WO2018154628A1 - Air conditioning device - Google Patents

Air conditioning device Download PDF

Info

Publication number
WO2018154628A1
WO2018154628A1 PCT/JP2017/006375 JP2017006375W WO2018154628A1 WO 2018154628 A1 WO2018154628 A1 WO 2018154628A1 JP 2017006375 W JP2017006375 W JP 2017006375W WO 2018154628 A1 WO2018154628 A1 WO 2018154628A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
heat medium
heat exchanger
heat
air conditioner
Prior art date
Application number
PCT/JP2017/006375
Other languages
French (fr)
Japanese (ja)
Inventor
裕介 辻
大林 誠善
七種 哲二
仁隆 門脇
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2017/006375 priority Critical patent/WO2018154628A1/en
Priority to EP17898257.5A priority patent/EP3587947A4/en
Priority to JP2019501784A priority patent/JP6771642B2/en
Publication of WO2018154628A1 publication Critical patent/WO2018154628A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/005Arrangement or mounting of control or safety devices of safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/32Responding to malfunctions or emergencies
    • F24F11/36Responding to malfunctions or emergencies to leakage of heat-exchange fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/10Control of fluid heaters characterised by the purpose of the control
    • F24H15/12Preventing or detecting fluid leakage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B25/00Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00
    • F25B25/005Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00 using primary and secondary systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems

Definitions

  • the present invention relates to an air conditioner including a refrigerant heat medium heat exchanger that exchanges heat between a refrigerant and a heat medium.
  • Patent Document 1 discloses an air conditioner including a primary circuit on the heat source side and a secondary circuit on the indoor side.
  • heat is exchanged between the refrigerant flowing in the primary circuit and the heat medium flowing in the secondary circuit by the main heat exchanger.
  • patent document 1 is trying to suppress that a refrigerant
  • the main heat exchanger when the main heat exchanger is built in an outdoor heat source unit or the like, the main heat exchanger may freeze.
  • the refrigerant flows into the secondary circuit through the main heat exchanger and may flow into the indoor piping.
  • the present invention has been made in order to solve the above-described problems. Even if the refrigerant flows into the heat medium circuit, the air conditioner suppresses the refrigerant from flowing into the heat medium pipe provided in the room. A device is provided.
  • An air conditioner includes a refrigerant circuit in which a compressor, a heat source side heat exchanger, an expansion unit, and a refrigerant heat medium heat exchanger are connected by a refrigerant pipe, the refrigerant circulates, a pump, and heat between the refrigerant heat mediums.
  • a load side heat exchanger that exchanges heat with air in the air-conditioned space is connected by a heat medium pipe, and a heat medium circuit in which the heat medium circulates.
  • a separation unit that separates the refrigerant and the heat medium is provided outside the air-conditioned space in the heat medium pipe through which the heat medium before flowing into the heat exchanger flows, and is connected to the separation unit and separated by the separation unit A discharge unit that discharges the refrigerant to the outside of the air-conditioned space.
  • the refrigerant and the heat medium are separated by the separation unit provided outside the air-conditioned space, and the separated refrigerant is discharged outside the air-conditioned space by the discharge unit. For this reason, even if a refrigerant
  • FIG. 1 is a circuit diagram showing an air conditioner 1 according to Embodiment 1 of the present invention.
  • the air conditioner 1 will be described with reference to FIG.
  • the air conditioner 1 includes a refrigerant circuit 2, a heat medium circuit 3, a separation unit 4, and a discharge unit 5.
  • the refrigerant circuit 2 is a circuit in which the refrigerant is circulated by connecting the compressor 22, the flow path switching device 23, the heat source side heat exchanger 24, the expansion unit 25, and the refrigerant heat exchanger related to heat medium 26 through the refrigerant pipe 21.
  • the compressor 22, the flow path switching device 23, the heat source side heat exchanger 24, the expansion unit 25, and the refrigerant heat medium heat exchanger 26 are built in the heat source device 20.
  • Refrigerant flowing through the refrigerant circuit 2 may be R410A or R407C, R1234yf is slightly combustible refrigerant, may be R1234ze, R32 or R290, or a CO 2 a natural refrigerant.
  • the air-cooled model is a model in which the heat source side heat exchanger 24 exchanges heat between the refrigerant and the outdoor air.
  • the heat source unit 20 may be a water-cooled model installed indoors.
  • the water-cooled model refers to a model in which the heat source side heat exchanger 24 exchanges heat between the refrigerant and water.
  • the compressor 22 is a device that draws in a low-temperature and low-pressure refrigerant, compresses the drawn refrigerant, and discharges it into a high-temperature and high-pressure refrigerant.
  • the compressor 22 is an inverter compressor capable of controlling the capacity, for example.
  • the flow path switching device 23 is a device that switches the direction in which the refrigerant flows in the refrigerant circuit 2, and is, for example, a four-way valve.
  • the flow path switching device 23 switches whether the refrigerant discharged from the compressor 22 flows into the refrigerant heat medium heat exchanger 26 (solid line in FIG. 1) or the heat source side heat exchanger 24 (broken line in FIG. 1). Thus, both the heating operation and the cooling operation are performed. When only one of the heating operation and the cooling operation is performed, the flow path switching device 23 may be omitted.
  • the heat source side heat exchanger 24 is connected between the flow path switching device 23 and the expansion unit 25, and is a device that exchanges heat between outdoor air and a refrigerant, for example.
  • the heat source side heat exchanger 24 acts as an evaporator during heating operation, and acts as a condenser during cooling operation.
  • the heat source unit 20 may be provided with a heat source side blower that sends outdoor air to the heat source side heat exchanger 24.
  • the expansion unit 25 is connected between the heat source side heat exchanger 24 and the refrigerant heat medium heat exchanger 26, and is a pressure reducing valve or an expansion valve that expands by depressurizing the refrigerant.
  • the expansion part 25 is an electronic expansion valve whose opening degree is adjusted, for example.
  • the refrigerant heat medium heat exchanger 26 is connected between the expansion unit 25 and the flow path switching device 23, and exchanges heat between the refrigerant flowing in the refrigerant circuit 2 and the heat medium flowing in the heat medium circuit 3. Equipment.
  • the refrigerant flow and the heat medium flow are, for example, counterflows.
  • the heat medium circuit 3 is a circuit in which the pump 32, the refrigerant heat medium heat exchanger 26, and the load side heat exchanger 33 are connected by the heat medium pipe 31, and the heat medium circulates.
  • the heat medium flowing through the heat medium circuit 3 can be water or brine.
  • the heat medium circuit 3 is provided with an air vent valve 34.
  • the pump 32 is a device that is provided on the upstream side of the heat exchanger 26 between the refrigerant and heat medium outside and conveys the heat medium.
  • the load-side heat exchanger 33 is a device that is provided on the downstream side of the refrigerant heat medium heat exchanger 26 in the room and exchanges heat between, for example, room air and the heat medium.
  • the load side heat exchanger 33 acts as a condenser during heating operation, and acts as an evaporator during cooling operation.
  • the load-side heat exchanger 33 is built in the air conditioning appliance 30, and the heating operation or the cooling operation of the air conditioning appliance 30 is performed by the heat exchange of the load side heat exchanger 33.
  • the air vent valve 34 is provided on the downstream side of the load-side heat exchanger 33 and is a valve that vents air mixed in the heat medium flowing in the heat medium circuit 3.
  • the indoor means a residential space of a house or a public place.
  • the room in the first embodiment indicates an air-conditioned space.
  • the separation unit 4 is provided outside the air-conditioned space in the heat medium pipe 31 through which the heat medium flows out from the refrigerant heat medium heat exchanger 26 and flows into the load-side heat exchanger 33, and the refrigerant and heat Separate media.
  • the separation unit 4 is a member that is provided outside the room, has a connection port 41, a discharge port 42, and an outflow port 43, and separates gas and liquid.
  • the connection port 41 is an opening connected to the downstream side of the refrigerant heat medium heat exchanger 26 in the heat medium circuit 3.
  • the discharge port 42 is an opening that is formed, for example, in the upper part of the separation unit 4 and discharges the gas in the separation unit 4.
  • the outflow port 43 is an opening that is connected to the upstream side of the load-side heat exchanger 33 in the heat medium circuit 3 and from which liquid flows out.
  • the separation unit 4 is a member that separates the fluid flowing out from the refrigerant heat exchanger 26 into gas and liquid, discharges the gas from the discharge port 42, and causes the liquid to flow out from the outflow port 43.
  • FIG. 2 is a schematic diagram showing the separation unit 4 according to Embodiment 1 of the present invention.
  • the separation unit 4 has an extending part 44, a discharge part 45, and an outflow part 46.
  • the extending part 44 is a pipe that extends upward from the connection port 41 connected to the heat medium pipe 31 and extends laterally from the upper end.
  • the outflow portion 46 is a pipe that extends downward from the extending portion 44 and is connected to the outflow port 43.
  • the discharge part 45 is a pipe provided above the outflow part 46 and connected to the discharge port 42.
  • the fluid flowing in the heat medium pipe 31 flows in from the connection port 41 and rises in the extending portion 44. During this time, when gas is mixed in the fluid, small bubbles gather and become large bubbles. As described above, the fluid flowing through the heat medium pipe 31 can be prevented from flowing out of the separation unit 4 as it is by being temporarily dammed by the extending part 44. In this way, the gas and the liquid are separated by the separation unit 4.
  • the separation unit 4 according to the first embodiment is composed of a composite pipe that traps gas.
  • the separation unit 4 has a function of collecting the gas upward by increasing the force by which the fluid rises by buoyancy rather than the force by which the fluid sinks downward by gravity due to the decrease in the flow velocity of the fluid.
  • the refrigerant heat exchanger related to heat medium 26 is punctured due to freezing or the like.
  • the refrigerant may enter the heat medium flow path in the refrigerant heat exchanger related to heat medium 26 and flow into the heat medium circuit 3.
  • the refrigerant is vaporized to some extent by the heat medium flowing in the heat medium circuit 3. This is generally due to the fact that the boiling point of the refrigerant is lower than the boiling point of the heat medium.
  • the flow path cross-sectional area of the discharge part 45 and the outflow part 46 of the separation part 4 is larger than the flow path cross-sectional area of the heat medium pipe 31.
  • the heat medium pipe 31 and the flow path switching unit are both circular pipes. As shown in FIG. 2, when the pipe diameter of the heat medium pipe 31 is d 1 , the pipe diameters of the discharge section 45 and the outflow section 46 of the separation section 4 are d 2 , and the circumference is ⁇ , the heat medium pipe 31.
  • the flow path cross-sectional area is ⁇ (d 1/2) 2
  • flow path cross-sectional area of the discharge portion 45 and the outlet portion 46 is ⁇ (d 2/2) 2
  • ⁇ (d 2/2) 2> ⁇ (d 1/2) 2 of the relationship is established.
  • FIG. 3 is a graph showing the relationship between the bubble diameter and the bubble rising speed in the first embodiment of the present invention.
  • the horizontal axis is the bubble diameter [mm]
  • the vertical axis is the bubble rising speed [mm / s] in water.
  • the solid line indicates the bubble density 1.25 [kg / m 3 ]
  • the two-dot chain line indicates the bubble density 50.0 [kg / m 3 ]
  • the broken line indicates the bubble density 100.0 [kg / m 3 ]. Show.
  • the bubble density of the gas is about 1.25 to 1.50 [kg / m 3 ], which corresponds to the solid line in FIG. As shown in FIG. 3, regardless of the bubble density, the bubble rising speed in water increases as the bubble diameter increases. Moreover, the bubble rising speed is higher as the bubble density is lower.
  • the flow rate of fluid flowing through a pipe having a nominal diameter of 50 [A] is 16 [m 3 / h], and the flow velocity is about 2000 [mm / s].
  • the diameter of the refrigerant on the bubble generated from the crack portion of the refrigerant heat exchanger 26 is observed to be about 1.5 [mm] or more. Therefore, when the heat medium pipe 31 having a nominal diameter of 50 [A] is used, a pipe having a nominal diameter of 80 [A] (outer diameter of 89.1 [mm]) or more is connected to the discharge section 45 and the outflow section of the separation section 4. By using it as 46, the flow rate becomes 1000 [mm / s] or less. As shown in FIG.
  • the bubble diameter is about 1.4 [mm]. That is, a bubble having a bubble diameter of about 1.4 [mm] or more has a higher force that rises by buoyancy than the force by which the fluid sinks downward due to gravity. Therefore, almost all of the bubble-like refrigerant in the separation unit 4 can be collected upward.
  • the flow path cross-sectional area of the separation unit 4 may not be larger than the flow path cross-sectional area of the heat medium pipe 31.
  • FIG. 4 is a graph showing the relationship between the water flow rate and the discharge / inflow in the first embodiment of the present invention.
  • the horizontal axis represents water flow velocity [mm / s]
  • the vertical axis represents discharge / inflow [%].
  • the separation part 4 has a flow path cross-sectional area in which the internal water flow velocity is 1500 mm / s or less, it is possible to efficiently separate the gas and the liquid. Thereby, the gas which flowed in can be efficiently discharged
  • discharge unit 5 As shown in FIG. 1, the discharge unit 5 is connected to an outlet 43 of the separation unit 4 and is formed with a discharge port 51 that discharges the refrigerant separated by the separation unit 4 to the outside of the air-conditioned space.
  • the discharge part 5 is comprised, for example from the gas vent valve or the gas relief valve.
  • the separation unit 4 and the discharge unit 5 are provided outside the heat source unit 20. For this reason, the existing heat source machine 20 can be used.
  • the separation part 4 and the discharge part 5 can be arrange
  • the air conditioner 1 has a heating operation mode and a cooling operation mode as operation modes.
  • the heating operation mode and the cooling operation mode will be described with reference to FIG.
  • Heating operation First, the heating operation will be described. In the heating operation, the discharge side of the compressor 22 and the refrigerant heat medium heat exchanger 26 are connected by the flow path switching device 23, and the suction side of the compressor 22 and the heat source side heat exchanger 24 are connected. (Solid line in FIG. 1). First, the flow of the refrigerant in the refrigerant circuit 2 will be described. In the heating operation, the refrigerant sucked into the compressor 22 is compressed by the compressor 22 and discharged in a high-temperature and high-pressure gas state.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 22 passes through the flow path switching device 23 and flows into the refrigerant heat exchanger related to heat medium 26 that functions as a condenser.
  • the refrigerant flowing into the inter-refrigerant heat medium heat exchanger 26 is heat-exchanged with the heat medium to be condensed and liquefied. At this time, the heat medium is heated.
  • the condensed refrigerant in the liquid state is expanded and depressurized in the expansion section 25 to become a low-temperature low-pressure gas-liquid two-phase refrigerant.
  • the gas-liquid two-phase refrigerant flows into the heat source side heat exchanger 24 acting as an evaporator, and in the heat source side heat exchanger 24, heat is exchanged with, for example, outdoor air to evaporate.
  • the evaporated refrigerant in the low-temperature and low-pressure gas state passes through the flow path switching device 23 and is sucked into the compressor 22.
  • the heat medium conveyed by the pump 32 flows into the refrigerant heat medium heat exchanger 26.
  • the heat medium flowing into the refrigerant heat medium heat exchanger 26 is heat-exchanged with the refrigerant and heated.
  • the heated heat medium passes through the separation unit 4 and flows into a load-side heat exchanger 33 provided in the room.
  • heat is exchanged with room air to be cooled. Is done. At this time, room air is heated and the room is heated. The cooled heat medium is then sucked into the pump 32.
  • the refrigerant that has flowed into the heat source side heat exchanger 24 is heat-exchanged with, for example, outdoor air to be condensed and liquefied.
  • the condensed refrigerant in the liquid state is expanded and depressurized in the expansion section 25 to become a low-temperature low-pressure gas-liquid two-phase refrigerant.
  • the refrigerant in the gas-liquid two-phase state flows into the refrigerant heat medium heat exchanger 26 acting as an evaporator, and heat is exchanged with the heat medium in the refrigerant heat medium heat exchanger 26 to evaporate the gas. Turn into. At this time, the heat medium is cooled.
  • the evaporated refrigerant in the low-temperature and low-pressure gas state passes through the flow path switching device 23 and is sucked into the compressor 22.
  • the heat medium conveyed by the pump 32 flows into the refrigerant heat medium heat exchanger 26.
  • the heat medium flowing into the inter-refrigerant heat medium heat exchanger 26 is cooled by exchanging heat with the refrigerant.
  • the cooled heat medium passes through the separation unit 4 and flows into a load-side heat exchanger 33 provided in the room.
  • heat is exchanged with, for example, room air and heated. Is done. At this time, the room air is cooled and the room is cooled. The heated heat medium is then sucked into the pump 32.
  • the refrigerant that has flowed into the heat medium circuit 3 passes from the refrigerant heat medium heat exchanger 26 to the separation unit 4 through the heat medium pipe 31.
  • the refrigerant flows in from the connection port 41 of the separation part 4 and rises in the extension part 44.
  • the refrigerant sinking below the extending portion 44 rises forcibly with the flow of the heat medium.
  • small bubble refrigerants gather to form large bubbles.
  • the refrigerant flowing through the heat medium pipe 31 is temporarily blocked by the extending portion 44, and therefore, it is possible to suppress the refrigerant from flowing out of the separation unit 4 together with the heat medium.
  • the refrigerant that has risen up the extending portion 44 flows into the discharge portion 45 and the outflow portion 46 having a flow passage cross-sectional area larger than the flow passage cross-sectional area of the heat medium pipe 31.
  • the force that floats on the discharge part 45 side is greater than the force that sinks on the outflow part 46 side together with the heat medium, and the refrigerant rises on the discharge part 45 side.
  • the refrigerant since the flow of the heat medium containing the refrigerant stagnates when the cross-sectional area of the flow path widens, the refrigerant can be collected in the portion where the flow is stagnant. Thereby, small bubble-like refrigerants gather to form large bubbles. Accordingly, the refrigerant further rises toward the discharge portion 45 side.
  • the heat medium not mixed with the refrigerant descends the outflow portion 46 and flows out from the outlet 43 to the heat medium pipe 31. Therefore, the refrigerant does not flow into the heat medium pipe 31 provided in the room.
  • the refrigerant and the heat medium are separated by the separation unit 4 provided outside the air-conditioned space, and the separated refrigerant is discharged by the discharge unit 5 to the outside of the air-conditioned space. For this reason, even if the refrigerant flows into the heat medium circuit 3, the refrigerant is discharged to the outside of the air-conditioned space through the separation unit 4 and the discharge unit 5. Accordingly, the refrigerant is prevented from flowing into the heat medium pipe 31 provided in the room.
  • the flow path cross-sectional area of the separation unit 4 is larger than the flow path cross-sectional area of the heat medium pipe 31. For this reason, the separation unit 4 can reduce the flow velocity of the fluid and increase the floating force more than the force that the fluid sinks. Accordingly, the refrigerant can be further discharged. Further, the separation part 4 is positioned below the discharge part 45, an extension part 44 extending upward from the connection port 41, a discharge part 45 extending upward from the extension part 44 and connected to the discharge port 42, And an outflow part 46 that extends downward from the extension part 44 and is connected to the outlet 43. Thereby, the refrigerant
  • FIG. 5 is a schematic diagram showing the separation unit 4a in the first modification of the first embodiment of the present invention.
  • the first modification is different from the first embodiment in the structure of the separation portion 4a.
  • the separation portion 4 a of the first modification is a single pipe having a flow path cross-sectional area larger than that of the heat medium pipe 31.
  • D 1 a tube diameter of the heat medium pipe 31, the pipe diameter of the separation portion 4a d 3, the circular constant and [pi, the flow path cross-sectional area of the heat medium pipe 31 is ⁇ (d 1/2) 2 , the channel cross-sectional area of the discharge portion 45 and the outlet portion 46 is ⁇ (d 3/2) 2 , ⁇ (d 3/2) 2> ⁇ (d 1/2) 2 relation holds.
  • the flow velocity of the fluid flowing through the heat medium pipe 31 is reduced in the same manner as in the first embodiment by flowing into the separation portion 4a in which the flow path cross-sectional area is widened.
  • the connection port 41 of the separation part 4a is formed in the position beyond the outflow port 43 in the height direction.
  • the outlet 43 is formed at the bottom of the separation part 4a.
  • the refrigerant when the refrigerant flows into the heat medium circuit 3, the refrigerant passes from the refrigerant heat medium heat exchanger 26 through the heat medium pipe 31 to the separation unit 4a. At this time, the refrigerant flows into the separation portion 4 a having a flow path cross-sectional area larger than that of the heat medium pipe 31. For this reason, when the flow rate of the refrigerant decreases, the force that floats on the discharge unit 45 side is greater than the force that sinks on the outflow unit 46 side, and the refrigerant rises toward the upper discharge port 42. The rising refrigerant reaches the discharge part 5 through the discharge port 42. And a refrigerant
  • connection port 41 of the separation part 4a is formed at a position higher than the outflow port 43 in the height direction. For this reason, it is not necessary to prevent the heat medium from smoothly flowing in the separation portion 4a.
  • the separation part 4a is good also as a cylindrical container instead of piping. Piping has higher availability than containers and can reduce costs, but can be appropriately changed to containers. Thus, since the separation part 4a can be produced simply by connecting a pipe or a cylindrical container to the heat medium pipe 31, productivity and availability are easy.
  • FIG. 6 is a schematic diagram showing a separation unit 4b in the second modification of the first embodiment of the present invention.
  • the second modification differs from the first embodiment in the structure of the separation part 4b.
  • the outlet 43 is formed on the side surface of the separation portion 4b, and the connection port 41 and the outlet 43 are opposed to each other. Thereby, it is not necessary to prevent the heat medium from flowing smoothly in the separation part 4b.
  • the separation portion 4 b is a single pipe having a flow path cross-sectional area larger than the flow path cross-sectional area of the heat medium pipe 31. Thereby, the flow velocity of the fluid flowing through the heat medium pipe 31 is reduced in the same manner as in the first modification by flowing into the separation portion 4b where the flow path cross-sectional area is widened.
  • FIG. 7 is a schematic diagram showing a separation portion 4c in the third modification of the first embodiment of the present invention.
  • the third modification is different from the first embodiment in the structure of the separation portion 4c.
  • a pipe constituting the separation unit 4 c extends downward from the separation unit 4 c of the second modification example.
  • produces from the heat medium which flows into the heat-medium piping 31 can be stored in the part extended below.
  • the separation portion 4 c is a single pipe having a flow path cross-sectional area larger than the flow path cross-sectional area of the heat medium pipe 31.
  • the flow velocity of the fluid flowing through the heat medium pipe 31 is reduced in the same manner as in the first modification by flowing into the separation portion 4c where the flow path cross-sectional area is widened.
  • FIG. 8 is a schematic diagram showing a separation unit 4d in a fourth modification of the first embodiment of the present invention.
  • the fourth modification is different from the first embodiment in the structure of the separation part 4d.
  • the lower end 41a of the connection port 41 is formed at a position higher than the upper end 43a of the outflow port 43 in the height direction.
  • the heat medium flowing into the separation part 4d from the connection port 41 descends until reaching the outlet 43, so that the heat medium can flow more smoothly in the separation part 4d.
  • the separation portion 4d is a single pipe having a flow path cross-sectional area larger than the flow path cross-sectional area of the heat medium pipe 31.
  • FIG. FIG. 9 is a circuit diagram showing an air conditioner 100 according to Embodiment 2 of the present invention.
  • the second embodiment is different from the first embodiment in that an outlet side valve 7 and an inlet side valve 8 are provided.
  • the same parts as those of the first embodiment are denoted by the same reference numerals, and the description thereof is omitted. The description will focus on differences from the first embodiment.
  • the heat medium circuit 3 is provided with an outlet side valve 7 and an inlet side valve 8.
  • the outlet side valve 7 is a valve that is provided on the downstream side that is the outlet side of the separation unit 4 outside the air-conditioned space and adjusts the flow rate of the heat medium.
  • the outlet side valve 7 may be a valve whose opening degree is adjustable or a valve whose opening degree is fixed.
  • the inlet side valve 8 is a valve that is provided on the upstream side of the separation unit 4, for example, on the downstream side of the pump 32, outside the air-conditioned space, and adjusts the flow rate of the heat medium.
  • the inlet side valve 8 may be a valve whose opening degree is adjustable, a valve whose opening degree is fixed, or a check valve which prevents backflow.
  • One of the outlet side valve 7 and the inlet side valve 8 may be provided. In this case, the refrigerant inflow suppressing effect is higher when only the outlet side valve 7 is installed than when only the inlet side valve 8 is installed.
  • the outlet side valve 7 and the inlet side valve 8 are closed when the refrigerant flows into the heat medium circuit 3.
  • the refrigerant passes from the refrigerant heat medium heat exchanger 26 to the separation unit 4 through the heat medium pipe 31.
  • the outlet side valve 7 is closed, so that it does not advance beyond the outlet side valve 7. For this reason, it can suppress reliably that a refrigerant
  • the refrigerant may flow backward from the refrigerant heat medium heat exchanger 26.
  • the inlet side valve 8 since the inlet side valve 8 is closed, it does not advance beyond the inlet side valve 8. For this reason, it can suppress more reliably that a refrigerant
  • the heat medium circuit 3 is separated into the indoor side and the outdoor side by the outlet side valve 7 and the inlet side valve 8. It can suppress flowing into the heat medium piping 31 provided indoors through the room.
  • the configuration for detecting the refrigerant flowing into the heat medium circuit 3 will be described in the fourth embodiment.
  • FIG. 10 is a circuit diagram showing an air conditioner 100a according to a first modification of the second embodiment of the present invention.
  • the installation location of the heat source device 20 is different from that of the second embodiment.
  • the heat source device 20 of the first modification is installed below the room.
  • the case where the heat source unit 20 is provided below the floor rather than indoors is assumed.
  • the refrigerant flows into the heat medium circuit 3
  • the refrigerant may rise to the upper indoor side due to buoyancy.
  • the refrigerant flows into the heat medium circuit 3, even if the pump 32 is stopped, there is a possibility that the refrigerant rises to the upper indoor side because there is buoyancy.
  • the outlet side valve 7 since the outlet side valve 7 is closed, it does not advance beyond the outlet side valve 7. For this reason, it can suppress reliably that a refrigerant
  • the outlet side valve 7 or the inlet side valve 8 even if the heat source unit 20 is installed below the room, the refrigerant is prevented from flowing into the heat medium pipe 31 provided in the room. be able to.
  • FIG. 11 is a circuit diagram showing an air conditioner 100b according to a second modification of the second embodiment of the present invention.
  • the second modified example is different from the second embodiment in that a plurality of air conditioning appliances 30 are connected.
  • each of the plurality of air conditioners 30 has a load-side heat exchanger 33, and is connected in parallel in the heat medium circuit 3.
  • the outlet side valve 7 and the inlet side valve 8 are provided in the heat medium pipe 31 immediately before the heat medium pipe 31 provided with each load side heat exchanger 33 is branched. Even when a plurality of air conditioners 30 are connected as in the second modification, the refrigerant flows into the heat medium pipe 31 provided indoors by providing the outlet side valve 7 or the inlet side valve 8. Can be suppressed.
  • FIG. FIG. 12 is a circuit diagram showing an air conditioner 200 according to Embodiment 3 of the present invention.
  • the installation position of the pump 32 is different from that of the second embodiment.
  • the same parts as those in the first or second embodiment are denoted by the same reference numerals, and the description thereof will be omitted. The description will focus on differences from the first and second embodiments.
  • the pump 32 is provided on the downstream side of the refrigerant heat exchanger related to heat medium 26.
  • the refrigerant flows into the heat medium circuit 3
  • the refrigerant that has passed through the heat medium pipe 31 from the refrigerant heat exchanger 26 is immediately sucked into the pump 32 without passing through the room. Flows into the side.
  • the pump 32 is idle.
  • the pump 32 is idling, the flow of the heat medium stops or slows down. For this reason, the flow rate of the refrigerant contained in the heat medium also decreases.
  • the liquid refrigerant is easily vaporized due to the decrease in the pressure of the fluid due to the suction of the pump 32. For this reason, the floating force can be made larger than the force by which the refrigerant sinks. Therefore, the refrigerant discharge effect at the separation unit 4 and the discharge unit 5 that flows after passing through the pump 32 is enhanced.
  • the pump 32 is provided on the downstream side of the refrigerant heat exchanger 26 to cause the pump 32 to run idly and stop the flow of the heat medium. Accordingly, it is possible to further suppress the refrigerant from flowing into the heat medium pipe 31 provided in the room.
  • FIG. FIG. 13 is a circuit diagram showing an air conditioner 300 according to Embodiment 4 of the present invention.
  • the fourth embodiment is different from the second embodiment in that the refrigerant detection unit 6 is provided.
  • the same parts as those in the first to third embodiments are denoted by the same reference numerals, and the description thereof will be omitted. The description will focus on the differences from the first to third embodiments.
  • the air conditioning apparatus 300 includes a refrigerant detection unit 6 that detects that the refrigerant has flowed into the heat medium circuit 3.
  • coolant detection part 6 is provided in the discharge port 51 of the discharge part 5, and has the discharge
  • the refrigerant discharged from the discharge port 51 is directly detected by the discharged refrigerant detector 6a. For this reason, it can be immediately recognized that the refrigerant has flowed into the heat medium circuit 3.
  • the control when the discharged refrigerant detection unit 6a detects the inflow of the refrigerant will be described in the tenth embodiment.
  • FIG. FIG. 14 is a circuit diagram showing an air conditioner 400 according to Embodiment 5 of the present invention.
  • the fifth embodiment is different from the fourth embodiment in that a heating unit 9 is provided.
  • the same parts as those in the first to fourth embodiments are denoted by the same reference numerals, and the description thereof will be omitted. The description will focus on the differences from the first to fourth embodiments.
  • the heating unit 9 is provided in the separation unit 4 and heats the liquid in the separation unit 4.
  • the heating unit 9 is, for example, a heater.
  • the refrigerant may circulate in the heat medium circuit 3 in a liquid state depending on the pressure and temperature of the heat medium flowing through the heat medium circuit 3.
  • the liquid refrigerant flowing into the separation unit 4 is heated by the heating unit 9.
  • the liquid refrigerant is vaporized and discharged to the outside by the separation unit 4 and the discharge unit 5.
  • the refrigerant flowing into the heat medium circuit 3 stays in the heat medium circuit 3 in a liquid state. To do. Also in this case, the liquid refrigerant flowing into the separation unit 4 is heated by the heating unit 9. As a result, the liquid refrigerant is vaporized and discharged to the outside by the separation unit 4 and the discharge unit 5.
  • FIG. 15 is a graph showing the relationship between the refrigerant pressure and the refrigerant saturation temperature in the fifth embodiment of the present invention.
  • the horizontal axis represents pressure [MPaA] and the vertical axis represents saturation temperature [° C.].
  • a solid line indicates R32
  • a two-dot chain line indicates R1234yf
  • a broken line indicates R1234ze.
  • the area below each line is a liquid state area, and the area above each line is a gas state area.
  • R1234yf and R1234ze are less likely to vaporize than R32. For this reason, this Embodiment 5 has a remarkable effect in the air conditioning apparatus 400 using R1234yf and R1234ze which are hard to vaporize.
  • Embodiment 6 FIG.
  • the sixth embodiment is different from the first to fifth embodiments in that the separation unit 4 and the discharge unit 5 are built in the heat source unit 20.
  • the same parts as those in the first to fifth embodiments are denoted by the same reference numerals, and the description thereof will be omitted. The description will focus on differences from the first to fifth embodiments.
  • the structure of the heat medium circuit 3 can be simplified.
  • the heat source side air blower used for heat dissipation or heat exchange is provided inside the heat source device 20
  • the heat source side heat exchanger 24 blows air, whereby the refrigerant in the separation unit 4 can be agitated. .
  • coolant can be reduced, safety
  • FIG. FIG. 16 is a circuit diagram showing an air conditioner 600 according to Embodiment 7 of the present invention.
  • the seventh embodiment is different from the fifth embodiment in that the control unit 10 and the pressure detection unit 6b are provided.
  • the same parts as those in the first to sixth embodiments are denoted by the same reference numerals, and the description thereof will be omitted. The description will focus on the differences from the first to sixth embodiments.
  • the pressure detector 6 b is provided on the downstream side of the refrigerant heat medium heat exchanger 26 and detects the pressure of the heat medium flowing in the heat medium circuit 3.
  • coolant detection part 6 has the discharge
  • the pressure detector 6b may be provided on the upstream side of the refrigerant heat exchanger related to heat medium 26.
  • the heat source device 20 is provided with a control unit 10.
  • the control unit 10 is a microcomputer or the like that controls each device.
  • the control unit 10 closes the outlet side valve 7 and the inlet side valve 8 when the concentration of the refrigerant detected by the refrigerant detection unit 6 exceeds a preset threshold value. Moreover, the control part 10 may stop the pump 32, when the density
  • the volume of the refrigerant expands about 37 times when the liquid refrigerant is vaporized in R32 that is in a saturated liquid state when the water pressure is 1.0 [MPaA].
  • the pressure of the heat medium rapidly increases as the volume of the refrigerant expands.
  • the heat medium circuit 3 is separated into the indoor side and the outdoor side by the outlet side valve 7 and the inlet side valve 8. It can suppress flowing into the heat medium piping 31 provided indoors through the room.
  • the control part 10 stops the pump 32, since a heat medium does not flow, a refrigerant
  • FIG. 17 is a circuit diagram showing an air conditioner 700 according to Embodiment 8 of the present invention.
  • the eighth embodiment is different from the fifth embodiment in that the control unit 10 and the temperature detection unit 6c are provided.
  • the same parts as those in the first to seventh embodiments are denoted by the same reference numerals, and the description thereof will be omitted. The description will focus on the differences from the first to seventh embodiments.
  • the temperature detection unit 6 c is provided on the downstream side of the refrigerant heat medium heat exchanger 26 and detects the temperature of the heat medium flowing in the heat medium circuit 3.
  • the refrigerant detection unit 6 includes the exhaust refrigerant detection unit 6a and the temperature detection unit 6c.
  • the temperature detection unit 6 c may be provided on the upstream side of the refrigerant heat exchanger related to heat medium 26.
  • the heat source device 20 is provided with a control unit 10.
  • the control unit 10 is a microcomputer or the like that controls each device.
  • the control unit 10 closes the outlet side valve 7 and the inlet side valve 8 when the concentration of the refrigerant detected by the refrigerant detection unit 6 exceeds a preset threshold value. Moreover, the control part 10 may stop the pump 32, when the density
  • the heat medium is water and the flow rate ratio between R32 and water is 1: 4 in R32 that is in a saturated liquid state when the water pressure is 1.0 [MPaA], the liquid state refrigerant is vaporized. In addition, the water drops by about 18 [° C.].
  • the temperature difference of the heat medium rapidly changes as the refrigerant evaporates. Accordingly, it is possible to detect that the refrigerant has flowed into the heat medium circuit 3 by using the temperature detection unit 6c.
  • the heat medium circuit 3 is separated into the indoor side and the outdoor side by the outlet side valve 7 and the inlet side valve 8. It can suppress flowing into the heat medium piping 31 provided indoors through the room.
  • the control part 10 stops the pump 32, since a heat medium does not flow, a refrigerant
  • FIG. FIG. 18 is a circuit diagram showing an air conditioner 800 according to Embodiment 9 of the present invention.
  • the ninth embodiment is different from the fifth embodiment in that the control unit 10 and the current detection unit 6d are provided, and the pump 32 is provided on the downstream side of the heat source side heat exchanger 24.
  • the same parts as those in the first to eighth embodiments are denoted by the same reference numerals, and the description thereof will be omitted. The description will focus on differences from the first to eighth embodiments.
  • the current detection unit 6 d detects the operating current of the pump 32.
  • the refrigerant detection unit 6 includes the exhaust refrigerant detection unit 6a and the current detection unit 6d.
  • the heat source device 20 is provided with a control unit 10.
  • the control unit 10 is a microcomputer or the like that controls each device.
  • the control unit 10 closes the outlet side valve 7 and the inlet side valve 8 when the concentration of the refrigerant detected by the refrigerant detection unit 6 exceeds a preset threshold value. Moreover, the control part 10 may stop the pump 32, when the density
  • the refrigerant when the refrigerant flows into the heat medium circuit 3, the refrigerant stays on the suction side of the pump 32, and the pump 32 runs idle, or the refrigerant flows into the heat medium circuit 3 and freezes. If this happens, the operating current of the pump 32 varies. As described above, when the refrigerant flows into the heat medium circuit 3, the operating current of the pump 32 varies. Thereby, it can be indirectly detected that the refrigerant has flowed into the heat medium circuit 3 by using the current detector 6d.
  • the pump 32 may be provided on the upstream side of the refrigerant heat medium heat exchanger 26. Also in this case, it is possible to indirectly detect that the refrigerant has flowed into the heat medium circuit 3 by the current detection unit 6d.
  • the refrigerant passes from the refrigerant heat medium heat exchanger 26 to the separation unit 4 through the heat medium pipe 31.
  • the control unit 10 closes the outlet side valve 7, and thus does not proceed beyond the outlet side valve 7. For this reason, it can suppress reliably that a refrigerant
  • the refrigerant may flow backward from the refrigerant heat medium heat exchanger 26.
  • the control part 10 closes the inlet side valve 8, it does not advance ahead of the inlet side valve 8. FIG. For this reason, it can suppress more reliably that a refrigerant
  • the heat medium circuit 3 when the refrigerant flows in, the heat medium circuit 3 is separated into the indoor side and the outdoor side by the outlet side valve 7 and the inlet side valve 8. It can suppress flowing into the heat medium piping 31 provided indoors through the room.
  • the control part 10 stops the pump 32, since a heat medium does not flow, a refrigerant
  • FIG. FIG. 19 is a circuit diagram showing an air conditioning apparatus 900 according to Embodiment 10 of the present invention.
  • the tenth embodiment is different from the ninth embodiment in that the current detection unit 6d is omitted.
  • the same parts as those in the first to ninth embodiments are denoted by the same reference numerals, and the description thereof will be omitted. The description will focus on the differences from the first to ninth embodiments.
  • the refrigerant detection unit 6 has only an exhausted refrigerant detection unit 6a.
  • the heat source device 20 is provided with a control unit 10.
  • the control unit 10 is a microcomputer or the like that controls each device.
  • the control unit 10 closes the outlet side valve 7 and the inlet side valve 8 when the concentration of the refrigerant detected by the refrigerant detection unit 6 exceeds a preset threshold value. Moreover, the control part 10 may stop the pump 32, when the density
  • the outlet side valve 7 and the inlet side valve 8 are closed when the refrigerant concentration detected by the discharged refrigerant detector 6a exceeds a preset refrigerant threshold.
  • the refrigerant can be directly detected. For this reason, the detection accuracy of the refrigerant can be improved.
  • the refrigerant passes from the refrigerant heat medium heat exchanger 26 to the separation unit 4 through the heat medium pipe 31.
  • the control unit 10 closes the outlet side valve 7, and thus does not proceed beyond the outlet side valve 7. For this reason, it can suppress reliably that a refrigerant
  • the refrigerant may flow backward from the refrigerant heat medium heat exchanger 26.
  • the control part 10 closes the inlet side valve 8, it does not advance ahead of the inlet side valve 8. FIG. For this reason, it can suppress more reliably that a refrigerant
  • the heat medium circuit 3 is separated into the indoor side and the outdoor side by the outlet side valve 7 and the inlet side valve 8. It can suppress flowing into the heat medium piping 31 provided indoors through the room.
  • the control part 10 stops the pump 32, since a heat medium does not flow, a refrigerant
  • FIG. FIG. 20 is a circuit diagram showing an air conditioner 1000 according to Embodiment 11 of the present invention.
  • the eleventh embodiment is different from the ninth embodiment in that a pressure detection unit 6b, a temperature detection unit 6c, and a relief valve 35 are provided.
  • the same parts as those in the first to tenth embodiments are denoted by the same reference numerals, and the description thereof will be omitted. The description will focus on differences from the first to tenth embodiments.
  • the relief valve 35 is provided on the downstream side of the refrigerant heat medium heat exchanger 26 in the heat medium circuit 3 and is a valve for releasing the heat medium flowing in the heat medium circuit 3.
  • the refrigerant detection unit 6 includes an exhaust refrigerant detection unit 6a, a pressure detection unit 6b, a temperature detection unit 6c, and a current detection unit 6d.
  • the heat source device 20 is provided with a control unit 10.
  • the control unit 10 is a microcomputer or the like that controls each device.
  • the control unit 10 When the refrigerant concentration detected by the refrigerant detection unit 6 exceeds a preset threshold value, the control unit 10 energizes the heating unit 9 to operate it. Moreover, the control part 10 opens the relief valve 35, when the density
  • coolant detection may use the discharge
  • the refrigerant When the refrigerant flows into the heat medium circuit 3, the refrigerant may circulate in the heat medium circuit 3 in a liquid state depending on the pressure and temperature of the heat medium flowing through the heat medium circuit 3. At this time, the liquid refrigerant flowing into the separation unit 4 is heated by the heating unit 9. As a result, the liquid refrigerant is vaporized and discharged to the outside by the separation unit 4 and the discharge unit 5.
  • the pressure of the heat medium and the refrigerant flowing through the heat medium circuit 3 is reduced by opening the relief valve 35. Thereby, the saturation temperature of a refrigerant
  • FIG. FIG. 21 is a circuit diagram showing an air conditioner 1100 according to Embodiment 12 of the present invention.
  • the twelfth embodiment includes a bypass circuit 11 and a bypass flow path switching unit 12, and is different from the eleventh embodiment in that the outlet side valve 7 and the inlet side valve 8 are omitted.
  • the same parts as those in the first to eleventh embodiments are denoted by the same reference numerals, and the description thereof is omitted. The description will focus on the differences from the first to eleventh embodiments.
  • the bypass circuit 11 is a circuit that is provided outside the air-conditioned space and connects the outlet 43 of the separation unit 4 and the upstream side of the refrigerant heat medium heat exchanger 26.
  • the bypass flow path switching unit 12 connects the outlet 43 of the separation unit 4, the bypass circuit 11, and the upstream side of the load side heat exchanger 33, and connects the outlet 43 of the separation unit 4 and the bypass circuit 11. Or a member that switches connection between the outlet 43 of the separation unit 4 and the upstream side of the load-side heat exchanger 33.
  • the bypass flow path switching unit 12 is configured with, for example, a three-way valve, but may be configured with two two-way valves.
  • the control unit 10 switches the bypass flow path switching unit 12 so that the liquid flowing out from the outlet 43 normally flows into the load side heat exchanger 33.
  • the control part 10 is a bypass flow-path switching part so that the liquid which flowed out from the outflow port 43 may flow into the bypass circuit 11, when the density
  • coolant detection may use the discharge
  • the bypass channel switching unit 12 is switched by the control unit 10 so that the liquid flowing out from the outlet 43 flows into the bypass circuit 11.
  • the refrigerant flows together with the heat medium from the refrigerant heat medium heat exchanger 26 through the pump 32, passes through the separation unit 4, and then flows into the bypass circuit 11.
  • coolant and heat medium which flowed into the bypass circuit 11 flow in into the refrigerant
  • the refrigerant and the heat medium circulate in the order of the refrigerant heat medium heat exchanger 26, the pump 32, the separation unit 4, and the bypass circuit 11, the refrigerant and the heat medium pass through the separation unit 4 by the number of circulations. For this reason, the more the refrigerant circulates, the more the refrigerant is discharged in the separation unit 4 and the discharge unit 5. Accordingly, it is possible to further suppress the refrigerant from flowing into the heat medium pipe 31 provided in the room.
  • FIG. FIG. 22 is a circuit diagram showing an air conditioner 1200 according to Embodiment 13 of the present invention.
  • the thirteenth embodiment is different from the twelfth embodiment in that the separation unit 4 and the discharge unit 5 are omitted.
  • the same parts as those in the first to twelfth embodiments are denoted by the same reference numerals, and the description thereof will be omitted. The description will focus on differences from the first to twelfth embodiments.
  • the bypass circuit 11 is a circuit that is provided outside the air-conditioned space and connects the downstream side of the refrigerant heat medium heat exchanger 26 and the upstream side of the refrigerant heat medium heat exchanger 26. .
  • the bypass circuit 11 is provided on the downstream side of the pump 32 and the refrigerant heat medium heat exchanger 26. Is connected to the side.
  • the bypass circuit 11 connects the downstream side of the refrigerant heat exchanger 26 and the upstream side of the pump 32. .
  • the bypass flow path switching unit 12 connects the downstream side of the pump 32, the bypass circuit 11, and the upstream side of the load side heat exchanger 33, and connects the outlet 43 of the separation unit 4 and the bypass circuit 11, or It is a member that switches the connection between the outlet 43 of the separation unit 4 and the upstream side of the load side heat exchanger 33.
  • the bypass flow path switching unit 12 is configured with, for example, a three-way valve, but may be configured with two two-way valves.
  • the control unit 10 switches the bypass flow path switching unit 12 so that the heat medium conveyed from the pump 32 normally flows to the load side heat exchanger 33. Then, when the concentration of the refrigerant detected by the refrigerant detection unit 6 exceeds a preset threshold, the control unit 10 bypasses the heat medium and the refrigerant conveyed from the pump 32 so as to flow into the bypass circuit 11.
  • the path switching unit 12 is switched.
  • the detection of the refrigerant may use the pressure detection unit 6b, the temperature detection unit 6c, or the current detection unit 6d.
  • the bypass flow path switching unit 12 is switched by the control unit 10 so that the heat medium and the refrigerant conveyed from the pump 32 flow into the bypass circuit 11.
  • coolant flows into the bypass circuit 11 through the pump 32 from the heat exchanger 26 between refrigerant
  • coolant and heat medium which flowed into the bypass circuit 11 flow in into the refrigerant
  • the bypass circuit 11 even if the separation unit 4 and the discharge unit 5 are omitted, the refrigerant can be prevented from flowing into the heat medium pipe 31 provided in the room.
  • FIG. FIG. 23 is a schematic diagram showing the sub-separation unit 13 according to Embodiment 14 of the present invention.
  • the fourteenth embodiment is different from the fourth embodiment in that the sub-separation unit 13 is provided.
  • the same parts as those in the first to thirteenth embodiments will be denoted by the same reference numerals and the description thereof will be omitted, and differences from the first to thirteenth embodiments will be mainly described.
  • the sub-separation unit 13 is a member that is provided in the discharge port 51 of the discharge unit 5 and separates gas and liquid.
  • the sub-separation unit 13 is connected to the discharge port 51 of the discharge unit 5 and is connected to a discharge pipe extending upward.
  • the sub-separation part 13 is a tubular member, extends downward from the discharge pipe, is connected to a pipe for draining at the bottom, extends upward again from the bottom, and has a gas discharge port 13b at the upper end.
  • the subseparation part 13 is comprised with the composite pipe
  • an exhaust refrigerant detection unit 6a is disposed at the front end of the sub-separation unit 13.
  • a liquid drain valve 14 is provided in the pipe for liquid drain.
  • the liquid heat medium When the refrigerant flows into the heat medium circuit 3 and is discharged from the discharge unit 5, the liquid heat medium may be slightly ejected together with the refrigerant. At this time, the ejected liquid heat medium may be applied to the discharged refrigerant detection unit 6a.
  • the liquid heat medium discharged from the discharge unit 5 is accumulated at the bottom by the sub-separation unit 13 and flows down from the bottom to the liquid draining pipe.
  • the liquid heat medium is discharged through the liquid drain valve 14 by opening the liquid drain valve 14. Therefore, when the refrigerant passes through the sub-separation unit 13 and is discharged from the gas discharge port 13b, the liquid heat medium is not ejected. Therefore, since the liquid heat medium is not applied to the discharged refrigerant detection unit 6a, the detection accuracy of the discharged refrigerant detection unit 6a can be maintained.
  • FIG. 24 is a schematic diagram showing a sub-separation unit 13a in a modification of the fourteenth embodiment of the present invention.
  • the structure of the sub-separation part 13a is different from that of the fourteenth embodiment.
  • the sub-separation part 13a of a modification is a container.
  • the subseparation part 13a is connected to the discharge port 51 of the discharge part 5, and is connected to the discharge pipe extended upwards.
  • the sub-separation part 13a is connected to a pipe for draining at the bottom, and a gas discharge port 13b is formed at the top.
  • An exhausted refrigerant detector 6a is disposed at the tip of the sub-separator 13a.
  • a liquid drain valve 14 is provided in the pipe for liquid drain.
  • the liquid heat medium When the refrigerant flows into the heat medium circuit 3 and is discharged from the discharge unit 5, the liquid heat medium may be slightly ejected together with the refrigerant. At this time, the ejected liquid heat medium may be applied to the discharged refrigerant detection unit 6a.
  • the liquid heat medium discharged from the discharge unit 5 is accumulated at the bottom by the sub-separation unit 13a, and flows down from the bottom to the liquid draining pipe.
  • the liquid heat medium is discharged through the liquid drain valve 14 by opening the liquid drain valve 14. Accordingly, when the refrigerant passes through the sub-separation part 13a and is discharged from the gas discharge port 13b, the liquid heat medium is not ejected. Therefore, since the liquid refrigerant is not applied to the exhaust refrigerant detection unit 6a, the detection accuracy of the exhaust refrigerant detection unit 6a can be maintained as in the fourteenth embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Other Air-Conditioning Systems (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

Provided is an air conditioning device comprising: a refrigerant circuit in which a compressor, a heat source-side heat exchanger, an expansion part, and a refrigerant and heat-medium heat exchanger are connected by a refrigerant piping, and through which a refrigerant circulates; and a heat medium circuit in which a pump, the refrigerant and heat-medium heat exchanger, and a load-side heat exchanger that exchanges heat with air in an air conditioning space are connected by a heat medium piping, and through which the heat medium circulates. The air conditioning device further includes: a separation section which is provided outside the air conditioning space, in a portion of the heat medium piping through which the heat medium that has flown out of the refrigerant and heat-medium heat exchanger passes before flowing into the load-side heat exchanger, and which separates the refrigerant from the heat medium; and a discharge section which is connected to the separation section, and which discharges the refrigerant separated by the separation section to the outside of the air conditioning space.

Description

空気調和装置Air conditioner
 本発明は、冷媒と熱媒体との間で熱交換させる冷媒熱媒体間熱交換器を備える空気調和装置に関する。 The present invention relates to an air conditioner including a refrigerant heat medium heat exchanger that exchanges heat between a refrigerant and a heat medium.
 従来、冷媒回路に流れる冷媒と熱媒体回路に流れる熱媒体とが冷媒熱媒体間熱交換器によって熱交換される空気調和装置が知られている。特許文献1には、熱源側の1次側回路と、室内側の2次側回路とを備えた空気調和装置が開示されている。特許文献1では、1次側回路に流れる冷媒と、2次側回路に流れる熱媒体とが主熱交換器によって熱交換される。このように、特許文献1は、室内側の2次側回路に冷媒を流さないことによって、冷媒が室内の配管に流入することを抑制しようとしている。 Conventionally, there is known an air conditioner in which a refrigerant flowing in a refrigerant circuit and a heat medium flowing in a heat medium circuit are heat-exchanged by a refrigerant heat medium heat exchanger. Patent Document 1 discloses an air conditioner including a primary circuit on the heat source side and a secondary circuit on the indoor side. In Patent Literature 1, heat is exchanged between the refrigerant flowing in the primary circuit and the heat medium flowing in the secondary circuit by the main heat exchanger. Thus, patent document 1 is trying to suppress that a refrigerant | coolant flows into indoor piping by not flowing a refrigerant | coolant into the secondary side circuit of an indoor side.
特開2000-130877号公報Japanese Patent Laid-Open No. 2000-130877
 ここで、特許文献1に開示された空気調和装置において、主熱交換器が室外の熱源機等に内蔵されている場合、主熱交換器が凍結するおそれがある。主熱交換器が凍結によってパンクした場合、冷媒が主熱交換器を通って2次側回路内に流入し、室内の配管に流入するおそれがある。 Here, in the air conditioner disclosed in Patent Document 1, when the main heat exchanger is built in an outdoor heat source unit or the like, the main heat exchanger may freeze. When the main heat exchanger is punctured due to freezing, the refrigerant flows into the secondary circuit through the main heat exchanger and may flow into the indoor piping.
 本発明は、上記のような課題を解決するためになされたもので、仮に冷媒が熱媒体回路に流入しても、冷媒が室内に設けられた熱媒体配管に流入することを抑制する空気調和装置を提供するものである。 The present invention has been made in order to solve the above-described problems. Even if the refrigerant flows into the heat medium circuit, the air conditioner suppresses the refrigerant from flowing into the heat medium pipe provided in the room. A device is provided.
 本発明に係る空気調和装置は、圧縮機、熱源側熱交換器、膨張部及び冷媒熱媒体間熱交換器が冷媒配管により接続され、冷媒が循環する冷媒回路と、ポンプ、冷媒熱媒体間熱交換器、空調空間の空気と熱交換する負荷側熱交換器が熱媒体配管により接続され、熱媒体が循環する熱媒体回路と、を備え、冷媒熱媒体間熱交換器から流出して負荷側熱交換器に流入する前の熱媒体が流れる熱媒体配管のうちの空調空間の外部に設けられ、冷媒と熱媒体とを分離する分離部と、分離部に接続され、分離部で分離された冷媒を空調空間の外部に排出する排出部と、を有する。 An air conditioner according to the present invention includes a refrigerant circuit in which a compressor, a heat source side heat exchanger, an expansion unit, and a refrigerant heat medium heat exchanger are connected by a refrigerant pipe, the refrigerant circulates, a pump, and heat between the refrigerant heat mediums. A load side heat exchanger that exchanges heat with air in the air-conditioned space is connected by a heat medium pipe, and a heat medium circuit in which the heat medium circulates. A separation unit that separates the refrigerant and the heat medium is provided outside the air-conditioned space in the heat medium pipe through which the heat medium before flowing into the heat exchanger flows, and is connected to the separation unit and separated by the separation unit A discharge unit that discharges the refrigerant to the outside of the air-conditioned space.
 本発明によれば、空調空間の外部に設けられた分離部によって、冷媒と熱媒体とが分離され、分離された冷媒が排出部によって空調空間の外部に排出される。このため、仮に冷媒が熱媒体回路に流入しても、冷媒が分離部及び排出部を介して空調空間の外部に排出される。従って、冷媒が室内に設けられた熱媒体配管に流入することを抑制することができる。 According to the present invention, the refrigerant and the heat medium are separated by the separation unit provided outside the air-conditioned space, and the separated refrigerant is discharged outside the air-conditioned space by the discharge unit. For this reason, even if a refrigerant | coolant flows in into a heat carrier circuit, a refrigerant | coolant is discharged | emitted outside the air-conditioned space via a separation part and a discharge part. Therefore, it is possible to suppress the refrigerant from flowing into the heat medium pipe provided in the room.
本発明の実施の形態1に係る空気調和装置1を示す回路図である。It is a circuit diagram which shows the air conditioning apparatus 1 which concerns on Embodiment 1 of this invention. 本発明の実施の形態1における分離部4を示す模式図である。It is a schematic diagram which shows the isolation | separation part 4 in Embodiment 1 of this invention. 本発明の実施の形態1における気泡直径と気泡上昇速度との関係を示すグラフである。It is a graph which shows the relationship between the bubble diameter and bubble rising speed in Embodiment 1 of this invention. 本発明の実施の形態1における水流速と排出量/流入量との関係を示すグラフである。It is a graph which shows the relationship between the water flow rate in Embodiment 1 of this invention, and discharge | emission amount / inflow amount. 本発明の実施の形態1の第1変形例における分離部4aを示す模式図である。It is a schematic diagram which shows the isolation | separation part 4a in the 1st modification of Embodiment 1 of this invention. 本発明の実施の形態1の第2変形例における分離部4bを示す模式図である。It is a schematic diagram which shows the isolation | separation part 4b in the 2nd modification of Embodiment 1 of this invention. 本発明の実施の形態1の第3変形例における分離部4cを示す模式図である。It is a schematic diagram which shows the isolation | separation part 4c in the 3rd modification of Embodiment 1 of this invention. 本発明の実施の形態1の第4変形例における分離部4dを示す模式図である。It is a schematic diagram which shows the separation part 4d in the 4th modification of Embodiment 1 of this invention. 本発明の実施の形態2に係る空気調和装置100を示す回路図である。It is a circuit diagram which shows the air conditioning apparatus 100 which concerns on Embodiment 2 of this invention. 本発明の実施の形態2の第1変形例に係る空気調和装置100aを示す回路図である。It is a circuit diagram which shows the air conditioning apparatus 100a which concerns on the 1st modification of Embodiment 2 of this invention. 本発明の実施の形態2の第2変形例に係る空気調和装置100bを示す回路図である。It is a circuit diagram which shows the air conditioning apparatus 100b which concerns on the 2nd modification of Embodiment 2 of this invention. 本発明の実施の形態3に係る空気調和装置200を示す回路図である。It is a circuit diagram which shows the air conditioning apparatus 200 which concerns on Embodiment 3 of this invention. 本発明の実施の形態4に係る空気調和装置300を示す回路図である。It is a circuit diagram which shows the air conditioning apparatus 300 which concerns on Embodiment 4 of this invention. 本発明の実施の形態5に係る空気調和装置400を示す回路図である。It is a circuit diagram which shows the air conditioning apparatus 400 which concerns on Embodiment 5 of this invention. 本発明の実施の形態5における冷媒の圧力と冷媒の飽和温度との関係を示すグラフである。It is a graph which shows the relationship between the pressure of the refrigerant | coolant in Embodiment 5 of this invention, and the saturation temperature of a refrigerant | coolant. 本発明の実施の形態7に係る空気調和装置600を示す回路図である。It is a circuit diagram which shows the air conditioning apparatus 600 which concerns on Embodiment 7 of this invention. 本発明の実施の形態8に係る空気調和装置700を示す回路図である。It is a circuit diagram which shows the air conditioning apparatus 700 which concerns on Embodiment 8 of this invention. 本発明の実施の形態9に係る空気調和装置800を示す回路図である。It is a circuit diagram which shows the air conditioning apparatus 800 which concerns on Embodiment 9 of this invention. 本発明の実施の形態10に係る空気調和装置900を示す回路図である。It is a circuit diagram which shows the air conditioning apparatus 900 which concerns on Embodiment 10 of this invention. 本発明の実施の形態11に係る空気調和装置1000を示す回路図である。It is a circuit diagram which shows the air conditioning apparatus 1000 which concerns on Embodiment 11 of this invention. 本発明の実施の形態12に係る空気調和装置1100を示す回路図である。It is a circuit diagram which shows the air conditioning apparatus 1100 which concerns on Embodiment 12 of this invention. 本発明の実施の形態13に係る空気調和装置1200を示す回路図である。It is a circuit diagram which shows the air conditioning apparatus 1200 which concerns on Embodiment 13 of this invention. 本発明の実施の形態14における副分離部13を示す模式図である。It is a schematic diagram which shows the subseparation part 13 in Embodiment 14 of this invention. 本発明の実施の形態14の変形例における副分離部13aを示す模式図である。It is a schematic diagram which shows the subseparation part 13a in the modification of Embodiment 14 of this invention.
実施の形態1.
 以下、本発明に係る空気調和装置の実施の形態について、図面を参照しながら説明する。図1は、本発明の実施の形態1に係る空気調和装置1を示す回路図である。この図1に基づいて、空気調和装置1について説明する。図1に示すように、空気調和装置1は、冷媒回路2と、熱媒体回路3と、分離部4と、排出部5とを備えている。
Embodiment 1 FIG.
Hereinafter, embodiments of an air-conditioning apparatus according to the present invention will be described with reference to the drawings. FIG. 1 is a circuit diagram showing an air conditioner 1 according to Embodiment 1 of the present invention. The air conditioner 1 will be described with reference to FIG. As shown in FIG. 1, the air conditioner 1 includes a refrigerant circuit 2, a heat medium circuit 3, a separation unit 4, and a discharge unit 5.
 (冷媒回路2)
 冷媒回路2は、圧縮機22、流路切替装置23、熱源側熱交換器24、膨張部25及び冷媒熱媒体間熱交換器26が冷媒配管21により接続され、冷媒が循環する回路である。なお、圧縮機22、流路切替装置23、熱源側熱交換器24、膨張部25及び冷媒熱媒体間熱交換器26は、熱源機20に内蔵されている。冷媒回路2に流れる冷媒は、R410A又はR407Cとしてもよいし、微燃性冷媒であるR1234yf、R1234ze、R32又はR290としてもよいし、自然冷媒であるCOとしてもよい。本実施の形態1では、熱源機20が室外に設置される空冷機種である場合について例示している。空冷機種とは、熱源側熱交換器24が冷媒と室外空気との間で熱交換させる機種をいう。なお、熱源機20は、室内に設置される水冷機種であってもよい。水冷機種とは、熱源側熱交換器24が冷媒と水との間で熱交換させる機種をいう。
(Refrigerant circuit 2)
The refrigerant circuit 2 is a circuit in which the refrigerant is circulated by connecting the compressor 22, the flow path switching device 23, the heat source side heat exchanger 24, the expansion unit 25, and the refrigerant heat exchanger related to heat medium 26 through the refrigerant pipe 21. The compressor 22, the flow path switching device 23, the heat source side heat exchanger 24, the expansion unit 25, and the refrigerant heat medium heat exchanger 26 are built in the heat source device 20. Refrigerant flowing through the refrigerant circuit 2 may be R410A or R407C, R1234yf is slightly combustible refrigerant, may be R1234ze, R32 or R290, or a CO 2 a natural refrigerant. In the first embodiment, the case where the heat source device 20 is an air-cooled model installed outdoors is illustrated. The air-cooled model is a model in which the heat source side heat exchanger 24 exchanges heat between the refrigerant and the outdoor air. The heat source unit 20 may be a water-cooled model installed indoors. The water-cooled model refers to a model in which the heat source side heat exchanger 24 exchanges heat between the refrigerant and water.
 (圧縮機22,流路切替装置23)
 圧縮機22は、低温低圧の状態の冷媒を吸入し、吸入した冷媒を圧縮して高温高圧の状態の冷媒にして吐出する機器である。圧縮機22は、例えば容量を制御することができるインバータ圧縮機である。流路切替装置23は、冷媒回路2において冷媒が流れる方向を切り替える機器であり、例えば四方弁である。流路切替装置23は、圧縮機22から吐出された冷媒が冷媒熱媒体間熱交換器26に流れる(図1の実線)か熱源側熱交換器24に流れる(図1の破線)かを切り替えるものであり、これにより、暖房運転及び冷房運転のいずれもが行われる。なお、暖房運転又は冷房運転のいずれか一方のみが行われる場合、流路切替装置23を省略してもよい。
(Compressor 22, flow path switching device 23)
The compressor 22 is a device that draws in a low-temperature and low-pressure refrigerant, compresses the drawn refrigerant, and discharges it into a high-temperature and high-pressure refrigerant. The compressor 22 is an inverter compressor capable of controlling the capacity, for example. The flow path switching device 23 is a device that switches the direction in which the refrigerant flows in the refrigerant circuit 2, and is, for example, a four-way valve. The flow path switching device 23 switches whether the refrigerant discharged from the compressor 22 flows into the refrigerant heat medium heat exchanger 26 (solid line in FIG. 1) or the heat source side heat exchanger 24 (broken line in FIG. 1). Thus, both the heating operation and the cooling operation are performed. When only one of the heating operation and the cooling operation is performed, the flow path switching device 23 may be omitted.
 (熱源側熱交換器24,膨張部25)
 熱源側熱交換器24は、流路切替装置23と膨張部25との間に接続されており、例えば室外空気と冷媒との間で熱交換させる機器である。熱源側熱交換器24は、暖房運転時には蒸発器として作用し、冷房運転時には凝縮器として作用する。なお、熱源機20には、熱源側熱交換器24に室外空気を送る熱源側送風機が設けられてもよい。膨張部25は、熱源側熱交換器24と冷媒熱媒体間熱交換器26との間に接続されており、冷媒を減圧して膨張する減圧弁又は膨張弁である。膨張部25は、例えば開度が調整される電子式膨張弁である。
(Heat source side heat exchanger 24, expansion part 25)
The heat source side heat exchanger 24 is connected between the flow path switching device 23 and the expansion unit 25, and is a device that exchanges heat between outdoor air and a refrigerant, for example. The heat source side heat exchanger 24 acts as an evaporator during heating operation, and acts as a condenser during cooling operation. The heat source unit 20 may be provided with a heat source side blower that sends outdoor air to the heat source side heat exchanger 24. The expansion unit 25 is connected between the heat source side heat exchanger 24 and the refrigerant heat medium heat exchanger 26, and is a pressure reducing valve or an expansion valve that expands by depressurizing the refrigerant. The expansion part 25 is an electronic expansion valve whose opening degree is adjusted, for example.
 (冷媒熱媒体間熱交換器26)
 冷媒熱媒体間熱交換器26は、膨張部25と流路切替装置23との間に接続されており、冷媒回路2に流れる冷媒と熱媒体回路3に流れる熱媒体との間で熱交換させる機器である。なお、冷媒熱媒体間熱交換器26において、冷媒の流れと熱媒体の流れとは例えば対向流となっている。
(Refrigerant heat medium heat exchanger 26)
The refrigerant heat medium heat exchanger 26 is connected between the expansion unit 25 and the flow path switching device 23, and exchanges heat between the refrigerant flowing in the refrigerant circuit 2 and the heat medium flowing in the heat medium circuit 3. Equipment. In the inter-refrigerant heat medium heat exchanger 26, the refrigerant flow and the heat medium flow are, for example, counterflows.
 (熱媒体回路3)
 熱媒体回路3は、ポンプ32、冷媒熱媒体間熱交換器26、負荷側熱交換器33が熱媒体配管31により接続され、熱媒体が循環する回路である。熱媒体回路3に流れる熱媒体は、水又はブライン等とすることができる。また、熱媒体回路3には、エア抜きバルブ34が設けられている。
(Heat medium circuit 3)
The heat medium circuit 3 is a circuit in which the pump 32, the refrigerant heat medium heat exchanger 26, and the load side heat exchanger 33 are connected by the heat medium pipe 31, and the heat medium circulates. The heat medium flowing through the heat medium circuit 3 can be water or brine. The heat medium circuit 3 is provided with an air vent valve 34.
 (ポンプ32,負荷側熱交換器33,エア抜きバルブ34)
 ポンプ32は、室外において冷媒熱媒体間熱交換器26の上流側に設けられ、熱媒体を搬送する機器である。負荷側熱交換器33は、室内において冷媒熱媒体間熱交換器26の下流側に設けられ、例えば室内空気と熱媒体との間で熱交換させる機器である。負荷側熱交換器33は、暖房運転時には凝縮器として作用し、冷房運転時には蒸発器として作用する。負荷側熱交換器33は、冷暖房器具30に内蔵されており、負荷側熱交換器33の熱交換によって、冷暖房器具30の暖房運転又は冷房運転が行われる。エア抜きバルブ34は、負荷側熱交換器33の下流側に設けられ、熱媒体回路3に流れる熱媒体に混入した空気を抜くバルブである。ここで、室内とは、住宅の居住空間又は公共の場の室内等をいう。本実施の形態1における室内とは、空調空間のことを示す。
(Pump 32, load side heat exchanger 33, air vent valve 34)
The pump 32 is a device that is provided on the upstream side of the heat exchanger 26 between the refrigerant and heat medium outside and conveys the heat medium. The load-side heat exchanger 33 is a device that is provided on the downstream side of the refrigerant heat medium heat exchanger 26 in the room and exchanges heat between, for example, room air and the heat medium. The load side heat exchanger 33 acts as a condenser during heating operation, and acts as an evaporator during cooling operation. The load-side heat exchanger 33 is built in the air conditioning appliance 30, and the heating operation or the cooling operation of the air conditioning appliance 30 is performed by the heat exchange of the load side heat exchanger 33. The air vent valve 34 is provided on the downstream side of the load-side heat exchanger 33 and is a valve that vents air mixed in the heat medium flowing in the heat medium circuit 3. Here, the indoor means a residential space of a house or a public place. The room in the first embodiment indicates an air-conditioned space.
 (分離部4)
 分離部4は、冷媒熱媒体間熱交換器26から流出して負荷側熱交換器33に流入する前の熱媒体が流れる熱媒体配管31のうちの空調空間の外部に設けられ、冷媒と熱媒体とを分離する。本実施の形態1では、分離部4は、室外に設けられ、接続口41と放出口42と流出口43とが形成され、気体と液体とを分離する部材である。接続口41は、熱媒体回路3における冷媒熱媒体間熱交換器26の下流側に接続される開口である。放出口42は、例えば分離部4の上部に形成され、分離部4内の気体を放出する開口である。流出口43は、熱媒体回路3における負荷側熱交換器33の上流側に接続され液体が流出する開口である。分離部4は、冷媒熱媒体間熱交換器26から流出した流体を、気体と液体とに分離し、気体を放出口42から放出し、液体を流出口43から流出させる部材である。
(Separation part 4)
The separation unit 4 is provided outside the air-conditioned space in the heat medium pipe 31 through which the heat medium flows out from the refrigerant heat medium heat exchanger 26 and flows into the load-side heat exchanger 33, and the refrigerant and heat Separate media. In the first embodiment, the separation unit 4 is a member that is provided outside the room, has a connection port 41, a discharge port 42, and an outflow port 43, and separates gas and liquid. The connection port 41 is an opening connected to the downstream side of the refrigerant heat medium heat exchanger 26 in the heat medium circuit 3. The discharge port 42 is an opening that is formed, for example, in the upper part of the separation unit 4 and discharges the gas in the separation unit 4. The outflow port 43 is an opening that is connected to the upstream side of the load-side heat exchanger 33 in the heat medium circuit 3 and from which liquid flows out. The separation unit 4 is a member that separates the fluid flowing out from the refrigerant heat exchanger 26 into gas and liquid, discharges the gas from the discharge port 42, and causes the liquid to flow out from the outflow port 43.
 図2は、本発明の実施の形態1における分離部4を示す模式図である。図2に示すように、分離部4は、延在部44と、放出部45と、流出部46とを有している。延在部44は、熱媒体配管31に接続された接続口41から上方に延びて上端から横方向に延びる管である。流出部46は、延在部44から下方に延びて流出口43に接続される管である。放出部45は、流出部46の上方に設けられ放出口42に接続される管である。 FIG. 2 is a schematic diagram showing the separation unit 4 according to Embodiment 1 of the present invention. As shown in FIG. 2, the separation unit 4 has an extending part 44, a discharge part 45, and an outflow part 46. The extending part 44 is a pipe that extends upward from the connection port 41 connected to the heat medium pipe 31 and extends laterally from the upper end. The outflow portion 46 is a pipe that extends downward from the extending portion 44 and is connected to the outflow port 43. The discharge part 45 is a pipe provided above the outflow part 46 and connected to the discharge port 42.
 熱媒体配管31に流れる流体は、接続口41から流入して延在部44内を上昇する。この間、流体に気体が混入している場合、小さい気泡が集まって大きい気泡となる。このように、熱媒体配管31に流れる流体が、延在部44によって一旦堰き止められることによって、そのまま分離部4から流出しようとすることを抑制することができる。このようにして、分離部4によって、気体と液体とが分離される。このように、本実施の形態1の分離部4は、気体をトラップする複合管で構成されている。 The fluid flowing in the heat medium pipe 31 flows in from the connection port 41 and rises in the extending portion 44. During this time, when gas is mixed in the fluid, small bubbles gather and become large bubbles. As described above, the fluid flowing through the heat medium pipe 31 can be prevented from flowing out of the separation unit 4 as it is by being temporarily dammed by the extending part 44. In this way, the gas and the liquid are separated by the separation unit 4. As described above, the separation unit 4 according to the first embodiment is composed of a composite pipe that traps gas.
 また、分離部4は、流体の流速が低下することによって、流体が重力によって下方に沈む力よりも、流体が浮力によって上昇する力を大きくして、上方に気体を集める機能を有している。ここで、冷媒熱媒体間熱交換器26が凍結等によりパンクした場合について想定する。冷媒熱媒体間熱交換器26がパンクした場合、冷媒が冷媒熱媒体間熱交換器26のうち熱媒体の流路に侵入して、熱媒体回路3内に流入する可能性がある。この場合、冷媒は、熱媒体回路3に流れる熱媒体によって、ある程度気化している。これは、概して、冷媒の沸点の方が、熱媒体の沸点よりも低いことに起因する。 In addition, the separation unit 4 has a function of collecting the gas upward by increasing the force by which the fluid rises by buoyancy rather than the force by which the fluid sinks downward by gravity due to the decrease in the flow velocity of the fluid. . Here, it is assumed that the refrigerant heat exchanger related to heat medium 26 is punctured due to freezing or the like. When the refrigerant heat exchanger related to heat medium 26 is punctured, the refrigerant may enter the heat medium flow path in the refrigerant heat exchanger related to heat medium 26 and flow into the heat medium circuit 3. In this case, the refrigerant is vaporized to some extent by the heat medium flowing in the heat medium circuit 3. This is generally due to the fact that the boiling point of the refrigerant is lower than the boiling point of the heat medium.
 ここで、分離部4の放出部45及び流出部46の流路断面積は、熱媒体配管31の流路断面積よりも大きい。本実施の形態1において、熱媒体配管31及び流路切替部は、いずれも円状の管であるとする。そして、図2に示すように、熱媒体配管31の管径をd、分離部4の放出部45及び流出部46の管径をd、円周率をπとすると、熱媒体配管31の流路断面積はπ(d/2)であり、放出部45及び流出部46の流路断面積はπ(d/2)であり、π(d/2)>π(d/2)の関係が成り立つ。このように、熱媒体配管31に流れる流体の流速は、流路断面積が広がる分離部4の放出部45及び流出部46に流入することによって、低下する。 Here, the flow path cross-sectional area of the discharge part 45 and the outflow part 46 of the separation part 4 is larger than the flow path cross-sectional area of the heat medium pipe 31. In the first embodiment, the heat medium pipe 31 and the flow path switching unit are both circular pipes. As shown in FIG. 2, when the pipe diameter of the heat medium pipe 31 is d 1 , the pipe diameters of the discharge section 45 and the outflow section 46 of the separation section 4 are d 2 , and the circumference is π, the heat medium pipe 31. the flow path cross-sectional area is π (d 1/2) 2 , flow path cross-sectional area of the discharge portion 45 and the outlet portion 46 is π (d 2/2) 2 , π (d 2/2) 2> π (d 1/2) 2 of the relationship is established. As described above, the flow velocity of the fluid flowing through the heat medium pipe 31 is reduced by flowing into the discharge portion 45 and the outflow portion 46 of the separation portion 4 where the flow path cross-sectional area is widened.
 図3は、本発明の実施の形態1における気泡直径と気泡上昇速度との関係を示すグラフである。次に、気泡直径と気泡上昇速度との関係について説明する。図3において、横軸を気泡直径[mm]、縦軸を水中での気泡上昇速度[mm/s]とする。また、実線は気泡密度1.25[kg/m]を示し、二点鎖線は気泡密度50.0[kg/m]を示し、破線は気泡密度100.0[kg/m]を示す。ここで、気泡密度が低いほどガス化しており、気泡密度が高いほど液化している。気体の気泡密度は約1.25~1.50[kg/m]であり、図3の実線に相当する。図3に示すように、気泡密度にかかわらず、気泡直径が大きいほど、水中での気泡上昇速度が高くなる。また、気泡密度が低いほど、気泡上昇速度が高い。 FIG. 3 is a graph showing the relationship between the bubble diameter and the bubble rising speed in the first embodiment of the present invention. Next, the relationship between the bubble diameter and the bubble rising speed will be described. In FIG. 3, the horizontal axis is the bubble diameter [mm], and the vertical axis is the bubble rising speed [mm / s] in water. The solid line indicates the bubble density 1.25 [kg / m 3 ], the two-dot chain line indicates the bubble density 50.0 [kg / m 3 ], and the broken line indicates the bubble density 100.0 [kg / m 3 ]. Show. Here, the lower the bubble density, the more gasified, and the higher the bubble density, the more liquefied. The bubble density of the gas is about 1.25 to 1.50 [kg / m 3 ], which corresponds to the solid line in FIG. As shown in FIG. 3, regardless of the bubble density, the bubble rising speed in water increases as the bubble diameter increases. Moreover, the bubble rising speed is higher as the bubble density is lower.
 概して、呼び径50[A](外径約60.5[mm])の配管に流れる流体の流量は16[m/h]であり、流速は約2000[mm/s]である。ここで、冷媒熱媒体間熱交換器26の亀裂部から発生する気泡上の冷媒の直径は、約1.5[mm]以上と観測される。そこで、呼び径50[A]の熱媒体配管31が用いられている場合、呼び径80[A](外径89.1[mm])以上の配管を分離部4の放出部45及び流出部46として使用することによって、流速が1000[mm/s]以下となる。図3に示すように、流速が1000[mm/s]のとき、気泡直径は約1.4[mm]である。即ち、気泡直径が約1.4[mm]以上の気泡は、流体が重力によって下方に沈む力よりも浮力によって上昇する力が大きくなる。従って、分離部4内の気泡状の冷媒のほぼ全てを、上方に集めることができる。なお、本実施の形態1では、分離部4の流路断面積が熱媒体配管31の流路断面積より大きくなくてもよい。 In general, the flow rate of fluid flowing through a pipe having a nominal diameter of 50 [A] (outer diameter of about 60.5 [mm]) is 16 [m 3 / h], and the flow velocity is about 2000 [mm / s]. Here, the diameter of the refrigerant on the bubble generated from the crack portion of the refrigerant heat exchanger 26 is observed to be about 1.5 [mm] or more. Therefore, when the heat medium pipe 31 having a nominal diameter of 50 [A] is used, a pipe having a nominal diameter of 80 [A] (outer diameter of 89.1 [mm]) or more is connected to the discharge section 45 and the outflow section of the separation section 4. By using it as 46, the flow rate becomes 1000 [mm / s] or less. As shown in FIG. 3, when the flow rate is 1000 [mm / s], the bubble diameter is about 1.4 [mm]. That is, a bubble having a bubble diameter of about 1.4 [mm] or more has a higher force that rises by buoyancy than the force by which the fluid sinks downward due to gravity. Therefore, almost all of the bubble-like refrigerant in the separation unit 4 can be collected upward. In the first embodiment, the flow path cross-sectional area of the separation unit 4 may not be larger than the flow path cross-sectional area of the heat medium pipe 31.
 図4は、本発明の実施の形態1における水流速と排出量/流入量との関係を示すグラフである。次に、水の流速と、排出部5からの排出量を流入量で除算した割合との関係について説明する。図4において、横軸を水流速[mm/s]、縦軸を排出量/流入量[%]とする。図4に示すように、水流速が1500mm/sのとき、排出量/流入量が約75%であり、排出量が充分となる。このように、分離部4が、内部の水流速が1500mm/s以下となる流路断面積を有することによって、効率的に気体と液体とを分離することができる。これにより、流入した気体を排出部5から効率良く排出することができる。 FIG. 4 is a graph showing the relationship between the water flow rate and the discharge / inflow in the first embodiment of the present invention. Next, the relationship between the flow rate of water and the ratio obtained by dividing the discharge amount from the discharge unit 5 by the inflow amount will be described. In FIG. 4, the horizontal axis represents water flow velocity [mm / s], and the vertical axis represents discharge / inflow [%]. As shown in FIG. 4, when the water flow rate is 1500 mm / s, the discharge / inflow is about 75%, and the discharge is sufficient. Thus, since the separation part 4 has a flow path cross-sectional area in which the internal water flow velocity is 1500 mm / s or less, it is possible to efficiently separate the gas and the liquid. Thereby, the gas which flowed in can be efficiently discharged | emitted from the discharge part 5. FIG.
 (排出部5)
 図1に示すように、排出部5は、分離部4の流出口43に接続され、分離部4で分離された冷媒を空調空間の外部に排出する排出口51が形成されている。排出部5は、例えばガス抜き弁又はガス逃がし弁等から構成されている。なお、本実施の形態1では、分離部4及び排出部5は、熱源機20の外部に設けられている。このため、既存の熱源機20を使用することができる。また、分離部4及び排出部5は、熱源機20と別の位置に配置することができるため、例えばできるだけ高所に配置することもできる。この場合、排出部5が気体を排出する効果が高まる。
(Discharge unit 5)
As shown in FIG. 1, the discharge unit 5 is connected to an outlet 43 of the separation unit 4 and is formed with a discharge port 51 that discharges the refrigerant separated by the separation unit 4 to the outside of the air-conditioned space. The discharge part 5 is comprised, for example from the gas vent valve or the gas relief valve. In the first embodiment, the separation unit 4 and the discharge unit 5 are provided outside the heat source unit 20. For this reason, the existing heat source machine 20 can be used. Moreover, since the separation part 4 and the discharge part 5 can be arrange | positioned in the position different from the heat-source equipment 20, it can also be arrange | positioned, for example in the high place as possible. In this case, the effect that the discharge part 5 discharges gas increases.
 (運転モード)
 次に、空気調和装置1の運転モードについて説明する。空気調和装置1は、運転モードとして、暖房運転モード及び冷房運転モードを有している。暖房運転モード及び冷房運転モードについて、図1を用いて説明する。
(Operation mode)
Next, the operation mode of the air conditioner 1 will be described. The air conditioner 1 has a heating operation mode and a cooling operation mode as operation modes. The heating operation mode and the cooling operation mode will be described with reference to FIG.
 (暖房運転)
 まず、暖房運転について説明する。暖房運転では、流路切替装置23によって、圧縮機22の吐出側と冷媒熱媒体間熱交換器26とが接続され、圧縮機22の吸入側と熱源側熱交換器24とが接続されている(図1の実線)。まず、冷媒回路2における冷媒の流れについて説明する。暖房運転において、圧縮機22に吸入された冷媒は、圧縮機22によって圧縮されて高温高圧のガス状態で吐出する。圧縮機22から吐出された高温高圧のガス状態の冷媒は、流路切替装置23を通過して、凝縮器として作用する冷媒熱媒体間熱交換器26に流入する。冷媒熱媒体間熱交換器26に流入した冷媒は、熱媒体との間で熱交換されて凝縮液化する。このとき、熱媒体が加熱される。凝縮された液状態の冷媒は、膨張部25において膨張及び減圧されて低温低圧の気液二相状態の冷媒となる。そして、気液二相状態の冷媒は、蒸発器として作用する熱源側熱交換器24に流入し、熱源側熱交換器24において、例えば室外空気との間で熱交換されて蒸発ガス化する。蒸発した低温低圧のガス状態の冷媒は、流路切替装置23を通過して、圧縮機22に吸入される。
(Heating operation)
First, the heating operation will be described. In the heating operation, the discharge side of the compressor 22 and the refrigerant heat medium heat exchanger 26 are connected by the flow path switching device 23, and the suction side of the compressor 22 and the heat source side heat exchanger 24 are connected. (Solid line in FIG. 1). First, the flow of the refrigerant in the refrigerant circuit 2 will be described. In the heating operation, the refrigerant sucked into the compressor 22 is compressed by the compressor 22 and discharged in a high-temperature and high-pressure gas state. The high-temperature and high-pressure gas refrigerant discharged from the compressor 22 passes through the flow path switching device 23 and flows into the refrigerant heat exchanger related to heat medium 26 that functions as a condenser. The refrigerant flowing into the inter-refrigerant heat medium heat exchanger 26 is heat-exchanged with the heat medium to be condensed and liquefied. At this time, the heat medium is heated. The condensed refrigerant in the liquid state is expanded and depressurized in the expansion section 25 to become a low-temperature low-pressure gas-liquid two-phase refrigerant. Then, the gas-liquid two-phase refrigerant flows into the heat source side heat exchanger 24 acting as an evaporator, and in the heat source side heat exchanger 24, heat is exchanged with, for example, outdoor air to evaporate. The evaporated refrigerant in the low-temperature and low-pressure gas state passes through the flow path switching device 23 and is sucked into the compressor 22.
 次に、熱媒体回路3における熱媒体の流れについて説明する。ポンプ32によって搬送された熱媒体は、冷媒熱媒体間熱交換器26に流入する。冷媒熱媒体間熱交換器26に流入した熱媒体は、冷媒との間で熱交換されて加熱される。加熱された熱媒体は、分離部4を通過して、室内に設けられた負荷側熱交換器33に流入し、負荷側熱交換器33において、例えば室内空気との間で熱交換されて冷却される。このとき、室内空気が加熱されて、室内が暖房される。冷却された熱媒体は、その後、ポンプ32に吸入される。 Next, the flow of the heat medium in the heat medium circuit 3 will be described. The heat medium conveyed by the pump 32 flows into the refrigerant heat medium heat exchanger 26. The heat medium flowing into the refrigerant heat medium heat exchanger 26 is heat-exchanged with the refrigerant and heated. The heated heat medium passes through the separation unit 4 and flows into a load-side heat exchanger 33 provided in the room. In the load-side heat exchanger 33, for example, heat is exchanged with room air to be cooled. Is done. At this time, room air is heated and the room is heated. The cooled heat medium is then sucked into the pump 32.
 (冷房運転)
 次に、冷房運転について説明する。冷房運転では、流路切替装置23によって、圧縮機22の吐出側と熱源側熱交換器24とが接続され、圧縮機22の吸入側と冷媒熱媒体間熱交換器26とが接続されている(図1の破線)。まず、冷媒回路2における冷媒の流れについて説明する。冷房運転において、圧縮機22に吸入された冷媒は、圧縮機22によって圧縮されて高温高圧のガス状態で吐出する。圧縮機22から吐出された高温高圧のガス状態の冷媒は、流路切替装置23を通過して、凝縮器として作用する熱源側熱交換器24に流入する。熱源側熱交換器24に流入した冷媒は、例えば室外空気との間で熱交換されて凝縮液化する。凝縮された液状態の冷媒は、膨張部25において膨張及び減圧されて低温低圧の気液二相状態の冷媒となる。そして、気液二相状態の冷媒は、蒸発器として作用する冷媒熱媒体間熱交換器26に流入し、冷媒熱媒体間熱交換器26において、熱媒体との間で熱交換されて蒸発ガス化する。このとき、熱媒体が冷却される。蒸発した低温低圧のガス状態の冷媒は、流路切替装置23を通過して、圧縮機22に吸入される。
(Cooling operation)
Next, the cooling operation will be described. In the cooling operation, the discharge side of the compressor 22 and the heat source side heat exchanger 24 are connected by the flow path switching device 23, and the suction side of the compressor 22 and the refrigerant heat medium heat exchanger 26 are connected. (Dashed line in FIG. 1). First, the flow of the refrigerant in the refrigerant circuit 2 will be described. In the cooling operation, the refrigerant sucked into the compressor 22 is compressed by the compressor 22 and discharged in a high-temperature and high-pressure gas state. The high-temperature and high-pressure gas refrigerant discharged from the compressor 22 passes through the flow path switching device 23 and flows into the heat source side heat exchanger 24 acting as a condenser. The refrigerant that has flowed into the heat source side heat exchanger 24 is heat-exchanged with, for example, outdoor air to be condensed and liquefied. The condensed refrigerant in the liquid state is expanded and depressurized in the expansion section 25 to become a low-temperature low-pressure gas-liquid two-phase refrigerant. The refrigerant in the gas-liquid two-phase state flows into the refrigerant heat medium heat exchanger 26 acting as an evaporator, and heat is exchanged with the heat medium in the refrigerant heat medium heat exchanger 26 to evaporate the gas. Turn into. At this time, the heat medium is cooled. The evaporated refrigerant in the low-temperature and low-pressure gas state passes through the flow path switching device 23 and is sucked into the compressor 22.
 次に、熱媒体回路3における熱媒体の流れについて説明する。ポンプ32によって搬送された熱媒体は、冷媒熱媒体間熱交換器26に流入する。冷媒熱媒体間熱交換器26に流入した熱媒体は、冷媒との間で熱交換されて冷却される。冷却された熱媒体は、分離部4を通過して、室内に設けられた負荷側熱交換器33に流入し、負荷側熱交換器33において、例えば室内空気との間で熱交換されて加熱される。このとき、室内空気が冷却されて、室内が冷房される。加熱された熱媒体は、その後、ポンプ32に吸入される。 Next, the flow of the heat medium in the heat medium circuit 3 will be described. The heat medium conveyed by the pump 32 flows into the refrigerant heat medium heat exchanger 26. The heat medium flowing into the inter-refrigerant heat medium heat exchanger 26 is cooled by exchanging heat with the refrigerant. The cooled heat medium passes through the separation unit 4 and flows into a load-side heat exchanger 33 provided in the room. In the load-side heat exchanger 33, heat is exchanged with, for example, room air and heated. Is done. At this time, the room air is cooled and the room is cooled. The heated heat medium is then sucked into the pump 32.
 (冷媒流入時の動作)
 次に、熱媒体回路3内に冷媒が流入した場合の動作について説明する。ここで、仮に、冷媒熱媒体間熱交換器26が凍結等によりパンクした場合について想定する。冷媒熱媒体間熱交換器26がパンクした場合、冷媒が冷媒熱媒体間熱交換器26のうち熱媒体の流路に侵入して、熱媒体回路3内に流入する可能性がある。
(Operation when refrigerant flows in)
Next, the operation when the refrigerant flows into the heat medium circuit 3 will be described. Here, it is assumed that the refrigerant heat exchanger 26 is punctured due to freezing or the like. When the refrigerant heat exchanger related to heat medium 26 is punctured, the refrigerant may enter the heat medium flow path in the refrigerant heat exchanger related to heat medium 26 and flow into the heat medium circuit 3.
 熱媒体回路3内に流入した冷媒は、冷媒熱媒体間熱交換器26から熱媒体配管31内を通って分離部4に至る。冷媒は、分離部4の接続口41から流入して延在部44内を上昇する。このとき、延在部44の下方に沈んでいる冷媒は、熱媒体の流れに伴って強制的に上昇する。この間、小さい気泡状の冷媒が集まって大きい気泡となる。このように、熱媒体配管31に流れる冷媒が、延在部44によって一旦堰き止められることによって、熱媒体と共に分離部4から流出しようとすることを抑制することができる。延在部44を上昇した冷媒は、熱媒体配管31の流路断面積よりも大きい流路断面積の放出部45及び流出部46に流入する。このとき、冷媒の流速が低下することによって、熱媒体と共に流出部46側に沈む力よりも、放出部45側に浮く力が勝り、冷媒は放出部45側に上昇する。 The refrigerant that has flowed into the heat medium circuit 3 passes from the refrigerant heat medium heat exchanger 26 to the separation unit 4 through the heat medium pipe 31. The refrigerant flows in from the connection port 41 of the separation part 4 and rises in the extension part 44. At this time, the refrigerant sinking below the extending portion 44 rises forcibly with the flow of the heat medium. During this time, small bubble refrigerants gather to form large bubbles. As described above, the refrigerant flowing through the heat medium pipe 31 is temporarily blocked by the extending portion 44, and therefore, it is possible to suppress the refrigerant from flowing out of the separation unit 4 together with the heat medium. The refrigerant that has risen up the extending portion 44 flows into the discharge portion 45 and the outflow portion 46 having a flow passage cross-sectional area larger than the flow passage cross-sectional area of the heat medium pipe 31. At this time, when the flow rate of the refrigerant decreases, the force that floats on the discharge part 45 side is greater than the force that sinks on the outflow part 46 side together with the heat medium, and the refrigerant rises on the discharge part 45 side.
 また、流路断面積が広がる際に、冷媒を含む熱媒体の流れが淀むため、流れが淀んでいる部分に冷媒を集めることができる。これにより、小さい気泡状の冷媒が集まって大きい気泡となる。従って、冷媒は更に放出部45側に上昇する。放出部45に到達した冷媒は、放出口42を通って排出部5に至る。そして、冷媒は、排出部5から室外に排出される。なお、冷媒が混入していない熱媒体は、流出部46を下降して、流出口43から熱媒体配管31に流出する。従って、冷媒は、室内に設けられた熱媒体配管31に流入しない。 Moreover, since the flow of the heat medium containing the refrigerant stagnates when the cross-sectional area of the flow path widens, the refrigerant can be collected in the portion where the flow is stagnant. Thereby, small bubble-like refrigerants gather to form large bubbles. Accordingly, the refrigerant further rises toward the discharge portion 45 side. The refrigerant that has reached the discharge part 45 reaches the discharge part 5 through the discharge port 42. And a refrigerant | coolant is discharged | emitted from the discharge part 5 outdoors. The heat medium not mixed with the refrigerant descends the outflow portion 46 and flows out from the outlet 43 to the heat medium pipe 31. Therefore, the refrigerant does not flow into the heat medium pipe 31 provided in the room.
 本実施の形態1によれば、空調空間の外部に設けられた分離部4によって、冷媒と熱媒体とが分離され、分離された冷媒が排出部5によって空調空間の外部に排出される。このため、仮に冷媒が熱媒体回路3に流入しても、冷媒が分離部4及び排出部5を介して空調空間の外部に排出される。従って、冷媒が室内に設けられた熱媒体配管31に流入することが抑制される。 According to the first embodiment, the refrigerant and the heat medium are separated by the separation unit 4 provided outside the air-conditioned space, and the separated refrigerant is discharged by the discharge unit 5 to the outside of the air-conditioned space. For this reason, even if the refrigerant flows into the heat medium circuit 3, the refrigerant is discharged to the outside of the air-conditioned space through the separation unit 4 and the discharge unit 5. Accordingly, the refrigerant is prevented from flowing into the heat medium pipe 31 provided in the room.
 また、分離部4の流路断面積は、熱媒体配管31の流路断面積よりも大きい。このため、分離部4は、流体の流速を低下させて、流体が沈む力よりも浮く力を大きくすることができる。従って、冷媒を更に排出することができる。更に、分離部4は、接続口41から上方に延びる延在部44と、延在部44から上方に延びて放出口42に接続される放出部45と、放出部45の下方に位置し、延在部44から下方に延びて流出口43に接続される流出部46と、を有する。これにより、延在部44の下方に沈んでいる冷媒は、熱媒体の流れに伴って強制的に上昇する。この間、小さい気泡状の冷媒が集まって大きい気泡となる。このように、熱媒体配管31に流れる冷媒が、延在部44によって一旦堰き止められることによって、そのまま分離部4から流出しようとすることを抑制することができ、冷媒を集め易くすることができる。また、冷媒が微燃性冷媒又は可燃性冷媒である場合、冷媒が室内に設けられた熱媒体配管31に流入することを防ぐことにより、更に安全性が向上する。 Further, the flow path cross-sectional area of the separation unit 4 is larger than the flow path cross-sectional area of the heat medium pipe 31. For this reason, the separation unit 4 can reduce the flow velocity of the fluid and increase the floating force more than the force that the fluid sinks. Accordingly, the refrigerant can be further discharged. Further, the separation part 4 is positioned below the discharge part 45, an extension part 44 extending upward from the connection port 41, a discharge part 45 extending upward from the extension part 44 and connected to the discharge port 42, And an outflow part 46 that extends downward from the extension part 44 and is connected to the outlet 43. Thereby, the refrigerant | coolant sinking under the extension part 44 forcibly raises with the flow of a heat carrier. During this time, small bubble refrigerants gather to form large bubbles. As described above, the refrigerant flowing through the heat medium pipe 31 is once blocked by the extending portion 44, so that it can be prevented from flowing out from the separation portion 4 as it is, and the refrigerant can be easily collected. . Further, when the refrigerant is a slightly flammable refrigerant or a flammable refrigerant, safety is further improved by preventing the refrigerant from flowing into the heat medium pipe 31 provided in the room.
 (第1変形例)
 図5は、本発明の実施の形態1の第1変形例における分離部4aを示す模式図である。第1変形例は、分離部4aの構造が実施の形態1と相違する。図5に示すように、第1変形例の分離部4aは、熱媒体配管31の流路断面積よりも大きい流路断面積を有する単一の配管である。熱媒体配管31の管径をd、分離部4aの管径をd、円周率をπとすると、熱媒体配管31の流路断面積はπ(d/2)であり、放出部45及び流出部46の流路断面積はπ(d/2)であり、π(d/2)>π(d/2)の関係が成り立つ。このように、熱媒体配管31に流れる流体の流速は、流路断面積が広がる分離部4aに流入することによって、実施の形態1と同様に、低下する。また、分離部4aの接続口41は、高さ方向において流出口43以上の位置に形成されている。第1変形例では、流出口43は、分離部4aの底部に形成されている。
(First modification)
FIG. 5 is a schematic diagram showing the separation unit 4a in the first modification of the first embodiment of the present invention. The first modification is different from the first embodiment in the structure of the separation portion 4a. As shown in FIG. 5, the separation portion 4 a of the first modification is a single pipe having a flow path cross-sectional area larger than that of the heat medium pipe 31. D 1 a tube diameter of the heat medium pipe 31, the pipe diameter of the separation portion 4a d 3, the circular constant and [pi, the flow path cross-sectional area of the heat medium pipe 31 is π (d 1/2) 2 , the channel cross-sectional area of the discharge portion 45 and the outlet portion 46 is π (d 3/2) 2 , π (d 3/2) 2> π (d 1/2) 2 relation holds. As described above, the flow velocity of the fluid flowing through the heat medium pipe 31 is reduced in the same manner as in the first embodiment by flowing into the separation portion 4a in which the flow path cross-sectional area is widened. Moreover, the connection port 41 of the separation part 4a is formed in the position beyond the outflow port 43 in the height direction. In the first modification, the outlet 43 is formed at the bottom of the separation part 4a.
 第1変形例では、冷媒が熱媒体回路3に流入した場合、冷媒は、冷媒熱媒体間熱交換器26から熱媒体配管31内を通って分離部4aに至る。このとき、冷媒は、熱媒体配管31の流路断面積よりも大きい流路断面積の分離部4aに流入する。このため、冷媒の流速が低下することによって、流出部46側に沈む力よりも、放出部45側に浮く力が勝り、冷媒は上部の放出口42に向かって上昇する。上昇した冷媒は、放出口42を通って排出部5に至る。そして、冷媒は、排出部5から室外に排出される。なお、冷媒が混入していない熱媒体は、分離部4aを通過して、流出口43から熱媒体配管31に流出する。従って、冷媒が室内に設けられた熱媒体配管31に流入することが抑制される。 In the first modification, when the refrigerant flows into the heat medium circuit 3, the refrigerant passes from the refrigerant heat medium heat exchanger 26 through the heat medium pipe 31 to the separation unit 4a. At this time, the refrigerant flows into the separation portion 4 a having a flow path cross-sectional area larger than that of the heat medium pipe 31. For this reason, when the flow rate of the refrigerant decreases, the force that floats on the discharge unit 45 side is greater than the force that sinks on the outflow unit 46 side, and the refrigerant rises toward the upper discharge port 42. The rising refrigerant reaches the discharge part 5 through the discharge port 42. And a refrigerant | coolant is discharged | emitted from the discharge part 5 outdoors. In addition, the heat medium in which the refrigerant is not mixed passes through the separation unit 4 a and flows out from the outlet 43 to the heat medium pipe 31. Accordingly, the refrigerant is prevented from flowing into the heat medium pipe 31 provided in the room.
 また、分離部4aの接続口41は、高さ方向において流出口43以上の位置に形成されている。このため、分離部4a内において熱媒体が円滑に流れることを妨げずに済む。なお、分離部4aは、配管ではなく筒状の容器としてもよい。配管の方が容器よりも入手性が高くコストを削減することができるが、適宜容器に変更することは可能である。このように、分離部4aは、熱媒体配管31に、配管又は筒状の容器等を接続するだけで作製することができるため、製造性及び入手性が容易である。 Moreover, the connection port 41 of the separation part 4a is formed at a position higher than the outflow port 43 in the height direction. For this reason, it is not necessary to prevent the heat medium from smoothly flowing in the separation portion 4a. In addition, the separation part 4a is good also as a cylindrical container instead of piping. Piping has higher availability than containers and can reduce costs, but can be appropriately changed to containers. Thus, since the separation part 4a can be produced simply by connecting a pipe or a cylindrical container to the heat medium pipe 31, productivity and availability are easy.
 (第2変形例)
 図6は、本発明の実施の形態1の第2変形例における分離部4bを示す模式図である。第2変形例は、分離部4bの構造が実施の形態1と相違する。図6に示すように、第2変形例では、流出口43が分離部4bの側面に形成されており、接続口41と流出口43とが対向している。これにより、分離部4b内において熱媒体が円滑に流れることをより妨げずに済む。また、第2変形例でも、第1変形例と同様に、分離部4bは、熱媒体配管31の流路断面積よりも大きい流路断面積を有する単一の配管である。これにより、熱媒体配管31に流れる流体の流速は、流路断面積が広がる分離部4bに流入することによって、第1変形例と同様に、低下する。
(Second modification)
FIG. 6 is a schematic diagram showing a separation unit 4b in the second modification of the first embodiment of the present invention. The second modification differs from the first embodiment in the structure of the separation part 4b. As shown in FIG. 6, in the second modification, the outlet 43 is formed on the side surface of the separation portion 4b, and the connection port 41 and the outlet 43 are opposed to each other. Thereby, it is not necessary to prevent the heat medium from flowing smoothly in the separation part 4b. In the second modified example, as in the first modified example, the separation portion 4 b is a single pipe having a flow path cross-sectional area larger than the flow path cross-sectional area of the heat medium pipe 31. Thereby, the flow velocity of the fluid flowing through the heat medium pipe 31 is reduced in the same manner as in the first modification by flowing into the separation portion 4b where the flow path cross-sectional area is widened.
 (第3変形例)
 図7は、本発明の実施の形態1の第3変形例における分離部4cを示す模式図である。第3変形例は、分離部4cの構造が実施の形態1と相違する。図7に示すように、第3変形例の分離部4cは、第2変形例の分離部4cよりも分離部4cを構成する配管が下方に延びている。これにより、下方に延びた部分に、熱媒体配管31に流れる熱媒体から発生するスケールを貯留することができる。また、第3変形例でも、第1変形例と同様に、分離部4cは、熱媒体配管31の流路断面積よりも大きい流路断面積を有する単一の配管である。これにより、熱媒体配管31に流れる流体の流速は、流路断面積が広がる分離部4cに流入することによって、第1変形例と同様に、低下する。
(Third Modification)
FIG. 7 is a schematic diagram showing a separation portion 4c in the third modification of the first embodiment of the present invention. The third modification is different from the first embodiment in the structure of the separation portion 4c. As shown in FIG. 7, in the separation unit 4 c of the third modification example, a pipe constituting the separation unit 4 c extends downward from the separation unit 4 c of the second modification example. Thereby, the scale which generate | occur | produces from the heat medium which flows into the heat-medium piping 31 can be stored in the part extended below. In the third modified example, as in the first modified example, the separation portion 4 c is a single pipe having a flow path cross-sectional area larger than the flow path cross-sectional area of the heat medium pipe 31. Thereby, the flow velocity of the fluid flowing through the heat medium pipe 31 is reduced in the same manner as in the first modification by flowing into the separation portion 4c where the flow path cross-sectional area is widened.
 (第4変形例)
 図8は、本発明の実施の形態1の第4変形例における分離部4dを示す模式図である。第4変形例は、分離部4dの構造が実施の形態1と相違する。図8に示すように、第4変形例の分離部4dは、接続口41の下端41aが、高さ方向において流出口43の上端43a以上の位置に形成されている。これにより、接続口41から分離部4d内に流入した熱媒体は、流出口43に至るまでに下降するため、熱媒体は分離部4d内を更に滑らかに流れることができる。また、第4変形例でも、第1変形例と同様に、分離部4dは、熱媒体配管31の流路断面積よりも大きい流路断面積を有する単一の配管である。これにより、熱媒体配管31に流れる流体の流速は、流路断面積が広がる分離部4dに流入することによって、第1変形例と同様に、低下する。
(Fourth modification)
FIG. 8 is a schematic diagram showing a separation unit 4d in a fourth modification of the first embodiment of the present invention. The fourth modification is different from the first embodiment in the structure of the separation part 4d. As shown in FIG. 8, in the separation part 4d of the fourth modified example, the lower end 41a of the connection port 41 is formed at a position higher than the upper end 43a of the outflow port 43 in the height direction. As a result, the heat medium flowing into the separation part 4d from the connection port 41 descends until reaching the outlet 43, so that the heat medium can flow more smoothly in the separation part 4d. In the fourth modified example, as in the first modified example, the separation portion 4d is a single pipe having a flow path cross-sectional area larger than the flow path cross-sectional area of the heat medium pipe 31. Thereby, the flow velocity of the fluid flowing through the heat medium pipe 31 is reduced in the same manner as in the first modification by flowing into the separation portion 4d where the flow path cross-sectional area is widened.
実施の形態2.
 図9は、本発明の実施の形態2に係る空気調和装置100を示す回路図である。本実施の形態2は、出口側弁7及び入口側弁8を備えている点で、実施の形態1と相違する。本実施の形態2では、実施の形態1と同一の部分は同一の符号を付して説明を省略し、実施の形態1との相違点を中心に説明する。
Embodiment 2. FIG.
FIG. 9 is a circuit diagram showing an air conditioner 100 according to Embodiment 2 of the present invention. The second embodiment is different from the first embodiment in that an outlet side valve 7 and an inlet side valve 8 are provided. In the second embodiment, the same parts as those of the first embodiment are denoted by the same reference numerals, and the description thereof is omitted. The description will focus on differences from the first embodiment.
 図9に示すように、熱媒体回路3には、出口側弁7及び入口側弁8が設けられている。出口側弁7は、空調空間の外部において、分離部4の出口側である下流側に設けられ、熱媒体の流量を調整する弁である。出口側弁7は、開度が調整自在の弁でもよいし、開度が固定の弁でもよい。また、入口側弁8は、空調空間の外部において、分離部4の上流側、例えばポンプ32の下流側に設けられ、熱媒体の流量を調整する弁である。入口側弁8は、開度が調整自在の弁でもよいし、開度が固定の弁でもよいし、逆流を防止する逆止弁でもよい。なお、出口側弁7及び入口側弁8は、いずれか一方が設けられていてもよい。この場合、出口側弁7のみが設置される方が、入口側弁8のみが設置されるよりも、冷媒流入抑制効果は高い。 As shown in FIG. 9, the heat medium circuit 3 is provided with an outlet side valve 7 and an inlet side valve 8. The outlet side valve 7 is a valve that is provided on the downstream side that is the outlet side of the separation unit 4 outside the air-conditioned space and adjusts the flow rate of the heat medium. The outlet side valve 7 may be a valve whose opening degree is adjustable or a valve whose opening degree is fixed. The inlet side valve 8 is a valve that is provided on the upstream side of the separation unit 4, for example, on the downstream side of the pump 32, outside the air-conditioned space, and adjusts the flow rate of the heat medium. The inlet side valve 8 may be a valve whose opening degree is adjustable, a valve whose opening degree is fixed, or a check valve which prevents backflow. One of the outlet side valve 7 and the inlet side valve 8 may be provided. In this case, the refrigerant inflow suppressing effect is higher when only the outlet side valve 7 is installed than when only the inlet side valve 8 is installed.
 そして、出口側弁7及び入口側弁8は、冷媒が熱媒体回路3に流入した場合、閉止される。冷媒が熱媒体回路3に流入した場合、冷媒は、冷媒熱媒体間熱交換器26から熱媒体配管31内を通って分離部4に至る。このとき、仮に、分離部4から熱媒体配管31に冷媒が流入したとしても、出口側弁7が閉じているため、出口側弁7より先に進まない。このため、冷媒が室内に設けられた熱媒体配管31に流入することを確実に抑制することができる。また、冷媒が熱媒体回路3に流入した場合、冷媒は、冷媒熱媒体間熱交換器26から逆流する可能性もある。しかし、入口側弁8が閉じているため、入口側弁8より先に進まない。このため、冷媒が室内に設けられた熱媒体配管31に流入することを更に確実に抑制することができる。このように、本実施の形態2は、冷媒が流入した場合、出口側弁7及び入口側弁8によって、熱媒体回路3を室内側と室外側とに分離するため、冷媒が熱媒体回路3を通って室内に設けられた熱媒体配管31に流入することを抑制することができる。なお、冷媒が熱媒体回路3に流入することを検出する構成は、実施の形態4等で説明する。 The outlet side valve 7 and the inlet side valve 8 are closed when the refrigerant flows into the heat medium circuit 3. When the refrigerant flows into the heat medium circuit 3, the refrigerant passes from the refrigerant heat medium heat exchanger 26 to the separation unit 4 through the heat medium pipe 31. At this time, even if the refrigerant flows into the heat medium pipe 31 from the separation unit 4, the outlet side valve 7 is closed, so that it does not advance beyond the outlet side valve 7. For this reason, it can suppress reliably that a refrigerant | coolant flows in into the heat medium piping 31 provided indoors. In addition, when the refrigerant flows into the heat medium circuit 3, the refrigerant may flow backward from the refrigerant heat medium heat exchanger 26. However, since the inlet side valve 8 is closed, it does not advance beyond the inlet side valve 8. For this reason, it can suppress more reliably that a refrigerant | coolant flows in into the heat medium piping 31 provided indoors. As described above, in the second embodiment, when the refrigerant flows in, the heat medium circuit 3 is separated into the indoor side and the outdoor side by the outlet side valve 7 and the inlet side valve 8. It can suppress flowing into the heat medium piping 31 provided indoors through the room. The configuration for detecting the refrigerant flowing into the heat medium circuit 3 will be described in the fourth embodiment.
 (第1変形例)
 図10は、本発明の実施の形態2の第1変形例に係る空気調和装置100aを示す回路図である。第1変形例は、熱源機20の設置場所が実施の形態2と相違する。図10に示すように、第1変形例の熱源機20は、室内よりも下方に設置されている。例えば、熱源機20が、室内よりも階下に設けられている場合が想定される。冷媒が熱媒体回路3に流入した場合、冷媒は、浮力によって、上方の室内側に上昇する可能性がある。冷媒が熱媒体回路3に流入した場合に、ポンプ32が停止しても、浮力があるため、冷媒が上方の室内側に上昇する可能性がある。しかし、出口側弁7が閉じているため、出口側弁7より先に進まない。このため、冷媒が室内に設けられた熱媒体配管31に流入することを確実に抑制することができる。また、冷媒が冷媒熱媒体間熱交換器26から逆流しても、入口側弁8が閉じているため、入口側弁8より先に進まない。このため、冷媒が室内に設けられた熱媒体配管31に流入することを更に確実に抑制することができる。このように、出口側弁7又は入口側弁8を備えることによって、熱源機20が室内より下方に設置されていても、冷媒が室内に設けられた熱媒体配管31に流入することを抑制することができる。
(First modification)
FIG. 10 is a circuit diagram showing an air conditioner 100a according to a first modification of the second embodiment of the present invention. In the first modification, the installation location of the heat source device 20 is different from that of the second embodiment. As shown in FIG. 10, the heat source device 20 of the first modification is installed below the room. For example, the case where the heat source unit 20 is provided below the floor rather than indoors is assumed. When the refrigerant flows into the heat medium circuit 3, the refrigerant may rise to the upper indoor side due to buoyancy. When the refrigerant flows into the heat medium circuit 3, even if the pump 32 is stopped, there is a possibility that the refrigerant rises to the upper indoor side because there is buoyancy. However, since the outlet side valve 7 is closed, it does not advance beyond the outlet side valve 7. For this reason, it can suppress reliably that a refrigerant | coolant flows in into the heat medium piping 31 provided indoors. Even if the refrigerant flows backward from the refrigerant heat exchanger 26, the inlet side valve 8 is closed, and therefore the refrigerant does not advance beyond the inlet side valve 8. For this reason, it can suppress more reliably that a refrigerant | coolant flows in into the heat medium piping 31 provided indoors. Thus, by providing the outlet side valve 7 or the inlet side valve 8, even if the heat source unit 20 is installed below the room, the refrigerant is prevented from flowing into the heat medium pipe 31 provided in the room. be able to.
 (第2変形例)
 図11は、本発明の実施の形態2の第2変形例に係る空気調和装置100bを示す回路図である。第2変形例は、複数の冷暖房器具30が接続されている点で、実施の形態2と相違する。図11に示すように、複数の冷暖房器具30は、それぞれ負荷側熱交換器33を有しており、熱媒体回路3において、並列に接続されている。この場合、出口側弁7及び入口側弁8は、各負荷側熱交換器33が設けられた熱媒体配管31が分岐する手前の熱媒体配管31に設けられる。第2変形例のように、複数の冷暖房器具30が接続されていても、出口側弁7又は入口側弁8を備えることによって、冷媒が室内に設けられた熱媒体配管31に流入することを抑制することができる。
(Second modification)
FIG. 11 is a circuit diagram showing an air conditioner 100b according to a second modification of the second embodiment of the present invention. The second modified example is different from the second embodiment in that a plurality of air conditioning appliances 30 are connected. As shown in FIG. 11, each of the plurality of air conditioners 30 has a load-side heat exchanger 33, and is connected in parallel in the heat medium circuit 3. In this case, the outlet side valve 7 and the inlet side valve 8 are provided in the heat medium pipe 31 immediately before the heat medium pipe 31 provided with each load side heat exchanger 33 is branched. Even when a plurality of air conditioners 30 are connected as in the second modification, the refrigerant flows into the heat medium pipe 31 provided indoors by providing the outlet side valve 7 or the inlet side valve 8. Can be suppressed.
実施の形態3.
 図12は、本発明の実施の形態3に係る空気調和装置200を示す回路図である。本実施の形態3は、ポンプ32の設置位置が、実施の形態2と相違する。本実施の形態3では、実施の形態1又は2と同一の部分は同一の符号を付して説明を省略し、実施の形態1及び2との相違点を中心に説明する。
Embodiment 3 FIG.
FIG. 12 is a circuit diagram showing an air conditioner 200 according to Embodiment 3 of the present invention. In the third embodiment, the installation position of the pump 32 is different from that of the second embodiment. In the third embodiment, the same parts as those in the first or second embodiment are denoted by the same reference numerals, and the description thereof will be omitted. The description will focus on differences from the first and second embodiments.
 図12に示すように、ポンプ32は、冷媒熱媒体間熱交換器26の下流側に設けられている。本実施の形態3において、冷媒が熱媒体回路3に流入した場合、冷媒熱媒体間熱交換器26から熱媒体配管31内を通った冷媒は、室内を通過することなく、直ちにポンプ32の吸い込み側に流入する。ポンプ32の吸い込み側に冷媒が滞留すると、ポンプ32が空運転となる。ポンプ32が空運転となると、熱媒体の流れが止まるか又は遅くなる。このため、熱媒体に含まれる冷媒の流速も低下する。また、ポンプ32の吸い込みによる流体の圧力の低下によって、液状態の冷媒が気化し易い。このため、冷媒が沈む力よりも浮く力を大きくすることができる。従って、ポンプ32を通過した後に流入する分離部4及び排出部5での冷媒排出効果が高まる。このように、本実施の形態3は、冷媒熱媒体間熱交換器26の下流側にポンプ32が設けられることによって、ポンプ32を空回り運転させ、熱媒体の流れを止める。従って、冷媒が室内に設けられた熱媒体配管31に流入することを更に抑制することができる。 As shown in FIG. 12, the pump 32 is provided on the downstream side of the refrigerant heat exchanger related to heat medium 26. In the third embodiment, when the refrigerant flows into the heat medium circuit 3, the refrigerant that has passed through the heat medium pipe 31 from the refrigerant heat exchanger 26 is immediately sucked into the pump 32 without passing through the room. Flows into the side. When the refrigerant stays on the suction side of the pump 32, the pump 32 is idle. When the pump 32 is idling, the flow of the heat medium stops or slows down. For this reason, the flow rate of the refrigerant contained in the heat medium also decreases. Further, the liquid refrigerant is easily vaporized due to the decrease in the pressure of the fluid due to the suction of the pump 32. For this reason, the floating force can be made larger than the force by which the refrigerant sinks. Therefore, the refrigerant discharge effect at the separation unit 4 and the discharge unit 5 that flows after passing through the pump 32 is enhanced. As described above, in Embodiment 3, the pump 32 is provided on the downstream side of the refrigerant heat exchanger 26 to cause the pump 32 to run idly and stop the flow of the heat medium. Accordingly, it is possible to further suppress the refrigerant from flowing into the heat medium pipe 31 provided in the room.
実施の形態4.
 図13は、本発明の実施の形態4に係る空気調和装置300を示す回路図である。本実施の形態4は、冷媒検出部6を備えている点で、実施の形態2と相違する。本実施の形態4では、実施の形態1~3と同一の部分は同一の符号を付して説明を省略し、実施の形態1~3との相違点を中心に説明する。
Embodiment 4 FIG.
FIG. 13 is a circuit diagram showing an air conditioner 300 according to Embodiment 4 of the present invention. The fourth embodiment is different from the second embodiment in that the refrigerant detection unit 6 is provided. In the fourth embodiment, the same parts as those in the first to third embodiments are denoted by the same reference numerals, and the description thereof will be omitted. The description will focus on the differences from the first to third embodiments.
 図13に示すように、空気調和装置300は、熱媒体回路3に冷媒が流入したことを検出する冷媒検出部6を備えている。そして、冷媒検出部6は、排出部5の排出口51に設けられ、排出口51から排出される冷媒を検出する排出冷媒検出部6aを有している。本実施の形態4では、排出冷媒検出部6aによって、排出口51から排出された冷媒を直接検出している。このため、冷媒が熱媒体回路3に流入したことを直ちに認識することができる。なお、排出冷媒検出部6aが冷媒の流入を検出した際の制御については、実施の形態10で説明する。 As shown in FIG. 13, the air conditioning apparatus 300 includes a refrigerant detection unit 6 that detects that the refrigerant has flowed into the heat medium circuit 3. And the refrigerant | coolant detection part 6 is provided in the discharge port 51 of the discharge part 5, and has the discharge | emission refrigerant | coolant detection part 6a which detects the refrigerant | coolant discharged | emitted from the discharge port 51. FIG. In the fourth embodiment, the refrigerant discharged from the discharge port 51 is directly detected by the discharged refrigerant detector 6a. For this reason, it can be immediately recognized that the refrigerant has flowed into the heat medium circuit 3. The control when the discharged refrigerant detection unit 6a detects the inflow of the refrigerant will be described in the tenth embodiment.
実施の形態5.
 図14は、本発明の実施の形態5に係る空気調和装置400を示す回路図である。本実施の形態5は、加熱部9を備えている点で、実施の形態4と相違する。本実施の形態5では、実施の形態1~4と同一の部分は同一の符号を付して説明を省略し、実施の形態1~4との相違点を中心に説明する。
Embodiment 5 FIG.
FIG. 14 is a circuit diagram showing an air conditioner 400 according to Embodiment 5 of the present invention. The fifth embodiment is different from the fourth embodiment in that a heating unit 9 is provided. In the fifth embodiment, the same parts as those in the first to fourth embodiments are denoted by the same reference numerals, and the description thereof will be omitted. The description will focus on the differences from the first to fourth embodiments.
 図14に示すように、加熱部9は、分離部4に設けられ、分離部4内の液体を加熱する。加熱部9は、例えばヒータである。冷媒が熱媒体回路3に流入した場合、熱媒体回路3に流れる熱媒体の圧力及び温度によって、冷媒が液状態で熱媒体回路3中を循環する可能性がある。このとき、加熱部9によって、分離部4内に流入した液状態の冷媒が加熱される。これにより、液状態の冷媒が気化され、分離部4及び排出部5によって、室外に排出される。また、試運転又は定期点検といったメンテナンス時において、熱源機20の運転が停止し、熱媒体の温度が低下している際、熱媒体回路3に流入した冷媒は、液状態で熱媒体回路3に滞留する。この場合も、加熱部9によって、分離部4内に流入した液状態の冷媒が加熱される。これにより、液状態の冷媒が気化され、分離部4及び排出部5によって、室外に排出される。 As shown in FIG. 14, the heating unit 9 is provided in the separation unit 4 and heats the liquid in the separation unit 4. The heating unit 9 is, for example, a heater. When the refrigerant flows into the heat medium circuit 3, the refrigerant may circulate in the heat medium circuit 3 in a liquid state depending on the pressure and temperature of the heat medium flowing through the heat medium circuit 3. At this time, the liquid refrigerant flowing into the separation unit 4 is heated by the heating unit 9. As a result, the liquid refrigerant is vaporized and discharged to the outside by the separation unit 4 and the discharge unit 5. Also, during maintenance such as trial operation or periodic inspection, when the operation of the heat source device 20 is stopped and the temperature of the heat medium is decreasing, the refrigerant flowing into the heat medium circuit 3 stays in the heat medium circuit 3 in a liquid state. To do. Also in this case, the liquid refrigerant flowing into the separation unit 4 is heated by the heating unit 9. As a result, the liquid refrigerant is vaporized and discharged to the outside by the separation unit 4 and the discharge unit 5.
 更に、冷媒が熱媒体回路3に流入すると、熱源機20内の冷媒が不足して、熱源機20が運転不能に陥る可能性がある。この場合、熱源機20を用いて熱媒体及び冷媒を加熱することができないため、冷媒が外気等によって冷やされて凝縮する。凝縮した液冷媒は、熱媒体回路3中に滞留する。これに対し、本実施の形態5では、熱源機20の代わりにヒータによって、熱媒体及び冷媒の温度を上げることができるため、冷媒が凝縮することを防ぎ、更に冷媒を気化することができる。 Furthermore, when the refrigerant flows into the heat medium circuit 3, there is a possibility that the refrigerant in the heat source unit 20 runs short and the heat source unit 20 becomes inoperable. In this case, since the heat medium and the refrigerant cannot be heated using the heat source device 20, the refrigerant is cooled and condensed by the outside air or the like. The condensed liquid refrigerant stays in the heat medium circuit 3. On the other hand, in this Embodiment 5, since the temperature of a heat medium and a refrigerant | coolant can be raised with a heater instead of the heat source apparatus 20, it can prevent that a refrigerant | coolant condenses and can vaporize a refrigerant | coolant further.
 図15は、本発明の実施の形態5における冷媒の圧力と冷媒の飽和温度との関係を示すグラフである。次に、冷媒毎の気化のし易さについて説明する。図15において、横軸を圧力[MPaA]、縦軸を飽和温度[℃]とする。また、実線はR32を示し、二点鎖線はR1234yfを示し、破線はR1234zeを示す。図14において、各線よりも下方が液体状態の領域であり、各線よりも上方が気体状態の領域である。図14に示すように、R32よりもR1234yf及びR1234zeの方が、気化し難い。このため、本実施の形態5は、気化し難いR1234yf及びR1234zeが使用される空気調和装置400において顕著な効果を奏する。 FIG. 15 is a graph showing the relationship between the refrigerant pressure and the refrigerant saturation temperature in the fifth embodiment of the present invention. Next, the easiness of vaporization for each refrigerant will be described. In FIG. 15, the horizontal axis represents pressure [MPaA] and the vertical axis represents saturation temperature [° C.]. In addition, a solid line indicates R32, a two-dot chain line indicates R1234yf, and a broken line indicates R1234ze. In FIG. 14, the area below each line is a liquid state area, and the area above each line is a gas state area. As shown in FIG. 14, R1234yf and R1234ze are less likely to vaporize than R32. For this reason, this Embodiment 5 has a remarkable effect in the air conditioning apparatus 400 using R1234yf and R1234ze which are hard to vaporize.
実施の形態6.
 本実施の形態6は、分離部4及び排出部5が、熱源機20に内蔵されている点で、実施の形態1~5と相違する。本実施の形態6では、実施の形態1~5と同一の部分は同一の符号を付して説明を省略し、実施の形態1~5との相違点を中心に説明する。
Embodiment 6 FIG.
The sixth embodiment is different from the first to fifth embodiments in that the separation unit 4 and the discharge unit 5 are built in the heat source unit 20. In the sixth embodiment, the same parts as those in the first to fifth embodiments are denoted by the same reference numerals, and the description thereof will be omitted. The description will focus on differences from the first to fifth embodiments.
 分離部4及び排出部5が、熱源機20に内蔵されているため、熱媒体回路3の構造を簡略化することができる。ここで、熱源機20の内部に放熱又は熱交換に用いられる熱源側送風機が設けられている場合、熱源側熱交換器24が送風することによって、分離部4内の冷媒を撹拌することができる。これにより、冷媒の濃度を低下させることができるため、安全性が向上する。 Since the separation unit 4 and the discharge unit 5 are built in the heat source unit 20, the structure of the heat medium circuit 3 can be simplified. Here, when the heat source side air blower used for heat dissipation or heat exchange is provided inside the heat source device 20, the heat source side heat exchanger 24 blows air, whereby the refrigerant in the separation unit 4 can be agitated. . Thereby, since the density | concentration of a refrigerant | coolant can be reduced, safety | security improves.
実施の形態7.
 図16は、本発明の実施の形態7に係る空気調和装置600を示す回路図である。本実施の形態7は、制御部10及び圧力検出部6bを備えている点で、実施の形態5と相違する。本実施の形態7では、実施の形態1~6と同一の部分は同一の符号を付して説明を省略し、実施の形態1~6との相違点を中心に説明する。
Embodiment 7 FIG.
FIG. 16 is a circuit diagram showing an air conditioner 600 according to Embodiment 7 of the present invention. The seventh embodiment is different from the fifth embodiment in that the control unit 10 and the pressure detection unit 6b are provided. In the seventh embodiment, the same parts as those in the first to sixth embodiments are denoted by the same reference numerals, and the description thereof will be omitted. The description will focus on the differences from the first to sixth embodiments.
 図16に示すように、圧力検出部6bは、冷媒熱媒体間熱交換器26の下流側に設けられており、熱媒体回路3に流れる熱媒体の圧力を検出する。このように、本実施の形態7では、冷媒検出部6は、排出冷媒検出部6a及び圧力検出部6bを有している。なお、圧力検出部6bは、冷媒熱媒体間熱交換器26の上流側に設けられてもよい。また、熱源機20には、制御部10が設けられている。制御部10は、各機器の制御を行うマイコン等である。 As shown in FIG. 16, the pressure detector 6 b is provided on the downstream side of the refrigerant heat medium heat exchanger 26 and detects the pressure of the heat medium flowing in the heat medium circuit 3. Thus, in this Embodiment 7, the refrigerant | coolant detection part 6 has the discharge | emission refrigerant | coolant detection part 6a and the pressure detection part 6b. The pressure detector 6b may be provided on the upstream side of the refrigerant heat exchanger related to heat medium 26. The heat source device 20 is provided with a control unit 10. The control unit 10 is a microcomputer or the like that controls each device.
 制御部10は、冷媒検出部6によって検出された冷媒の濃度が予め設定された閾値を超えた場合、出口側弁7及び入口側弁8を閉じる。また、制御部10は、冷媒検出部6によって検出された冷媒の濃度が予め設定された閾値を超えた場合、ポンプ32を停止してもよい。本実施の形態7では、具体的には、圧力検出部6bによって検出された熱媒体の圧力が、予め設定された圧力閾値を超えた場合、出口側弁7及び入口側弁8を閉じる。例えば、熱媒体が水の場合、水の圧力が1.0[MPaA]時に飽和液状態となるR32において、液状態の冷媒が気化すると体積が約37倍に膨張する。このように、冷媒の体積が膨張することによって熱媒体の圧力が急激に上昇する。これにより、圧力検出部6bを用いることによって、冷媒が熱媒体回路3に流入したことを検出することができる。 The control unit 10 closes the outlet side valve 7 and the inlet side valve 8 when the concentration of the refrigerant detected by the refrigerant detection unit 6 exceeds a preset threshold value. Moreover, the control part 10 may stop the pump 32, when the density | concentration of the refrigerant | coolant detected by the refrigerant | coolant detection part 6 exceeds the preset threshold value. In the seventh embodiment, specifically, when the pressure of the heat medium detected by the pressure detector 6b exceeds a preset pressure threshold, the outlet side valve 7 and the inlet side valve 8 are closed. For example, when the heat medium is water, the volume of the refrigerant expands about 37 times when the liquid refrigerant is vaporized in R32 that is in a saturated liquid state when the water pressure is 1.0 [MPaA]. In this manner, the pressure of the heat medium rapidly increases as the volume of the refrigerant expands. Thus, it is possible to detect that the refrigerant has flowed into the heat medium circuit 3 by using the pressure detection unit 6b.
 冷媒が熱媒体回路3に流入した場合、冷媒は、冷媒熱媒体間熱交換器26から熱媒体配管31内を通って分離部4に至る。このとき、仮に、分離部4から熱媒体配管31に冷媒が流入したとしても、制御部10が出口側弁7を閉じるため、出口側弁7より先に進まない。このため、冷媒が室内に設けられた熱媒体配管31に流入することを確実に抑制することができる。また、冷媒が熱媒体回路3に流入した場合、冷媒は、冷媒熱媒体間熱交換器26から逆流する可能性もある。しかし、制御部10が入口側弁8を閉じるため、入口側弁8より先に進まない。このため、冷媒が室内に設けられた熱媒体配管31に流入することを更に確実に抑制することができる。このように、本実施の形態7は、冷媒が流入した場合、出口側弁7及び入口側弁8によって、熱媒体回路3を室内側と室外側とに分離するため、冷媒が熱媒体回路3を通って室内に設けられた熱媒体配管31に流入することを抑制することができる。なお、制御部10がポンプ32を停止した場合、熱媒体が流れないため、冷媒も流れない。このため、冷媒が室内に流入することを抑制することができる。 When the refrigerant flows into the heat medium circuit 3, the refrigerant passes from the refrigerant heat medium heat exchanger 26 to the separation unit 4 through the heat medium pipe 31. At this time, even if the refrigerant flows into the heat medium pipe 31 from the separation unit 4, the control unit 10 closes the outlet side valve 7, and thus does not proceed beyond the outlet side valve 7. For this reason, it can suppress reliably that a refrigerant | coolant flows in into the heat medium piping 31 provided indoors. In addition, when the refrigerant flows into the heat medium circuit 3, the refrigerant may flow backward from the refrigerant heat medium heat exchanger 26. However, since the control part 10 closes the inlet side valve 8, it does not advance ahead of the inlet side valve 8. FIG. For this reason, it can suppress more reliably that a refrigerant | coolant flows in into the heat medium piping 31 provided indoors. As described above, in the seventh embodiment, when the refrigerant flows, the heat medium circuit 3 is separated into the indoor side and the outdoor side by the outlet side valve 7 and the inlet side valve 8. It can suppress flowing into the heat medium piping 31 provided indoors through the room. In addition, when the control part 10 stops the pump 32, since a heat medium does not flow, a refrigerant | coolant does not flow. For this reason, it can suppress that a refrigerant | coolant flows in into a room | chamber interior.
実施の形態8.
 図17は、本発明の実施の形態8に係る空気調和装置700を示す回路図である。本実施の形態8は、制御部10及び温度検出部6cを備えている点で、実施の形態5と相違する。本実施の形態8では、実施の形態1~7と同一の部分は同一の符号を付して説明を省略し、実施の形態1~7との相違点を中心に説明する。
Embodiment 8 FIG.
FIG. 17 is a circuit diagram showing an air conditioner 700 according to Embodiment 8 of the present invention. The eighth embodiment is different from the fifth embodiment in that the control unit 10 and the temperature detection unit 6c are provided. In the eighth embodiment, the same parts as those in the first to seventh embodiments are denoted by the same reference numerals, and the description thereof will be omitted. The description will focus on the differences from the first to seventh embodiments.
 図17に示すように、温度検出部6cは、冷媒熱媒体間熱交換器26の下流側に設けられており、熱媒体回路3に流れる熱媒体の温度を検出する。このように、本実施の形態8では、冷媒検出部6は、排出冷媒検出部6a及び温度検出部6cを有している。なお、温度検出部6cは、冷媒熱媒体間熱交換器26の上流側に設けられてもよい。また、熱源機20には、制御部10が設けられている。制御部10は、各機器の制御を行うマイコン等である。 As shown in FIG. 17, the temperature detection unit 6 c is provided on the downstream side of the refrigerant heat medium heat exchanger 26 and detects the temperature of the heat medium flowing in the heat medium circuit 3. Thus, in the eighth embodiment, the refrigerant detection unit 6 includes the exhaust refrigerant detection unit 6a and the temperature detection unit 6c. The temperature detection unit 6 c may be provided on the upstream side of the refrigerant heat exchanger related to heat medium 26. The heat source device 20 is provided with a control unit 10. The control unit 10 is a microcomputer or the like that controls each device.
 制御部10は、冷媒検出部6によって検出された冷媒の濃度が予め設定された閾値を超えた場合、出口側弁7及び入口側弁8を閉じる。また、制御部10は、冷媒検出部6によって検出された冷媒の濃度が予め設定された閾値を超えた場合、ポンプ32を停止してもよい。本実施の形態8では、具体的には、所定時間毎に温度検出部6cによって検出された熱媒体の温度の差が、予め設定された温度差閾値を超えた場合、出口側弁7及び入口側弁8を閉じる。例えば、熱媒体が水の場合、水の圧力が1.0[MPaA]時に飽和液状態となるR32において、R32と水との流量比率が1:4とすると、液状態の冷媒が気化するまでに、水は約18[℃]低下する。このように、冷媒が気化することによって熱媒体の温度差が急激に変動する。これにより、温度検出部6cを用いることによって、冷媒が熱媒体回路3に流入したことを検出することができる。 The control unit 10 closes the outlet side valve 7 and the inlet side valve 8 when the concentration of the refrigerant detected by the refrigerant detection unit 6 exceeds a preset threshold value. Moreover, the control part 10 may stop the pump 32, when the density | concentration of the refrigerant | coolant detected by the refrigerant | coolant detection part 6 exceeds the preset threshold value. In the eighth embodiment, specifically, when the temperature difference of the heat medium detected by the temperature detection unit 6c every predetermined time exceeds a preset temperature difference threshold, the outlet side valve 7 and the inlet Close the side valve 8. For example, when the heat medium is water and the flow rate ratio between R32 and water is 1: 4 in R32 that is in a saturated liquid state when the water pressure is 1.0 [MPaA], the liquid state refrigerant is vaporized. In addition, the water drops by about 18 [° C.]. As described above, the temperature difference of the heat medium rapidly changes as the refrigerant evaporates. Accordingly, it is possible to detect that the refrigerant has flowed into the heat medium circuit 3 by using the temperature detection unit 6c.
 冷媒が熱媒体回路3に流入した場合、冷媒は、冷媒熱媒体間熱交換器26から熱媒体配管31内を通って分離部4に至る。このとき、仮に、分離部4から熱媒体配管31に冷媒が流入したとしても、制御部10が出口側弁7を閉じるため、出口側弁7より先に進まない。このため、冷媒が室内に設けられた熱媒体配管31に流入することを確実に抑制することができる。また、冷媒が熱媒体回路3に流入した場合、冷媒は、冷媒熱媒体間熱交換器26から逆流する可能性もある。しかし、制御部10が入口側弁8を閉じるため、入口側弁8より先に進まない。このため、冷媒が室内に設けられた熱媒体配管31に流入することを更に確実に抑制することができる。このように、本実施の形態8は、冷媒が流入した場合、出口側弁7及び入口側弁8によって、熱媒体回路3を室内側と室外側とに分離するため、冷媒が熱媒体回路3を通って室内に設けられた熱媒体配管31に流入することを抑制することができる。なお、制御部10がポンプ32を停止した場合、熱媒体が流れないため、冷媒も流れない。このため、冷媒が室内に流入することを抑制することができる。 When the refrigerant flows into the heat medium circuit 3, the refrigerant passes from the refrigerant heat medium heat exchanger 26 to the separation unit 4 through the heat medium pipe 31. At this time, even if the refrigerant flows into the heat medium pipe 31 from the separation unit 4, the control unit 10 closes the outlet side valve 7, and thus does not proceed beyond the outlet side valve 7. For this reason, it can suppress reliably that a refrigerant | coolant flows in into the heat medium piping 31 provided indoors. In addition, when the refrigerant flows into the heat medium circuit 3, the refrigerant may flow backward from the refrigerant heat medium heat exchanger 26. However, since the control part 10 closes the inlet side valve 8, it does not advance ahead of the inlet side valve 8. FIG. For this reason, it can suppress more reliably that a refrigerant | coolant flows in into the heat medium piping 31 provided indoors. As described above, in the eighth embodiment, when the refrigerant flows in, the heat medium circuit 3 is separated into the indoor side and the outdoor side by the outlet side valve 7 and the inlet side valve 8. It can suppress flowing into the heat medium piping 31 provided indoors through the room. In addition, when the control part 10 stops the pump 32, since a heat medium does not flow, a refrigerant | coolant does not flow. For this reason, it can suppress that a refrigerant | coolant flows in into a room | chamber interior.
実施の形態9.
 図18は、本発明の実施の形態9に係る空気調和装置800を示す回路図である。本実施の形態9は、制御部10及び電流検出部6dを備え、ポンプ32が熱源側熱交換器24の下流側に設けられている点で、実施の形態5と相違する。本実施の形態9では、実施の形態1~8と同一の部分は同一の符号を付して説明を省略し、実施の形態1~8との相違点を中心に説明する。
Embodiment 9 FIG.
FIG. 18 is a circuit diagram showing an air conditioner 800 according to Embodiment 9 of the present invention. The ninth embodiment is different from the fifth embodiment in that the control unit 10 and the current detection unit 6d are provided, and the pump 32 is provided on the downstream side of the heat source side heat exchanger 24. In the ninth embodiment, the same parts as those in the first to eighth embodiments are denoted by the same reference numerals, and the description thereof will be omitted. The description will focus on differences from the first to eighth embodiments.
 図18に示すように、電流検出部6dは、ポンプ32の運転電流を検出する。このように、本実施の形態9では、冷媒検出部6は、排出冷媒検出部6a及び電流検出部6dを有している。また、熱源機20には、制御部10が設けられている。制御部10は、各機器の制御を行うマイコン等である。 As shown in FIG. 18, the current detection unit 6 d detects the operating current of the pump 32. Thus, in the ninth embodiment, the refrigerant detection unit 6 includes the exhaust refrigerant detection unit 6a and the current detection unit 6d. The heat source device 20 is provided with a control unit 10. The control unit 10 is a microcomputer or the like that controls each device.
 制御部10は、冷媒検出部6によって検出された冷媒の濃度が予め設定された閾値を超えた場合、出口側弁7及び入口側弁8を閉じる。また、制御部10は、冷媒検出部6によって検出された冷媒の濃度が予め設定された閾値を超えた場合、ポンプ32を停止してもよい。本実施の形態9では、具体的には、所定時間毎に電流検出部6dによって検出されたポンプ32の電流の差が、予め設定された電流差閾値を超えた場合、出口側弁7及び入口側弁8を閉じる。 The control unit 10 closes the outlet side valve 7 and the inlet side valve 8 when the concentration of the refrigerant detected by the refrigerant detection unit 6 exceeds a preset threshold value. Moreover, the control part 10 may stop the pump 32, when the density | concentration of the refrigerant | coolant detected by the refrigerant | coolant detection part 6 exceeds the preset threshold value. In the ninth embodiment, specifically, when the difference in the current of the pump 32 detected by the current detection unit 6d every predetermined time exceeds a preset current difference threshold, the outlet side valve 7 and the inlet Close the side valve 8.
 例えば、冷媒が熱媒体回路3に流入した場合、ポンプ32の吸入側に冷媒が滞留して、ポンプ32が空回り運転したり、冷媒が流入して熱媒体回路3が凍結して断水状態となったりすると、ポンプ32の運転電流が変動する。このように、冷媒が熱媒体回路3に流入すると、ポンプ32の運転電流が変動する。これにより、電流検出部6dを用いることによって、冷媒が熱媒体回路3に流入したことを間接的に検出することができる。なお、ポンプ32は、冷媒熱媒体間熱交換器26の上流側に設けられてもよい。この場合も、電流検出部6dによって、冷媒が熱媒体回路3に流入したことを間接的に検出することができる。 For example, when the refrigerant flows into the heat medium circuit 3, the refrigerant stays on the suction side of the pump 32, and the pump 32 runs idle, or the refrigerant flows into the heat medium circuit 3 and freezes. If this happens, the operating current of the pump 32 varies. As described above, when the refrigerant flows into the heat medium circuit 3, the operating current of the pump 32 varies. Thereby, it can be indirectly detected that the refrigerant has flowed into the heat medium circuit 3 by using the current detector 6d. The pump 32 may be provided on the upstream side of the refrigerant heat medium heat exchanger 26. Also in this case, it is possible to indirectly detect that the refrigerant has flowed into the heat medium circuit 3 by the current detection unit 6d.
 冷媒が熱媒体回路3に流入した場合、冷媒は、冷媒熱媒体間熱交換器26から熱媒体配管31内を通って分離部4に至る。このとき、仮に、分離部4から熱媒体配管31に冷媒が流入したとしても、制御部10が出口側弁7を閉じるため、出口側弁7より先に進まない。このため、冷媒が室内に設けられた熱媒体配管31に流入することを確実に抑制することができる。また、冷媒が熱媒体回路3に流入した場合、冷媒は、冷媒熱媒体間熱交換器26から逆流する可能性もある。しかし、制御部10が入口側弁8を閉じるため、入口側弁8より先に進まない。このため、冷媒が室内に設けられた熱媒体配管31に流入することを更に確実に抑制することができる。 When the refrigerant flows into the heat medium circuit 3, the refrigerant passes from the refrigerant heat medium heat exchanger 26 to the separation unit 4 through the heat medium pipe 31. At this time, even if the refrigerant flows into the heat medium pipe 31 from the separation unit 4, the control unit 10 closes the outlet side valve 7, and thus does not proceed beyond the outlet side valve 7. For this reason, it can suppress reliably that a refrigerant | coolant flows in into the heat medium piping 31 provided indoors. In addition, when the refrigerant flows into the heat medium circuit 3, the refrigerant may flow backward from the refrigerant heat medium heat exchanger 26. However, since the control part 10 closes the inlet side valve 8, it does not advance ahead of the inlet side valve 8. FIG. For this reason, it can suppress more reliably that a refrigerant | coolant flows in into the heat medium piping 31 provided indoors.
 このように、本実施の形態9は、冷媒が流入した場合、出口側弁7及び入口側弁8によって、熱媒体回路3を室内側と室外側とに分離するため、冷媒が熱媒体回路3を通って室内に設けられた熱媒体配管31に流入することを抑制することができる。なお、制御部10がポンプ32を停止した場合、熱媒体が流れないため、冷媒も流れない。このため、冷媒が室内に流入することを抑制することができる。 As described above, in the ninth embodiment, when the refrigerant flows in, the heat medium circuit 3 is separated into the indoor side and the outdoor side by the outlet side valve 7 and the inlet side valve 8. It can suppress flowing into the heat medium piping 31 provided indoors through the room. In addition, when the control part 10 stops the pump 32, since a heat medium does not flow, a refrigerant | coolant does not flow. For this reason, it can suppress that a refrigerant | coolant flows in into a room | chamber interior.
実施の形態10.
 図19は、本発明の実施の形態10に係る空気調和装置900を示す回路図である。本実施の形態10は、電流検出部6dが省略されている点で、実施の形態9と相違する。本実施の形態10では、実施の形態1~9と同一の部分は同一の符号を付して説明を省略し、実施の形態1~9との相違点を中心に説明する。
Embodiment 10 FIG.
FIG. 19 is a circuit diagram showing an air conditioning apparatus 900 according to Embodiment 10 of the present invention. The tenth embodiment is different from the ninth embodiment in that the current detection unit 6d is omitted. In the tenth embodiment, the same parts as those in the first to ninth embodiments are denoted by the same reference numerals, and the description thereof will be omitted. The description will focus on the differences from the first to ninth embodiments.
 図19に示すように、冷媒検出部6は、排出冷媒検出部6aのみを有している。また、熱源機20には、制御部10が設けられている。制御部10は、各機器の制御を行うマイコン等である。 As shown in FIG. 19, the refrigerant detection unit 6 has only an exhausted refrigerant detection unit 6a. The heat source device 20 is provided with a control unit 10. The control unit 10 is a microcomputer or the like that controls each device.
 制御部10は、冷媒検出部6によって検出された冷媒の濃度が予め設定された閾値を超えた場合、出口側弁7及び入口側弁8を閉じる。また、制御部10は、冷媒検出部6によって検出された冷媒の濃度が予め設定された閾値を超えた場合、ポンプ32を停止してもよい。本実施の形態10では、具体的には、排出冷媒検出部6aによって検出された冷媒の濃度が、予め設定された冷媒閾値を超えた場合、出口側弁7及び入口側弁8を閉じる。このように、本実施の形態10では、冷媒を直接的に検出することができる。このため、冷媒の検出精度を向上させることができる。 The control unit 10 closes the outlet side valve 7 and the inlet side valve 8 when the concentration of the refrigerant detected by the refrigerant detection unit 6 exceeds a preset threshold value. Moreover, the control part 10 may stop the pump 32, when the density | concentration of the refrigerant | coolant detected by the refrigerant | coolant detection part 6 exceeds the preset threshold value. In the tenth embodiment, specifically, the outlet side valve 7 and the inlet side valve 8 are closed when the refrigerant concentration detected by the discharged refrigerant detector 6a exceeds a preset refrigerant threshold. Thus, in the tenth embodiment, the refrigerant can be directly detected. For this reason, the detection accuracy of the refrigerant can be improved.
 冷媒が熱媒体回路3に流入した場合、冷媒は、冷媒熱媒体間熱交換器26から熱媒体配管31内を通って分離部4に至る。このとき、仮に、分離部4から熱媒体配管31に冷媒が流入したとしても、制御部10が出口側弁7を閉じるため、出口側弁7より先に進まない。このため、冷媒が室内に設けられた熱媒体配管31に流入することを確実に抑制することができる。また、冷媒が熱媒体回路3に流入した場合、冷媒は、冷媒熱媒体間熱交換器26から逆流する可能性もある。しかし、制御部10が入口側弁8を閉じるため、入口側弁8より先に進まない。このため、冷媒が室内に設けられた熱媒体配管31に流入することを更に確実に抑制することができる。 When the refrigerant flows into the heat medium circuit 3, the refrigerant passes from the refrigerant heat medium heat exchanger 26 to the separation unit 4 through the heat medium pipe 31. At this time, even if the refrigerant flows into the heat medium pipe 31 from the separation unit 4, the control unit 10 closes the outlet side valve 7, and thus does not proceed beyond the outlet side valve 7. For this reason, it can suppress reliably that a refrigerant | coolant flows in into the heat medium piping 31 provided indoors. In addition, when the refrigerant flows into the heat medium circuit 3, the refrigerant may flow backward from the refrigerant heat medium heat exchanger 26. However, since the control part 10 closes the inlet side valve 8, it does not advance ahead of the inlet side valve 8. FIG. For this reason, it can suppress more reliably that a refrigerant | coolant flows in into the heat-medium piping 31 provided indoors.
 このように、本実施の形態10は、冷媒が流入した場合、出口側弁7及び入口側弁8によって、熱媒体回路3を室内側と室外側とに分離するため、冷媒が熱媒体回路3を通って室内に設けられた熱媒体配管31に流入することを抑制することができる。なお、制御部10がポンプ32を停止した場合、熱媒体が流れないため、冷媒も流れない。このため、冷媒が室内に流入することを抑制することができる。 As described above, in the tenth embodiment, when the refrigerant flows in, the heat medium circuit 3 is separated into the indoor side and the outdoor side by the outlet side valve 7 and the inlet side valve 8. It can suppress flowing into the heat medium piping 31 provided indoors through the room. In addition, when the control part 10 stops the pump 32, since a heat medium does not flow, a refrigerant | coolant does not flow. For this reason, it can suppress that a refrigerant | coolant flows in into a room | chamber interior.
実施の形態11.
 図20は、本発明の実施の形態11に係る空気調和装置1000を示す回路図である。本実施の形態11は、圧力検出部6b、温度検出部6c及び逃がし弁35を備えている点で、実施の形態9と相違する。本実施の形態11では、実施の形態1~10と同一の部分は同一の符号を付して説明を省略し、実施の形態1~10との相違点を中心に説明する。
Embodiment 11 FIG.
FIG. 20 is a circuit diagram showing an air conditioner 1000 according to Embodiment 11 of the present invention. The eleventh embodiment is different from the ninth embodiment in that a pressure detection unit 6b, a temperature detection unit 6c, and a relief valve 35 are provided. In the eleventh embodiment, the same parts as those in the first to tenth embodiments are denoted by the same reference numerals, and the description thereof will be omitted. The description will focus on differences from the first to tenth embodiments.
 図20に示すように、逃がし弁35は、熱媒体回路3において冷媒熱媒体間熱交換器26の下流側に設けられ、熱媒体回路3に流れる熱媒体を逃がす弁である。本実施の形態11において、冷媒検出部6は、排出冷媒検出部6a、圧力検出部6b、温度検出部6c及び電流検出部6dを有している。また、熱源機20には、制御部10が設けられている。制御部10は、各機器の制御を行うマイコン等である。 As shown in FIG. 20, the relief valve 35 is provided on the downstream side of the refrigerant heat medium heat exchanger 26 in the heat medium circuit 3 and is a valve for releasing the heat medium flowing in the heat medium circuit 3. In the eleventh embodiment, the refrigerant detection unit 6 includes an exhaust refrigerant detection unit 6a, a pressure detection unit 6b, a temperature detection unit 6c, and a current detection unit 6d. The heat source device 20 is provided with a control unit 10. The control unit 10 is a microcomputer or the like that controls each device.
 制御部10は、冷媒検出部6によって検出された冷媒の濃度が予め設定された閾値を超えた場合、加熱部9に通電して動作させる。また、制御部10は、冷媒検出部6によって検出された冷媒の濃度が予め設定された閾値を超えた場合、逃がし弁35を開く。なお、冷媒の検出は、排出冷媒検出部6aを用いてもよいし、圧力検出部6bを用いてもよいし、温度検出部6cを用いてもよいし、電流検出部6dを用いてもよい。 When the refrigerant concentration detected by the refrigerant detection unit 6 exceeds a preset threshold value, the control unit 10 energizes the heating unit 9 to operate it. Moreover, the control part 10 opens the relief valve 35, when the density | concentration of the refrigerant | coolant detected by the refrigerant | coolant detection part 6 exceeds the preset threshold value. In addition, the refrigerant | coolant detection may use the discharge | emission refrigerant | coolant detection part 6a, the pressure detection part 6b, the temperature detection part 6c, or the electric current detection part 6d. .
 冷媒が熱媒体回路3に流入した場合、熱媒体回路3に流れる熱媒体の圧力及び温度によって、冷媒が液状態で熱媒体回路3中を循環する可能性がある。このとき、加熱部9によって、分離部4内に流入した液状態の冷媒が加熱される。これにより、液状態の冷媒が気化され、分離部4及び排出部5によって、室外に排出される。また、冷媒が熱媒体回路3に流入した場合、逃がし弁35を開くことによって、熱媒体回路3に流れる熱媒体及び冷媒の圧力が低下する。これにより、冷媒の飽和温度が下がり、冷媒と共に流れる熱媒体との間で熱交換される。これにより、液状態の冷媒が気化され、分離部4及び排出部5によって、室外に排出される。 When the refrigerant flows into the heat medium circuit 3, the refrigerant may circulate in the heat medium circuit 3 in a liquid state depending on the pressure and temperature of the heat medium flowing through the heat medium circuit 3. At this time, the liquid refrigerant flowing into the separation unit 4 is heated by the heating unit 9. As a result, the liquid refrigerant is vaporized and discharged to the outside by the separation unit 4 and the discharge unit 5. When the refrigerant flows into the heat medium circuit 3, the pressure of the heat medium and the refrigerant flowing through the heat medium circuit 3 is reduced by opening the relief valve 35. Thereby, the saturation temperature of a refrigerant | coolant falls and heat exchange is carried out with the heat medium which flows with a refrigerant | coolant. As a result, the liquid refrigerant is vaporized and discharged to the outside by the separation unit 4 and the discharge unit 5.
実施の形態12.
 図21は、本発明の実施の形態12に係る空気調和装置1100を示す回路図である。本実施の形態12は、バイパス回路11及びバイパス流路切替部12を備えており、出口側弁7及び入口側弁8が省略されている点で、実施の形態11と相違する。本実施の形態12では、実施の形態1~11と同一の部分は同一の符号を付して説明を省略し、実施の形態1~11との相違点を中心に説明する。
Embodiment 12 FIG.
FIG. 21 is a circuit diagram showing an air conditioner 1100 according to Embodiment 12 of the present invention. The twelfth embodiment includes a bypass circuit 11 and a bypass flow path switching unit 12, and is different from the eleventh embodiment in that the outlet side valve 7 and the inlet side valve 8 are omitted. In the twelfth embodiment, the same parts as those in the first to eleventh embodiments are denoted by the same reference numerals, and the description thereof is omitted. The description will focus on the differences from the first to eleventh embodiments.
 図21に示すように、バイパス回路11は、空調空間の外部に設けられ、分離部4の流出口43と冷媒熱媒体間熱交換器26の上流側とを接続する回路である。バイパス流路切替部12は、分離部4の流出口43と、バイパス回路11と、負荷側熱交換器33の上流側とを接続し、分離部4の流出口43とバイパス回路11との接続、または分離部4の流出口43と負荷側熱交換器33の上流側との接続を切り替える部材である。バイパス流路切替部12は、例えば三方弁で構成されているが、2つの二方弁で構成されてもよい。 21, the bypass circuit 11 is a circuit that is provided outside the air-conditioned space and connects the outlet 43 of the separation unit 4 and the upstream side of the refrigerant heat medium heat exchanger 26. The bypass flow path switching unit 12 connects the outlet 43 of the separation unit 4, the bypass circuit 11, and the upstream side of the load side heat exchanger 33, and connects the outlet 43 of the separation unit 4 and the bypass circuit 11. Or a member that switches connection between the outlet 43 of the separation unit 4 and the upstream side of the load-side heat exchanger 33. The bypass flow path switching unit 12 is configured with, for example, a three-way valve, but may be configured with two two-way valves.
 制御部10は、通常時、流出口43から流出した液体が、負荷側熱交換器33に流れるようにバイパス流路切替部12を切り替えている。そして、制御部10は、冷媒検出部6によって検出された冷媒の濃度が予め設定された閾値を超えた場合、流出口43から流出した液体がバイパス回路11に流入するようにバイパス流路切替部12を切り替える。なお、冷媒の検出は、排出冷媒検出部6aを用いてもよいし、圧力検出部6bを用いてもよいし、温度検出部6cを用いてもよいし、電流検出部6dを用いてもよい。 The control unit 10 switches the bypass flow path switching unit 12 so that the liquid flowing out from the outlet 43 normally flows into the load side heat exchanger 33. And the control part 10 is a bypass flow-path switching part so that the liquid which flowed out from the outflow port 43 may flow into the bypass circuit 11, when the density | concentration of the refrigerant | coolant detected by the refrigerant | coolant detection part 6 exceeds the preset threshold value. 12 is switched. In addition, the refrigerant | coolant detection may use the discharge | emission refrigerant | coolant detection part 6a, the pressure detection part 6b, the temperature detection part 6c, or the electric current detection part 6d. .
 冷媒が熱媒体回路3に流入した場合、制御部10によって、流出口43から流出した液体がバイパス回路11に流入するようにバイパス流路切替部12が切り替えられる。これにより、冷媒は、熱媒体と共に、冷媒熱媒体間熱交換器26からポンプ32を通って、分離部4を通過した後、バイパス回路11に流入する。そして、バイパス回路11に流入した冷媒及び熱媒体は、室内を通過することなく、再び冷媒熱媒体間熱交換器26に流入する。従って、冷媒が室内に設けられた熱媒体配管31に流入することを抑制することができる。また、冷媒及び熱媒体は、冷媒熱媒体間熱交換器26、ポンプ32、分離部4及びバイパス回路11の順に循環するため、循環回数分だけ、分離部4を通過する。このため、冷媒が循環すればするほど、分離部4及び排出部5において、冷媒が排出される。従って、冷媒が室内に設けられた熱媒体配管31に流入することを更に抑制することができる。 When the refrigerant flows into the heat medium circuit 3, the bypass channel switching unit 12 is switched by the control unit 10 so that the liquid flowing out from the outlet 43 flows into the bypass circuit 11. As a result, the refrigerant flows together with the heat medium from the refrigerant heat medium heat exchanger 26 through the pump 32, passes through the separation unit 4, and then flows into the bypass circuit 11. And the refrigerant | coolant and heat medium which flowed into the bypass circuit 11 flow in into the refrigerant | coolant heat medium heat exchanger 26 again, without passing a room | chamber interior. Therefore, the refrigerant can be prevented from flowing into the heat medium pipe 31 provided in the room. Moreover, since the refrigerant and the heat medium circulate in the order of the refrigerant heat medium heat exchanger 26, the pump 32, the separation unit 4, and the bypass circuit 11, the refrigerant and the heat medium pass through the separation unit 4 by the number of circulations. For this reason, the more the refrigerant circulates, the more the refrigerant is discharged in the separation unit 4 and the discharge unit 5. Accordingly, it is possible to further suppress the refrigerant from flowing into the heat medium pipe 31 provided in the room.
実施の形態13.
 図22は、本発明の実施の形態13に係る空気調和装置1200を示す回路図である。本実施の形態13は、分離部4及び排出部5が省略されている点で、実施の形態12と相違する。本実施の形態13では、実施の形態1~12と同一の部分は同一の符号を付して説明を省略し、実施の形態1~12との相違点を中心に説明する。
Embodiment 13 FIG.
FIG. 22 is a circuit diagram showing an air conditioner 1200 according to Embodiment 13 of the present invention. The thirteenth embodiment is different from the twelfth embodiment in that the separation unit 4 and the discharge unit 5 are omitted. In the thirteenth embodiment, the same parts as those in the first to twelfth embodiments are denoted by the same reference numerals, and the description thereof will be omitted. The description will focus on differences from the first to twelfth embodiments.
 図22に示すように、バイパス回路11は、空調空間の外部に設けられ、冷媒熱媒体間熱交換器26の下流側と冷媒熱媒体間熱交換器26の上流側とを接続する回路である。本実施の形態13では、ポンプ32が、冷媒熱媒体間熱交換器26の下流側に設けられているため、バイパス回路11は、ポンプ32の下流側と冷媒熱媒体間熱交換器26の上流側とを接続している。なお、ポンプ32が、冷媒熱媒体間熱交換器26の下流側に設けられている場合、バイパス回路11は、冷媒熱媒体間熱交換器26の下流側とポンプ32の上流側とを接続する。バイパス流路切替部12は、ポンプ32の下流側と、バイパス回路11と、負荷側熱交換器33の上流側とを接続し、分離部4の流出口43とバイパス回路11との接続、または分離部4の流出口43と負荷側熱交換器33の上流側との接続を切り替える部材である。バイパス流路切替部12は、例えば三方弁で構成されているが、2つの二方弁で構成されてもよい。 As shown in FIG. 22, the bypass circuit 11 is a circuit that is provided outside the air-conditioned space and connects the downstream side of the refrigerant heat medium heat exchanger 26 and the upstream side of the refrigerant heat medium heat exchanger 26. . In the thirteenth embodiment, since the pump 32 is provided on the downstream side of the refrigerant heat medium heat exchanger 26, the bypass circuit 11 is provided on the downstream side of the pump 32 and the refrigerant heat medium heat exchanger 26. Is connected to the side. When the pump 32 is provided on the downstream side of the refrigerant heat exchanger 26, the bypass circuit 11 connects the downstream side of the refrigerant heat exchanger 26 and the upstream side of the pump 32. . The bypass flow path switching unit 12 connects the downstream side of the pump 32, the bypass circuit 11, and the upstream side of the load side heat exchanger 33, and connects the outlet 43 of the separation unit 4 and the bypass circuit 11, or It is a member that switches the connection between the outlet 43 of the separation unit 4 and the upstream side of the load side heat exchanger 33. The bypass flow path switching unit 12 is configured with, for example, a three-way valve, but may be configured with two two-way valves.
 制御部10は、通常時、ポンプ32から搬送された熱媒体が、負荷側熱交換器33に流れるようにバイパス流路切替部12を切り替えている。そして、制御部10は、冷媒検出部6によって検出された冷媒の濃度が予め設定された閾値を超えた場合、ポンプ32から搬送された熱媒体及び冷媒がバイパス回路11に流入するようにバイパス流路切替部12を切り替える。なお、冷媒の検出は、圧力検出部6bを用いてもよいし、温度検出部6cを用いてもよいし、電流検出部6dを用いてもよい。 The control unit 10 switches the bypass flow path switching unit 12 so that the heat medium conveyed from the pump 32 normally flows to the load side heat exchanger 33. Then, when the concentration of the refrigerant detected by the refrigerant detection unit 6 exceeds a preset threshold, the control unit 10 bypasses the heat medium and the refrigerant conveyed from the pump 32 so as to flow into the bypass circuit 11. The path switching unit 12 is switched. In addition, the detection of the refrigerant may use the pressure detection unit 6b, the temperature detection unit 6c, or the current detection unit 6d.
 冷媒が熱媒体回路3に流入した場合、制御部10によって、ポンプ32から搬送された熱媒体及び冷媒がバイパス回路11に流入するようにバイパス流路切替部12が切り替えられる。これにより、冷媒は、熱媒体と共に、冷媒熱媒体間熱交換器26からポンプ32を通って、バイパス回路11に流入する。そして、バイパス回路11に流入した冷媒及び熱媒体は、室内を通過することなく、再び冷媒熱媒体間熱交換器26に流入する。従って、冷媒が室内に設けられた熱媒体配管31に流入することを抑制することができる。このように、バイパス回路11が設けられることによって、分離部4及び排出部5を省略しても、冷媒が室内に設けられた熱媒体配管31に流入することを抑制することができる。 When the refrigerant flows into the heat medium circuit 3, the bypass flow path switching unit 12 is switched by the control unit 10 so that the heat medium and the refrigerant conveyed from the pump 32 flow into the bypass circuit 11. Thereby, a refrigerant | coolant flows into the bypass circuit 11 through the pump 32 from the heat exchanger 26 between refrigerant | coolant heat media with a heat medium. And the refrigerant | coolant and heat medium which flowed into the bypass circuit 11 flow in into the refrigerant | coolant heat medium heat exchanger 26 again, without passing a room | chamber interior. Therefore, the refrigerant can be prevented from flowing into the heat medium pipe 31 provided in the room. Thus, by providing the bypass circuit 11, even if the separation unit 4 and the discharge unit 5 are omitted, the refrigerant can be prevented from flowing into the heat medium pipe 31 provided in the room.
実施の形態14.
 図23は、本発明の実施の形態14における副分離部13を示す模式図である。本実施の形態14は、副分離部13を備えている点で、実施の形態4と相違する。本実施の形態14では、実施の形態1~13と同一の部分は同一の符号を付して説明を省略し、実施の形態1~13との相違点を中心に説明する。
Embodiment 14 FIG.
FIG. 23 is a schematic diagram showing the sub-separation unit 13 according to Embodiment 14 of the present invention. The fourteenth embodiment is different from the fourth embodiment in that the sub-separation unit 13 is provided. In the fourteenth embodiment, the same parts as those in the first to thirteenth embodiments will be denoted by the same reference numerals and the description thereof will be omitted, and differences from the first to thirteenth embodiments will be mainly described.
 図23に示すように、副分離部13は、排出部5の排出口51に設けられ、気体と液体とを分離する部材である。副分離部13は、排出部5の排出口51に接続され、上方に延びる排出管に接続されている。副分離部13は、管状の部材であり、排出管から下方に延び、底部において液抜き用の配管に接続され、底部から再び上方に延びて、上端にガス排出口13bが形成されている。このように、副分離部13は、気体をトラップする複合管で構成されている。副分離部13の先端には、排出冷媒検出部6aが配置されている。なお、液抜き用の配管には、液抜き弁14が設けられている。 As shown in FIG. 23, the sub-separation unit 13 is a member that is provided in the discharge port 51 of the discharge unit 5 and separates gas and liquid. The sub-separation unit 13 is connected to the discharge port 51 of the discharge unit 5 and is connected to a discharge pipe extending upward. The sub-separation part 13 is a tubular member, extends downward from the discharge pipe, is connected to a pipe for draining at the bottom, extends upward again from the bottom, and has a gas discharge port 13b at the upper end. Thus, the subseparation part 13 is comprised with the composite pipe | tube which traps gas. At the front end of the sub-separation unit 13, an exhaust refrigerant detection unit 6a is disposed. A liquid drain valve 14 is provided in the pipe for liquid drain.
 冷媒が熱媒体回路3に流入して、排出部5から排出されるとき、冷媒と共に液状の熱媒体も若干噴出する場合がある。このとき、噴出した液状の熱媒体が、排出冷媒検出部6aにかかる可能性がある。本実施の形態14は、排出部5から排出された液状の熱媒体が、副分離部13によって、底部に溜まり、底部から、液抜き用の配管に流れ落ちる。そして、液抜き弁14が開かれることによって、液状の熱媒体は、液抜き弁14を通って排出される。従って、副分離部13を通過して、ガス排出口13bから冷媒が排出されるとき、液状の熱媒体が噴出しない。よって、排出冷媒検出部6aに液状の熱媒体がかからないため、排出冷媒検出部6aの検出精度を維持することができる。 When the refrigerant flows into the heat medium circuit 3 and is discharged from the discharge unit 5, the liquid heat medium may be slightly ejected together with the refrigerant. At this time, the ejected liquid heat medium may be applied to the discharged refrigerant detection unit 6a. In the fourteenth embodiment, the liquid heat medium discharged from the discharge unit 5 is accumulated at the bottom by the sub-separation unit 13 and flows down from the bottom to the liquid draining pipe. The liquid heat medium is discharged through the liquid drain valve 14 by opening the liquid drain valve 14. Therefore, when the refrigerant passes through the sub-separation unit 13 and is discharged from the gas discharge port 13b, the liquid heat medium is not ejected. Therefore, since the liquid heat medium is not applied to the discharged refrigerant detection unit 6a, the detection accuracy of the discharged refrigerant detection unit 6a can be maintained.
 (変形例)
 図24は、本発明の実施の形態14の変形例における副分離部13aを示す模式図である。変形例は、副分離部13aの構造が実施の形態14と相違する。図24に示すように、変形例の副分離部13aは、容器である。副分離部13aは、排出部5の排出口51に接続され、上方に延びる排出管に接続されている。副分離部13aは、底部において液抜き用の配管に接続され、上部にガス排出口13bが形成されている。副分離部13aの先端には、排出冷媒検出部6aが配置されている。なお、液抜き用の配管には、液抜き弁14が設けられている。
(Modification)
FIG. 24 is a schematic diagram showing a sub-separation unit 13a in a modification of the fourteenth embodiment of the present invention. In the modification, the structure of the sub-separation part 13a is different from that of the fourteenth embodiment. As shown in FIG. 24, the sub-separation part 13a of a modification is a container. The subseparation part 13a is connected to the discharge port 51 of the discharge part 5, and is connected to the discharge pipe extended upwards. The sub-separation part 13a is connected to a pipe for draining at the bottom, and a gas discharge port 13b is formed at the top. An exhausted refrigerant detector 6a is disposed at the tip of the sub-separator 13a. A liquid drain valve 14 is provided in the pipe for liquid drain.
 冷媒が熱媒体回路3に流入して、排出部5から排出されるとき、冷媒と共に液状の熱媒体も若干噴出する場合がある。このとき、噴出した液状の熱媒体が、排出冷媒検出部6aにかかる可能性がある。変形例は、排出部5から排出された液状の熱媒体が、副分離部13aによって、底部に溜まり、底部から、液抜き用の配管に流れ落ちる。そして、液抜き弁14が開かれることによって、液状の熱媒体は、液抜き弁14を通って排出される。従って、副分離部13aを通過して、ガス排出口13bから冷媒が排出されるとき、液状の熱媒体が噴出しない。よって、排出冷媒検出部6aに液状の熱媒体がかからないため、実施の形態14と同様に、排出冷媒検出部6aの検出精度を維持することができる。 When the refrigerant flows into the heat medium circuit 3 and is discharged from the discharge unit 5, the liquid heat medium may be slightly ejected together with the refrigerant. At this time, the ejected liquid heat medium may be applied to the discharged refrigerant detection unit 6a. In the modification, the liquid heat medium discharged from the discharge unit 5 is accumulated at the bottom by the sub-separation unit 13a, and flows down from the bottom to the liquid draining pipe. The liquid heat medium is discharged through the liquid drain valve 14 by opening the liquid drain valve 14. Accordingly, when the refrigerant passes through the sub-separation part 13a and is discharged from the gas discharge port 13b, the liquid heat medium is not ejected. Therefore, since the liquid refrigerant is not applied to the exhaust refrigerant detection unit 6a, the detection accuracy of the exhaust refrigerant detection unit 6a can be maintained as in the fourteenth embodiment.
 1 空気調和装置、2 冷媒回路、3 熱媒体回路、4,4a,4b,4c,4d 分離部、5 排出部、6 冷媒検出部、6a 排出冷媒検出部、6b 圧力検出部、6c 温度検出部、6d 電流検出部、7 出口側弁、8 入口側弁、9 加熱部、10 制御部、11 バイパス回路、12 バイパス流路切替部、13,13a 副分離部、13b ガス排出口、14 液抜き弁、20 熱源機、21 冷媒配管、22 圧縮機、23 流路切替装置、24 熱源側熱交換器、25 膨張部、26 冷媒熱媒体間熱交換器、30 冷暖房器具、31 熱媒体配管、32 ポンプ、33 負荷側熱交換器、34 エア抜きバルブ、35 逃がし弁、41 接続口、41a 下端、42 放出口、43 流出口、43a 上端、44 延在部、45 放出部、46 流出部、51 排出口、100,100a,100b 空気調和装置、200 空気調和装置、300 空気調和装置、400 空気調和装置、600 空気調和装置、700 空気調和装置、800 空気調和装置、900 空気調和装置、1000 空気調和装置、1100 空気調和装置、1200 空気調和装置。 1 air conditioner, 2 refrigerant circuit, 3 heat medium circuit, 4, 4a, 4b, 4c, 4d separation unit, 5 discharge unit, 6 refrigerant detection unit, 6a discharge refrigerant detection unit, 6b pressure detection unit, 6c temperature detection unit 6d current detection unit, 7 outlet side valve, 8 inlet side valve, 9 heating unit, 10 control unit, 11 bypass circuit, 12 bypass flow path switching unit, 13, 13a sub-separation unit, 13b gas discharge port, 14 drainage Valve, 20 Heat source machine, 21 Refrigerant pipe, 22 Compressor, 23 Flow path switching device, 24 Heat source side heat exchanger, 25 Expansion section, 26 Refrigerant heat medium heat exchanger, 30 Heating / cooling appliance, 31 Heat medium pipe, 32 Pump, 33 load side heat exchanger, 34 air vent valve, 35 relief valve, 41 connection port, 41a lower end, 42 discharge port, 43 outflow port, 43a upper end, 44 extension Part, 45 discharge part, 46 outflow part, 51 outlet, 100, 100a, 100b air conditioner, 200 air conditioner, 300 air conditioner, 400 air conditioner, 600 air conditioner, 700 air conditioner, 800 air Conditioner, 900 Air conditioner, 1000 Air conditioner, 1100 Air conditioner, 1200 Air conditioner.

Claims (27)

  1.  圧縮機、熱源側熱交換器、膨張部及び冷媒熱媒体間熱交換器が冷媒配管により接続され、冷媒が循環する冷媒回路と、
     ポンプ、前記冷媒熱媒体間熱交換器、空調空間の空気と熱交換する負荷側熱交換器が熱媒体配管により接続され、熱媒体が循環する熱媒体回路と、を備え、
     前記冷媒熱媒体間熱交換器から流出して前記負荷側熱交換器に流入する前の前記熱媒体が流れる前記熱媒体配管のうちの前記空調空間の外部に設けられ、前記冷媒と前記熱媒体とを分離する分離部と、
     前記分離部に接続され、前記分離部で分離された前記冷媒を前記空調空間の外部に排出する排出部と、
     を有する空気調和装置。
    A refrigerant circuit in which a compressor, a heat source side heat exchanger, an expansion section, and a refrigerant heat medium heat exchanger are connected by a refrigerant pipe and the refrigerant circulates;
    A heat exchanger between the refrigerant heat medium, a load side heat exchanger that exchanges heat with air in the air-conditioned space, is connected by a heat medium pipe, and the heat medium circulates.
    The refrigerant and the heat medium are provided outside the air-conditioned space in the heat medium pipe through which the heat medium flows out from the refrigerant heat medium heat exchanger and flows into the load-side heat exchanger. And a separation unit that separates
    A discharge unit connected to the separation unit and configured to discharge the refrigerant separated by the separation unit to the outside of the air-conditioned space;
    An air conditioner.
  2.  前記分離部の流路断面積は、
     前記熱媒体配管の流路断面積よりも大きい
     請求項1記載の空気調和装置。
    The flow path cross-sectional area of the separation part is
    The air conditioner according to claim 1, wherein the air conditioner is larger than a cross-sectional area of the heat medium pipe.
  3.  前記分離部には、
     前記熱媒体回路における前記冷媒熱媒体間熱交換器の下流側に接続される接続口と、
     前記排出部に接続され、前記冷媒を前記排出部に放出する放出口と、
     前記熱媒体回路における前記負荷側熱交換器の上流側に接続され前記熱媒体が流出する流出口と、が形成されている
     請求項1又は2記載の空気調和装置。
    In the separation part,
    A connection port connected to the downstream side of the heat exchanger related to the refrigerant heat medium in the heat medium circuit;
    A discharge port connected to the discharge unit and discharging the refrigerant to the discharge unit;
    The air conditioner according to claim 1 or 2, wherein an outlet port connected to an upstream side of the load side heat exchanger in the heat medium circuit and from which the heat medium flows out is formed.
  4.  前記分離部は、
     前記接続口から上方に延びて上端から横方向に延びる延在部と、
     前記延在部から下方に延びて前記流出口に接続される流出部と、
     前記流出部の上方に設けられ前記放出口に接続される放出部と、を有する
     請求項3記載の空気調和装置。
    The separation unit is
    An extending portion extending upward from the connection port and extending laterally from the upper end;
    An outflow part extending downward from the extension part and connected to the outlet;
    The air conditioner according to claim 3, further comprising: a discharge portion provided above the outflow portion and connected to the discharge port.
  5.  前記接続口は、
     高さ方向において前記流出口以上の位置に形成されている
     請求項3又は4記載の空気調和装置。
    The connection port is
    The air conditioner according to claim 3 or 4, wherein the air conditioner is formed at a position above the outlet in the height direction.
  6.  前記接続口の下端は、
     高さ方向において前記流出口の上端以上の位置に形成されている
     請求項5記載の空気調和装置。
    The lower end of the connection port is
    The air conditioner according to claim 5, wherein the air conditioner is formed at a position above the upper end of the outlet in the height direction.
  7.  前記空調空間の外部において前記分離部の下流側に設けられ、熱媒体の流量を調整する出口側弁を更に備える
     請求項1~6のいずれか1項に記載の空気調和装置。
    The air conditioner according to any one of claims 1 to 6, further comprising an outlet-side valve that is provided on the downstream side of the separation unit outside the air-conditioned space and adjusts the flow rate of the heat medium.
  8.  前記空調空間の外部において前記分離部の上流側に設けられ、熱媒体の流量を調整する入口側弁を更に備える
     請求項1~7のいずれか1項に記載の空気調和装置。
    The air conditioner according to any one of claims 1 to 7, further comprising an inlet side valve that is provided on the upstream side of the separation unit outside the air-conditioned space and adjusts the flow rate of the heat medium.
  9.  前記ポンプは、
     前記冷媒熱媒体間熱交換器の下流側に設けられている
     請求項1~8のいずれか1項に記載の空気調和装置。
    The pump is
    The air conditioner according to any one of claims 1 to 8, wherein the air conditioner is provided on a downstream side of the refrigerant heat exchanger related to heat medium.
  10.  前記分離部に設けられ、前記分離部内の前記液体を加熱する加熱部を更に備える
     請求項1~9のいずれか1項に記載の空気調和装置。
    The air conditioner according to any one of claims 1 to 9, further comprising a heating unit that is provided in the separation unit and heats the liquid in the separation unit.
  11.  前記排出部に設けられ、気体と液体とを分離する副分離部を更に備える
     請求項1~10のいずれか1項に記載の空気調和装置。
    The air conditioner according to any one of claims 1 to 10, further comprising a sub-separation unit that is provided in the discharge unit and separates gas and liquid.
  12.  前記空調空間の外部に設けられ、前記分離部の前記流出口と前記冷媒熱媒体間熱交換器の上流側とを接続するバイパス回路を更に備える
     請求項1~11のいずれか1項に記載の空気調和装置。
    The bypass circuit that is provided outside the air-conditioned space and further connects the outlet of the separation unit and the upstream side of the refrigerant heat exchanger related to heat medium. Air conditioner.
  13.  前記分離部の前記流出口と、前記バイパス回路と、前記負荷側熱交換器の上流側とを接続し、前記分離部の前記流出口と前記バイパス回路との接続、または前記分離部の前記流出口と前記負荷側熱交換器の上流側との接続を切り替えるバイパス流路切替部を更に備える
     請求項12記載の空気調和装置。
    The outlet of the separation unit, the bypass circuit, and the upstream side of the load-side heat exchanger are connected, the connection of the outlet of the separation unit and the bypass circuit, or the flow of the separation unit The air conditioning apparatus according to claim 12, further comprising a bypass flow path switching unit that switches connection between an outlet and an upstream side of the load-side heat exchanger.
  14.  前記空調空間の外部において前記熱媒体回路に設けられ、前記熱媒体回路に流れる熱媒体を逃がす逃がし弁を更に備える
     請求項1~13のいずれか1項に記載の空気調和装置。
    The air conditioner according to any one of claims 1 to 13, further comprising a relief valve provided in the heat medium circuit outside the air-conditioned space and allowing the heat medium flowing through the heat medium circuit to escape.
  15.  前記熱媒体回路に冷媒が流入したことを検出する冷媒検出部を更に備える
     請求項1~14のいずれか1項に記載の空気調和装置。
    The air conditioner according to any one of claims 1 to 14, further comprising a refrigerant detector that detects that the refrigerant has flowed into the heat medium circuit.
  16.  前記冷媒検出部によって検出された冷媒の濃度が予め設定された閾値を超えた場合、前記出口側弁を閉じる制御部を更に備える
     請求項7に従属する請求項15記載の空気調和装置。
    The air conditioning apparatus according to claim 15, further comprising a control unit that closes the outlet-side valve when a concentration of the refrigerant detected by the refrigerant detection unit exceeds a preset threshold value.
  17.  前記冷媒検出部によって検出された冷媒の濃度が予め設定された閾値を超えた場合、前記入口側弁を閉じる制御部を更に備える
     請求項8に従属する請求項15又は16記載の空気調和装置。
    The air conditioning apparatus according to claim 15 or 16, further comprising a control unit that closes the inlet valve when a concentration of the refrigerant detected by the refrigerant detection unit exceeds a preset threshold value.
  18.  前記冷媒検出部によって検出された冷媒の濃度が予め設定された閾値を超えた場合、前記加熱部を動作させる制御部を更に備える
     請求項10に従属する請求項15~17のいずれか1項に記載の空気調和装置。
    The control unit according to any one of claims 15 to 17, further comprising a control unit that operates the heating unit when the concentration of the refrigerant detected by the refrigerant detection unit exceeds a preset threshold value. The air conditioning apparatus described.
  19.  前記冷媒検出部によって検出された冷媒の濃度が予め設定された閾値を超えた場合、前記流出口から流出した液体が前記バイパス回路に流入するように前記バイパス流路切替部を切り替える制御部を更に備える
     請求項13に従属する請求項15~18のいずれか1項に記載の空気調和装置。
    A controller that switches the bypass flow path switching unit so that the liquid flowing out from the outlet flows into the bypass circuit when the concentration of the refrigerant detected by the refrigerant detection unit exceeds a preset threshold value; The air conditioning apparatus according to any one of claims 15 to 18, which is dependent on the thirteenth aspect.
  20.  前記冷媒検出部によって検出された冷媒の濃度が予め設定された閾値を超えた場合、前記逃がし弁を開く制御部を更に備える
     請求項14に従属する請求項15~19のいずれか1項に記載の空気調和装置。
    The control unit according to any one of claims 15 to 19, further comprising a control unit that opens the relief valve when a concentration of the refrigerant detected by the refrigerant detection unit exceeds a preset threshold value. Air conditioner.
  21.  前記冷媒検出部は、
     前記排出部に設けられ、前記排出部から排出される冷媒を検出する排出冷媒検出部を有する
     請求項15~20のいずれか1項に記載の空気調和装置。
    The refrigerant detector is
    The air conditioner according to any one of claims 15 to 20, further comprising an exhaust refrigerant detection unit that is provided in the exhaust unit and detects refrigerant discharged from the exhaust unit.
  22.  前記冷媒検出部は、
     前記熱媒体回路に流れる熱媒体の圧力を検出する圧力検出部を有する
     請求項15~21のいずれか1項に記載の空気調和装置。
    The refrigerant detector is
    The air conditioner according to any one of claims 15 to 21, further comprising a pressure detection unit configured to detect a pressure of the heat medium flowing through the heat medium circuit.
  23.  前記冷媒検出部は、
     前記熱媒体回路に流れる熱媒体の温度を検出する温度検出部を有する
     請求項15~22のいずれか1項に記載の空気調和装置。
    The refrigerant detector is
    The air conditioner according to any one of claims 15 to 22, further comprising a temperature detection unit configured to detect a temperature of the heat medium flowing in the heat medium circuit.
  24.  前記冷媒検出部は、
     前記ポンプの運転電流を検出する電流検出部を有する
     請求項15~23のいずれか1項に記載の空気調和装置。
    The refrigerant detector is
    The air conditioner according to any one of claims 15 to 23, further comprising a current detection unit that detects an operation current of the pump.
  25.  前記分離部は、
     内部の流速が1500mm/s以下となる流路断面積を有する
     請求項1~24のいずれか1項に記載の空気調和装置。
    The separation unit is
    The air conditioner according to any one of claims 1 to 24, having a flow path cross-sectional area in which an internal flow velocity is 1500 mm / s or less.
  26.  前記分離部で分離された前記熱媒体は、前記負荷側熱交換器に流れる
     請求項1~25のいずれか1項に記載の空気調和装置。
    The air conditioner according to any one of claims 1 to 25, wherein the heat medium separated by the separation unit flows into the load-side heat exchanger.
  27.  圧縮機、熱源側熱交換器、膨張部及び冷媒熱媒体間熱交換器が冷媒配管により接続され、冷媒が循環する冷媒回路と、
     ポンプ、前記冷媒熱媒体間熱交換器、空調空間の空気と熱交換する負荷側熱交換器が熱媒体配管により接続され、熱媒体が循環する熱媒体回路と、
     前記空調空間の外部に設けられ、前記冷媒熱媒体間熱交換器の下流側と前記冷媒熱媒体間熱交換器の上流側とを接続するバイパス回路と、
     を備える空気調和装置。
    A refrigerant circuit in which a compressor, a heat source side heat exchanger, an expansion section, and a refrigerant heat medium heat exchanger are connected by a refrigerant pipe and the refrigerant circulates;
    A heat medium circuit in which a pump, a heat exchanger between the refrigerant heat medium, a load side heat exchanger that exchanges heat with air in an air-conditioned space is connected by a heat medium pipe, and the heat medium circulates;
    A bypass circuit provided outside the air-conditioned space, and connecting a downstream side of the refrigerant heat exchanger related to heat exchanger and an upstream side of the refrigerant heat exchanger related to the heat exchanger;
    An air conditioner comprising:
PCT/JP2017/006375 2017-02-21 2017-02-21 Air conditioning device WO2018154628A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2017/006375 WO2018154628A1 (en) 2017-02-21 2017-02-21 Air conditioning device
EP17898257.5A EP3587947A4 (en) 2017-02-21 2017-02-21 Air conditioning device
JP2019501784A JP6771642B2 (en) 2017-02-21 2017-02-21 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/006375 WO2018154628A1 (en) 2017-02-21 2017-02-21 Air conditioning device

Publications (1)

Publication Number Publication Date
WO2018154628A1 true WO2018154628A1 (en) 2018-08-30

Family

ID=63254324

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/006375 WO2018154628A1 (en) 2017-02-21 2017-02-21 Air conditioning device

Country Status (3)

Country Link
EP (1) EP3587947A4 (en)
JP (1) JP6771642B2 (en)
WO (1) WO2018154628A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3859223A4 (en) * 2018-09-28 2021-11-24 Daikin Industries, Ltd. Heat load processing system
EP4047288A1 (en) 2021-02-18 2022-08-24 Panasonic Intellectual Property Management Co., Ltd. Heat medium circulation system
EP4166872A1 (en) * 2019-04-29 2023-04-19 Wolf GmbH A heat pump system having a refrigerant separation device and a method for operating a heat pump system
EP4325128A1 (en) * 2022-08-17 2024-02-21 Panasonic Intellectual Property Management Co., Ltd. Heat medium circulation device
EP4336108A1 (en) * 2022-09-12 2024-03-13 Vaillant GmbH Refrigerant separation in heating circuit

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2024027208A (en) * 2022-08-17 2024-03-01 パナソニックIpマネジメント株式会社 Heat medium circulation device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1183086A (en) * 1997-09-16 1999-03-26 Daikin Ind Ltd Refrigerator
JP2000130877A (en) 1998-10-27 2000-05-12 Daikin Ind Ltd Air conditioning equipment
JP2007163071A (en) * 2005-12-15 2007-06-28 Hitachi Appliances Inc Heat pump type cooling/heating system
WO2013038577A1 (en) * 2011-09-13 2013-03-21 三菱電機株式会社 Heat pump device and method for controlling heat pump device
JP2013137141A (en) * 2011-12-28 2013-07-11 Miura Co Ltd Method for detecting leakage of refrigerating machine oil
JP2013167398A (en) * 2012-02-15 2013-08-29 Mitsubishi Electric Corp Outdoor unit and heat pump cycle device
WO2014132378A1 (en) * 2013-02-28 2014-09-04 三菱電機株式会社 Air conditioning device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3109500B2 (en) * 1998-12-16 2000-11-13 ダイキン工業株式会社 Refrigeration equipment
JP3523584B2 (en) * 2000-10-12 2004-04-26 株式会社 日立インダストリイズ Heat pump system
JP4225304B2 (en) * 2005-08-08 2009-02-18 三菱電機株式会社 Control method of refrigeration air conditioner
CN102365502B (en) * 2009-03-26 2014-05-21 三菱电机株式会社 Air-conditioning apparatus

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1183086A (en) * 1997-09-16 1999-03-26 Daikin Ind Ltd Refrigerator
JP2000130877A (en) 1998-10-27 2000-05-12 Daikin Ind Ltd Air conditioning equipment
JP2007163071A (en) * 2005-12-15 2007-06-28 Hitachi Appliances Inc Heat pump type cooling/heating system
WO2013038577A1 (en) * 2011-09-13 2013-03-21 三菱電機株式会社 Heat pump device and method for controlling heat pump device
JP2013137141A (en) * 2011-12-28 2013-07-11 Miura Co Ltd Method for detecting leakage of refrigerating machine oil
JP2013167398A (en) * 2012-02-15 2013-08-29 Mitsubishi Electric Corp Outdoor unit and heat pump cycle device
WO2014132378A1 (en) * 2013-02-28 2014-09-04 三菱電機株式会社 Air conditioning device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3587947A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3859223A4 (en) * 2018-09-28 2021-11-24 Daikin Industries, Ltd. Heat load processing system
EP4166872A1 (en) * 2019-04-29 2023-04-19 Wolf GmbH A heat pump system having a refrigerant separation device and a method for operating a heat pump system
EP4047288A1 (en) 2021-02-18 2022-08-24 Panasonic Intellectual Property Management Co., Ltd. Heat medium circulation system
EP4325128A1 (en) * 2022-08-17 2024-02-21 Panasonic Intellectual Property Management Co., Ltd. Heat medium circulation device
EP4336108A1 (en) * 2022-09-12 2024-03-13 Vaillant GmbH Refrigerant separation in heating circuit

Also Published As

Publication number Publication date
JPWO2018154628A1 (en) 2019-11-07
JP6771642B2 (en) 2020-10-21
EP3587947A4 (en) 2020-01-22
EP3587947A1 (en) 2020-01-01

Similar Documents

Publication Publication Date Title
WO2018154628A1 (en) Air conditioning device
JP6887496B2 (en) Equipment using heat pump
JP6336121B2 (en) Refrigeration cycle equipment
JP2017142039A (en) Air conditioner
JP6099608B2 (en) Heat pump equipment
EP3598039B1 (en) Heat pump device and installation method therefor
CN110050160B (en) Heat pump device
JP5211894B2 (en) Air conditioner
JP6785961B2 (en) Equipment using heat pump
JP2011122767A (en) Air conditioner and method for detecting refrigerant content of air conditioner
JP2017142038A (en) Refrigeration cycle device
EP2837900B1 (en) Air-conditioning device
EP3109566B1 (en) Air conditioning device
JP2010002137A (en) Air conditioner
JPWO2018235125A1 (en) Equipment using heat pump
JP6687116B2 (en) Heat pump device
JP2020003154A (en) Air conditioner
JP7236606B2 (en) refrigeration cycle equipment
JP2021055866A (en) Water heat exchange system
JP2019045077A (en) Refrigerant system including direct contact heat exchanger
JP4655906B2 (en) Refrigeration equipment
WO2014002145A1 (en) Air conditioner and control method therefor
JP2015078799A (en) Air-conditioning system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17898257

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019501784

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017898257

Country of ref document: EP

Effective date: 20190923