 via the heat medium pipe 5, and cools or warms supplied from the outdoor unit 1 to the indoor unit 2. To communicate.
 図1に示すように、本実施の形態に係る空気調和装置100において、室外機1と熱媒体変換機3とが2本の冷媒配管4を介して接続され、熱媒体変換機3と各室内機2a~2dとが2本の熱媒体配管5を介してそれぞれ接続されている。このように、空気調和装置100では、冷媒配管4および熱媒体配管5を介して各ユニット(室外機1、室内機2、および熱媒体変換機3)を接続することにより、施工が容易となっている。 As shown in FIG. 1, in the air conditioning apparatus 100 according to the present embodiment, an outdoor unit 1 and a heat medium converter 3 are connected via two refrigerant pipes 4, and the heat medium converter 3 and each room Machines 2a to 2d are connected to each other through two heat medium pipes 5. As described above, in the air conditioner 100, construction is facilitated by connecting each unit (the outdoor unit 1, the indoor unit 2, and the heat medium converter 3) via the refrigerant pipe 4 and the heat medium pipe 5. ing.
 なお、図1において、熱媒体変換機3が建物9の内部であり、室内空間7とは別の空間である天井裏などの空間8(たとえば、建物9における天井裏などのスペース)に設置されている状態が例として図示されているが、その他、エレベーターがある共用空間などに設置してもよい。また、室内機2が天井カセット型を例として図示されているが、これに限定されるものではない。すなわち、室内機2はその他、天井埋込型や天井吊下式など、直接またはダクトを介して室内空間7に暖房用空気または冷房用空気を吹き出せるようになっていれば、どんな種類のものでもよい。 In FIG. 1, the heat medium relay unit 3 is installed in a space 9 such as the back of the ceiling, which is a space different from the indoor space 7 (for example, a space such as the back of the ceiling in the building 9). However, it may be installed in a common space where there is an elevator. Moreover, although the indoor unit 2 is illustrated as an example of the ceiling cassette type, it is not limited to this. In other words, the indoor unit 2 can be of any type, such as a ceiling-embedded type or a ceiling-suspended type, as long as it can blow heating air or cooling air into the indoor space 7 directly or through a duct. But you can.
 また、熱媒体変換機3は、室外機1の近傍に設置することもできる。ただし、熱媒体変換機3から室内機2までの距離が長すぎると、熱媒体の搬送動力がかなり大きくなるため、省エネの効果が薄れることに留意が必要である。 The heat medium converter 3 can also be installed in the vicinity of the outdoor unit 1. However, it should be noted that if the distance from the heat medium relay unit 3 to the indoor unit 2 is too long, the heat medium transport power becomes considerably large, and the energy saving effect is diminished.
 図2は、本発明の実施の形態に係る空気調和装置100の第1の冷媒回路構成例である。
 図2に示すように、室外機1と、熱媒体変換機3に備えられた熱媒体間熱交換器15a、15bとが、冷媒配管4を介してそれぞれ接続されている。また、室内機2と、熱媒体間熱交換器15a、15bとも、熱媒体配管5を介してそれぞれ接続されている。
FIG. 2 is a first refrigerant circuit configuration example of the air-conditioning apparatus 100 according to the embodiment of the present invention.
As shown in FIG. 2, the outdoor unit 1 and the heat exchangers 15 a and 15 b provided in the heat medium converter 3 are connected to each other via the refrigerant pipe 4. Also, the indoor unit 2 and the heat exchangers between heat mediums 15a and 15b are also connected via the heat medium pipe 5, respectively.
[室外機1]
 室外機1には、冷媒を圧縮する圧縮機10、四方弁などで構成される第1冷媒流路切替装置11、蒸発器または凝縮器として機能する熱源側熱交換器12、および余剰冷媒を貯留するアキュムレーター19が冷媒配管4で接続されて搭載されている。
 また、室内機2の要求する運転に関わらず、熱媒体変換機3に流入させる熱源側冷媒の流れを一定方向にすることができる逆止弁13a~13dが設けられている。
 熱媒体間熱交換器15a、15b(以下、単に熱媒体間熱交換器15と称することがある)と第1冷媒流路切替装置11との間における冷媒配管4に逆止弁13dが、第1接続配管4aに逆止弁13bが、第2接続配管4bに逆止弁13cが、熱源側熱交換器12と熱媒体間熱交換器15a、15bとの間における冷媒配管4に逆止弁13aが、それぞれ設けられている。
[Outdoor unit 1]
The outdoor unit 1 stores a compressor 10 that compresses refrigerant, a first refrigerant flow switching device 11 that includes a four-way valve, a heat source side heat exchanger 12 that functions as an evaporator or a condenser, and excess refrigerant. The accumulator 19 is connected and mounted by the refrigerant pipe 4.
In addition, check valves 13a to 13d are provided that can make the flow of the heat-source-side refrigerant flowing into the heat medium relay unit 3 in a certain direction regardless of the operation required by the indoor unit 2.
A check valve 13d is provided in the refrigerant pipe 4 between the heat exchangers 15a, 15b (hereinafter, simply referred to as the heat exchanger 15) and the first refrigerant flow switching device 11, A check valve 13b is provided in the first connection pipe 4a, a check valve 13c is provided in the second connection pipe 4b, and a check valve is provided in the refrigerant pipe 4 between the heat source side heat exchanger 12 and the heat exchangers 15a and 15b. 13a are provided.
 圧縮機10は、熱源側冷媒を吸入し、その熱源側冷媒を圧縮して高温・高圧の状態にするものであり、たとえば容量制御可能なインバータ圧縮機などで構成するとよい。
 第1冷媒流路切替装置11は、暖房運転モード時(全暖房運転モード時および暖房主体運転モード時)における熱源側冷媒の流れと、冷房運転モード時(全冷房運転モード時および冷房主体運転モード時)における熱源側冷媒の流れとを、切り替えるものである。
 熱源側熱交換器12は、暖房運転時には蒸発器として機能し、冷房運転時には凝縮器として機能し、図示省略のファンなどの送風機から供給される空気と熱源側冷媒との間で熱交換を行うものである。
The compressor 10 sucks the heat source side refrigerant and compresses the heat source side refrigerant to a high temperature / high pressure state, and may be configured by, for example, an inverter compressor capable of capacity control.
The first refrigerant flow switching device 11 has a flow of the heat source side refrigerant in the heating operation mode (in the heating only operation mode and in the heating main operation mode) and the cooling operation mode (in the cooling only operation mode and the cooling main operation mode). The flow of the heat source side refrigerant at the time) is switched.
The heat source side heat exchanger 12 functions as an evaporator during heating operation, functions as a condenser during cooling operation, and performs heat exchange between air supplied from a blower such as a fan (not shown) and the heat source side refrigerant. Is.
 ここで、全冷房運転モードは、駆動している室内機2の全てが冷房運転を実行するモード、全暖房運転モードは、駆動している室内機2の全てが暖房運転を実行するモード、冷房主体運転モードは、冷房運転と暖房運転とが混在する冷房暖房混在運転モードであり、冷房負荷の方が大きいモード、暖房主体運転モードは、同じく冷房暖房混在運転モードであり、暖房負荷の方が大きいモード、のことである。 Here, the all-cooling operation mode is a mode in which all the driven indoor units 2 execute a cooling operation, and the all-heating operation mode is a mode in which all the driven indoor units 2 perform a heating operation, The main operation mode is a cooling / heating mixed operation mode in which both cooling operation and heating operation are mixed, the cooling load is larger, and the heating main operation mode is also the cooling / heating mixed operation mode, and the heating load is more It ’s a big mode.
 アキュムレーター19は、圧縮機10の吸入側に設けられ、余剰冷媒を貯留する機能と液冷媒とガス冷媒とを分離する機能とを有している。なお、アキュムレーター19は、過剰な冷媒を貯留できる容器であればよい。 The accumulator 19 is provided on the suction side of the compressor 10 and has a function of storing excess refrigerant and a function of separating liquid refrigerant and gas refrigerant. In addition, the accumulator 19 should just be a container which can store an excessive refrigerant | coolant.
 また、圧縮機10の前後には圧力検知装置である第2圧力センサー37と第3圧力センサー38が設けられており、圧縮機10の回転数と、これら第2圧力センサー37および第3圧力センサー38の検知値から、圧縮機10からの冷媒流量を計算できるようになっている。 Further, a second pressure sensor 37 and a third pressure sensor 38, which are pressure detection devices, are provided before and after the compressor 10, and the rotational speed of the compressor 10, the second pressure sensor 37, and the third pressure sensor are provided. The refrigerant flow rate from the compressor 10 can be calculated from the 38 detected values.
[室内機2]
 4つの室内機2a~2dには、利用側熱交換器26a~26d(以下、単に利用側熱交換器26と称することがある)がそれぞれ搭載されている。利用側熱交換器26は、熱媒体配管5を介して、熱媒体変換機3に備えられた熱媒体流量調整装置25a~25d(以下、単に熱媒体流量調整装置25と称することがある)と、第2熱媒体流路切替装置23a~23d(以下、単に第2熱媒体流路切替装置23と称することがある)とに接続されている。
 この利用側熱交換器26は、図示省略のファンなどの送風機から供給される空気と熱媒体との間で熱交換を行い、室内空間7に供給するための冷房用空気または暖房用空気を生成するものである。
 また、室内機2a~2dには、吸い込み温度を検知する吸込空気温度検知装置39a~39dがそれぞれ設けられている。
[Indoor unit 2]
The four indoor units 2a to 2d are equipped with use side heat exchangers 26a to 26d (hereinafter sometimes simply referred to as use side heat exchangers 26), respectively. The use-side heat exchanger 26 is connected to the heat medium flow control devices 25a to 25d (hereinafter simply referred to as the heat medium flow control device 25) provided in the heat medium converter 3 via the heat medium pipe 5. Are connected to second heat medium flow switching devices 23a to 23d (hereinafter sometimes simply referred to as second heat medium flow switching device 23).
The use side heat exchanger 26 performs heat exchange between air supplied from a blower such as a fan (not shown) and a heat medium, and generates cooling air or heating air to be supplied to the indoor space 7. To do.
The indoor units 2a to 2d are respectively provided with intake air temperature detection devices 39a to 39d for detecting the intake temperature.
[熱媒体変換機3]
 熱媒体変換機3には、冷媒と熱媒体とが熱交換する2つの熱媒体間熱交換器15a、15b(以下、単に熱媒体間熱交換器15と称することがある)、冷媒を減圧させる2つの絞り装置16a、16b(以下、単に絞り装置16と称することがある)、冷媒配管4の流路を開閉する2つの開閉装置17a、17b(以下、単に開閉装置17と称することがある)、冷媒流路を切り替える2つの第2冷媒流路切替装置18a、18b(以下、単に第2冷媒流路切替装置18と称することがある)、熱媒体を循環させる2つのポンプ21a、21b(以下、単にポンプ21と称することがある)、熱媒体配管5の一方に接続される4つの第1熱媒体流路切替装置22a~22d(以下、単に第1熱媒体流路切替装置22と称することがある)、熱媒体配管5の他方に接続される4つの第2熱媒体流路切替装置23、第1熱媒体流路切替装置22と利用側熱交換器26との間における熱媒体配管5に接続される4つの熱媒体流量調整装置25a~25d、および、2次ループの圧力が所定値まで上昇した場合に熱媒体を系外(たとえば、熱媒体変換機3内部)へ排出する2つのリリーフ弁60a、60b(以下、単にリリーフ弁60と称することがある)が、それぞれ設けられている。
[Heat medium converter 3]
The heat medium relay unit 3 includes two heat exchangers 15a and 15b (hereinafter, simply referred to as the heat exchanger 15) that exchange heat between the refrigerant and the heat medium, and depressurize the refrigerant. Two expansion devices 16a and 16b (hereinafter simply referred to as the expansion device 16), and two open / close devices 17a and 17b (hereinafter also simply referred to as the open / close device 17) for opening and closing the flow path of the refrigerant pipe 4. , Two second refrigerant flow switching devices 18a and 18b (hereinafter sometimes simply referred to as second refrigerant flow switching device 18) for switching the refrigerant flow channels, and two pumps 21a and 21b (hereinafter referred to as the second refrigerant flow switching device 18). The first heat medium flow switching devices 22a to 22d (hereinafter simply referred to as the first heat medium flow switching device 22) connected to one of the heat medium pipes 5 (sometimes simply referred to as a pump 21). There is), heat Four second heat medium flow switching devices 23 connected to the other of the body piping 5, 4 connected to the heat medium piping 5 between the first heat medium flow switching device 22 and the use side heat exchanger 26. The two relief valves 60a and 60b for discharging the heat medium to the outside of the system (for example, inside the heat medium converter 3) when the pressure of the two heat medium flow control devices 25a to 25d and the secondary loop rises to a predetermined value. (Hereinafter may be simply referred to as relief valve 60).
 2つの熱媒体間熱交換器15a、15bは、凝縮器(放熱器)または蒸発器として機能し、熱源側冷媒と熱媒体とで熱交換を行い、室外機1で生成され熱源側冷媒に貯えられた冷熱または温熱を熱媒体に伝達するものである。熱媒体間熱交換器15aは、熱源側冷媒循環回路Aにおける絞り装置16aと第2冷媒流路切替装置18aとの間に設けられており、冷房暖房混在運転モード時において、熱媒体の冷却に供するものである。熱媒体間熱交換器15bは、熱源側冷媒循環回路Aにおける絞り装置16bと第2冷媒流路切替装置18bとの間に設けられており、冷房暖房混在運転モード時において、熱媒体の加熱に供するものである。なお、熱媒体間熱交換器15a、15bは、たとえば二重管式熱交換器やプレート熱交換器で構成するとよい。 The two heat exchangers between heat mediums 15a and 15b function as condensers (radiators) or evaporators, perform heat exchange between the heat source side refrigerant and the heat medium, and are generated by the outdoor unit 1 and stored in the heat source side refrigerant. The generated cold or warm heat is transmitted to the heat medium. The heat exchanger related to heat medium 15a is provided between the expansion device 16a and the second refrigerant flow switching device 18a in the heat source side refrigerant circulation circuit A, and cools the heat medium in the cooling / heating mixed operation mode. It is something to offer. The heat exchanger related to heat medium 15b is provided between the expansion device 16b and the second refrigerant flow switching device 18b in the heat source side refrigerant circulation circuit A, and is used to heat the heat medium in the cooling / heating mixed operation mode. It is something to offer. In addition, it is good to comprise the heat exchangers 15a and 15b between heat media with a double-pipe heat exchanger and a plate heat exchanger, for example.
 2つの絞り装置16a、16bは、減圧弁や膨張弁としての機能を有し、熱源側冷媒を減圧して膨張させるものである。絞り装置16aは、全冷房運転モード時の熱源側冷媒の流れにおいて、熱媒体間熱交換器15aの上流側に設けられている。絞り装置16bは、全冷房運転モード時の熱源側冷媒の流れにおいて、熱媒体間熱交換器15bの上流側に設けられている。なお、2つの絞り装置16は、開度が可変に制御可能なもの、たとえば電子式膨張弁などで構成するとよい。 The two expansion devices 16a and 16b function as a pressure reducing valve and an expansion valve, and expand the heat source side refrigerant by reducing the pressure. The expansion device 16a is provided on the upstream side of the heat exchanger related to heat medium 15a in the flow of the heat source side refrigerant in the cooling only operation mode. The expansion device 16b is provided on the upstream side of the heat exchanger related to heat medium 15b in the flow of the heat source side refrigerant in the cooling only operation mode. Note that the two expansion devices 16 may be configured by a device whose opening degree can be variably controlled, for example, an electronic expansion valve.
 2つの開閉装置17a、17bは、冷媒配管4を開閉するものであり、たとえば二方弁などで構成するとよい。 The two opening / closing devices 17a and 17b open and close the refrigerant pipe 4, and may be constituted by, for example, a two-way valve.
 2つの第2冷媒流路切替装置18a、18bは、四方弁などで構成され、運転モードに応じて熱源側冷媒の流れを切り替えるものである。第2冷媒流路切替装置18aは、全冷房運転モード時の熱源側冷媒の流れにおいて、熱媒体間熱交換器15aの下流側に設けられている。第2冷媒流路切替装置18bは、全冷房運転モード時の熱源側冷媒の流れにおいて、熱媒体間熱交換器15bの下流側に設けられている。 The two second refrigerant flow switching devices 18a and 18b are configured by four-way valves or the like, and switch the flow of the heat source side refrigerant according to the operation mode. The second refrigerant flow switching device 18a is provided on the downstream side of the heat exchanger related to heat medium 15a in the flow of the heat source side refrigerant in the cooling only operation mode. The second refrigerant flow switching device 18b is provided on the downstream side of the heat exchanger related to heat medium 15b in the flow of the heat source side refrigerant in the cooling only operation mode.
 2つのポンプ21a、21bは、熱媒体配管5内の熱媒体を循環させるものである。ポンプ21aは、熱媒体間熱交換器15aと第2熱媒体流路切替装置23との間における熱媒体配管5に設けられている。ポンプ21bは、熱媒体間熱交換器15bと第2熱媒体流路切替装置23との間における熱媒体配管5に設けられている。2つのポンプ21は、たとえば容量制御可能なポンプなどで構成するとよい。なお、ポンプ21aを熱媒体間熱交換器15aと第1熱媒体流路切替装置22との間における熱媒体配管5に、ポンプ21bを熱媒体間熱交換器15bと第1熱媒体流路切替装置22との間における熱媒体配管5に、それぞれ設けてもよい。 The two pumps 21 a and 21 b circulate the heat medium in the heat medium pipe 5. The pump 21 a is provided in the heat medium pipe 5 between the heat exchanger related to heat medium 15 a and the second heat medium flow switching device 23. The pump 21 b is provided in the heat medium pipe 5 between the heat exchanger related to heat medium 15 b and the second heat medium flow switching device 23. The two pumps 21 may be constituted by, for example, pumps capable of capacity control. The pump 21a is connected to the heat medium pipe 5 between the heat exchanger related to heat medium 15a and the first heat medium flow switching device 22, and the pump 21b is switched to the heat exchanger related to heat medium 15b and the first heat medium flow switching. You may provide in the heat medium piping 5 between the apparatuses 22, respectively.
 4つの第1熱媒体流路切替装置22a~22dは、三方弁などで構成されており、熱媒体の流路を切り替えるものである。第1熱媒体流路切替装置22は、室内機2の設置台数に応じた数(本実施の形態では4つ)が設けられるようになっている。第1熱媒体流路切替装置22は、三方のうちの一つが熱媒体間熱交換器15aに、その他のうちの一つが熱媒体間熱交換器15bに、残りの一つが熱媒体流量調整装置25に、それぞれ接続され、利用側熱交換器26の熱媒体流路の出口側にそれぞれ設けられている。
 なお、第1熱媒体流路切替装置22a~22dは、室内機2a~2dに対応させて紙面下側から第1熱媒体流路切替装置22a、22b、22c、22dとし、それらは熱媒体変換機3に設置されるように図示されているが、さらに多くの数を設けてもよい。
The four first heat medium flow switching devices 22a to 22d are configured by three-way valves or the like, and switch the heat medium flow paths. The number of first heat medium flow switching devices 22 is set according to the number of indoor units 2 installed (four in the present embodiment). The first heat medium flow switching device 22 includes one of the three heat transfer medium heat exchangers 15a, one of the other heat transfer medium heat exchangers 15b, and the other one of the heat medium flow control devices. 25 to the outlet side of the heat medium flow path of the use side heat exchanger 26, respectively.
The first heat medium flow switching devices 22a to 22d correspond to the indoor units 2a to 2d as the first heat medium flow switching devices 22a, 22b, 22c, and 22d from the lower side of the drawing, and they are heat medium conversions. Although it is illustrated as being installed in the machine 3, a larger number may be provided.
 4つの第2熱媒体流路切替装置23a~23dは、三方弁などで構成されており、熱媒体の流路を切り替えるものである。第2熱媒体流路切替装置23は、室内機2の設置台数に応じた数(本実施の形態では4つ)が設けられるようになっている。第2熱媒体流路切替装置23は、三方のうちの一つが熱媒体間熱交換器15aに、その他のうちの一つが熱媒体間熱交換器15bに、残りの一つが利用側熱交換器26に、それぞれ接続され、利用側熱交換器26の熱媒体流路の入口側にそれぞれ設けられている。
 なお、第2熱媒体流路切替装置23a~23dは、室内機2a~2dに対応させて紙面下側から第2熱媒体流路切替装置23a、23b、23c、23dとし、それらは熱媒体変換機3に設置されるように図示されているが、さらに多くの数を設けてもよい。
The four second heat medium flow switching devices 23a to 23d are configured by three-way valves or the like, and switch the flow path of the heat medium. The second heat medium flow switching device 23 is provided with a number (four in the present embodiment) corresponding to the number of indoor units 2 installed. In the second heat medium flow switching device 23, one of the three sides is the heat exchanger related to heat medium 15 a, one of the other is the heat exchanger related to heat medium 15 b, and the other is the use side heat exchanger. 26, and connected to the inlet side of the heat medium flow path of the use side heat exchanger 26, respectively.
The second heat medium flow switching devices 23a to 23d correspond to the indoor units 2a to 2d as the second heat medium flow switching devices 23a, 23b, 23c, and 23d from the lower side of the drawing, and they are heat medium conversions. Although it is illustrated as being installed in the machine 3, a larger number may be provided.
 4つの熱媒体流量調整装置25a~25dは、開口面積を制御可能な二方弁などで構成されており、熱媒体配管5を流れる熱媒体の流量を調整するものである。熱媒体流量調整装置25は、室内機2の設置台数に応じた数(本実施の形態では4つ)が設けられるようになっている。熱媒体流量調整装置25は、一方が利用側熱交換器26に、他方が第1熱媒体流路切替装置22に、それぞれ接続され、利用側熱交換器26の熱媒体流路の出口側にそれぞれ設けられている。
 なお、熱媒体流量調整装置25a~25dは、室内機2a~2dに対応させて紙面下側から熱媒体流量調整装置25a、25b、25c、25dとし、それらは熱媒体変換機3に設置されるように図示されているが、さらに多くの数を設けてもよい。また、熱媒体流量調整装置25を利用側熱交換器26の熱媒体流路の入口側に設けてもよい。
The four heat medium flow control devices 25a to 25d are configured by two-way valves or the like capable of controlling the opening area, and adjust the flow rate of the heat medium flowing through the heat medium pipe 5. The number of heat medium flow control devices 25 according to the number of indoor units 2 installed (four in this embodiment) is provided. One of the heat medium flow control devices 25 is connected to the use side heat exchanger 26 and the other is connected to the first heat medium flow switching device 22, and is connected to the outlet side of the heat medium flow channel of the use side heat exchanger 26. Each is provided.
Note that the heat medium flow control devices 25a to 25d correspond to the indoor units 2a to 2d from the bottom of the page to the heat medium flow control devices 25a, 25b, 25c, and 25d, and are installed in the heat medium converter 3. However, a larger number may be provided. Further, the heat medium flow control device 25 may be provided on the inlet side of the heat medium flow path of the use side heat exchanger 26.
[リリーフ弁60]
 2つのリリーフ弁60a、60bは、ポンプ21a、21bの出口側の熱媒体配管5にそれぞれ設けられており、2次ループの圧力が所定値(作動圧)まで上昇した場合に作動し、熱媒体を系外に排出するものである。
 なお、リリーフ弁60の作動圧は、熱源側冷媒の種類と、熱媒体の種類とから決定される。
 また、本実施の形態に係る空気調和装置100では、2次ループの圧力の上昇は、2次ループ側で熱媒体の凍結や、熱媒体と熱媒体間熱交換器15との間の腐食などにより、熱媒体間熱交換器15の1次ループと2次ループとの間に連通穴が開いた場合を想定している。そのため、リリーフ弁60の流量特性を表す係数であるCv値(Cv[60a]+Cv[60b])は、下記のようになる。
Cv[60a]+Cv[60b]=Cv1×(P1-P2)1/2/(P2)1/2
 P1:熱源側冷媒の最高圧力(1次ループの最高圧力)
 P2:リリーフ弁の作動圧
 Cv1:1次ループと2次ループとの間に開いた連通穴のCv値
 Cv[60a]:リリーフ弁60aのCv値
 Cv[60b]:リリーフ弁60bのCv値
 ここで、たとえばP1が、1次ループの冷媒がR410Aのとき3.8MPa、P2が、熱媒体の平均圧力0.2MPaとポンプ21の最高水頭損失0.2MPaとを足した値0.4MPaであった場合、下記のようになる。
Cv[60a]+Cv[60b]=Cv1×(3.4)1/2/(0.4)1/2=2.92×Cv1
[Relief valve 60]
The two relief valves 60a and 60b are respectively provided in the heat medium pipe 5 on the outlet side of the pumps 21a and 21b, and operate when the pressure of the secondary loop rises to a predetermined value (operating pressure). Is discharged out of the system.
The operating pressure of the relief valve 60 is determined from the type of heat source side refrigerant and the type of heat medium.
Further, in the air conditioner 100 according to the present embodiment, the increase in the pressure of the secondary loop is caused by freezing of the heat medium on the secondary loop side, corrosion between the heat medium and the heat exchanger 15 between the heat medium, or the like. Thus, it is assumed that a communication hole is opened between the primary loop and the secondary loop of the heat exchanger related to heat medium 15. Therefore, the Cv value (Cv [60a] + Cv [60b]), which is a coefficient representing the flow rate characteristic of the relief valve 60, is as follows.
Cv [60a] + Cv [60b] = Cv1 × (P1-P2) 1/2 / (P2) 1/2
P1: Maximum pressure of the heat source side refrigerant (maximum pressure of the primary loop)
P2: Operating pressure of relief valve Cv1: Cv value of communication hole opened between primary loop and secondary loop Cv [60a]: Cv value of relief valve 60a Cv [60b]: Cv value of relief valve 60b For example, P1 is 3.8 MPa when the refrigerant of the primary loop is R410A, and P2 is 0.4 MPa, which is the sum of the average pressure of the heat medium 0.2 MPa and the maximum head loss 0.2 MPa of the pump 21. When it is, it becomes as follows.
Cv [60a] + Cv [60b] = Cv1 × (3.4) 1/2 /(0.4) 1/2 = 2.92 × Cv1
 さらに、たとえばCv1が、銅配管の腐食によるピンホールであった場合は1mm程度であるため、Cv[60a]+Cv[60b]の合計であるリリーフ弁60のCv値は、合計で3mm以上必要となる。
 なお、リリーフ弁60の作動圧を熱媒体のみの最高圧力に応じて決定すると、熱源側冷媒が2次ループに漏洩した場合、2次ループの急激な圧力上昇に伴ってリリーフ弁60が作動するが、圧力上昇分を逃がしきれず、2次ループに使用されている部品の耐圧を超え、破損してしまう可能性がある。そこで、熱源側冷媒の種類毎に異なる圧力も考慮し、熱媒体の種類と熱源側冷媒の種類とからリリーフ弁60の作動圧を決める。さらに、熱媒体の最高圧力と熱源側冷媒の最高圧力に応じてリリーフ弁60の大きさを選定し、系外に排出する流量を決定(調整)することで、2次ループを適切な圧力に保つようにしている。
Furthermore, for example, when Cv1 is a pinhole due to corrosion of copper piping, it is about 1 mm 2 , so the Cv value of the relief valve 60 that is the sum of Cv [60a] + Cv [60b] is 3 mm 2 or more in total. Necessary.
If the operating pressure of the relief valve 60 is determined according to the maximum pressure of only the heat medium, when the heat source side refrigerant leaks into the secondary loop, the relief valve 60 is activated as the secondary loop suddenly increases in pressure. However, there is a possibility that the pressure rise cannot be released and the pressure resistance of the parts used in the secondary loop is exceeded, resulting in damage. Therefore, the operating pressure of the relief valve 60 is determined based on the type of the heat medium and the type of the heat source side refrigerant in consideration of the pressure that varies depending on the type of the heat source side refrigerant. In addition, the size of the relief valve 60 is selected according to the maximum pressure of the heat medium and the maximum pressure of the heat source side refrigerant, and the flow rate to be discharged out of the system is determined (adjusted), so that the secondary loop is adjusted to an appropriate pressure. I try to keep it.
 図3は、本発明の実施の形態に係る空気調和装置100の第2の冷媒回路構成例である。
 図2に示すように、第1の冷媒回路構成例では、リリーフ弁60a、60bを、ポンプ21a、21bの出口側の熱媒体配管5にそれぞれ設ける構成にしたが、図3に示すように、ポンプ21aの吐出側の熱媒体配管5とポンプ21bの吐出側の熱媒体配管5とを細管で繋ぐことで、リリーフ弁60bを省くような構成にしてもよい。また、ポンプ21bの出口側の熱媒体配管5に、2次ループの圧力を検知する熱媒体圧力検知装置62を設けてもよい。
FIG. 3 is a second refrigerant circuit configuration example of the air-conditioning apparatus 100 according to the embodiment of the present invention.
As shown in FIG. 2, in the first refrigerant circuit configuration example, the relief valves 60a and 60b are provided in the heat medium pipes 5 on the outlet sides of the pumps 21a and 21b, respectively. The relief valve 60b may be omitted by connecting the heat medium pipe 5 on the discharge side of the pump 21a and the heat medium pipe 5 on the discharge side of the pump 21b with a thin pipe. Further, a heat medium pressure detecting device 62 for detecting the pressure of the secondary loop may be provided in the heat medium pipe 5 on the outlet side of the pump 21b.
 熱媒体変換機3には、図2および図3に示すように、2つの第1温度センサー31a、31b(以下、単に第1温度センサー31と称することがある)、4つの第2温度センサー34a~34d(以下、単に第2温度センサー34と称することがある)、4つの第3温度センサー35a~35d(以下、単に第3温度センサー35と称することがある)、第4温度センサー50、および第1圧力センサー36の、各種検知手段がそれぞれ設けられている。これらの検知手段で検知された情報(たとえば、温度情報や圧力情報)は、空気調和装置100の動作を統括制御する制御装置52(なお、制御装置52については後述する)に送られ、圧縮機10の駆動周波数、熱源側熱交換器12および利用側熱交換器26の近傍に設けられる図示省略の送風機の回転数、第1冷媒流路切替装置11の切り替え、ポンプ21の駆動周波数、第2冷媒流路切替装置18の切り替え、などの制御に利用される。 As shown in FIGS. 2 and 3, the heat medium relay 3 includes two first temperature sensors 31a and 31b (hereinafter simply referred to as the first temperature sensor 31) and four second temperature sensors 34a. 34d (hereinafter sometimes simply referred to as the second temperature sensor 34), four third temperature sensors 35a to 35d (hereinafter sometimes simply referred to as the third temperature sensor 35), a fourth temperature sensor 50, and Various detection means of the first pressure sensor 36 are provided. Information (for example, temperature information and pressure information) detected by these detection means is sent to a control device 52 (which will be described later) for overall control of the operation of the air conditioner 100, and the compressor 10 driving frequency, rotation speed of a blower (not shown) provided in the vicinity of the heat source side heat exchanger 12 and the use side heat exchanger 26, switching of the first refrigerant flow switching device 11, driving frequency of the pump 21, second This is used for control such as switching of the refrigerant flow switching device 18.
 また、熱媒体変換機3には、上記の他に冷媒漏洩検知装置61が熱媒体間熱交換器15、またはその近くに設けられており、その情報は下記に示す演算装置52aに知らされる。 In addition to the above, the heat medium relay 3 is provided with a refrigerant leakage detection device 61 at or near the heat exchanger 15 between the heat media, and the information is notified to the arithmetic device 52a shown below. .
 制御装置52は、マイコンなどで構成されており、演算装置52aの算出結果に基づいて、蒸発温度、凝縮温度、飽和温度、過熱度、および過冷却度を計算する。そして、制御装置52は、これらの計算結果に基づいて、絞り装置16の開度、圧縮機10の回転数、熱源側熱交換器12や利用側熱交換器26のファンの速度(ON/OFF含む)などを制御し、空気調和装置100のパフォーマンスが最大となるようにする。
 その他に制御装置52は、各種検知手段での検知情報およびリモコンからの指示に基づいて、圧縮機10の駆動周波数、送風機の回転数(ON/OFF含む)、第1冷媒流路切替装置11の切り替え、ポンプ21の駆動、絞り装置16の開度、開閉装置17の開閉、第2冷媒流路切替装置18の切り替え、第1熱媒体流路切替装置22の切り替え、第2熱媒体流路切替装置23の切り替え、および、熱媒体流量調整装置25の開度などを制御するものである。すなわち、制御装置52は、後述する各運転モードを実行するために、各種機器を統括制御するものである。
 なお、制御装置57は室外機1にも設けられており、熱媒体変換機3の制御装置52からの送信される情報をもとに、室外機1のアクチュエータを制御している。
 また、本実施の形態では、熱媒体変換機3の制御装置52は、室外機1に設けられた演算装置57aと別体であるものとして説明しているが、同体であってもよい。
The control device 52 is configured by a microcomputer or the like, and calculates an evaporation temperature, a condensation temperature, a saturation temperature, a superheat degree, and a supercooling degree based on the calculation result of the arithmetic device 52a. Then, based on the calculation results, the control device 52 determines the opening degree of the expansion device 16, the rotational speed of the compressor 10, and the fan speeds of the heat source side heat exchanger 12 and the use side heat exchanger 26 (ON / OFF Etc.) so that the performance of the air conditioner 100 is maximized.
In addition, the control device 52 determines the drive frequency of the compressor 10, the rotational speed of the blower (including ON / OFF), the first refrigerant flow switching device 11 based on detection information from various detection means and instructions from the remote controller. Switching, driving of the pump 21, opening of the expansion device 16, opening and closing of the switching device 17, switching of the second refrigerant channel switching device 18, switching of the first heat medium channel switching device 22, switching of the second heat medium channel The switching of the device 23 and the opening degree of the heat medium flow control device 25 are controlled. That is, the control device 52 performs overall control of various devices in order to execute each operation mode described later.
Note that the control device 57 is also provided in the outdoor unit 1 and controls the actuator of the outdoor unit 1 based on information transmitted from the control device 52 of the heat medium relay unit 3.
In the present embodiment, the control device 52 of the heat medium relay unit 3 is described as being separate from the arithmetic unit 57a provided in the outdoor unit 1, but may be the same unit.
 2つの第1温度センサー31a、31bは、熱媒体間熱交換器15から流出した熱媒体、つまり熱媒体間熱交換器15の出口における熱媒体の温度を検知するものであり、たとえばサーミスターなどで構成するとよい。第1温度センサー31aは、ポンプ21aの入口側における熱媒体配管5に設けられている。第1温度センサー31bは、ポンプ21bの入口側における熱媒体配管5に設けられている。 The two first temperature sensors 31a and 31b detect the temperature of the heat medium flowing out from the intermediate heat exchanger 15, that is, the temperature of the heat medium at the outlet of the intermediate heat exchanger 15. For example, the thermistor It is good to comprise. The first temperature sensor 31a is provided in the heat medium pipe 5 on the inlet side of the pump 21a. The first temperature sensor 31b is provided in the heat medium pipe 5 on the inlet side of the pump 21b.
 4つの第2温度センサー34a~34dは、第1熱媒体流路切替装置22と熱媒体流量調整装置25との間にそれぞれ設けられ、利用側熱交換器(または熱回収用熱交換機)26から流出した熱媒体の温度を検知するものであり、サーミスターなどで構成するとよい。第2温度センサー34は、室内機2の設置台数に応じた数(本実施の形態では4つ)が設けられるようになっている。なお、第2温度センサー34a~34dは、室内機2に対応させて紙面下側から第2温度センサー34a、34b、34c、34dとして図示されている。 The four second temperature sensors 34 a to 34 d are respectively provided between the first heat medium flow switching device 22 and the heat medium flow control device 25, and from the use side heat exchanger (or heat recovery heat exchanger) 26. It detects the temperature of the heat medium that has flowed out, and may be composed of a thermistor or the like. The number of the second temperature sensors 34 according to the number of installed indoor units 2 (four in the present embodiment) is provided. The second temperature sensors 34a to 34d are shown as second temperature sensors 34a, 34b, 34c, and 34d from the lower side of the drawing corresponding to the indoor unit 2.
 4つの第3温度センサー35a~35dは、熱媒体間熱交換器15の熱源側冷媒の入口側または出口側に設けられ、熱媒体間熱交換器15に流入する熱源側冷媒の温度または熱媒体間熱交換器15から流出した熱源側冷媒の温度を検知するものであり、サーミスターなどで構成するとよい。第3温度センサー35aは、熱媒体間熱交換器15aと第2冷媒流路切替装置18aとの間に設けられている。第3温度センサー35bは、熱媒体間熱交換器15aと絞り装置16aとの間に設けられている。第3温度センサー35cは、熱媒体間熱交換器15bと第2冷媒流路切替装置18bとの間に設けられている。第3温度センサー35dは、熱媒体間熱交換器15bと絞り装置16bとの間に設けられている。 The four third temperature sensors 35a to 35d are provided on the inlet side or the outlet side of the heat source side refrigerant of the heat exchanger related to heat medium 15, and the temperature or heat medium of the heat source side refrigerant flowing into the heat exchanger related to heat medium 15 The temperature of the heat source side refrigerant that has flowed out of the intermediate heat exchanger 15 is detected, and it may be constituted by a thermistor or the like. The third temperature sensor 35a is provided between the heat exchanger related to heat medium 15a and the second refrigerant flow switching device 18a. The third temperature sensor 35b is provided between the heat exchanger related to heat medium 15a and the expansion device 16a. The third temperature sensor 35c is provided between the heat exchanger related to heat medium 15b and the second refrigerant flow switching device 18b. The third temperature sensor 35d is provided between the heat exchanger related to heat medium 15b and the expansion device 16b.
 第4温度センサー50は、蒸発温度と露点温度を算出する際に使用する温度情報を得るものであり、絞り装置16aと絞り装置16bとの間に設けられている。 The fourth temperature sensor 50 obtains temperature information used when calculating the evaporation temperature and the dew point temperature, and is provided between the expansion device 16a and the expansion device 16b.
 第1圧力センサー36は、絞り装置16の開度を制御する際に使用する飽和温度に換算するための圧力情報を得るものであり、熱媒体間熱交換器15bと絞り装置16bとの間に設けられている。 The first pressure sensor 36 obtains pressure information for conversion into a saturation temperature used when controlling the opening degree of the expansion device 16, and is provided between the heat exchanger related to heat medium 15b and the expansion device 16b. Is provided.
 熱媒体を循環させるための熱媒体配管5は、熱媒体間熱交換器15aに接続されるものと、熱媒体間熱交換器15bに接続されるものと、で構成されており、それらは熱媒体変換機3に接続される室内機2の台数に応じてそれぞれ分岐(本実施の形態では4分岐)されている。また、熱媒体間熱交換器15aの入口側に接続される熱媒体配管5と熱媒体間熱交換器15bの入口側に接続される熱媒体配管5は、それぞれ第1熱媒体流路切替装置22で接続され、熱媒体間熱交換器15aの出口側に接続される熱媒体配管5と熱媒体間熱交換器15bの出口側に接続される熱媒体配管5は、それぞれ第2熱媒体流路切替装置23で接続されている。
 そして、第1熱媒体流路切替装置22および第2熱媒体流路切替装置23を制御することで、熱媒体間熱交換器15aからの熱媒体を利用側熱交換器26に流入させるか、熱媒体間熱交換器15bからの熱媒体を利用側熱交換器26に流入させるか、が決定されるようになっている。
The heat medium pipe 5 for circulating the heat medium is composed of one connected to the heat exchanger related to heat medium 15a and one connected to the heat exchanger related to heat medium 15b. Each branch is branched (four branches in this embodiment) according to the number of indoor units 2 connected to the medium converter 3. The heat medium pipe 5 connected to the inlet side of the heat exchanger related to heat medium 15a and the heat medium pipe 5 connected to the inlet side of the heat exchanger related to heat medium 15b are respectively connected to the first heat medium flow switching device. 22, the heat medium pipe 5 connected to the outlet side of the intermediate heat exchanger 15a and the heat medium pipe 5 connected to the outlet side of the intermediate heat exchanger 15b are respectively connected to the second heat medium flow. They are connected by a path switching device 23.
Then, by controlling the first heat medium flow switching device 22 and the second heat medium flow switching device 23, the heat medium from the heat exchanger related to heat medium 15a flows into the use-side heat exchanger 26, or It is determined whether the heat medium from the heat exchanger related to heat medium 15b is caused to flow into the use side heat exchanger 26 or not.
[運転モードの説明]
 空気調和装置100は、圧縮機10、第1冷媒流路切替装置11、熱源側熱交換器12、開閉装置17、絞り装置16、熱媒体間熱交換器15aの熱源側冷媒流路、第2冷媒流路切替装置18、および、アキュムレーター19を、冷媒配管4で接続して熱源側冷媒循環回路Aを構成している。
 また、熱媒体間熱交換器15aの熱媒体流路、ポンプ21、第2熱媒体流路切替装置23、利用側熱交換器26、熱媒体流量調整装置25、および、第1熱媒体流路切替装置22を、熱媒体配管5で接続して熱媒体循環回路Bを構成している。つまり、熱媒体間熱交換器15a、15bに複数台の利用側熱交換器26がそれぞれ並列に接続され、熱媒体循環回路Bを複数系統としている。
[Description of operation mode]
The air conditioner 100 includes a compressor 10, a first refrigerant flow switching device 11, a heat source side heat exchanger 12, an opening / closing device 17, an expansion device 16, a heat source side refrigerant flow path of the heat exchanger related to heat medium 15a, a second A refrigerant flow switching device 18 and an accumulator 19 are connected by a refrigerant pipe 4 to constitute a heat source side refrigerant circulation circuit A.
Further, the heat medium flow path of the heat exchanger related to heat medium 15a, the pump 21, the second heat medium flow path switching device 23, the use side heat exchanger 26, the heat medium flow control device 25, and the first heat medium flow path. The switching device 22 is connected by the heat medium pipe 5 to constitute the heat medium circulation circuit B. That is, a plurality of usage-side heat exchangers 26 are connected in parallel to the heat exchangers 15a and 15b, respectively, and the heat medium circulation circuit B has a plurality of systems.
 よって、空気調和装置100では、室外機1と熱媒体変換機3とが、熱媒体変換機3に設けられている熱媒体間熱交換器15a、15bを介して接続され、熱媒体変換機3と室内機2が、同じく熱媒体間熱交換器15a、15bを介して接続されている。すなわち、空気調和装置100では、熱媒体間熱交換器15a、15bで熱源側冷媒循環回路Aを循環する熱源側冷媒と、熱媒体循環回路Bを循環する熱媒体と、が熱交換するようになっている。 Therefore, in the air conditioner 100, the outdoor unit 1 and the heat medium relay unit 3 are connected via the heat exchangers 15a and 15b provided between the heat medium relay unit 3 and the heat medium relay unit 3 And the indoor unit 2 are connected to each other via the heat exchangers 15a and 15b. That is, in the air conditioner 100, the heat source side refrigerant circulating in the heat source side refrigerant circulation circuit A and the heat medium circulating in the heat medium circulation circuit B exchange heat with each other between the heat exchangers 15a and 15b. It has become.
 以下、空気調和装置100が実行する各運転モードについて説明する。この空気調和装置100は、各室内機2からの指示に基づいて、その室内機2で冷房運転あるいは暖房運転が可能になっている。つまり、空気調和装置100は、室内機2の全部で同一運転ができるとともに、室内機2のそれぞれで異なる運転ができるようにもなっている。 Hereinafter, each operation mode executed by the air conditioner 100 will be described. The air conditioner 100 can perform a cooling operation or a heating operation in the indoor unit 2 based on an instruction from each indoor unit 2. That is, the air conditioner 100 can perform the same operation for all the indoor units 2 and can perform different operations for each of the indoor units 2.
 空気調和装置100が実行する運転モードは4つあり、全冷房運転モード、全暖房運転モード、冷房主体運転モード、および、暖房主体運転モードである。以下、各運転モードについて、熱源側冷媒および熱媒体の流れとともに説明する。 There are four operation modes executed by the air conditioner 100: a cooling only operation mode, a heating only operation mode, a cooling main operation mode, and a heating main operation mode. Hereinafter, each operation mode will be described together with the flow of the heat source side refrigerant and the heat medium.
[全冷房運転モード]
 図4は、図2に示す空気調和装置100の全冷房運転モード時における冷媒の流れを示す冷媒回路図である。なお、図4では、利用側熱交換器26a、26bの室内機2a、2bで冷熱負荷が発生している場合を例に、全冷房運転モードについて説明する。また、太線で表された配管が冷媒(熱源側冷媒および熱媒体)の流れる配管を示しており、熱源側冷媒の流れ方向を実線矢印で、熱媒体の流れ方向を破線矢印で示している。
[Cooling operation mode]
FIG. 4 is a refrigerant circuit diagram illustrating a refrigerant flow when the air-conditioning apparatus 100 illustrated in FIG. 2 is in the cooling only operation mode. In FIG. 4, the cooling only operation mode will be described by taking as an example a case where a cooling load is generated in the indoor units 2 a and 2 b of the use side heat exchangers 26 a and 26 b. Also, the pipes represented by the thick lines indicate the pipes through which the refrigerant (heat source side refrigerant and heat medium) flows, the flow direction of the heat source side refrigerant is indicated by solid line arrows, and the flow direction of the heat medium is indicated by broken line arrows.
 図4に示す全冷房運転モードの場合、室外機1では、第1冷媒流路切替装置11を、圧縮機10から吐出された熱源側冷媒が熱源側熱交換器12へ流入するように切り替える。熱媒体変換機3ではポンプ21a、21bを駆動させ、熱媒体流量調整装置25a、25bを開放し、熱媒体流量調整装置25c、25dを閉止し、熱媒体間熱交換器15a、15bと利用側熱交換器26a、26bとの間を、熱媒体がそれぞれ循環するようにしている。 4, in the cooling only operation mode shown in FIG. 4, in the outdoor unit 1, the first refrigerant flow switching device 11 is switched so that the heat source side refrigerant discharged from the compressor 10 flows into the heat source side heat exchanger 12. In the heat medium relay 3, the pumps 21 a and 21 b are driven, the heat medium flow control devices 25 a and 25 b are opened, the heat medium flow control devices 25 c and 25 d are closed, and the heat exchangers 15 a and 15 b and the use side The heat medium circulates between the heat exchangers 26a and 26b.
 まず始めに、熱源側冷媒循環回路Aにおける熱源側冷媒の流れについて説明する。
 低温・低圧の冷媒が圧縮機10によって圧縮され、高温・高圧のガス冷媒となって吐出される。圧縮機10から吐出された高温・高圧のガス冷媒は、第1冷媒流路切替装置11を介して熱源側熱交換器12に流入する。そして、熱源側熱交換器12で室外空気に放熱しながら高圧の液冷媒となる。熱源側熱交換器12から流出した高圧冷媒は、逆止弁13aを通って、室外機1から流出し、冷媒配管4を通って熱媒体変換機3に流入する。熱媒体変換機3に流入した高圧冷媒は、開閉装置17aを経由した後で、絞り装置16a側と絞り装置16b側とに分岐される。そして、絞り装置16a、16bで膨張させられて低温・低圧の二相冷媒となる。なお、開閉装置17bは閉となっている。
First, the flow of the heat source side refrigerant in the heat source side refrigerant circulation circuit A will be described.
The low-temperature and low-pressure refrigerant is compressed by the compressor 10 and discharged as a high-temperature and high-pressure gas refrigerant. The high-temperature and high-pressure gas refrigerant discharged from the compressor 10 flows into the heat source side heat exchanger 12 via the first refrigerant flow switching device 11. And it becomes a high-pressure liquid refrigerant, radiating heat to outdoor air with the heat source side heat exchanger 12. The high-pressure refrigerant that has flowed out of the heat source side heat exchanger 12 flows out of the outdoor unit 1 through the check valve 13 a, and flows into the heat medium relay unit 3 through the refrigerant pipe 4. The high-pressure refrigerant that has flowed into the heat medium relay unit 3 is branched into the expansion device 16a side and the expansion device 16b side after passing through the opening / closing device 17a. Then, it is expanded by the expansion devices 16a and 16b to become a low-temperature and low-pressure two-phase refrigerant. The opening / closing device 17b is closed.
 この二相冷媒は、蒸発器として作用する熱媒体間熱交換器15a、15bそれぞれに流入し、熱媒体循環回路Bを循環する熱媒体から吸熱することで、熱媒体を冷却しながら、低温・低圧のガス冷媒となる。熱媒体間熱交換器15a、15bから流出したガス冷媒は、第2冷媒流路切替装置18a、18bを介して熱媒体変換機3から流出し、冷媒配管4を通って再び室外機1へ流入する。室外機1に流入した冷媒は、逆止弁13dを通って、第1冷媒流路切替装置11およびアキュムレーター19を介して、圧縮機10へ再度吸入される。 This two-phase refrigerant flows into each of the heat exchangers 15a and 15b acting as an evaporator and absorbs heat from the heat medium circulating in the heat medium circuit B, thereby cooling the heat medium at a low temperature / It becomes a low-pressure gas refrigerant. The gas refrigerant flowing out of the heat exchangers 15a and 15b flows out of the heat medium converter 3 through the second refrigerant flow switching devices 18a and 18b, and flows into the outdoor unit 1 again through the refrigerant pipe 4. To do. The refrigerant flowing into the outdoor unit 1 passes through the check valve 13d and is sucked into the compressor 10 again via the first refrigerant flow switching device 11 and the accumulator 19.
 このとき、第2冷媒流路切替装置18a、18bは低圧配管と連通されている。また、絞り装置16aは、第3温度センサー35aで検知された温度と、第3温度センサー35bで検知された温度との差として得られるスーパーヒート(過熱度)が、一定になるように開度が制御される。同様に、絞り装置16bは、第3温度センサー35cで検知された温度と、第3温度センサー35dで検知された温度との差として得られるスーパーヒートが、一定になるように開度が制御される。 At this time, the second refrigerant flow switching devices 18a and 18b communicate with the low-pressure pipe. Further, the expansion device 16a has an opening degree so that a superheat (superheat degree) obtained as a difference between the temperature detected by the third temperature sensor 35a and the temperature detected by the third temperature sensor 35b is constant. Is controlled. Similarly, the opening degree of the expansion device 16b is controlled so that the superheat obtained as the difference between the temperature detected by the third temperature sensor 35c and the temperature detected by the third temperature sensor 35d becomes constant. The
 次に、熱媒体循環回路Bにおける熱媒体の流れについて説明する。
 全冷房運転モードでは、熱媒体間熱交換器15a、15bそれぞれで熱源側冷媒の冷熱が熱媒体に伝えられ、冷やされた熱媒体がポンプ21a、21bによってそれぞれ熱媒体配管5内を流動させられることになる。ポンプ21a、21bで加圧されて流出した熱媒体は、第2熱媒体流路切替装置23a、23bを介して、利用側熱交換器26a、26bに流入する。そして、熱媒体が利用側熱交換器26a、26bで室内空気から吸熱することで、室内空間7の冷房を行う。
Next, the flow of the heat medium in the heat medium circuit B will be described.
In the cooling only operation mode, the cold heat of the heat source side refrigerant is transmitted to the heat medium in each of the heat exchangers 15a and 15b, and the cooled heat medium is caused to flow in the heat medium pipe 5 by the pumps 21a and 21b, respectively. It will be. The heat medium pressurized and discharged by the pumps 21a and 21b flows into the use side heat exchangers 26a and 26b via the second heat medium flow switching devices 23a and 23b. The heat medium absorbs heat from the indoor air in the use side heat exchangers 26a and 26b, thereby cooling the indoor space 7.
 それから、熱媒体は、利用側熱交換器26a、26bから流出して熱媒体流量調整装置25a、25bに流入する。このとき、熱媒体流量調整装置25a、25bの作用によって熱媒体の流量が室内にて必要とされる空調負荷を賄うのに必要な流量に制御されて利用側熱交換器26a、26bに流入するようになっている。熱媒体流量調整装置25a、25bから流出した熱媒体は、第1熱媒体流路切替装置22a、22bを通って熱媒体間熱交換器15a、15bへ流入し、再びポンプ21a、21bへ吸い込まれる。 Then, the heat medium flows out from the use side heat exchangers 26a and 26b and flows into the heat medium flow control devices 25a and 25b. At this time, the flow rate of the heat medium is controlled to a flow rate necessary to cover the air conditioning load required indoors by the action of the heat medium flow rate adjusting devices 25a and 25b, and flows into the use side heat exchangers 26a and 26b. It is like that. The heat medium flowing out of the heat medium flow control devices 25a and 25b flows into the heat exchangers 15a and 15b through the first heat medium flow switching devices 22a and 22b, and is sucked into the pumps 21a and 21b again. .
 なお、利用側熱交換器26a、26bの熱媒体配管5内では、第2熱媒体流路切替装置23a、23bから熱媒体流量調整装置25a、25bを経由して第1熱媒体流路切替装置22a、22bへ至る方向に熱媒体が流れている。また、室内空間7にて必要とされる空調負荷は、第1温度センサー31aで検知された温度、あるいは第1温度センサー31bで検知された温度と第2温度センサー34a(または第2温度センサー34b)で検知された温度との差、を目標値として保つように制御することにより、賄うことができる。熱媒体間熱交換器15a、15bの出口温度は、それぞれ第1温度センサー31a、31bどちらの温度を使用してもよいし、これらの平均温度を使用してもよい。このとき、第1熱媒体流路切替装置22および第2熱媒体流路切替装置23は、熱媒体間熱交換器15a、15bの両方へ流れる流路が確保されるように、中間的な開度にしている。 Note that, in the heat medium pipe 5 of the use side heat exchangers 26a and 26b, the first heat medium flow switching device from the second heat medium flow switching devices 23a and 23b via the heat medium flow control devices 25a and 25b. The heat medium flows in the direction to 22a and 22b. The air conditioning load required in the indoor space 7 includes the temperature detected by the first temperature sensor 31a, the temperature detected by the first temperature sensor 31b, and the second temperature sensor 34a (or the second temperature sensor 34b). ) Can be covered by controlling so as to keep the difference between the detected temperature and the target value as a target value. As the outlet temperature of the heat exchangers 15a and 15b, the temperature of either the first temperature sensor 31a or 31b may be used, or the average temperature of these may be used. At this time, the first heat medium flow switching device 22 and the second heat medium flow switching device 23 are provided with an intermediate opening so as to secure a flow path that flows to both the heat exchangers 15a and 15b. It is in degrees.
 全冷房運転モードを実行する場合、熱負荷のない利用側熱交換器26(サーモオフを含む)へは熱媒体を流す必要がないため、熱媒体流量調整装置25により流路を閉じて、利用側熱交換器26へ熱媒体が流れないようにする。図4では、利用側熱交換器26a、26bにおいては熱負荷があるため熱媒体を流しているが、利用側熱交換器26c、26dにおいては作動させないため、対応する熱媒体流量調整装置25cおよび熱媒体流量調整装置25dを全閉としている。そして、利用側熱交換器26に熱負荷の発生があった場合や熱回収機を動作させる場合には、熱媒体流量調整装置25を開放し、熱媒体を循環させればよい。
 なお、全暖房運転モード、冷房主体運転モード、および暖房主体運転モードでも同様である。
When the cooling only operation mode is executed, it is not necessary to flow the heat medium to the use side heat exchanger 26 (including the thermo-off) having no heat load. The heat medium is prevented from flowing to the heat exchanger 26. In FIG. 4, the use side heat exchangers 26 a and 26 b have a heat load, and thus a heat medium flows. However, since the use side heat exchangers 26 c and 26 d are not operated, the corresponding heat medium flow control devices 25 c and The heat medium flow control device 25d is fully closed. When a heat load is generated in the use side heat exchanger 26 or when the heat recovery machine is operated, the heat medium flow control device 25 may be opened to circulate the heat medium.
The same applies to the heating only operation mode, the cooling main operation mode, and the heating main operation mode.
 第4温度センサー50が温度検知する冷媒は液冷媒であり、この温度情報をもとに演算装置52aによって、液入口エンタルピーが算出される。また、第3温度センサー35dから低圧二相温状態の温度を検知し、この温度情報をもとに演算装置52aによって、飽和液エンタルピーおよび飽和ガスエンタルピーが算出される。これらの情報をもとに、後述する方法にて蒸発温度Teと露点温度Tdewを求める。 The refrigerant whose temperature is detected by the fourth temperature sensor 50 is a liquid refrigerant, and the liquid inlet enthalpy is calculated by the arithmetic unit 52a based on this temperature information. Further, the temperature of the low-pressure two-phase temperature state is detected from the third temperature sensor 35d, and the saturated liquid enthalpy and saturated gas enthalpy are calculated by the arithmetic unit 52a based on this temperature information. Based on these pieces of information, the evaporation temperature Te * and the dew point temperature Tdew * are obtained by the method described later.
[全暖房運転モード]
 図5は、図2に示す空気調和装置100の全暖房運転モード時における冷媒の流れを示す冷媒回路図である。なお、図4では、利用側熱交換器26a、26bで温熱負荷が発生している場合を例に全暖房運転モードについて説明する。また、太線で表された配管が冷媒の流れる配管を示しており、熱源側冷媒の流れ方向を実線矢印で、熱媒体の流れ方向を破線矢印で示している。
[Heating operation mode]
FIG. 5 is a refrigerant circuit diagram showing a refrigerant flow when the air-conditioning apparatus 100 shown in FIG. 2 is in the heating only operation mode. In FIG. 4, the heating only operation mode will be described by taking as an example a case where a thermal load is generated in the use side heat exchangers 26 a and 26 b. Moreover, the pipes represented by the thick lines indicate the pipes through which the refrigerant flows, and the flow direction of the heat source side refrigerant is indicated by solid line arrows and the flow direction of the heat medium is indicated by broken line arrows.
 図5に示す全暖房運転モードの場合、室外機1では、第1冷媒流路切替装置11を、圧縮機10から吐出された熱源側冷媒を、熱源側熱交換器12を経由させずに熱媒体変換機3へ流入させるように切り替える。熱媒体変換機3では、ポンプ21a、21bを駆動させ、熱媒体流量調整装置25a、25bを開放し、熱媒体流量調整装置25c、25dを閉止し、熱媒体間熱交換器15a、15bと利用側熱交換器26a、26bとの間を、熱媒体がそれぞれ循環するようにしている。 In the heating only operation mode shown in FIG. 5, in the outdoor unit 1, the first refrigerant flow switching device 11 causes the heat source side refrigerant discharged from the compressor 10 to heat without passing through the heat source side heat exchanger 12. It switches so that it may flow into the media converter 3. In the heat medium relay unit 3, the pumps 21a and 21b are driven, the heat medium flow control devices 25a and 25b are opened, the heat medium flow control devices 25c and 25d are closed, and the heat exchangers 15a and 15b are used. The heat medium is circulated between the side heat exchangers 26a and 26b.
 まず始めに、熱源側冷媒循環回路Aにおける熱源側冷媒の流れについて説明する。
 低温・低圧の冷媒が圧縮機10によって圧縮され、高温・高圧のガス冷媒となって吐出される。圧縮機10から吐出された高温・高圧のガス冷媒は、第1冷媒流路切替装置11、逆止弁13bを通り、室外機1から流出する。室外機1から流出した高温・高圧のガス冷媒は、冷媒配管4を通って熱媒体変換機3に流入する。熱媒体変換機3に流入した高温・高圧のガス冷媒は、第2冷媒流路切替装置18a側と第2冷媒流路切替装置18b側とに分岐される。そして、第2冷媒流路切替装置18a、第2冷媒流路切替装置18bを通って、熱媒体間熱交換器15a、15bそれぞれに流入する。
First, the flow of the heat source side refrigerant in the heat source side refrigerant circulation circuit A will be described.
The low-temperature and low-pressure refrigerant is compressed by the compressor 10 and discharged as a high-temperature and high-pressure gas refrigerant. The high-temperature and high-pressure gas refrigerant discharged from the compressor 10 flows out of the outdoor unit 1 through the first refrigerant flow switching device 11 and the check valve 13b. The high-temperature and high-pressure gas refrigerant that has flowed out of the outdoor unit 1 flows into the heat medium relay unit 3 through the refrigerant pipe 4. The high-temperature and high-pressure gas refrigerant flowing into the heat medium relay unit 3 is branched into the second refrigerant flow switching device 18a side and the second refrigerant flow switching device 18b side. Then, the heat flows through the second refrigerant flow switching device 18a and the second refrigerant flow switching device 18b and flows into the heat exchangers 15a and 15b, respectively.
 熱媒体間熱交換器15a、15bに流入した高温・高圧のガス冷媒は、熱媒体循環回路Bを循環する熱媒体に放熱しながら高圧の液冷媒となる。熱媒体間熱交換器15a、15bから流出した液冷媒は、絞り装置16a、16bで膨張させられて、低温・低圧の二相冷媒となる。この二相冷媒は、開閉装置17bを通って、熱媒体変換機3から流出し、冷媒配管4を通って再び室外機1へ流入する。なお、開閉装置17aは閉となっている。 The high-temperature and high-pressure gas refrigerant flowing into the heat exchangers 15a and 15b becomes high-pressure liquid refrigerant while radiating heat to the heat medium circulating in the heat medium circuit B. The liquid refrigerant flowing out of the heat exchangers between heat mediums 15a and 15b is expanded by the expansion devices 16a and 16b to become a low-temperature and low-pressure two-phase refrigerant. The two-phase refrigerant flows out of the heat medium relay unit 3 through the opening / closing device 17b, and flows into the outdoor unit 1 through the refrigerant pipe 4 again. The opening / closing device 17a is closed.
 室外機1に流入した冷媒は、逆止弁13cを通って蒸発器として作用する熱源側熱交換器12に流入する。そして、熱源側熱交換器12に流入した冷媒は、熱源側熱交換器12で室外空気から吸熱して、低温・低圧のガス冷媒となる。熱源側熱交換器12から流出した低温・低圧のガス冷媒は、第1冷媒流路切替装置11およびアキュムレーター19を介して圧縮機10へ再度吸入される。 The refrigerant flowing into the outdoor unit 1 flows into the heat source side heat exchanger 12 acting as an evaporator through the check valve 13c. And the refrigerant | coolant which flowed into the heat source side heat exchanger 12 absorbs heat from outdoor air in the heat source side heat exchanger 12, and becomes a low-temperature and low-pressure gas refrigerant. The low-temperature and low-pressure gas refrigerant flowing out from the heat source side heat exchanger 12 is again sucked into the compressor 10 via the first refrigerant flow switching device 11 and the accumulator 19.
 このとき、第2冷媒流路切替装置18a、18bは高圧配管と連通されている。また、絞り装置16aは、第1圧力センサー36で検知された圧力を飽和温度に換算した値と、第3温度センサー35bで検知された温度との差として得られるサブクール(過冷却度)が、一定になるように開度が制御される。同様に、絞り装置16bは、第1圧力センサー36で検知された圧力を飽和温度に換算した値と、第3温度センサー35dで検知された温度との差として得られるサブクールが、一定になるように開度が制御される。なお、熱媒体間熱交換器15の中間位置の温度が測定できる場合は、その中間位置での温度を第1圧力センサー36の代わりに用いてもよく、安価にシステムを構成できる。 At this time, the second refrigerant flow switching devices 18a and 18b communicate with the high-pressure pipe. Further, the expansion device 16a has a subcool (degree of subcooling) obtained as a difference between the value detected by the first pressure sensor 36 converted to the saturation temperature and the temperature detected by the third temperature sensor 35b. The opening degree is controlled to be constant. Similarly, in the expansion device 16b, a subcool obtained as a difference between a value obtained by converting the pressure detected by the first pressure sensor 36 into a saturation temperature and a temperature detected by the third temperature sensor 35d is constant. The opening degree is controlled. If the temperature at the intermediate position of the heat exchanger related to heat medium 15 can be measured, the temperature at the intermediate position may be used instead of the first pressure sensor 36, and the system can be configured at low cost.
 次に、熱媒体循環回路Bにおける熱媒体の流れについて説明する。
 全暖房運転モードでは、熱媒体間熱交換器15a、15bそれぞれで熱源側冷媒の温熱が熱媒体に伝えられ、暖められた熱媒体がポンプ21a、21bによってそれぞれ熱媒体配管5内を流動させられることになる。ポンプ21a、21bで加圧されて流出した熱媒体は、第2熱媒体流路切替装置23a、23bを介して、利用側熱交換器26a、26bに流入する。そして、熱媒体が利用側熱交換器26a、26bで室内空気に放熱することで、室内空間7の暖房を行う。
Next, the flow of the heat medium in the heat medium circuit B will be described.
In the heating only operation mode, the heat of the heat source side refrigerant is transmitted to the heat medium in each of the heat exchangers 15a and 15b, and the heated heat medium is caused to flow in the heat medium pipe 5 by the pumps 21a and 21b, respectively. It will be. The heat medium pressurized and discharged by the pumps 21a and 21b flows into the use side heat exchangers 26a and 26b via the second heat medium flow switching devices 23a and 23b. Then, the indoor space 7 is heated by the heat medium radiating heat to the indoor air by the use side heat exchangers 26a and 26b.
 それから、熱媒体は、利用側熱交換器26a、26bから流出して熱媒体流量調整装置25a、25bに流入する。このとき、熱媒体流量調整装置25a、25bの作用によって熱媒体の流量が室内にて必要とされる空調負荷を賄うのに必要な流量に制御されて利用側熱交換器26a、26bに流入するようになっている。熱媒体流量調整装置25a、25bから流出した熱媒体は、第1熱媒体流路切替装置22a、22bを通って熱媒体間熱交換器15a、15bへ流入し、再びポンプ21a、21bへ吸い込まれる。 Then, the heat medium flows out from the use side heat exchangers 26a and 26b and flows into the heat medium flow control devices 25a and 25b. At this time, the flow rate of the heat medium is controlled to a flow rate necessary to cover the air conditioning load required indoors by the action of the heat medium flow rate adjusting devices 25a and 25b, and flows into the use side heat exchangers 26a and 26b. It is like that. The heat medium flowing out of the heat medium flow control devices 25a and 25b flows into the heat exchangers 15a and 15b through the first heat medium flow switching devices 22a and 22b, and is sucked into the pumps 21a and 21b again. .
 なお、利用側熱交換器26a、26bの熱媒体配管5内では、第2熱媒体流路切替装置23a、23bから熱媒体流量調整装置25a、25bを経由して第1熱媒体流路切替装置22a、22bへ至る方向に熱媒体が流れている。また、室内空間7にて必要とされる空調負荷は、第1温度センサー31aで検知された温度、あるいは第1温度センサー31bで検知された温度と、第2温度センサー34a、34bで検知された温度との差を目標値として保つように制御することにより、賄うことができる。熱媒体間熱交換器15a、15bの出口温度は、それぞれ第1温度センサー31a、31bどちらの温度を使用してもよいし、これらの平均温度を使用してもよい。 Note that, in the heat medium pipe 5 of the use side heat exchangers 26a and 26b, the first heat medium flow switching device from the second heat medium flow switching devices 23a and 23b via the heat medium flow control devices 25a and 25b. The heat medium flows in the direction to 22a and 22b. The air conditioning load required in the indoor space 7 is detected by the temperature detected by the first temperature sensor 31a, the temperature detected by the first temperature sensor 31b, and the second temperature sensors 34a and 34b. This can be covered by controlling so as to keep the difference from the temperature as a target value. As the outlet temperature of the heat exchangers 15a and 15b, the temperature of either the first temperature sensor 31a or 31b may be used, or the average temperature of these may be used.
 このとき、第1熱媒体流路切替装置22および第2熱媒体流路切替装置23は、熱媒体間熱交換器15a、15bの両方へ流れる流路が確保されるように、中間的な開度にしている。また、本来、利用側熱交換器26は、その入口と出口の温度差で制御すべきであるが、利用側熱交換器26の入口側の熱媒体温度は、第1温度センサー31bで検知された温度とほとんど同じ温度であり、第1温度センサー31bを使用することにより温度センサーの数を減らすことができ、安価にシステムを構成できる。 At this time, the first heat medium flow switching device 22 and the second heat medium flow switching device 23 are provided with an intermediate opening so as to secure a flow path that flows to both the heat exchangers 15a and 15b. It is in degrees. In addition, the usage-side heat exchanger 26 should be controlled by the temperature difference between the inlet and the outlet, but the temperature of the heat medium on the inlet side of the usage-side heat exchanger 26 is detected by the first temperature sensor 31b. By using the first temperature sensor 31b, the number of temperature sensors can be reduced and the system can be configured at low cost.
[冷房主体運転モード]
 図6は、図2に示す空気調和装置100の冷房主体運転モード時における冷媒の流れを示す冷媒回路図である。なお、図6では、利用側熱交換器26dで温熱負荷が発生し、利用側熱交換器26a~26cで冷熱負荷が発生している場合を例に、冷房主体運転モードについて説明する。また、太線で表された配管が冷媒(熱源側冷媒および熱媒体)の循環する配管を示しており、熱源側冷媒の流れ方向を実線矢印で、熱媒体の流れ方向を破線矢印で示している。
[Cooling operation mode]
FIG. 6 is a refrigerant circuit diagram illustrating a refrigerant flow when the air-conditioning apparatus 100 illustrated in FIG. 2 is in the cooling main operation mode. In FIG. 6, the cooling main operation mode will be described by taking as an example a case where a heating load is generated in the use side heat exchanger 26d and a cooling load is generated in the use side heat exchangers 26a to 26c. In addition, the pipes represented by the bold lines indicate the pipes through which the refrigerant (heat source side refrigerant and heat medium) circulates, and the flow direction of the heat source side refrigerant is indicated by a solid line arrow and the flow direction of the heat medium is indicated by a broken line arrow. .
 図6に示す冷房主体運転モードの場合、室外機1では、第1冷媒流路切替装置11を、圧縮機10から吐出された熱源側冷媒を熱源側熱交換器12へ流入させるように切り替える。熱媒体変換機3では、ポンプ21a、21bを駆動させ、熱媒体流量調整装置25a~25dを開放し、熱媒体間熱交換器15aと利用側熱交換器26a~26cとの間、および熱媒体間熱交換器15bと利用側熱交換器26dとの間を、それぞれ熱媒体が循環するようにしている。 In the cooling main operation mode shown in FIG. 6, in the outdoor unit 1, the first refrigerant flow switching device 11 is switched so that the heat source side refrigerant discharged from the compressor 10 flows into the heat source side heat exchanger 12. In the heat medium relay unit 3, the pumps 21a and 21b are driven to open the heat medium flow control devices 25a to 25d, and between the heat exchanger related to heat medium 15a and the use side heat exchangers 26a to 26c, and the heat medium. The heat medium circulates between the intermediate heat exchanger 15b and the use side heat exchanger 26d.
 まず始めに、熱源側冷媒循環回路Aにおける熱源側冷媒の流れについて説明する。
 低温・低圧の冷媒が圧縮機10によって圧縮され、高温・高圧のガス冷媒となって吐出される。圧縮機10から吐出された高温・高圧のガス冷媒は、第1冷媒流路切替装置11を介して熱源側熱交換器12に流入する。そして、熱源側熱交換器12で室外空気に放熱しながら液冷媒となる。熱源側熱交換器12から流出した冷媒は、室外機1から流出し、逆止弁13a、冷媒配管4を通って熱媒体変換機3に流入する。熱媒体変換機3に流入した冷媒は、第2冷媒流路切替装置18bを通って凝縮器として作用する熱媒体間熱交換器15bに流入する。
First, the flow of the heat source side refrigerant in the heat source side refrigerant circulation circuit A will be described.
The low-temperature and low-pressure refrigerant is compressed by the compressor 10 and discharged as a high-temperature and high-pressure gas refrigerant. The high-temperature and high-pressure gas refrigerant discharged from the compressor 10 flows into the heat source side heat exchanger 12 via the first refrigerant flow switching device 11. And it becomes a liquid refrigerant, dissipating heat to outdoor air with the heat source side heat exchanger 12. The refrigerant that has flowed out of the heat source side heat exchanger 12 flows out of the outdoor unit 1 and flows into the heat medium relay unit 3 through the check valve 13 a and the refrigerant pipe 4. The refrigerant that has flowed into the heat medium relay unit 3 flows into the heat exchanger related to heat medium 15b that acts as a condenser through the second refrigerant flow switching device 18b.
 熱媒体間熱交換器15bに流入した冷媒は、熱媒体循環回路Bを循環する熱媒体に放熱しながら、さらに温度が低下した冷媒となる。熱媒体間熱交換器15bから流出した冷媒は、絞り装置16bで膨張させられて低圧二相冷媒となる。この低圧二相冷媒は、絞り装置16aを介して蒸発器として作用する熱媒体間熱交換器15aに流入する。熱媒体間熱交換器15aに流入した低圧二相冷媒は、熱媒体循環回路Bを循環する熱媒体から吸熱することで、熱媒体を冷却しながら、低圧のガス冷媒となる。このガス冷媒は、熱媒体間熱交換器15aから流出し、第2冷媒流路切替装置18aを介して熱媒体変換機3から流出し、冷媒配管4を通って再び室外機1へ流入する。室外機1に流入した冷媒は、逆止弁13d、第1冷媒流路切替装置11およびアキュムレーター19を介して、圧縮機10へ再度吸入される。 The refrigerant that has flowed into the heat exchanger related to heat medium 15b becomes a refrigerant whose temperature is further lowered while radiating heat to the heat medium circulating in the heat medium circuit B. The refrigerant flowing out of the heat exchanger related to heat medium 15b is expanded by the expansion device 16b and becomes a low-pressure two-phase refrigerant. This low-pressure two-phase refrigerant flows into the heat exchanger related to heat medium 15a acting as an evaporator via the expansion device 16a. The low-pressure two-phase refrigerant that has flowed into the heat exchanger related to heat medium 15a absorbs heat from the heat medium circulating in the heat medium circuit B, and becomes a low-pressure gas refrigerant while cooling the heat medium. The gas refrigerant flows out of the heat exchanger related to heat medium 15a, flows out of the heat medium converter 3 via the second refrigerant flow switching device 18a, and flows into the outdoor unit 1 again through the refrigerant pipe 4. The refrigerant that has flowed into the outdoor unit 1 is again sucked into the compressor 10 via the check valve 13d, the first refrigerant flow switching device 11, and the accumulator 19.
 このとき、第2冷媒流路切替装置18aは低圧配管と連通されており、一方、第2冷媒流路切替装置18bは高圧側配管と連通されている。また、絞り装置16bは、第3温度センサー35aで検知された温度と、第3温度センサー35bで検知された温度との差として得られるスーパーヒートが、一定になるように開度が制御される。また、絞り装置16aは全開、開閉装置17a、17bは閉となっている。なお、絞り装置16bは、第1圧力センサー36で検知された圧力を飽和温度に換算した値と、第3温度センサー35dで検知された温度との差として得られるサブクールが、一定になるように開度を制御してもよい。また、絞り装置16bを全開とし、絞り装置16aでスーパーヒートまたはサブクールを制御するようにしてもよい。 At this time, the second refrigerant flow switching device 18a is in communication with the low pressure pipe, while the second refrigerant flow switching device 18b is in communication with the high pressure side piping. Further, the opening degree of the expansion device 16b is controlled so that the superheat obtained as the difference between the temperature detected by the third temperature sensor 35a and the temperature detected by the third temperature sensor 35b becomes constant. . Further, the expansion device 16a is fully opened, and the opening / closing devices 17a and 17b are closed. The expansion device 16b is configured so that a subcool obtained as a difference between a value obtained by converting the pressure detected by the first pressure sensor 36 into a saturation temperature and a temperature detected by the third temperature sensor 35d is constant. The opening degree may be controlled. Alternatively, the expansion device 16b may be fully opened, and the superheat or subcool may be controlled by the expansion device 16a.
 次に、熱媒体循環回路Bにおける熱媒体の流れについて説明する。
 冷房主体運転モードでは、熱媒体間熱交換器15bで熱源側冷媒の温熱が熱媒体に伝えられ、暖められた熱媒体がポンプ21bによって熱媒体配管5内を流動させられることになる。また、熱媒体間熱交換器15aで熱源側冷媒の冷熱が熱媒体に伝えられ、冷やされた熱媒体がポンプ21aによって熱媒体配管5内を流動させられることになる。ポンプ21a、21bで加圧されて流出した熱媒体は、第2熱媒体流路切替装置23a~23dを介して、利用側熱交換器26a~26dに流入する。
Next, the flow of the heat medium in the heat medium circuit B will be described.
In the cooling main operation mode, the heat of the heat source side refrigerant is transmitted to the heat medium in the heat exchanger related to heat medium 15b, and the heated heat medium is caused to flow in the heat medium pipe 5 by the pump 21b. Further, the cold heat of the heat source side refrigerant is transmitted to the heat medium by the heat exchanger related to heat medium 15a, and the cooled heat medium is caused to flow in the heat medium pipe 5 by the pump 21a. The heat medium pressurized and discharged by the pumps 21a and 21b flows into the use side heat exchangers 26a to 26d via the second heat medium flow switching devices 23a to 23d.
 利用側熱交換器26dでは熱媒体が室内空気に放熱することで、室内空間7の暖房を行う。また、利用側熱交換器26a~26cでは熱媒体が室内空気から吸熱することで、室内空間7の冷房を行う。このとき、熱媒体流量調整装置25a~25dの作用によって熱媒体の流量が室内にて必要とされる空調負荷を賄うのに必要な流量に制御されて利用側熱交換器26a~26dに流入するようになっている。
 利用側熱交換器26dを通過し若干温度が低下した熱媒体は、熱媒体流量調整装置25dおよび第1熱媒体流路切替装置22dを通って、熱媒体間熱交換器15bへ流入し、再びポンプ21bへ吸い込まれる。
 また、利用側熱交換器26a~26cを通過し若干温度が上昇した熱媒体は、熱媒体流量調整装置25a~25cおよび第1熱媒体流路切替装置22a~22cを通って、熱媒体間熱交換器15aへ流入し、再びポンプ21aへ吸い込まれる。
In the use side heat exchanger 26d, the heat medium radiates heat to the indoor air, thereby heating the indoor space 7. In the use side heat exchangers 26a to 26c, the heat medium absorbs heat from the indoor air, thereby cooling the indoor space 7. At this time, the flow rate of the heat medium is controlled to a flow rate necessary to cover the air conditioning load required indoors by the action of the heat medium flow rate adjusting devices 25a to 25d, and flows into the use side heat exchangers 26a to 26d. It is like that.
The heat medium that has passed through the use-side heat exchanger 26d and has slightly decreased in temperature passes through the heat medium flow control device 25d and the first heat medium flow switching device 22d, flows into the heat exchanger related to heat medium 15b, and again It is sucked into the pump 21b.
In addition, the heat medium that has passed through the use side heat exchangers 26a to 26c and slightly increased in temperature passes through the heat medium flow control devices 25a to 25c and the first heat medium flow switching devices 22a to 22c, and heat between the heat media. It flows into the exchanger 15a and is sucked into the pump 21a again.
 冷房主体運転モードの実行中において、暖かい熱媒体と冷たい熱媒体とは、第1熱媒体流路切替装置22および第2熱媒体流路切替装置23の作用により、混合することなく、それぞれ温熱負荷、冷熱負荷がある利用側熱交換器26a~26dへ導入される。
 なお、利用側熱交換器26a~26dの熱媒体配管5内では、暖房側、冷房側ともに、第2熱媒体流路切替装置23から熱媒体流量調整装置25を経由して第1熱媒体流路切替装置22へ至る方向に熱媒体が流れている。
 また、室内空間7にて必要とされる空調負荷は、暖房側においては第1温度センサー31bで検知された温度と第2温度センサー34dで検知された温度との差を、冷房側においては第2温度センサー34a~34cで検知された温度と第1温度センサー31aで検知された温度との差をそれぞれ目標値として保つように制御することにより、賄うことができる。
During the execution of the cooling main operation mode, the warm heat medium and the cold heat medium are respectively mixed with the heat load without being mixed by the action of the first heat medium flow switching device 22 and the second heat medium flow switching device 23. Then, it is introduced into the use side heat exchangers 26a to 26d having a cold load.
In the heat medium pipe 5 of the use side heat exchangers 26a to 26d, the first heat medium flow is supplied from the second heat medium flow switching device 23 via the heat medium flow control device 25 on both the heating side and the cooling side. A heat medium flows in the direction to the path switching device 22.
The air conditioning load required in the indoor space 7 is the difference between the temperature detected by the first temperature sensor 31b on the heating side and the temperature detected by the second temperature sensor 34d on the heating side, and the first on the cooling side. This can be covered by controlling the difference between the temperature detected by the two temperature sensors 34a to 34c and the temperature detected by the first temperature sensor 31a as a target value.
[暖房主体運転モード]
 図7は、図2に示す空気調和装置100の暖房主体運転モード時における冷媒の流れを示す冷媒回路図である。なお、図7では、利用側熱交換器26b~26dで温熱負荷が発生し、利用側熱交換器26aで冷熱負荷が発生している場合を例に暖房主体運転モードについて説明する。また、太線で表された配管が冷媒(熱源側冷媒および熱媒体)の循環する配管を示しており、熱源側冷媒の流れ方向を実線矢印で、熱媒体の流れ方向を破線矢印で示している。
[Heating main operation mode]
FIG. 7 is a refrigerant circuit diagram showing a refrigerant flow when the air-conditioning apparatus 100 shown in FIG. 2 is in the heating main operation mode. In FIG. 7, the heating main operation mode will be described by taking as an example a case where a heat load is generated in the use side heat exchangers 26b to 26d and a heat load is generated in the use side heat exchanger 26a. In addition, the pipes represented by the bold lines indicate the pipes through which the refrigerant (heat source side refrigerant and heat medium) circulates, and the flow direction of the heat source side refrigerant is indicated by a solid line arrow and the flow direction of the heat medium is indicated by a broken line arrow. .
 図7に示す暖房主体運転モードの場合、室外機1では、第1冷媒流路切替装置11を、圧縮機10から吐出された熱源側冷媒を熱源側熱交換器12を経由させずに熱媒体変換機3へ流入させるように切り替える。熱媒体変換機3では、ポンプ21a、21bを駆動させ、熱媒体流量調整装置25a~25dを開放し、熱媒体間熱交換器15aと利用側熱交換器26aとの間、および熱媒体間熱交換器15bと利用側熱交換器26b~26dとの間を、それぞれ熱媒体が循環するようにしている。 In the heating-main operation mode shown in FIG. 7, in the outdoor unit 1, the first refrigerant flow switching device 11 uses the heat source side refrigerant discharged from the compressor 10 without passing through the heat source side heat exchanger 12. It switches so that it may flow into converter 3. In the heat medium relay unit 3, the pumps 21a and 21b are driven, the heat medium flow control devices 25a to 25d are opened, the heat between the heat medium heat exchanger 15a and the use side heat exchanger 26a, and the heat between the heat mediums. The heat medium circulates between the exchanger 15b and the use side heat exchangers 26b to 26d.
 まず始めに、熱源側冷媒循環回路Aにおける熱源側冷媒の流れについて説明する。
 低温・低圧の冷媒が圧縮機10によって圧縮され、高温・高圧のガス冷媒となって吐出される。圧縮機10から吐出された高温・高圧のガス冷媒は、第1冷媒流路切替装置11、逆止弁13bを通り、室外機1から流出する。室外機1から流出した高温・高圧のガス冷媒は、冷媒配管4を通って熱媒体変換機3に流入する。熱媒体変換機3に流入した高温・高圧のガス冷媒は、第2冷媒流路切替装置18bを通って凝縮器として作用する熱媒体間熱交換器15bに流入する。
First, the flow of the heat source side refrigerant in the heat source side refrigerant circulation circuit A will be described.
The low-temperature and low-pressure refrigerant is compressed by the compressor 10 and discharged as a high-temperature and high-pressure gas refrigerant. The high-temperature and high-pressure gas refrigerant discharged from the compressor 10 flows out of the outdoor unit 1 through the first refrigerant flow switching device 11 and the check valve 13b. The high-temperature and high-pressure gas refrigerant that has flowed out of the outdoor unit 1 flows into the heat medium relay unit 3 through the refrigerant pipe 4. The high-temperature and high-pressure gas refrigerant that has flowed into the heat medium relay unit 3 flows into the heat exchanger related to heat medium 15b that acts as a condenser through the second refrigerant flow switching device 18b.
 熱媒体間熱交換器15bに流入したガス冷媒は、熱媒体循環回路Bを循環する熱媒体に放熱しながら液冷媒となる。熱媒体間熱交換器15bから流出した冷媒は、絞り装置16bで膨張させられて低圧二相冷媒となる。この低圧二相冷媒は、絞り装置16aを介して蒸発器として作用する熱媒体間熱交換器15aに流入する。熱媒体間熱交換器15aに流入した低圧二相冷媒は、熱媒体循環回路Bを循環する熱媒体から吸熱することで蒸発し、熱媒体を冷却する。この低圧二相冷媒は、熱媒体間熱交換器15aから流出し、第2冷媒流路切替装置18aを介し、熱媒体変換機3から流出し、再び室外機1へ流入する。 The gas refrigerant flowing into the heat exchanger related to heat medium 15b becomes liquid refrigerant while dissipating heat to the heat medium circulating in the heat medium circuit B. The refrigerant flowing out of the heat exchanger related to heat medium 15b is expanded by the expansion device 16b and becomes a low-pressure two-phase refrigerant. This low-pressure two-phase refrigerant flows into the heat exchanger related to heat medium 15a acting as an evaporator via the expansion device 16a. The low-pressure two-phase refrigerant that has flowed into the heat exchanger related to heat medium 15a evaporates by absorbing heat from the heat medium circulating in the heat medium circuit B, thereby cooling the heat medium. The low-pressure two-phase refrigerant flows out of the heat exchanger related to heat medium 15a, flows out of the heat medium converter 3 through the second refrigerant flow switching device 18a, and flows into the outdoor unit 1 again.
 室外機1に流入した冷媒は、逆止弁13cを通って、蒸発器として作用する熱源側熱交換器12に流入する。そして、熱源側熱交換器12に流入した冷媒は、熱源側熱交換器12で室外空気から吸熱して、低温・低圧のガス冷媒となる。熱源側熱交換器12から流出した低温・低圧のガス冷媒は、第1冷媒流路切替装置11およびアキュムレーター19を介して圧縮機10へ再度吸入される。 The refrigerant that has flowed into the outdoor unit 1 passes through the check valve 13c and flows into the heat source side heat exchanger 12 that functions as an evaporator. And the refrigerant | coolant which flowed into the heat source side heat exchanger 12 absorbs heat from outdoor air in the heat source side heat exchanger 12, and becomes a low-temperature and low-pressure gas refrigerant. The low-temperature and low-pressure gas refrigerant flowing out from the heat source side heat exchanger 12 is again sucked into the compressor 10 via the first refrigerant flow switching device 11 and the accumulator 19.
 このとき、第2冷媒流路切替装置18aは低圧側配管と連通されており、一方、第2冷媒流路切替装置18bは高圧側配管と連通されている。また、絞り装置16bは、第1圧力センサー36で検知された圧力を飽和温度に換算した値と、第3温度センサー35bで検知された温度との差として得られるサブクールが、一定になるように開度が制御される。また、絞り装置16aは全開、開閉装置17a、17bは閉となっている。なお、絞り装置16bを全開とし、絞り装置16aでサブクールを制御するようにしてもよい。 At this time, the second refrigerant flow switching device 18a is in communication with the low pressure side piping, while the second refrigerant flow switching device 18b is in communication with the high pressure side piping. Further, the expansion device 16b is configured so that a subcool obtained as a difference between a value obtained by converting the pressure detected by the first pressure sensor 36 into a saturation temperature and a temperature detected by the third temperature sensor 35b is constant. The opening is controlled. Further, the expansion device 16a is fully opened, and the opening / closing devices 17a and 17b are closed. Note that the expansion device 16b may be fully opened, and the subcooling may be controlled by the expansion device 16a.
 次に、熱媒体循環回路Bにおける熱媒体の流れについて説明する。
 暖房主体運転モードでは、熱媒体間熱交換器15bで熱源側冷媒の温熱が熱媒体に伝えられ、暖められた熱媒体がポンプ21bによって熱媒体配管5内を流動させられることになる。また、熱媒体間熱交換器15aで熱源側冷媒の冷熱が熱媒体に伝えられ、冷やされた熱媒体がポンプ21aによって熱媒体配管5内を流動させられることになる。ポンプ21a、21bで加圧されて流出した熱媒体は、第2熱媒体流路切替装置23a~23dを介して、利用側熱交換器26a~26dに流入する。
Next, the flow of the heat medium in the heat medium circuit B will be described.
In the heating main operation mode, the heat of the heat source side refrigerant is transmitted to the heat medium in the heat exchanger related to heat medium 15b, and the heated heat medium is caused to flow in the heat medium pipe 5 by the pump 21b. Further, the cold heat of the heat source side refrigerant is transmitted to the heat medium by the heat exchanger related to heat medium 15a, and the cooled heat medium is caused to flow in the heat medium pipe 5 by the pump 21a. The heat medium pressurized and discharged by the pumps 21a and 21b flows into the use side heat exchangers 26a to 26d via the second heat medium flow switching devices 23a to 23d.
 利用側熱交換器26aでは熱媒体が室内空気から吸熱することで、室内空間7の冷房を行う。また、利用側熱交換器26b~26dでは熱媒体が室内空気に放熱することで、室内空間7の暖房を行う。このとき、熱媒体流量調整装置25a~25dの作用によって熱媒体の流量が室内にて必要とされる空調負荷を賄うのに必要な流量に制御されて利用側熱交換器26a~26dに流入するようになっている。
 利用側熱交換器26aを通過し若干温度が上昇した熱媒体は、熱媒体流量調整装置25aおよび第1熱媒体流路切替装置22aを通って、熱媒体間熱交換器15aに流入し、再びポンプ21aへ吸い込まれる。
 また、利用側熱交換器26b~26dを通過し若干温度が低下した熱媒体は、熱媒体流量調整装置25b~25dおよび第1熱媒体流路切替装置22b~22dを通って、熱媒体間熱交換器15bへ流入し、再びポンプ21bへ吸い込まれる。
In the use side heat exchanger 26a, the heat medium absorbs heat from the indoor air, thereby cooling the indoor space 7. Further, in the use side heat exchangers 26b to 26d, the heat medium radiates heat to the indoor air, thereby heating the indoor space 7. At this time, the flow rate of the heat medium is controlled to a flow rate necessary to cover the air conditioning load required indoors by the action of the heat medium flow rate adjusting devices 25a to 25d, and flows into the use side heat exchangers 26a to 26d. It is like that.
The heat medium whose temperature has slightly increased after passing through the use side heat exchanger 26a flows into the heat exchanger related to heat medium 15a through the heat medium flow control device 25a and the first heat medium flow switching device 22a, and again. It is sucked into the pump 21a.
Further, the heat medium that has passed through the use side heat exchangers 26b to 26d and has been slightly lowered in temperature passes through the heat medium flow control devices 25b to 25d and the first heat medium flow switching devices 22b to 22d, and heat between the heat media. It flows into the exchanger 15b and is sucked into the pump 21b again.
 暖房主体運転モードの実行中において、暖かい熱媒体と冷たい熱媒体とは、第1熱媒体流路切替装置22および第2熱媒体流路切替装置23の作用により、混合することなく、それぞれ温熱負荷、冷熱負荷がある利用側熱交換器26a~26dへ導入される。
 なお、利用側熱交換器26a~26dの熱媒体配管5内では、暖房側、冷房側ともに、第2熱媒体流路切替装置23から熱媒体流量調整装置25を経由して第1熱媒体流路切替装置22へ至る方向に熱媒体が流れている。
 また、室内空間7にて必要とされる空調負荷は、暖房側においては第1温度センサー31bで検知された温度と第2温度センサー34b~34dで検知された温度との差を、冷房側においては第2温度センサー34aで検知された温度と第1温度センサー31aで検知された温度との差をそれぞれ目標値として保つように制御することにより、賄うことができる。
During execution of the heating main operation mode, the warm heat medium and the cold heat medium are respectively mixed with the heat load without being mixed by the action of the first heat medium flow switching device 22 and the second heat medium flow switching device 23. Then, it is introduced into the use side heat exchangers 26a to 26d having a cold load.
In the heat medium pipe 5 of the use side heat exchangers 26a to 26d, the first heat medium flow is supplied from the second heat medium flow switching device 23 via the heat medium flow control device 25 on both the heating side and the cooling side. A heat medium flows in the direction to the path switching device 22.
The air conditioning load required in the indoor space 7 is the difference between the temperature detected by the first temperature sensor 31b on the heating side and the temperature detected by the second temperature sensors 34b to 34d on the cooling side. Can be covered by controlling the difference between the temperature detected by the second temperature sensor 34a and the temperature detected by the first temperature sensor 31a as a target value.
 なお、暖房主体運転モードを実行する際、熱負荷のない利用側熱交換器26(サーモオフを含む)へは熱媒体を流す必要がないため、熱媒体流量調整装置25により流路を閉じて、利用側熱交換器26へ熱媒体が流れないようにする。図7においては、利用側熱交換器26a~26d全てにおいては熱負荷があるため熱媒体を流しているが、熱負荷がない利用側熱交換器26が存在する場合、対応する熱媒体流量調整装置25を全閉とする。 In addition, when performing the heating main operation mode, since it is not necessary to flow the heat medium to the use side heat exchanger 26 (including the thermo-off) without heat load, the flow path is closed by the heat medium flow control device 25, The heat medium is prevented from flowing to the use side heat exchanger 26. In FIG. 7, a heat medium flows because all of the use side heat exchangers 26a to 26d have a heat load. However, when there is a use side heat exchanger 26 without a heat load, the corresponding heat medium flow rate adjustment is performed. The device 25 is fully closed.
 次に、熱媒体変換機3の熱媒体間熱交換器15で熱源側冷媒が漏洩した場合の動作について説明する。
 熱媒体間熱交換器15で熱源側冷媒が漏洩した場合は、2次ループ内部に1次ループの熱源側冷媒が流入し、それによって2次ループの圧力が上昇する。2次ループの圧力が所定値(作動圧)まで上昇するとリリーフ弁60が作動し、リリーフ弁60からは熱媒体に混ざった熱源側冷媒が排出される。そのため、2次ループの圧力を抑制し、圧力上昇による2次ループに使用されている部品の破損を抑制し、熱源側冷媒の漏洩拡散を抑制することができる。
 このとき、リリーフ弁60の作動圧を熱媒体の種類と熱源側冷媒の種類とからリリーフ弁60の作動圧を決め、さらに、熱媒体の最高圧力と熱源側冷媒の最高圧力に応じてリリーフ弁60の大きさを選定し、系外に排出する流量を決定(調整)することで、2次ループを適切な圧力に保つようにしている。
 また、排出された熱源側冷媒および熱媒体は熱媒体変換機3内部に滞留し、そのことを冷媒漏洩検知装置61が検知する。このとき、室外機1の運転停止、ポンプ21a、21bの停止、および、熱媒体流量調整装置25a~25dの閉止をすることで、室内側への熱源側冷媒の漏洩拡散をさらに抑制することができる。
 なお、冷媒漏洩検知装置61での検知の代わりに、室外機1の第2圧力センサー37の低下など、1次ループの冷凍サイクルの変化によって熱源側冷媒の漏洩を判断してもよい。この場合、第2圧力センサーが冷媒漏洩検知手段を担当することになる。また、2次ループの圧力を検知する熱媒体圧力検知装置62を設け(図3参照)、2次ループの圧力の上昇により熱源側冷媒の漏洩を検知してもよい。この場合、熱媒体圧力検知装置62が冷媒漏洩検知手段を担当することになる。
Next, an operation in the case where the heat source side refrigerant leaks in the heat exchanger related to heat medium 15 of the heat medium relay unit 3 will be described.
When the heat source side refrigerant leaks in the heat exchanger related to heat medium 15, the heat source side refrigerant of the primary loop flows into the secondary loop, and thereby the pressure of the secondary loop increases. When the pressure in the secondary loop rises to a predetermined value (operating pressure), the relief valve 60 is activated, and the heat source side refrigerant mixed with the heat medium is discharged from the relief valve 60. Therefore, it is possible to suppress the pressure of the secondary loop, suppress the breakage of components used in the secondary loop due to the pressure increase, and suppress the leakage diffusion of the heat source side refrigerant.
At this time, the operating pressure of the relief valve 60 is determined from the type of the heat medium and the type of the heat source side refrigerant, and the operating pressure of the relief valve 60 is determined based on the maximum pressure of the heat medium and the maximum pressure of the heat source side refrigerant. By selecting a size of 60 and determining (adjusting) the flow rate discharged to the outside of the system, the secondary loop is kept at an appropriate pressure.
Further, the discharged heat source side refrigerant and the heat medium stay in the heat medium converter 3, and the refrigerant leakage detection device 61 detects this. At this time, by stopping the operation of the outdoor unit 1, stopping the pumps 21a and 21b, and closing the heat medium flow control devices 25a to 25d, the leakage diffusion of the heat source side refrigerant to the indoor side can be further suppressed. it can.
Instead of detection by the refrigerant leakage detection device 61, the leakage of the heat source side refrigerant may be determined by a change in the refrigeration cycle of the primary loop, such as a decrease in the second pressure sensor 37 of the outdoor unit 1. In this case, the second pressure sensor is in charge of the refrigerant leakage detection means. Further, a heat medium pressure detecting device 62 for detecting the pressure of the secondary loop may be provided (see FIG. 3), and the leakage of the heat source side refrigerant may be detected by an increase in the pressure of the secondary loop. In this case, the heat medium pressure detection device 62 takes charge of the refrigerant leakage detection means.
 1 室外機、2 室内機、2a~2d 室内機、3 熱媒体変換機、4 冷媒配管、4a 第1接続配管、4b 第2接続配管、5 熱媒体配管、6 室外空間、7 室内空間、8 空間、9 建物、10 圧縮機、11 第1冷媒流路切替装置、12 熱源側熱交換器、13a~13d 逆止弁、15 熱媒体間熱交換器、15a、15b 熱媒体間熱交換器、16 絞り装置、16a、16b 絞り装置、17a、17b 開閉装置、18 第2冷媒流路切替装置、18a、18b 第2冷媒流路切替装置、19 アキュムレーター、21 ポンプ、21a、21b ポンプ、22 第1熱媒体流路切替装置、22a~22d 第1熱媒体流路切替装置、23 第2熱媒体流路切替装置、23a~23d 第2熱媒体流路切替装置、25 熱媒体流量調整装置、25a~25d 熱媒体流量調整装置、26 利用側熱交換器、26a~26d 利用側熱交換器、 31 第1温度センサー、31a、31b 第1温度センサー、34 第2温度センサー、34a~34d 第2温度センサー、35 第3温度センサー、35a~35d 第3温度センサー、36 第1圧力センサー、37 第2圧力センサー、38 第3圧力センサー、39a~39d 吸込空気温度検知装置、50 第4温度センサー、52 (熱媒体変換機)制御装置、52a (熱媒体変換機)演算装置、57 (室外機)制御装置、57a (室外機)演算装置、60 リリーフ弁、60a リリーフ弁、60b リリーフ弁、61 冷媒漏洩検知装置、62 熱媒体圧力検知装置、100 空気調和装置、A 熱源側冷媒循環回路、B 熱媒体循環回路。 1 outdoor unit, 2 indoor unit, 2a to 2d indoor unit, 3 heat medium converter, 4 refrigerant pipe, 4a first connection pipe, 4b second connection pipe, 5 heat medium pipe, 6 outdoor space, 7 indoor space, 8 Space, 9 building, 10 compressor, 11 first refrigerant flow switching device, 12 heat source side heat exchanger, 13a-13d check valve, 15 heat exchanger between heat medium, 15a, 15b heat exchanger between heat medium, 16 throttle device, 16a, 16b throttle device, 17a, 17b switchgear, 18 second refrigerant flow switching device, 18a, 18b second refrigerant flow switching device, 19 accumulator, 21 pump, 21a, 21b pump, 22nd 1 heat medium flow switching device, 22a to 22d, first heat medium flow switching device, 23, second heat medium flow switching device, 23a to 23d, second heat medium flow switching device, 2 Heat medium flow control device, 25a to 25d Heat medium flow control device, 26 User side heat exchanger, 26a to 26d User side heat exchanger, 31 First temperature sensor, 31a and 31b First temperature sensor, 34 Second temperature sensor 34a to 34d, second temperature sensor, 35, third temperature sensor, 35a to 35d, third temperature sensor, 36, first pressure sensor, 37, second pressure sensor, 38 、 third pressure sensor, 39a to 39d, intake air temperature detection device, 50 fourth temperature sensor, 52 (heat medium converter) control device, 52a (heat medium converter) computing device, 57 (outdoor unit) control device, 57a (outdoor unit) computing device, 60 relief valve, 60a relief valve, 60b relief valve, 61 refrigerant leakage detection device, 62 heat medium pressure detection device, 100 air conditioner , A heat source-side refrigerant circuit, B heat medium circulation circuit.

Claims (10)

  1.  圧縮機、熱源側熱交換器、絞り装置、および、熱媒体間熱交換器の熱源側冷媒流路が直列に配管接続され、熱源側冷媒を循環させる熱源側冷媒循環回路と、
     ポンプ、利用側熱交換器、および、前記熱媒体間熱交換器の熱媒体流路が直列に配管接続され、熱媒体を循環させる熱媒体循環回路と、を備え、
     前記熱源側冷媒循環回路と前記熱媒体循環回路とは、前記熱媒体間熱交換器で前記熱源側冷媒と前記熱媒体とが熱交換を行うようにカスケード接続され、
     前記熱媒体循環回路にリリーフ弁を設け、
     該リリーフ弁は、
     前記熱源側冷媒が前記熱媒体循環回路に流入した際に作動し、前記熱源側冷媒と、前記熱媒体とを、排出する
     ことを特徴とする空気調和装置。
    A heat source side refrigerant circulation circuit in which the heat source side refrigerant flow path of the compressor, the heat source side heat exchanger, the expansion device, and the heat exchanger between the heat mediums is connected in series and circulates the heat source side refrigerant;
    A heat medium circulation circuit that circulates the heat medium, wherein the heat medium flow path of the pump, the use side heat exchanger, and the heat medium heat exchanger between the heat medium is piped in series,
    The heat source side refrigerant circulation circuit and the heat medium circulation circuit are cascade-connected so that the heat source side refrigerant and the heat medium exchange heat in the heat exchanger between heat mediums,
    A relief valve is provided in the heat medium circulation circuit,
    The relief valve is
    An air conditioner that operates when the heat source side refrigerant flows into the heat medium circulation circuit and discharges the heat source side refrigerant and the heat medium.
  2.  前記リリーフ弁は、前記熱媒体循環回路の圧力が所定値となったら作動する
     ことを特徴とする請求項1に記載の空気調和装置。
    The air conditioner according to claim 1, wherein the relief valve operates when the pressure of the heat medium circulation circuit reaches a predetermined value.
  3.  前記所定値は、前記熱源側冷媒の種類と、前記熱媒体の種類とから決定される
     ことを特徴とする請求項2に記載の空気調和装置。 
    The air conditioner according to claim 2, wherein the predetermined value is determined from a type of the heat source side refrigerant and a type of the heat medium.
  4.  前記リリーフ弁は、前記熱源側冷媒の最高圧力と、前記熱媒体の最高圧力とに基づいて選定される
     ことを特徴とする請求項1~3のいずれか一項に記載の空気調和装置。
    The air conditioner according to any one of claims 1 to 3, wherein the relief valve is selected based on a maximum pressure of the heat source side refrigerant and a maximum pressure of the heat medium.
  5.  前記リリーフ弁は、そのCv値が、前記熱源側冷媒循環回路と前記熱媒体循環回路との間に開いた連通穴のCv値と、前記熱源側冷媒の最高圧力と前記リリーフ弁の作動圧との差の平方根と、の積を、前記リリーフ弁の作動圧の平方根で割った値を満たすように選定される
     ことを特徴とする請求項4に記載の空気調和装置。
    The relief valve has a Cv value such as a Cv value of a communication hole opened between the heat source side refrigerant circulation circuit and the heat medium circulation circuit, a maximum pressure of the heat source side refrigerant, and an operating pressure of the relief valve. The air conditioner according to claim 4, wherein the product is selected so as to satisfy a value obtained by dividing a product of a square root of the difference by a square root of an operating pressure of the relief valve.
  6.  前記熱源側冷媒が漏洩したことを検知する冷媒漏洩検知手段を有し、
     前記冷媒漏洩検知手段が前記漏洩を検知したら、前記ポンプの駆動を停止する
     ことを特徴とする請求項1~5のいずれか一項に記載の空気調和装置。
    Refrigerant leakage detection means for detecting that the heat source side refrigerant has leaked,
    The air conditioner according to any one of claims 1 to 5, wherein when the refrigerant leakage detection means detects the leakage, the driving of the pump is stopped.
  7.  前記熱媒体の流量を調整する熱媒体流量調整装置と、
     前記熱源側冷媒が漏洩したことを検知する冷媒漏洩検知手段を有し、
     前記冷媒漏洩検知手段が前記漏洩を検知したら、前記熱媒体流量調整装置を閉じる
     ことを特徴とする請求項1~5のいずれか一項に記載の空気調和装置。
    A heat medium flow control device for adjusting the flow rate of the heat medium;
    Refrigerant leakage detection means for detecting that the heat source side refrigerant has leaked,
    The air conditioner according to any one of claims 1 to 5, wherein when the refrigerant leak detection means detects the leak, the heat medium flow control device is closed.
  8.  前記冷媒漏洩検知手段を、前記熱媒体間熱交換器に、または該熱媒体間熱交換器の近くに設置する
     ことを特徴とする請求項6または7に記載の空気調和装置。
    The air conditioner according to claim 6 or 7, wherein the refrigerant leakage detection means is installed in or near the heat exchanger related to heat medium.
  9.  前記冷媒漏洩検知手段は、
     前記熱媒体循環回路の圧力が所定値となったら前記漏洩を検知する
     ことを特徴とする請求項6または7に記載の空気調和装置。
    The refrigerant leakage detection means is
    The air conditioner according to claim 6 or 7, wherein the leakage is detected when the pressure of the heat medium circulation circuit reaches a predetermined value.
  10.  前記冷媒漏洩検知手段は、
     前記熱源側冷媒循環回路の運転状況の変化によって前記漏洩を検知する
     ことを特徴とする請求項6または7に記載の空気調和装置。
    The refrigerant leakage detection means is
    The air conditioner according to claim 6 or 7, wherein the leakage is detected by a change in an operating state of the heat source side refrigerant circulation circuit.
PCT/JP2013/055294 2013-02-28 2013-02-28 Air conditioning device WO2014132378A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP13876128.3A EP2963359A4 (en) 2013-02-28 2013-02-28 Air conditioning device
PCT/JP2013/055294 WO2014132378A1 (en) 2013-02-28 2013-02-28 Air conditioning device
JP2015502643A JP5959716B2 (en) 2013-02-28 2013-02-28 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/055294 WO2014132378A1 (en) 2013-02-28 2013-02-28 Air conditioning device

Publications (1)

Publication Number Publication Date
WO2014132378A1 true WO2014132378A1 (en) 2014-09-04

Family

ID=51427680

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/055294 WO2014132378A1 (en) 2013-02-28 2013-02-28 Air conditioning device

Country Status (3)

Country Link
EP (1) EP2963359A4 (en)
JP (1) JP5959716B2 (en)
WO (1) WO2014132378A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017067429A (en) * 2015-09-30 2017-04-06 ダイキン工業株式会社 Freezer for ship
WO2018154628A1 (en) * 2017-02-21 2018-08-30 三菱電機株式会社 Air conditioning device
WO2018225257A1 (en) * 2017-06-09 2018-12-13 三菱電機株式会社 Equipment that uses heat pump
US11326788B2 (en) 2018-02-28 2022-05-10 Mitsubishi Electric Corporation Air-conditioning apparatus
JP7457888B2 (en) 2020-07-02 2024-03-29 パナソニックIpマネジメント株式会社 Heat medium circulation system

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3351868B1 (en) * 2016-12-09 2019-08-28 Mitsubishi Electric Corporation Heat pump device
CN106895561B (en) * 2017-02-28 2019-07-30 广东美的制冷设备有限公司 It is a kind of detection air-conditioner coolant leakage method, air conditioner control device and air conditioner
KR102078720B1 (en) * 2018-03-09 2020-02-18 엘지전자 주식회사 Noise reduction type air conditioner indoor unit and noise reduction method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10338023A (en) * 1997-06-05 1998-12-22 Zexel Corp Cooling device for vehicle
JP2000227242A (en) 1999-02-02 2000-08-15 Oki Electric Ind Co Ltd Precooling/preheating control method of air-conditioning facility
JP2000230732A (en) * 1999-02-08 2000-08-22 Zexel Corp Cold storage air conditioning system provided with refrigerant leakage-preventing function

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6973958B1 (en) * 2004-10-19 2005-12-13 Ching-Lung Chou Heat transfer apparatus having anti-oxidization device
JP5309061B2 (en) * 2010-03-10 2013-10-09 リンナイ株式会社 Hot water system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10338023A (en) * 1997-06-05 1998-12-22 Zexel Corp Cooling device for vehicle
JP2000227242A (en) 1999-02-02 2000-08-15 Oki Electric Ind Co Ltd Precooling/preheating control method of air-conditioning facility
JP2000230732A (en) * 1999-02-08 2000-08-22 Zexel Corp Cold storage air conditioning system provided with refrigerant leakage-preventing function

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2963359A4

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017067429A (en) * 2015-09-30 2017-04-06 ダイキン工業株式会社 Freezer for ship
WO2018154628A1 (en) * 2017-02-21 2018-08-30 三菱電機株式会社 Air conditioning device
JPWO2018154628A1 (en) * 2017-02-21 2019-11-07 三菱電機株式会社 Air conditioner
WO2018225257A1 (en) * 2017-06-09 2018-12-13 三菱電機株式会社 Equipment that uses heat pump
JPWO2018225257A1 (en) * 2017-06-09 2019-12-19 三菱電機株式会社 Equipment using heat pump
CN110709650A (en) * 2017-06-09 2020-01-17 三菱电机株式会社 Heat pump utilization equipment
CN110709650B (en) * 2017-06-09 2021-10-15 三菱电机株式会社 Heat pump utilization equipment
US11248829B2 (en) 2017-06-09 2022-02-15 Mitsubishi Electric Corporation Apparatus using a heat pump including a refrigerant leakage detector
US11326788B2 (en) 2018-02-28 2022-05-10 Mitsubishi Electric Corporation Air-conditioning apparatus
JP7457888B2 (en) 2020-07-02 2024-03-29 パナソニックIpマネジメント株式会社 Heat medium circulation system

Also Published As

Publication number Publication date
EP2963359A4 (en) 2016-12-21
EP2963359A1 (en) 2016-01-06
JP5959716B2 (en) 2016-08-02
JPWO2014132378A1 (en) 2017-02-02

Similar Documents

Publication Publication Date Title
JP5959716B2 (en) Air conditioner
JP5188629B2 (en) Air conditioner
JP6141454B2 (en) Air conditioner and control method of air conditioner
JP5279919B2 (en) Air conditioner
JP5784117B2 (en) Air conditioner
JP5669958B2 (en) Heat medium selection method for use side heat exchanger during construction of air conditioning system
JP5984960B2 (en) Air conditioner
JP5595521B2 (en) Heat pump equipment
JP5710021B2 (en) Air conditioner
US9651287B2 (en) Air-conditioning apparatus
WO2013008278A1 (en) Air-conditioning device
US9857113B2 (en) Air-conditioning apparatus
JP5689079B2 (en) Refrigeration cycle equipment
JP6120943B2 (en) Air conditioner
JP5837231B2 (en) Air conditioner
WO2011052049A1 (en) Air conditioning device
WO2014083679A1 (en) Air conditioning device, and design method therefor
JP5996089B2 (en) Air conditioner
WO2011099059A1 (en) Air conditioning device
JPWO2011117922A1 (en) Air conditioner
WO2016189599A1 (en) Air conditioning device
JP5791717B2 (en) Air conditioner
WO2011030420A1 (en) Air conditioning device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13876128

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015502643

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2013876128

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE