WO2014002145A1 - Air conditioner and control method therefor - Google Patents

Air conditioner and control method therefor Download PDF

Info

Publication number
WO2014002145A1
WO2014002145A1 PCT/JP2012/004235 JP2012004235W WO2014002145A1 WO 2014002145 A1 WO2014002145 A1 WO 2014002145A1 JP 2012004235 W JP2012004235 W JP 2012004235W WO 2014002145 A1 WO2014002145 A1 WO 2014002145A1
Authority
WO
WIPO (PCT)
Prior art keywords
discharge gas
heat exchanger
compressor
cooling
cooling device
Prior art date
Application number
PCT/JP2012/004235
Other languages
French (fr)
Japanese (ja)
Inventor
悟 梁池
加藤 央平
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to GB1421070.2A priority Critical patent/GB2517346B/en
Priority to JP2014522229A priority patent/JPWO2014002145A1/en
Priority to PCT/JP2012/004235 priority patent/WO2014002145A1/en
Priority to US14/402,447 priority patent/US20150153079A1/en
Publication of WO2014002145A1 publication Critical patent/WO2014002145A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/89Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • F25B30/02Heat pumps of the compression type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B6/00Compression machines, plants or systems, with several condenser circuits
    • F25B6/04Compression machines, plants or systems, with several condenser circuits arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • F24F11/84Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers using valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0089Systems using radiation from walls or panels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • F25B40/02Subcoolers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • F25B43/02Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat for separating lubricants from the refrigerant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/65Electronic processing for selecting an operating mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2221/00Details or features not otherwise provided for
    • F24F2221/54Heating and cooling, simultaneously or alternatively
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/006Compression machines, plants or systems with reversible cycle not otherwise provided for two pipes connecting the outdoor side to the indoor side with multiple indoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02741Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using one four-way valve

Definitions

  • the present invention relates to an air conditioner and a control method thereof, and more particularly, to an air conditioner that performs a cooling operation and a heating operation and a control method thereof.
  • the compressor In the air conditioner, there are reciprocal type, screw type, scroll type, rotary type and the like structures for the compressor that generates the driving force for circulating the refrigerant.
  • it is common to enclose refrigeration oil for lubrication of the sliding portion.
  • it is necessary to continue to supply the compressor with a predetermined concentration and a predetermined amount.
  • the refrigerating machine oil is more than the required amount during stable operation so as to continue to supply a predetermined amount and a predetermined amount to the compressor. May be enclosed.
  • an oil separator is installed at the discharge part of the compressor, the refrigeration oil and the refrigerant are separated by this oil separator, and the separated refrigeration oil is returned to the compressor, so that A method for reducing the concentration of oil circulating in the water has been proposed (see, for example, Patent Documents 1 and 2). Further, it has been disclosed that the separation efficiency is improved by cooling the compressor discharge gas to about the condensation temperature of the refrigerant and separating the gaseous refrigerating machine oil (see, for example, Patent Document 3).
  • JP 62-80473 A Japanese Utility Model Publication No. 02-131171 JP-A-62-98170
  • the present invention has been made to solve the above-described problems, and it is an object of the present invention to provide an air conditioner capable of improving COP both during cooling operation and during heating operation, and a control method therefor. It is what.
  • An air conditioner has a refrigerant circuit in which a compressor, a discharge gas cooling device, an oil separator, a four-way valve, an indoor heat exchanger, an expansion valve, and an outdoor heat exchanger are connected in an annular shape.
  • the air conditioner is capable of cooling operation and heating operation by switching the flow path by the operation determining means for determining whether the operation state is the cooling operation or the heating operation, and the operation determining means is the cooling operation. If it is determined that there is, the discharge gas cooling device is controlled so as to cool the discharge gas discharged from the compressor, and if it is determined that the heating operation is being performed, the discharge gas cooling device is controlled so as not to cool the discharge gas. And a heat dissipation control means.
  • the discharge gas is cooled by the discharge gas cooling device to promote separation in the oil separator to lower the oil circulation rate and improve the COP.
  • cooling of the discharge gas can be stopped to suppress the heat radiation in the discharge gas cooling device, and the reduction in COP can be reduced.
  • FIG. 2 is a ph diagram showing an operation state during cooling operation of the air conditioner of FIG. 1.
  • FIG. 2 is a ph diagram showing an operation state during heating operation of the air conditioner of FIG. 1.
  • It is a graph which shows the relationship between the pressure loss of a compressor suction
  • It is a graph which shows the relationship between the oil circulation rate and COP ratio in the air conditioning apparatus of FIG.
  • FIG. 1 is a schematic diagram showing Embodiment 1 of an air-conditioning apparatus of the present invention.
  • An air conditioner 100 in FIG. 1 performs both a cooling operation and a heating operation, and includes a compressor 1, a discharge gas cooling device 2, an oil separator 3, a four-way valve 4 as a flow path switch, an indoor heat. It has a refrigerant circuit in which the exchanger 6, the expansion valve 8, and the outdoor heat exchanger 9 are annularly connected by a refrigerant circuit.
  • the compressor 1, the discharge gas cooling device 2, the oil separator 3, the four-way valve 4, the expansion valve 8, and the outdoor heat exchanger 9 constitute an outdoor unit 10
  • the indoor heat exchanger 6 is an indoor unit 11. Is configured.
  • the outdoor unit 10 and the indoor unit 11 are connected by a gas side extension pipe 5 and a refrigerant liquid side extension pipe 7, and the refrigerant is connected to the outdoor unit 10 and the indoor unit via the gas side extension pipe 5 and the refrigerant liquid side extension pipe 7. Cycle between 11 and 11.
  • the compressor 1 uses the refrigerant sent from the four-way valve 4 as a high-temperature and high-pressure discharge gas.
  • Various methods can be used as the compressor 1.
  • As the compressor 1 that generates the driving force for circulating the refrigerant various techniques such as a reciprocating type, a screw type, a scroll type, and a rotary type can be used.
  • the discharge gas cooling device 2 cools the discharge gas discharged from the compressor 1 and includes a pump 12, a radiator 13, and a heat exchanger 14.
  • the pump 12, the radiator 13 and the heat exchanger 14 constitute a circulation circuit for circulating water, brine and the like.
  • the pump 12 circulates circulating materials such as water and brine between the radiator 13 and the heat exchanger 14.
  • the radiator 13 cools (heatsinks) water or brine circulating in the circulation circuit.
  • the heat exchanger 14 performs heat exchange between the discharge gas and water, brine, or the like flowing through the circulation circuit.
  • the heat exchanger 14 includes, for example, a refrigerant flow path through which the discharge gas from the compressor 1 flows and a cooling flow path 14a through which the circulating material flows.
  • the heat flow of the discharge gas flowing through the refrigerant flow path is reduced by the cooling flow path 14a.
  • the discharge gas is cooled by taking away the circulating material flowing through.
  • this heat exchanger 14 various well-known techniques, such as what is called a shell and tube type, a shell and coil type, a double pipe type, can be used.
  • the pump 12 when the pump 12 is operated, water, brine, and the like circulate in the circulation circuit, and heat exchange is performed between the water and the discharge gas in the heat exchanger 14.
  • the heat-exchanged water is radiated (cooled) by the radiator 13.
  • the discharge gas is cooled (heat radiation).
  • the pump 12 when the pump 12 is stopped, the circulation of water and the like in the circulation circuit is stopped, heat exchange in the heat exchanger 14 is not performed, and the discharge gas is not cooled.
  • the operation of the pump 12 is controlled by the heat radiation control means 22, and the heat radiation control means 22 controls whether the discharge gas is cooled by the discharge gas cooling device 2 by controlling ON / OFF of the pump 12. .
  • the oil separator 3 separates oil from the discharged gas and returns the separated oil to the compressor 1.
  • the oil separator 3 compresses the separated oil provided in the bottom portion, the inflow piping into which the gas discharged from the discharge gas cooling device 2 flows, the discharge piping for discharging the refrigerant gas to the four-way valve 4, and the bottom. It has a structure provided with a pipe returning to the machine 1. When gas flows into the hollow container from the inflow pipe, the oil adheres to the surface of the hollow container and flows down toward the bottom surface of the hollow container, and the oil on the bottom surface is returned to the compressor 1 through the pipe. On the other hand, the refrigerant gas is discharged from the discharge pipe toward the four-way valve 4.
  • the four-way valve 4 switches the direction in which the refrigerant flows according to the operation mode of the indoor unit 11. Specifically, during the cooling operation, the four-way valve 4 is controlled so that the discharge gas flows from the oil separator 3 to the outdoor heat exchanger 9. On the other hand, the switching of the four-way valve 4 is controlled so that the refrigerant flows from the oil separator 3 toward the indoor heat exchanger 6 during the heating operation.
  • the expansion valve (throttle valve) 8 throttles the refrigerant flow path in order to adjust the amount of refrigerant flowing into the evaporator.
  • the indoor heat exchanger 6 exchanges heat between the indoor air and the refrigerant
  • the outdoor heat exchanger 9 exchanges heat between the outdoor air and the refrigerant.
  • the indoor heat exchanger 6 serves as an evaporator
  • the outdoor heat exchanger 9 serves as a condenser.
  • the refrigerant absorbs heat from the indoor air and outputs cold air
  • the outdoor heat exchanger 9 the refrigerant is radiated by the outdoor air and outputs hot air.
  • the indoor heat exchanger 6 becomes a condenser and the outdoor heat exchanger 9 becomes an evaporator.
  • the refrigerant radiates heat to the indoor air and outputs hot air
  • the outdoor heat exchanger 9 absorbs heat into the outdoor air and outputs cold air.
  • the operation of the outdoor unit 10 described above is controlled by the controller 20.
  • the controller 20 is provided with an operation determination unit 21 and a heat dissipation control unit 22 in order to switch the operation of the discharge gas cooling device 2 between the cooling operation and the heating operation.
  • the operation determination means 21 determines whether the operation state is a cooling operation or a heating operation. For example, the operation determination means 21 determines the operation state based on the switching state of the four-way valve 4.
  • the heat dissipation control means 22 controls cooling in the discharge gas cooling device 2 based on the determination in the operation determination means 21. Specifically, the heat radiation control means 22 controls the heat radiation of the refrigerant in the heat exchanger 14 by controlling ON / OFF of the operation of the pump 12. When it is determined that the operation determination unit 21 is in the cooling operation, the heat radiation control unit 22 controls the pump 12 so that the cooling in the heat exchanger 14 is performed. When the operation determination unit 21 determines that the heating operation is performed, the heat radiation control unit 22 controls the pump 12 to stop and not cool.
  • FIG. 2 is a graph showing an example of a ph diagram during the cooling operation of the air conditioner 100, and an example of the operation of the air conditioner 100 during the cooling operation will be described with reference to FIGS.
  • the refrigerant is sucked into the compressor 1 in a low-pressure gas state (state a), and the low-pressure gas is compressed by the compressor 1 to become a high-temperature and high-pressure gas (state b).
  • the discharge gas from the compressor 1 is cooled by the discharge gas cooling device 2 (state c), and is separated into refrigerant and refrigerating machine oil in the oil separator 3.
  • the refrigerating machine oil separated by the oil separator 3 returns to the suction of the compressor 1.
  • the refrigerant is condensed in the outdoor heat exchanger 9 to become a high-pressure liquid refrigerant (state d).
  • the liquid refrigerant becomes a low-pressure two-phase refrigerant at the expansion valve 8 (state e), passes through the refrigerant liquid-side extension pipe 7, and becomes low-pressure gas at the indoor heat exchanger 6 (state f). Thereafter, the low pressure gas passes through the gas side extension pipe 5 and returns to the compressor 1 (state a).
  • FIG. 3 is a graph showing an example of a ph diagram during the heating operation of the air conditioner 100, and an example of the operation of the air conditioner 100 during the heating operation will be described with reference to FIGS.
  • the compressor 1 in a low-pressure gas state (state a10), and is compressed by the compressor 1 into a high-temperature and high-pressure gas (state b10).
  • the discharge gas cooling device 2 does not radiate heat, and the high-temperature and high-pressure gas is separated by the oil separator 3 into refrigerant and refrigerating machine oil.
  • the refrigerating machine oil separated by the oil separator 3 returns to the suction of the compressor 1.
  • the refrigerant passes through the gas side extension pipe 5 and is condensed in the indoor heat exchanger 6 to become a high-pressure liquid refrigerant (state d10).
  • This high-pressure liquid refrigerant becomes a low-pressure two-phase refrigerant at the expansion valve 8 (state e10).
  • the refrigerant passes through the refrigerant liquid side extension pipe 7, enters a low-pressure gas state in the outdoor heat exchanger 9 (state f10), and returns to the compressor 1 (state a10).
  • the cooling by the discharge gas cooling device 2 during the cooling operation promotes the separation of the refrigerating machine oil from the refrigerant, so that the pressure loss of the compressor suction from the evaporator outlet is reduced during the cooling operation.
  • the COP can be improved by the heat release of the refrigerant in the discharge gas cooling device 2.
  • the cooling by the discharge gas cooling device 2 is not performed during the heating operation, so that the reduction of the enthalpy difference in the outdoor heat exchanger (condenser) can be prevented and the COP reduction can be prevented.
  • FIG. 4 is a graph showing the relationship between pressure loss and COP when the compressor is sucked from the evaporator outlet.
  • the horizontal axis of FIG. 4 is (evaporator outlet pressure) / (compressor inlet pressure) ⁇ 100, indicating 100% when the pressure loss is 0, and the higher the pressure loss, the higher the pressure loss. Indicates that the ratio (%) increases (the longer the distance).
  • the vertical axis represents the COP ratio when the pressure loss is 0 (the horizontal axis is 100%). In FIG. 4, it can be seen that the COP decreases as the pressure loss from the evaporator outlet to the compressor suction increases.
  • the indoor heat exchanger 6 serves as an evaporator
  • the outdoor heat exchanger 9 serves as a condenser
  • the indoor heat exchanger 6 becomes a condenser
  • the outdoor heat exchanger 9 becomes an evaporator. That is, the distance from the evaporator outlet to the compressor 1 means the distance from the indoor heat exchanger 6 of the indoor unit 11 to the compressor 1 of the outdoor unit 10 during the cooling operation, and the outdoor unit 10 outdoor during the heating operation. It means the distance from the heat exchanger 9 to the compressor 1 of the outdoor unit 10.
  • the compressor Since the long gas side extension pipe 5 is used to connect the outdoor unit 10 and the indoor unit 11 during the cooling operation, the compressor is discharged from the outlet of the evaporator (indoor heat exchanger 6), which is a large COP lowering factor for the refrigeration cycle. The pressure loss up to the inlet of 1 increases.
  • the outdoor heat exchanger 9 serves as an evaporator, but since the constituent devices are the same in the outdoor unit 10, the piping connecting the outdoor heat exchanger 9 and the compressor 1 is the gas side described above. It is significantly shorter than the extension pipe 5. That is, there is no long pipe that causes a large pressure loss such as the gas side extension pipe 5 between the outlet of the evaporator and the suction of the compressor as in the cooling operation. Therefore, during heating operation, the pressure loss reduction from the outlet of the evaporator (outdoor heat exchanger 9) to the suction port of the compressor 1 is minimized.
  • FIG. 5 shows that the higher the oil circulation rate, the lower the COP ratio. That is, it means that the more the oil separator 3 separates the refrigerating machine oil from the discharge gas of the compressor 1, the pressure loss in the gas side extension pipe 5 is improved and the COP is improved.
  • the COP can be improved regardless of the operation state. However, it has been found that if the cooling by the discharge gas cooling device 2 is performed during the heating operation, the COP is lowered.
  • FIG. 6 is a graph showing the relationship between the heat release amount and COP in the discharge gas cooling device 2 during heating operation.
  • the horizontal axis of FIG. 6 is the ratio of the heat release amount in the discharge gas cooling device 2 to the heat release amount of the entire refrigerant during the heating operation (heat release amount in the discharge gas cooling device 2 / total heat release amount) ⁇ 100.
  • the vertical axis represents the COP ratio based on the COP when the heat release amount in the discharge gas cooling device 2 is zero. As shown in FIG. 6, the COP ratio decreases as the heat dissipation amount increases.
  • cooling the discharge gas of the compressor 1 in the discharge gas cooling device 2 during the heating operation means that the amount of heat that is originally desired for heating the room by the indoor heat exchanger 6 is on the upstream side of the indoor heat exchanger 6. It means that the discharged gas cooling device 2 radiates heat. In order to supplement the capacity required for heating, it is necessary to increase the speed of the compressor 1, so that cooling by the discharge gas cooling device 2 becomes a factor of lowering the COP ratio.
  • the heat radiation control means 22 performs control so that the discharge gas cooling device 2 performs cooling during the cooling operation.
  • COP can be improved by performing heat radiation with the discharge gas cooling device 2, reducing the pressure loss of the compressor suction
  • the heat radiation control means 22 performs control so that the discharge gas cooling device 2 is not cooled during the heating operation. Thereby, reduction of the enthalpy difference in the outdoor heat exchanger (condenser) can be prevented and COP reduction can be prevented.
  • an air conditioner that always performs cooling operation installs a heat exchanger inside a refrigerator or the like, installs an outdoor unit outside the warehouse, and connects the heat exchanger and outdoor unit inside the warehouse below the piping, It has a configuration connected by extension piping.
  • the extension pipe since the extension pipe is long, the pressure loss of the compressor suction from the evaporator outlet that greatly affects the COP of the air conditioner is large. Therefore, the COP improvement effect by the pressure loss improvement of the compressor suction from the evaporator outlet due to the improvement of the separation efficiency is great. Furthermore, COP can be improved by reducing the condensation temperature due to cooling of the compressor discharge gas.
  • the air conditioning apparatus 100 that performs cooling operation and heating operation of an air conditioner or the like, there is a problem that COP is lowered during the heating operation.
  • the indoor heat exchanger 6 is installed indoors
  • the outdoor unit 10 is installed outside
  • the indoor heat exchanger 6 and the outdoor are connected by the extension pipes 5 and 7.
  • the structure which connects the machine 10 is the same as that of a refrigerator. Accordingly, the cooling temperature is reduced by cooling the gas discharged from the compressor during the cooling operation, and the compressor suction is connected from the evaporator outlet by a long extension pipe, so that the COP improvement due to the lower oil circulation rate is great.
  • cooling the discharge gas of the compressor 1 is originally intended to be used as a heating capacity in the indoor heat exchanger 6. It means taking away heat.
  • the pipe connecting the evaporator outlet and the suction port of the compressor 1 is short because the evaporator and the compressor 1 are connected in the same outdoor unit, and the COP improvement effect due to a decrease in the oil circulation rate is also very high. small. For this reason, there exists a problem that COP will fall if the discharge gas of a compressor is cooled at the time of heating operation.
  • the discharge gas cooling device 2 performs cooling during the cooling operation.
  • COP can be improved by reducing heat loss from the outlet of the evaporator to the suction of the compressor, and by dissipating heat with the discharge gas cooling device 2.
  • cooling heat radiation
  • reduction of the enthalpy difference in the outdoor heat exchanger (condenser) can be prevented and COP reduction can be prevented.
  • FIG. 7 is a flowchart showing a preferred embodiment of the control method for the air conditioner of the present invention.
  • the control method for the air conditioner 100 will be described with reference to FIGS. 1 and 7.
  • the operation determination means 21 determines whether the operation is a cooling operation or a heating operation (step ST2).
  • the discharge gas cooling device 2 does not perform cooling (step ST3).
  • the discharge gas cooling device 2 cools the discharge gas by the action of the heat radiation control means 22.
  • FIG. FIG. 8 is a schematic diagram showing an air conditioner according to a second embodiment of the present invention.
  • the air conditioner will be described with reference to FIGS. 1 and 8.
  • the control method of the air conditioner of FIG. 8 is different from that of the air conditioner 100 of FIG. 1 in that the discharge gas cooling device 2 controls the discharge gas during the cooling operation and when the operation frequency f is equal to or higher than the set operation frequency fref. This is the point of cooling.
  • the heat dissipation control means 22 in FIG. 1 has a function of determining whether or not the operating frequency f of the compressor 1 is equal to or higher than a preset operating frequency fref.
  • the heat release control means 22 controls the discharge gas cooling device 2 to cool the discharge gas when the compressor 1 is operating at an operation frequency equal to or higher than the set operation frequency fref.
  • the compressor 1 is operating at an operation frequency lower than the set operation frequency fref even in the cooling operation, control is performed so that the discharge gas cooling device 2 does not cool the discharge gas.
  • the set operation frequency fref is determined in advance in consideration of the effect of reducing the pressure loss due to the reduction of the oil circulation rate and the influence of the input increase of the pump of the discharge gas cooling device 2.
  • the operation frequency f of the compressor 1 and the oil circulation rate are in a proportional relationship, and the higher the operation frequency, the greater the oil circulation rate.
  • the COP improvement effect obtained by reducing the oil circulation rate using the power of the pump of the discharge gas cooling device 2 is the pump of the discharge gas cooling device 2 and the like.
  • the heat radiation control means 22 does not immediately cool the discharge gas.
  • the discharge gas cooling device 2 may be controlled. Thereafter, when the operation time at the set operation frequency fref or more continues for a set time set in advance, the heat radiation control means 22 may be controlled to start cooling the discharge gas by the discharge gas cooling device 2.
  • the cooling operation in the discharge gas cooling device 2 may not be switched immediately at the set operation frequency fref due to the increase / decrease rate of the operation frequency f.
  • FIG. FIG. 9 is a schematic diagram showing Embodiment 3 of the air conditioner of the present invention.
  • the air conditioner 200 will be described with reference to FIG.
  • the air conditioning apparatus 200 in FIG. 9 is different from the air conditioning apparatus 100 in FIG. 1 in the configuration of the discharge gas cooling apparatus.
  • the discharge gas cooling device 202 has a configuration capable of cooling the discharge gas flowing through the refrigerant circuit by circulating the suction gas before compression in the cooling flow path 14a of the heat exchanger 14.
  • the heat dissipation control means 222 performs switching control by the first three-way valve 215 as to whether or not the intake gas before entering the compressor 1 is circulated through the cooling flow path 14a of the heat exchanger 14. Specifically, the heat dissipation control means 222 switches and controls the three-way valve 215 so that the intake gas flows into the heat exchanger 14 during the cooling operation. Then, heat exchange is performed between the suction gas and the discharge gas from the compressor 1 in the heat exchanger 14 to cool the discharge gas. On the other hand, the heat radiation control means 222 switches and controls the three-way valve so that the refrigerant before compression does not flow to the heat exchanger 14 during the heating operation. Then, since the suction gas does not flow in the heat exchanger 14, the discharge gas from the compressor 1 is not cooled.
  • the COP can be improved by reducing the pressure loss of the compressor suction from the outlet of the evaporator during the cooling operation and radiating the refrigerant in the discharge gas cooling device 202. .
  • the cooling by the discharge gas cooling device 202 is not performed during the heating operation, reduction of the enthalpy difference in the outdoor heat exchanger (condenser) 9 can be prevented and COP reduction can be prevented.
  • the refrigerant can be heated in the heat exchanger 14 before the refrigerant is sucked into the compressor 1, and the liquid refrigerant returns to the compressor 1 and damages the compressor 1. Can be prevented.
  • FIG. FIG. 10 is a schematic view showing Embodiment 4 of the air conditioner of the present invention, and the air conditioner 300 will be described with reference to FIG.
  • symbol is attached
  • the air conditioning apparatus 300 in FIG. 10 is different from the air conditioning apparatus 100 in FIG.
  • the discharge gas cooling device 302 in FIG. 10 is connected to the radiator 13 connected between the discharge side piping of the compressor 1 and the oil separator 3, and a part of the air blown from the blower 16 to the radiator 13. And a damper 311 for blocking or passing the air flow.
  • a duct for guiding the wind from the blower 16 may be installed between the blower 16 and the radiator 13.
  • the damper 311 has a function of changing the direction in which the wind sent from the blower 16 hits the heat radiator 13 and the direction in which the air is blocked, and its operation is controlled by the heat radiation control means 322.
  • a cooling effect can be enlarged by attaching a fin etc. to the heat radiator 13 and enlarging a surface area.
  • the heat radiation control means 322 controls to open the damper 311 and send wind to the radiator 13 during the cooling operation. Then, the discharge gas is cooled in the radiator 13. On the other hand, the heat dissipation control means 322 closes the damper 311 during the heating operation and blocks the wind to the radiator 13. Then, the discharge gas cooling device 2 does not cool the discharge gas.
  • FIG. FIG. 11 is a schematic view showing Embodiment 5 of the air-conditioning apparatus of the present invention, and the air-conditioning apparatus 400 will be described with reference to FIG.
  • the air conditioning apparatus 400 in FIG. 11 is different from the air conditioning apparatus 100 in FIG. 1 in the configuration of the discharge gas cooling apparatus.
  • the discharge gas cooling device 402 performs heat exchange between the pump 12, the radiator 13 connected to the pump 12, and the discharge gas from the compressor 1 connected to the radiator 13 and circulating water.
  • a second one connected to the discharge pipe of the compressor 1 and the heat exchanger 14, one of which is bypassed from the discharge pipe of the compressor 1 to the inlet of the oil separator 3.
  • the three-way valve 418 is provided. That is, a flow path through which the discharge gas from the compressor 1 passes through the heat exchanger 14 by switching the second three-way valve, and a flow path that bypasses the heat exchanger 14 and flows to the oil separator 3. Will be switched.
  • the operation of the second three-way valve 418 is controlled by the heat radiation control means 22.
  • the heat dissipation control means 422 switches the second three-way valve 418 so that the discharge gas from the compressor 1 passes through the heat exchanger 14 during the cooling operation. Then, the discharge gas is cooled in the heat exchanger 14. On the other hand, the heat release control means 422 switches the second three-way valve 418 so as to bypass the heat exchanger 14 that performs heat exchange with the discharge pipe of the compressor 1 during the heating operation. Then, the discharge gas flows into the oil separator 3 without passing through the heat exchanger 14, and the discharge gas is not cooled.
  • the heat radiation control means 22, 222, 322, and 422 exemplify a case where control is performed so that heat is dissipated during cooling operation, and heat is not dissipated when cooling operation is not performed. You may adjust so that it may do. For example, when the cooling operation is performed as shown in FIG. 8 and is lower than the set operation frequency fref, the flow rate on the cooling flow path 14a side in the heat exchanger 14 is reduced, or the air flow to the radiator 13 in FIG. Cooling may be performed in a state where the cooling capacity is set low by controlling the damper 311 so as to reduce the amount to be reduced.
  • a hollow container is used as an example of the configuration of the oil separator 3 .
  • Various known techniques such as a method of collecting the fine particles can be used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Signal Processing (AREA)
  • Mathematical Physics (AREA)
  • Fuzzy Systems (AREA)
  • Analytical Chemistry (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Air Conditioning Control Device (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

When operation commences in the air conditioner (100) of the present invention, an operation determination means (21) determines whether said operation is cooling operation or heating operation. When it is determined that the operation is not cooling operation, cooling is not performed at a discharge gas cooling device (2). When it is determined that the operation is cooling operation, cooling is performed at the discharge gas cooling device (2).

Description

空気調和装置およびその制御方法Air conditioning apparatus and control method thereof
 本発明は、空気調和装置およびその制御方法に関し、特に、冷房運転と暖房運転とを行う空気調和装置およびその制御方法に関する。 The present invention relates to an air conditioner and a control method thereof, and more particularly, to an air conditioner that performs a cooling operation and a heating operation and a control method thereof.
 空気調和装置において、冷媒を循環する駆動力を発生させる圧縮機には、レシプロ式、スクリュー式、スクロール式、ロータリー式などの構造が存在する。いずれの方式においても、摺動部の潤滑のために冷凍機油を封入しておくのが一般的である。圧縮機の信頼性確保のために、所定の濃度以上かつ所定の量を圧縮機に供給し続ける必要がある。特に、最も油濃度が薄まりやすく油量が減少する条件(例えば起動時)においても、所定の濃度以上かつ所定の量を圧縮機に供給し続けるように、安定運転時には必要な量以上の冷凍機油を封入していることがある。 In the air conditioner, there are reciprocal type, screw type, scroll type, rotary type and the like structures for the compressor that generates the driving force for circulating the refrigerant. In any system, it is common to enclose refrigeration oil for lubrication of the sliding portion. In order to ensure the reliability of the compressor, it is necessary to continue to supply the compressor with a predetermined concentration and a predetermined amount. In particular, even under conditions where the oil concentration is most likely to be thinned (for example, during startup), the refrigerating machine oil is more than the required amount during stable operation so as to continue to supply a predetermined amount and a predetermined amount to the compressor. May be enclosed.
 安定運転時に必要な量以上の冷凍機油を封入することによって圧縮機内の油面高さが上昇し、圧縮機内の冷凍機油が吐出されやすくなる。そして、冷媒内に粘度の高い冷凍機油の循環量(油循環率)の増加に伴い配管内の圧力損失が増加し、COP能力を低下させているという問題がある。 ¡Encapsulating more refrigeration oil than necessary for stable operation increases the oil level in the compressor, making it easier to discharge the refrigeration oil in the compressor. And there exists a problem that the pressure loss in piping increases with the increase in the circulation amount (oil circulation rate) of refrigeration oil with a high viscosity in a refrigerant | coolant, and the COP capability is reduced.
 この問題の解決のために、圧縮機の吐出部に油分離器を設置し、この油分離器により冷凍機油と冷媒とを分離し、分離した冷凍機油を圧縮機に戻すことにより、冷凍サイクル内を循環する油濃度を低下させる方法が提案されている(たとえば特許文献1、2参照)。また、圧縮機吐出ガスを冷媒の凝縮温度程度まで冷却し、ガス状の冷凍機油を分離することにより、分離効率を向上させることが開示されている(たとえば特許文献3参照)。 In order to solve this problem, an oil separator is installed at the discharge part of the compressor, the refrigeration oil and the refrigerant are separated by this oil separator, and the separated refrigeration oil is returned to the compressor, so that A method for reducing the concentration of oil circulating in the water has been proposed (see, for example, Patent Documents 1 and 2). Further, it has been disclosed that the separation efficiency is improved by cooling the compressor discharge gas to about the condensation temperature of the refrigerant and separating the gaseous refrigerating machine oil (see, for example, Patent Document 3).
特開昭62-80473号公報JP 62-80473 A 実開平02-131171号公報Japanese Utility Model Publication No. 02-131171 特開昭62-98170号公報JP-A-62-98170
 ところで、近年、空気調和装置におけるCOP(成績係数:Coefficient of Performance)の向上が望まれている。特許文献1-3に示すように冷媒と油を分離して冷媒の油循環率を下げることによりCOPの向上につながると考えられている。しかし、油循環率のみに着目した場合には却ってCOPが悪化するおそれがあるという問題がある。 By the way, in recent years, improvement of COP (Coefficient of Performance) in air conditioners is desired. As shown in Patent Documents 1-3, it is considered that the COP is improved by separating the refrigerant and oil and lowering the oil circulation rate of the refrigerant. However, when attention is paid only to the oil circulation rate, there is a problem that the COP may be deteriorated.
 本発明は、上記のような課題を解決するためになされたもので、冷房運転時および暖房運転時の双方においてCOPの改善を図ることができる空気調和装置およびその制御方法を提供することを目的とするものである。 The present invention has been made to solve the above-described problems, and it is an object of the present invention to provide an air conditioner capable of improving COP both during cooling operation and during heating operation, and a control method therefor. It is what.
 本発明に係る空気調和装置は、圧縮機、吐出ガス冷却装置、油分離器、四方弁、室内熱交換器、膨張弁、室外熱交換器が環状に接続された冷媒回路を有し、四方弁による流路の切替により冷房運転と暖房運転とが可能な空気調和装置であって、運転状態が冷房運転であるか暖房運転であるかを判定する運転判定手段と、運転判定手段が冷房運転であると判定した場合、圧縮機から吐出される吐出ガスを冷却するように吐出ガス冷却装置を制御し、暖房運転であると判定した場合、吐出ガスを冷却しないように吐出ガス冷却装置を制御する放熱制御手段とを備えたものである。 An air conditioner according to the present invention has a refrigerant circuit in which a compressor, a discharge gas cooling device, an oil separator, a four-way valve, an indoor heat exchanger, an expansion valve, and an outdoor heat exchanger are connected in an annular shape. The air conditioner is capable of cooling operation and heating operation by switching the flow path by the operation determining means for determining whether the operation state is the cooling operation or the heating operation, and the operation determining means is the cooling operation. If it is determined that there is, the discharge gas cooling device is controlled so as to cool the discharge gas discharged from the compressor, and if it is determined that the heating operation is being performed, the discharge gas cooling device is controlled so as not to cool the discharge gas. And a heat dissipation control means.
 本発明に係る油分離器及び空気調和装置によれば、冷房運転時には吐出ガス冷却装置による吐出ガスの冷却を行い油分離器における分離を促進して油循環率を下げCOPの向上を図るとともに、暖房運転時には吐出ガスの冷却を停止して吐出ガス冷却装置での放熱を押さえCOPの低下を低減させることができる。 According to the oil separator and the air conditioner according to the present invention, during cooling operation, the discharge gas is cooled by the discharge gas cooling device to promote separation in the oil separator to lower the oil circulation rate and improve the COP. During the heating operation, cooling of the discharge gas can be stopped to suppress the heat radiation in the discharge gas cooling device, and the reduction in COP can be reduced.
本発明に係る空気調和装置の実施形態1の構成を示す模式図である。It is a schematic diagram which shows the structure of Embodiment 1 of the air conditioning apparatus which concerns on this invention. 図1の空気調和装置の冷房運転時の運転状態を示すp-h線図である。FIG. 2 is a ph diagram showing an operation state during cooling operation of the air conditioner of FIG. 1. 図1の空気調和装置の暖房運転時の運転状態を示すp-h線図である。FIG. 2 is a ph diagram showing an operation state during heating operation of the air conditioner of FIG. 1. 図1の空気調和装置の冷房運転時での蒸発器出口から圧縮機吸入の圧力損失とCOPの関係を示すグラフである。It is a graph which shows the relationship between the pressure loss of a compressor suction | inhalation from the evaporator exit at the time of air_conditionaing | cooling operation of the air conditioning apparatus of FIG. 1, and COP. 図1の空気調和装置における油循環率とCOP比との関係を示すグラフである。It is a graph which shows the relationship between the oil circulation rate and COP ratio in the air conditioning apparatus of FIG. 図1の空気調和装置の暖房運転での吐出ガス冷却装置での放熱量とCOP比の関係を示すグラフである。It is a graph which shows the relationship between the emitted-heat amount and COP ratio in the discharge gas cooling device in the heating operation of the air conditioning apparatus of FIG. 本発明に係る空気調和装置の制御方法の実施形態1を示すフローチャートである。It is a flowchart which shows Embodiment 1 of the control method of the air conditioning apparatus which concerns on this invention. 本発明に係る空気調和装置の制御方法の実施形態2を示すフローチャートである。It is a flowchart which shows Embodiment 2 of the control method of the air conditioning apparatus which concerns on this invention. 本発明に係る空気調和装置の実施形態3の構成を示す模式図である。It is a schematic diagram which shows the structure of Embodiment 3 of the air conditioning apparatus which concerns on this invention. 本発明に係る空気調和装置の実施形態4の構成を示す模式図である。It is a schematic diagram which shows the structure of Embodiment 4 of the air conditioning apparatus which concerns on this invention. 本発明に係る空気調和装置の実施形態5の構成を示す模式図である。It is a schematic diagram which shows the structure of Embodiment 5 of the air conditioning apparatus which concerns on this invention.
実施形態1.
 以下、図面を参照しながら本発明の空気調和装置の好ましい実施形態について説明する。図1は本発明の空気調和装置の実施形態1を示す模式図である。図1の空気調和装置100は、冷房運転と暖房運転の双方を行うものであって、圧縮機1、吐出ガス冷却装置2、油分離器3、流路切替器である四方弁4、室内熱交換器6、膨張弁8、室外熱交換器9を冷媒回路によって環状に接続した冷媒回路を有している。このうち、圧縮機1、吐出ガス冷却装置2、油分離器3、四方弁4、膨張弁8、室外熱交換器9は室外機10を構成しており、室内熱交換器6は室内機11を構成している。室外機10と室内機11とはガス側延長配管5と冷媒液側延長配管7で接続されており、冷媒はガス側延長配管5と冷媒液側延長配管7を介して室外機10と室内機11との間を循環する。
Embodiment 1. FIG.
Hereinafter, preferred embodiments of the air-conditioning apparatus of the present invention will be described with reference to the drawings. FIG. 1 is a schematic diagram showing Embodiment 1 of an air-conditioning apparatus of the present invention. An air conditioner 100 in FIG. 1 performs both a cooling operation and a heating operation, and includes a compressor 1, a discharge gas cooling device 2, an oil separator 3, a four-way valve 4 as a flow path switch, an indoor heat. It has a refrigerant circuit in which the exchanger 6, the expansion valve 8, and the outdoor heat exchanger 9 are annularly connected by a refrigerant circuit. Among these, the compressor 1, the discharge gas cooling device 2, the oil separator 3, the four-way valve 4, the expansion valve 8, and the outdoor heat exchanger 9 constitute an outdoor unit 10, and the indoor heat exchanger 6 is an indoor unit 11. Is configured. The outdoor unit 10 and the indoor unit 11 are connected by a gas side extension pipe 5 and a refrigerant liquid side extension pipe 7, and the refrigerant is connected to the outdoor unit 10 and the indoor unit via the gas side extension pipe 5 and the refrigerant liquid side extension pipe 7. Cycle between 11 and 11.
 圧縮機1は、四方弁4から送られる冷媒を高温高圧の吐出ガスにするものである。この圧縮機1として種々の方法を用いることができる。この冷媒を循環する駆動力を発生させる圧縮機1として、たとえばレシプロ式、スクリュー式、スクロール式、ロータリー式等の種々の技術を用いることができる。 The compressor 1 uses the refrigerant sent from the four-way valve 4 as a high-temperature and high-pressure discharge gas. Various methods can be used as the compressor 1. As the compressor 1 that generates the driving force for circulating the refrigerant, various techniques such as a reciprocating type, a screw type, a scroll type, and a rotary type can be used.
 吐出ガス冷却装置2は、圧縮機1から吐出された吐出ガスを冷却するものであって、ポンプ12、放熱器13、熱交換器14を備えている。このポンプ12と放熱器13と熱交換器14とは水やブライン等を循環させる循環回路を構成している。ポンプ12は水やブライン等の循環物質を放熱器13と熱交換器14との間で循環させるものである。放熱器13は循環回路内を循環している水やブライン等の冷却(放熱)を行うものである。熱交換器14は、吐出ガスと循環回路を流れる水やブライン等との間で熱交換を行うものである。この熱交換器14は、たとえば圧縮機1からの吐出ガスが流れる冷媒流路と、循環物質が流れる冷却流路14aを有しており、冷媒流路を流れる吐出ガスの熱量を冷却流路14aを流れる循環物質が奪うことにより、吐出ガスの冷却が行われる。なお、この熱交換器14としていわゆるシェルアンドチューブ式、シェルアンドコイル式、二重管式等の種々の公知技術を用いることができる。 The discharge gas cooling device 2 cools the discharge gas discharged from the compressor 1 and includes a pump 12, a radiator 13, and a heat exchanger 14. The pump 12, the radiator 13 and the heat exchanger 14 constitute a circulation circuit for circulating water, brine and the like. The pump 12 circulates circulating materials such as water and brine between the radiator 13 and the heat exchanger 14. The radiator 13 cools (heatsinks) water or brine circulating in the circulation circuit. The heat exchanger 14 performs heat exchange between the discharge gas and water, brine, or the like flowing through the circulation circuit. The heat exchanger 14 includes, for example, a refrigerant flow path through which the discharge gas from the compressor 1 flows and a cooling flow path 14a through which the circulating material flows. The heat flow of the discharge gas flowing through the refrigerant flow path is reduced by the cooling flow path 14a. The discharge gas is cooled by taking away the circulating material flowing through. In addition, as this heat exchanger 14, various well-known techniques, such as what is called a shell and tube type, a shell and coil type, a double pipe type, can be used.
 ここで、ポンプ12が作動すると水やブライン等が循環回路内を循環し、熱交換器14において水等と吐出ガスとの間で熱交換が行われる。なお、熱交換された水等は放熱器13により放熱(冷却)される。これにより、吐出ガスの冷却(放熱)が行われることになる。一方、ポンプ12が停止したとき循環回路内の水等の循環が停止し、熱交換器14での熱交換が行われず吐出ガスが冷却されない。ポンプ12の動作は放熱制御手段22により制御されており、放熱制御手段22がポンプ12のON/OFFを制御することにより、吐出ガス冷却装置2による吐出ガスの冷却を行うか否かを制御する。 Here, when the pump 12 is operated, water, brine, and the like circulate in the circulation circuit, and heat exchange is performed between the water and the discharge gas in the heat exchanger 14. The heat-exchanged water is radiated (cooled) by the radiator 13. As a result, the discharge gas is cooled (heat radiation). On the other hand, when the pump 12 is stopped, the circulation of water and the like in the circulation circuit is stopped, heat exchange in the heat exchanger 14 is not performed, and the discharge gas is not cooled. The operation of the pump 12 is controlled by the heat radiation control means 22, and the heat radiation control means 22 controls whether the discharge gas is cooled by the discharge gas cooling device 2 by controlling ON / OFF of the pump 12. .
 油分離器3は、吐出ガスから油を分離し、分離した油を圧縮機1へ戻すものである。たとえば油分離器3は、中空容器に、吐出ガス冷却装置2から吐出したガスが流入する流入配管と、四方弁4へ冷媒ガスを吐出する吐出配管と、底部に設けられた分離した油を圧縮機1へと戻す配管とを設けた構造を有している。そして、流入配管から中空容器内にガスが流入した際、油は中空容器の表面に付着し、中空容器の底面に向かって流れ落ち、底面の油は配管を通って圧縮機1に戻される。一方、冷媒ガスは吐出配管から四方弁4へ向かって吐出される。 The oil separator 3 separates oil from the discharged gas and returns the separated oil to the compressor 1. For example, the oil separator 3 compresses the separated oil provided in the bottom portion, the inflow piping into which the gas discharged from the discharge gas cooling device 2 flows, the discharge piping for discharging the refrigerant gas to the four-way valve 4, and the bottom. It has a structure provided with a pipe returning to the machine 1. When gas flows into the hollow container from the inflow pipe, the oil adheres to the surface of the hollow container and flows down toward the bottom surface of the hollow container, and the oil on the bottom surface is returned to the compressor 1 through the pipe. On the other hand, the refrigerant gas is discharged from the discharge pipe toward the four-way valve 4.
 ここで、圧縮機1から吐出される冷媒ガスの温度が低ければ低いほど、油分離器3における油と冷媒との分離をより多く行うことができる。つまり、圧縮機1から吐出ガスが油分離器3に入る前に吐出ガス冷却装置2が吐出ガスの冷却を行うことにより、吐出ガスに含まれる油の温度も低下する。油は冷却されることで粘度および密度が高くなり油分離器3の中空容器表面において油が付着・捕捉しやすくなる。結果として、吐出ガス冷却装置2が吐出ガスを冷却すると油分離器3での油と冷媒との分離を促進することができる。 Here, the lower the temperature of the refrigerant gas discharged from the compressor 1, the more oil and refrigerant can be separated in the oil separator 3. That is, when the discharge gas cooling device 2 cools the discharge gas before the discharge gas enters the oil separator 3 from the compressor 1, the temperature of the oil contained in the discharge gas also decreases. When the oil is cooled, the viscosity and density are increased, and the oil is easily attached and trapped on the hollow container surface of the oil separator 3. As a result, when the discharge gas cooling device 2 cools the discharge gas, separation of the oil and the refrigerant in the oil separator 3 can be promoted.
 四方弁4は、室内機11の運転モードに応じて冷媒が流れる方向を切換えるものである。具体的には、冷房運転時には四方弁4は油分離器3から室外熱交換器9へ吐出ガスが流れるように切替制御される。一方、暖房運転時に四方弁4は油分離器3から室内熱交換器6へ向かって冷媒が流れるように切替制御される。膨張弁(絞り弁)8は蒸発器に流入する冷媒量を調整するために冷媒の流路を絞るものである。 The four-way valve 4 switches the direction in which the refrigerant flows according to the operation mode of the indoor unit 11. Specifically, during the cooling operation, the four-way valve 4 is controlled so that the discharge gas flows from the oil separator 3 to the outdoor heat exchanger 9. On the other hand, the switching of the four-way valve 4 is controlled so that the refrigerant flows from the oil separator 3 toward the indoor heat exchanger 6 during the heating operation. The expansion valve (throttle valve) 8 throttles the refrigerant flow path in order to adjust the amount of refrigerant flowing into the evaporator.
 室内熱交換器6は、室内空気と冷媒との熱交換を行うものであり、室外熱交換器9は室外空気と冷媒との間で熱交換を行うものである。具体的には、冷房運転時には室内熱交換器6が蒸発器となり室外熱交換器9が凝縮器となる。そして、室内熱交換器6において冷媒が室内空気から吸熱して冷風を出力するとともに、室外熱交換器9において冷媒が室外空気により放熱され温風を出力する。一方、暖房運転時には室内熱交換器6が凝縮器となり室外熱交換器9が蒸発器となる。そして、室内熱交換器6において冷媒が室内空気に放熱して温風を出力するとともに、室外熱交換器9において冷媒が室外空気に吸熱され冷風を出力する。 The indoor heat exchanger 6 exchanges heat between the indoor air and the refrigerant, and the outdoor heat exchanger 9 exchanges heat between the outdoor air and the refrigerant. Specifically, during the cooling operation, the indoor heat exchanger 6 serves as an evaporator, and the outdoor heat exchanger 9 serves as a condenser. In the indoor heat exchanger 6, the refrigerant absorbs heat from the indoor air and outputs cold air, and in the outdoor heat exchanger 9, the refrigerant is radiated by the outdoor air and outputs hot air. On the other hand, during the heating operation, the indoor heat exchanger 6 becomes a condenser and the outdoor heat exchanger 9 becomes an evaporator. Then, in the indoor heat exchanger 6, the refrigerant radiates heat to the indoor air and outputs hot air, and in the outdoor heat exchanger 9, the refrigerant absorbs heat into the outdoor air and outputs cold air.
 上述した室外機10の動作は制御コントローラ20により制御されている。特に、制御コントローラ20には、冷房運転時と暖房運転時とで吐出ガス冷却装置2の動作を切り替えるために、運転判定手段21および放熱制御手段22が設けられている。運転判定手段21は、運転状態が冷房運転であるか暖房運転であるかを判定するものである。たとえば運転判定手段21は四方弁4の切替状態に基づき上記運転状態の判定を行う。 The operation of the outdoor unit 10 described above is controlled by the controller 20. In particular, the controller 20 is provided with an operation determination unit 21 and a heat dissipation control unit 22 in order to switch the operation of the discharge gas cooling device 2 between the cooling operation and the heating operation. The operation determination means 21 determines whether the operation state is a cooling operation or a heating operation. For example, the operation determination means 21 determines the operation state based on the switching state of the four-way valve 4.
 放熱制御手段22は、運転判定手段21における判定に基づいて吐出ガス冷却装置2における冷却を制御するものである。具体的には、放熱制御手段22は、ポンプ12の作動のON/OFFを制御することにより、熱交換器14での冷媒の放熱を制御する。運転判定手段21が冷房運転であると判定した場合、放熱制御手段22は熱交換器14での冷却が行われるようにポンプ12を制御する。運転判定手段21が暖房運転であると判定した場合、放熱制御手段22はポンプ12を停止し冷却が行われないように制御する。 The heat dissipation control means 22 controls cooling in the discharge gas cooling device 2 based on the determination in the operation determination means 21. Specifically, the heat radiation control means 22 controls the heat radiation of the refrigerant in the heat exchanger 14 by controlling ON / OFF of the operation of the pump 12. When it is determined that the operation determination unit 21 is in the cooling operation, the heat radiation control unit 22 controls the pump 12 so that the cooling in the heat exchanger 14 is performed. When the operation determination unit 21 determines that the heating operation is performed, the heat radiation control unit 22 controls the pump 12 to stop and not cool.
 図2は空気調和装置100の冷房運転時のp-h線図の一例を示すグラフであり、図1と図2を参照して空気調和装置100の冷房運転時の動作例ついて説明する。まず、冷媒が圧縮機1に低圧ガスの状態で吸入され(状態a)、低圧ガスは圧縮機1によって圧縮されて高温高圧のガスとなる(状態b)。圧縮機1からの吐出ガスは、吐出ガス冷却装置2で冷却され(状態c)、油分離器3において冷媒と冷凍機油に分離される。油分離器3で分離された冷凍機油は圧縮機1の吸入へと戻る。一方、冷媒は室外熱交換器9で凝縮し、高圧液冷媒となる(状態d)。液冷媒は膨張弁8で低圧二相の冷媒となり(状態e)、冷媒液側延長配管7を通過し、室内熱交換器6で低圧ガスになる(状態f)。その後、低圧ガスはガス側延長配管5を通過し圧縮機1へと戻る(状態a)。 FIG. 2 is a graph showing an example of a ph diagram during the cooling operation of the air conditioner 100, and an example of the operation of the air conditioner 100 during the cooling operation will be described with reference to FIGS. First, the refrigerant is sucked into the compressor 1 in a low-pressure gas state (state a), and the low-pressure gas is compressed by the compressor 1 to become a high-temperature and high-pressure gas (state b). The discharge gas from the compressor 1 is cooled by the discharge gas cooling device 2 (state c), and is separated into refrigerant and refrigerating machine oil in the oil separator 3. The refrigerating machine oil separated by the oil separator 3 returns to the suction of the compressor 1. On the other hand, the refrigerant is condensed in the outdoor heat exchanger 9 to become a high-pressure liquid refrigerant (state d). The liquid refrigerant becomes a low-pressure two-phase refrigerant at the expansion valve 8 (state e), passes through the refrigerant liquid-side extension pipe 7, and becomes low-pressure gas at the indoor heat exchanger 6 (state f). Thereafter, the low pressure gas passes through the gas side extension pipe 5 and returns to the compressor 1 (state a).
 図3は空気調和装置100の暖房運転時のp-h線図の一例を示すグラフであり、図1と図3を参照して空気調和装置100の暖房運転時の動作例ついて説明する。まず、圧縮機1には低圧ガスの状態で吸入され(状態a10)、圧縮機1によって圧縮されて高温高圧のガスとなる(状態b10)。吐出ガス冷却装置2では放熱が行われず、高温高圧のガスは油分離器3で冷媒と冷凍機油に分離される。油分離器3で分離された冷凍機油は圧縮機1の吸入へと戻る。一方、冷媒はガス側延長配管5を通過して室内熱交換器6で凝縮し、高圧液冷媒となる(状態d10)。この高圧液冷媒は膨張弁8で低圧二相の冷媒となる(状態e10)。そして、この冷媒は冷媒液側延長配管7を通過し、室外熱交換器9で低圧ガスの状態になり(状態f10)、圧縮機1へと戻る(状態a10)。 FIG. 3 is a graph showing an example of a ph diagram during the heating operation of the air conditioner 100, and an example of the operation of the air conditioner 100 during the heating operation will be described with reference to FIGS. First, it is sucked into the compressor 1 in a low-pressure gas state (state a10), and is compressed by the compressor 1 into a high-temperature and high-pressure gas (state b10). The discharge gas cooling device 2 does not radiate heat, and the high-temperature and high-pressure gas is separated by the oil separator 3 into refrigerant and refrigerating machine oil. The refrigerating machine oil separated by the oil separator 3 returns to the suction of the compressor 1. On the other hand, the refrigerant passes through the gas side extension pipe 5 and is condensed in the indoor heat exchanger 6 to become a high-pressure liquid refrigerant (state d10). This high-pressure liquid refrigerant becomes a low-pressure two-phase refrigerant at the expansion valve 8 (state e10). Then, the refrigerant passes through the refrigerant liquid side extension pipe 7, enters a low-pressure gas state in the outdoor heat exchanger 9 (state f10), and returns to the compressor 1 (state a10).
 図2のように、冷房運転時に吐出ガス冷却装置2での冷却を行うことにより、冷媒から冷凍機油の分離が促進されるため、冷房運転時には蒸発器出口から圧縮機吸入の圧力損失を低減しつつ、しかも吐出ガス冷却装置2で冷媒の放熱が行われることでCOPを向上することができる。一方、図3のように、暖房運転時には吐出ガス冷却装置2での冷却をしないことにより、室外熱交換器(凝縮器)でのエンタルピ差の縮小を防止し、COP低下を防止できる。 As shown in FIG. 2, the cooling by the discharge gas cooling device 2 during the cooling operation promotes the separation of the refrigerating machine oil from the refrigerant, so that the pressure loss of the compressor suction from the evaporator outlet is reduced during the cooling operation. In addition, the COP can be improved by the heat release of the refrigerant in the discharge gas cooling device 2. On the other hand, as shown in FIG. 3, the cooling by the discharge gas cooling device 2 is not performed during the heating operation, so that the reduction of the enthalpy difference in the outdoor heat exchanger (condenser) can be prevented and the COP reduction can be prevented.
 図4は蒸発器出口から圧縮機吸入での圧力損失とCOPの関係を示すグラフである。なお、図4の横軸は、(蒸発器出口の圧力)/(圧縮機の吸入口の圧力)×100であって、圧力損失が0のときに100%を示し圧力損失が大きくなればなるほど(距離が長くなればなるほど)比率(%)が上がっていくことを示す。縦軸は圧力損失が0(横軸100%)を基準にした場合のCOP比を示す。図4において、蒸発器出口から圧縮機吸入までの圧力損失が増加するとCOPが低下することがわかる。 FIG. 4 is a graph showing the relationship between pressure loss and COP when the compressor is sucked from the evaporator outlet. The horizontal axis of FIG. 4 is (evaporator outlet pressure) / (compressor inlet pressure) × 100, indicating 100% when the pressure loss is 0, and the higher the pressure loss, the higher the pressure loss. Indicates that the ratio (%) increases (the longer the distance). The vertical axis represents the COP ratio when the pressure loss is 0 (the horizontal axis is 100%). In FIG. 4, it can be seen that the COP decreases as the pressure loss from the evaporator outlet to the compressor suction increases.
 上述したように、冷房運転時には室内熱交換器6が蒸発器となり室外熱交換器9が凝縮器となる。一方、暖房運転時には室内熱交換器6が凝縮器となり室外熱交換器9が蒸発器となる。つまり、蒸発器出口から圧縮機1までの距離とは、冷房運転時には室内機11の室内熱交換器6から室外機10の圧縮機1までの距離を意味し、暖房運転時には室外機10の室外熱交換器9から室外機10の圧縮機1までの距離を意味する。 As described above, during the cooling operation, the indoor heat exchanger 6 serves as an evaporator, and the outdoor heat exchanger 9 serves as a condenser. On the other hand, during the heating operation, the indoor heat exchanger 6 becomes a condenser and the outdoor heat exchanger 9 becomes an evaporator. That is, the distance from the evaporator outlet to the compressor 1 means the distance from the indoor heat exchanger 6 of the indoor unit 11 to the compressor 1 of the outdoor unit 10 during the cooling operation, and the outdoor unit 10 outdoor during the heating operation. It means the distance from the heat exchanger 9 to the compressor 1 of the outdoor unit 10.
 冷房運転時には室外機10と室内機11との接続には長いガス側延長配管5が使用されているため、冷凍サイクルにとって大きなCOP低下要因である蒸発器(室内熱交換器6)出口から圧縮機1の吸入口までの圧力損失が大きくなる。一方、暖房運転時において、室外熱交換器9が蒸発器となるが、同じ室外機10内の構成機器同士であるため、室外熱交換器9と圧縮機1とを繋ぐ配管は上述したガス側延長配管5に比べて大幅に短い。つまり、冷房運転時のように蒸発器出口と圧縮機吸入の間にガス側延長配管5のような大きな圧力損失の原因となる長い配管が存在しない。したがって、暖房運転時には蒸発器(室外熱交換器9)出口から圧縮機1の吸入口までの圧力損失低減が最小限に抑えられた状態になる。 Since the long gas side extension pipe 5 is used to connect the outdoor unit 10 and the indoor unit 11 during the cooling operation, the compressor is discharged from the outlet of the evaporator (indoor heat exchanger 6), which is a large COP lowering factor for the refrigeration cycle. The pressure loss up to the inlet of 1 increases. On the other hand, during the heating operation, the outdoor heat exchanger 9 serves as an evaporator, but since the constituent devices are the same in the outdoor unit 10, the piping connecting the outdoor heat exchanger 9 and the compressor 1 is the gas side described above. It is significantly shorter than the extension pipe 5. That is, there is no long pipe that causes a large pressure loss such as the gas side extension pipe 5 between the outlet of the evaporator and the suction of the compressor as in the cooling operation. Therefore, during heating operation, the pressure loss reduction from the outlet of the evaporator (outdoor heat exchanger 9) to the suction port of the compressor 1 is minimized.
 図5は油循環率(={油流量/(冷媒流量+油流量)}×100)とCOP比との関係を示すグラフである。図5において、油循環率が高ければ高いほどCOP比が低下していることを示している。つまり、油分離器3が圧縮機1の吐出ガスから冷凍機油を分離すればするほど、ガス側延長配管5での圧力損失が改善しCOPが向上することを意味する。言い換えれば、吐出ガス冷却装置2において吐出ガスを冷却し油分離器3での油の分離を促進して油循環率を下げれば、運転状態に関係なくCOPを向上させることができるとも言える。しかし、暖房運転時に吐出ガス冷却装置2による冷却を行ってしまうと却ってCOPが低下してしまうことがわかった。 FIG. 5 is a graph showing the relationship between the oil circulation rate (= {oil flow rate / (refrigerant flow rate + oil flow rate)} × 100) and the COP ratio. FIG. 5 shows that the higher the oil circulation rate, the lower the COP ratio. That is, it means that the more the oil separator 3 separates the refrigerating machine oil from the discharge gas of the compressor 1, the pressure loss in the gas side extension pipe 5 is improved and the COP is improved. In other words, it can be said that if the discharge gas is cooled in the discharge gas cooling device 2 and oil separation in the oil separator 3 is promoted to lower the oil circulation rate, the COP can be improved regardless of the operation state. However, it has been found that if the cooling by the discharge gas cooling device 2 is performed during the heating operation, the COP is lowered.
 図6は暖房運転時の吐出ガス冷却装置2における放熱量とCOPの関係を示すグラフである。なお、図6の横軸は、暖房運転時における冷媒全体の放熱量に占める吐出ガス冷却装置2での放熱量の割合(吐出ガス冷却装置2での放熱量/全体の放熱量}×100)を示す。縦軸は、吐出ガス冷却装置2での放熱量が0のときのCOPを基準としたCOP比を示す。図6に示すように、放熱量が増加することでCOP比が低下する。 FIG. 6 is a graph showing the relationship between the heat release amount and COP in the discharge gas cooling device 2 during heating operation. In addition, the horizontal axis of FIG. 6 is the ratio of the heat release amount in the discharge gas cooling device 2 to the heat release amount of the entire refrigerant during the heating operation (heat release amount in the discharge gas cooling device 2 / total heat release amount) × 100. Indicates. The vertical axis represents the COP ratio based on the COP when the heat release amount in the discharge gas cooling device 2 is zero. As shown in FIG. 6, the COP ratio decreases as the heat dissipation amount increases.
 つまり、暖房運転時に吐出ガス冷却装置2において圧縮機1の吐出ガスを冷却することは、本来は室内熱交換器6で室内を加熱するために使用したい熱量が室内熱交換器6の上流側の吐出ガス冷却装置2で放熱してしまうことを意味する。暖房に必要な能力を補うには圧縮機1を増速する必要があるため、吐出ガス冷却装置2による冷却がCOP比を低下する要因になってしまう。 That is, cooling the discharge gas of the compressor 1 in the discharge gas cooling device 2 during the heating operation means that the amount of heat that is originally desired for heating the room by the indoor heat exchanger 6 is on the upstream side of the indoor heat exchanger 6. It means that the discharged gas cooling device 2 radiates heat. In order to supplement the capacity required for heating, it is necessary to increase the speed of the compressor 1, so that cooling by the discharge gas cooling device 2 becomes a factor of lowering the COP ratio.
 また、上述したように、油分離器3での分離効率を上昇させたとしても、元々の室外熱交換器(蒸発器)9の出口から圧縮機1の吸入口までの圧力損失が小さいためにCOP改善効率が小さい(図4参照)。言い換えれば、吐出ガスの冷却による油循環率の低下に伴うCOP改善よりも、吐出ガス冷却装置2で行った放熱を補うために圧縮機周波数の増速によるCOP悪化の方が大きく、結果として却ってCOP低下の要因となる。 Further, as described above, even if the separation efficiency in the oil separator 3 is increased, the pressure loss from the outlet of the original outdoor heat exchanger (evaporator) 9 to the inlet of the compressor 1 is small. COP improvement efficiency is small (see FIG. 4). In other words, the COP deterioration due to the increase in the compressor frequency is larger than the COP improvement associated with the decrease in the oil circulation rate due to the cooling of the discharge gas, so that the heat dissipation performed by the discharge gas cooling device 2 is compensated. It becomes a factor of COP fall.
 そこで、放熱制御手段22は、冷房運転時に吐出ガス冷却装置2での冷却を行うように制御する。これにより、冷房運転時には蒸発器出口から圧縮機吸入の圧力損失を低減しつつ、吐出ガス冷却装置2で放熱を行うことでCOPを向上することができる。一方、放熱制御手段22は、暖房運転時に吐出ガス冷却装置2での冷却をしないように制御する。これにより、室外熱交換器(凝縮器)でのエンタルピ差の縮小を防止し、COP低下を防止できる。 Therefore, the heat radiation control means 22 performs control so that the discharge gas cooling device 2 performs cooling during the cooling operation. Thereby, COP can be improved by performing heat radiation with the discharge gas cooling device 2, reducing the pressure loss of the compressor suction | inhalation from an evaporator exit at the time of air_conditionaing | cooling operation. On the other hand, the heat radiation control means 22 performs control so that the discharge gas cooling device 2 is not cooled during the heating operation. Thereby, reduction of the enthalpy difference in the outdoor heat exchanger (condenser) can be prevented and COP reduction can be prevented.
 つまり、たとえば常に冷房運転を行う空気調和装置は、冷凍機などの庫内に熱交換器を設置し、庫外に室外機を設置して、庫内の熱交換器と室外機を配管以下、延長配管で繋いだ構成を有している。このような空気調和装置においては、延長配管が長いために、空気調和装置のCOPに大きな影響を及ぼす蒸発器出口から圧縮機吸入の圧力損失が大きい。そのため、分離効率向上による蒸発器出口から圧縮機吸入の圧力損失改善によるCOP改善効果が大きい。さらに、圧縮機吐出ガスの冷却による凝縮温度低下により、COPの改善が可能である。 That is, for example, an air conditioner that always performs cooling operation installs a heat exchanger inside a refrigerator or the like, installs an outdoor unit outside the warehouse, and connects the heat exchanger and outdoor unit inside the warehouse below the piping, It has a configuration connected by extension piping. In such an air conditioner, since the extension pipe is long, the pressure loss of the compressor suction from the evaporator outlet that greatly affects the COP of the air conditioner is large. Therefore, the COP improvement effect by the pressure loss improvement of the compressor suction from the evaporator outlet due to the improvement of the separation efficiency is great. Furthermore, COP can be improved by reducing the condensation temperature due to cooling of the compressor discharge gas.
 一方、エアコンなどの冷房運転と暖房運転を行う空気調和装置100においては、暖房運転時にCOPが低下する問題がある。エアコンなどの冷房と暖房を行う空気調和装置100においても、室内に室内側熱交換器6を設置し、室外に室外機10を設置して、延長配管5、7で室内熱交換器6と室外機10を繋ぐ構成は、冷凍機などと同様である。したがって、冷房運転時には圧縮機吐出のガスを冷却することで凝縮温度が低下し、蒸発器出口から圧縮機吸入を長い延長配管で繋ぐため、油循環率低下によるCOP改善が大きい。 On the other hand, in the air conditioning apparatus 100 that performs cooling operation and heating operation of an air conditioner or the like, there is a problem that COP is lowered during the heating operation. Also in the air conditioner 100 that performs cooling and heating such as an air conditioner, the indoor heat exchanger 6 is installed indoors, the outdoor unit 10 is installed outside, and the indoor heat exchanger 6 and the outdoor are connected by the extension pipes 5 and 7. The structure which connects the machine 10 is the same as that of a refrigerator. Accordingly, the cooling temperature is reduced by cooling the gas discharged from the compressor during the cooling operation, and the compressor suction is connected from the evaporator outlet by a long extension pipe, so that the COP improvement due to the lower oil circulation rate is great.
 しかし、暖房運転時には室内熱交換器が凝縮器になり、室外熱交換器が蒸発器になるため、圧縮機1の吐出ガスを冷却することは室内熱交換器6において本来は暖房能力として使用したい熱量を奪うことを意味する。また、蒸発器出口と圧縮機1の吸入口とを繋ぐ配管は、蒸発器と圧縮機1が同じ室外機の中で接続されているために短く、油循環率低下によるCOP改善効果も非常に小さい。このため、暖房運転時には圧縮機の吐出ガスを冷却すると、COPが低下するという問題がある。 However, since the indoor heat exchanger becomes a condenser and the outdoor heat exchanger becomes an evaporator during heating operation, cooling the discharge gas of the compressor 1 is originally intended to be used as a heating capacity in the indoor heat exchanger 6. It means taking away heat. Further, the pipe connecting the evaporator outlet and the suction port of the compressor 1 is short because the evaporator and the compressor 1 are connected in the same outdoor unit, and the COP improvement effect due to a decrease in the oil circulation rate is also very high. small. For this reason, there exists a problem that COP will fall if the discharge gas of a compressor is cooled at the time of heating operation.
 そこで、空気調和装置100において、冷房運転時に吐出ガス冷却装置2での冷却を行う。これにより、冷房運転時には蒸発器出口から圧縮機吸入までの圧力損失を低減しつつ、しかも吐出ガス冷却装置2で放熱を行うことでCOPを向上することができる。一方、暖房運転時には吐出ガス冷却装置2での冷却(放熱)をしない。これにより、室外熱交換器(凝縮器)でのエンタルピ差の縮小を防止し、COP低下を防止できる。 Therefore, in the air conditioner 100, the discharge gas cooling device 2 performs cooling during the cooling operation. Thereby, during cooling operation, COP can be improved by reducing heat loss from the outlet of the evaporator to the suction of the compressor, and by dissipating heat with the discharge gas cooling device 2. On the other hand, cooling (heat radiation) is not performed by the discharge gas cooling device 2 during the heating operation. Thereby, reduction of the enthalpy difference in the outdoor heat exchanger (condenser) can be prevented and COP reduction can be prevented.
 図7は本発明の空気調和装置の制御方法の好ましい実施形態を示すフローチャートであり、図1および図7を参照して空気調和装置100の制御方法について説明する。まず、運転が開始すると(ステップST1)、運転判定手段21において運転が冷房運転であるかもしくは暖房運転であるかを判定する(ステップST2)。冷房運転ではなく暖房運転であると判定した場合、吐出ガス冷却装置2での冷却は行わない(ステップST3)。一方、冷房運転であると判定した場合、放熱制御手段22の作用により吐出ガス冷却装置2において吐出ガスの冷却が行われる。 FIG. 7 is a flowchart showing a preferred embodiment of the control method for the air conditioner of the present invention. The control method for the air conditioner 100 will be described with reference to FIGS. 1 and 7. First, when the operation is started (step ST1), the operation determination means 21 determines whether the operation is a cooling operation or a heating operation (step ST2). When it is determined that the heating operation is performed instead of the cooling operation, the discharge gas cooling device 2 does not perform cooling (step ST3). On the other hand, when it is determined that the cooling operation is being performed, the discharge gas cooling device 2 cools the discharge gas by the action of the heat radiation control means 22.
 これにより、冷房運転時には蒸発器出口から圧縮機吸入の圧力損失が低減され、かつ、吐出ガス冷却装置2で冷媒の放熱が行われることでCOPを向上することができる。一方、暖房運転時には吐出ガス冷却装置2での冷却(放熱)を行わないため、室外熱交換器(凝縮器)9でのエンタルピ差の縮小を防止し、COP低下を防止できる。 Thereby, during cooling operation, the pressure loss due to the suction of the compressor from the outlet of the evaporator can be reduced, and the discharge gas cooling device 2 can dissipate the refrigerant to improve the COP. On the other hand, since cooling (heat radiation) is not performed in the discharge gas cooling device 2 during heating operation, reduction of the enthalpy difference in the outdoor heat exchanger (condenser) 9 can be prevented, and COP reduction can be prevented.
実施の形態2.
 図8は本発明の空気調和装置の実施形態2を示す模式図であり、図1と図8を参照して空気調和装置について説明する。なお、図8の空気調和装置の制御方法において図7の空気調和装置の制御方法と同一の工程を有する部位には同一の符号を付してその説明を省略する。図8の空気調和装置の制御方法が図1の空気調和装置100と異なる点は、冷房運転時で、かつ運転周波数fが設定運転周波数fref以上である場合に吐出ガス冷却装置2による吐出ガスの冷却を行う点である。
Embodiment 2. FIG.
FIG. 8 is a schematic diagram showing an air conditioner according to a second embodiment of the present invention. The air conditioner will be described with reference to FIGS. 1 and 8. In the control method for the air conditioner in FIG. 8, parts having the same steps as those in the control method for the air conditioner in FIG. The control method of the air conditioner of FIG. 8 is different from that of the air conditioner 100 of FIG. 1 in that the discharge gas cooling device 2 controls the discharge gas during the cooling operation and when the operation frequency f is equal to or higher than the set operation frequency fref. This is the point of cooling.
 具体的には、図1の放熱制御手段22は、圧縮機1の運転周波数fが予め設定された設定運転周波数fref以上であるか否かを判定する機能を有している。そして、放熱制御手段22は、冷房運転であって圧縮機1が設定運転周波数fref以上の運転周波数で稼働している場合、吐出ガス冷却装置2が吐出ガスの冷却を行うように制御する。一方、冷房運転であっても圧縮機1が設定運転周波数frefより小さい運転周波数で稼働している場合、吐出ガス冷却装置2が吐出ガスの冷却を行わないように制御する。なお、この設定運転周波数frefは、油循環率の減少による圧力損失の低減効果と、吐出ガス冷却装置2のポンプ等の入力増加の影響を加味して予め決定するものである。 Specifically, the heat dissipation control means 22 in FIG. 1 has a function of determining whether or not the operating frequency f of the compressor 1 is equal to or higher than a preset operating frequency fref. The heat release control means 22 controls the discharge gas cooling device 2 to cool the discharge gas when the compressor 1 is operating at an operation frequency equal to or higher than the set operation frequency fref. On the other hand, when the compressor 1 is operating at an operation frequency lower than the set operation frequency fref even in the cooling operation, control is performed so that the discharge gas cooling device 2 does not cool the discharge gas. The set operation frequency fref is determined in advance in consideration of the effect of reducing the pressure loss due to the reduction of the oil circulation rate and the influence of the input increase of the pump of the discharge gas cooling device 2.
 これにより、吐出ガス冷却装置2のポンプ12などの動力を駆動させることによるCOP悪化の影響が大きくなるのを防止することができる。つまり、圧縮機1の運転周波数fと油循環率は比例関係にあり、運転周波数が高ければ高いほど油循環率も大きくなる。このため、圧縮機1の運転周波数fが低い場合、吐出ガス冷却装置2のポンプ等の動力を使用して油循環率を低減させて得られるCOP改善効果は、吐出ガス冷却装置2のポンプなどの動力によるCOP悪化の影響よりも小さくなる可能性がある。そこで、運転周波数fの閾値処理を行うことにより、吐出ガス冷却装置2のポンプなどの動力によるCOP悪化の影響が大きくなるのを防止することができる。 Thereby, it is possible to prevent the influence of COP deterioration caused by driving the power of the pump 12 of the discharge gas cooling device 2 from increasing. That is, the operation frequency f of the compressor 1 and the oil circulation rate are in a proportional relationship, and the higher the operation frequency, the greater the oil circulation rate. For this reason, when the operating frequency f of the compressor 1 is low, the COP improvement effect obtained by reducing the oil circulation rate using the power of the pump of the discharge gas cooling device 2 is the pump of the discharge gas cooling device 2 and the like. There is a possibility that it becomes smaller than the influence of the deterioration of COP by the power of. Therefore, by performing the threshold processing of the operating frequency f, it is possible to prevent the influence of COP deterioration due to the power of the pump of the discharge gas cooling device 2 from increasing.
 なお、設定運転周波数fref前後の運転周波数fで冷房運転を行っている場合、吐出ガス冷却装置2での冷却の有無が短時間で入れ替わり、運転が安定しない場合がある。そこで、所定の運転周波数以下となっている継続時間が所定時間以内にもかかわらず、運転周波数が設定運転周波数以上になった場合には、直ちに放熱制御手段22は吐出ガスの冷却を行わないように吐出ガス冷却装置2を制御してもよい。その後、設定運転周波数fref以上での運転時間が予め設定された設定時間以上継続したとき、放熱制御手段22が吐出ガス冷却装置2による吐出ガスの冷却を開始するように制御してもよい。あるいは、運転周波数fの増減率などにより、設定運転周波数frefで即座に吐出ガス冷却装置2での冷却動作が切り替わらないようにしてもよい。 In addition, when the cooling operation is performed at the operation frequency f around the set operation frequency fref, the presence or absence of cooling in the discharge gas cooling device 2 is switched in a short time, and the operation may not be stable. Therefore, when the operating frequency becomes equal to or higher than the set operating frequency even though the duration that is lower than the predetermined operating frequency is within the predetermined time, the heat radiation control means 22 does not immediately cool the discharge gas. Alternatively, the discharge gas cooling device 2 may be controlled. Thereafter, when the operation time at the set operation frequency fref or more continues for a set time set in advance, the heat radiation control means 22 may be controlled to start cooling the discharge gas by the discharge gas cooling device 2. Alternatively, the cooling operation in the discharge gas cooling device 2 may not be switched immediately at the set operation frequency fref due to the increase / decrease rate of the operation frequency f.
実施の形態3.
 図9は本発明の空気調和装置の実施の形態3を示す模式図であり、図9を参照して空気調和装置200について説明する。なお、図9の空気調和装置200において図1の空気調和装置100と同一の構成を有する部位には同一の符号を付してその説明を省略する。図9の空気調和装置200が図1の空気調和装置100と異なる点は、吐出ガス冷却装置の構成である。
Embodiment 3 FIG.
FIG. 9 is a schematic diagram showing Embodiment 3 of the air conditioner of the present invention. The air conditioner 200 will be described with reference to FIG. In addition, in the air conditioning apparatus 200 of FIG. 9, the site | part which has the same structure as the air conditioning apparatus 100 of FIG. 1 attaches | subjects the same code | symbol, and abbreviate | omits the description. The air conditioning apparatus 200 in FIG. 9 is different from the air conditioning apparatus 100 in FIG. 1 in the configuration of the discharge gas cooling apparatus.
 図9の吐出ガス冷却装置202は、第1の三方弁215、熱交換器14を備えており、第1の三方弁215と熱交換器14とにおいて循環回路が形成されている。第1の三方弁215は圧縮機1の吸入側、四方弁4および熱交換器14に接続されている。また、三方弁215の下流側において吸入ガスが圧縮機1と熱交換器14の冷却流路14aとの双方に流れるように配管が分岐している。したがって、吐出ガス冷却装置202は、熱交換器14の冷却流路14aに圧縮前の吸入ガスを循環させることにより、冷媒回路を流れる吐出ガスの冷却を行うことができる構成を有している。 9 includes a first three-way valve 215 and a heat exchanger 14, and a circulation circuit is formed by the first three-way valve 215 and the heat exchanger 14. The first three-way valve 215 is connected to the suction side of the compressor 1, the four-way valve 4, and the heat exchanger 14. Further, on the downstream side of the three-way valve 215, the piping is branched so that the suction gas flows into both the compressor 1 and the cooling flow path 14a of the heat exchanger 14. Therefore, the discharge gas cooling device 202 has a configuration capable of cooling the discharge gas flowing through the refrigerant circuit by circulating the suction gas before compression in the cooling flow path 14a of the heat exchanger 14.
 ここで、放熱制御手段222は、圧縮機1に入る前の吸入ガスを熱交換器14の冷却流路14aに循環させるか否かを第1の三方弁215による切替制御により行う。具体的には、放熱制御手段222は、冷房運転時には吸入ガスが熱交換器14に流れるように三方弁215を切替制御する。すると、熱交換器14において吸入ガスと圧縮機1からの吐出ガスとの間で熱交換が行われ吐出ガスが冷却される。一方、放熱制御手段222は、暖房運転時には圧縮前の冷媒が熱交換器14に流れないように三方弁を切替制御する。すると、熱交換器14において吸入ガスが流れないために圧縮機1からの吐出ガスが冷却されない。 Here, the heat dissipation control means 222 performs switching control by the first three-way valve 215 as to whether or not the intake gas before entering the compressor 1 is circulated through the cooling flow path 14a of the heat exchanger 14. Specifically, the heat dissipation control means 222 switches and controls the three-way valve 215 so that the intake gas flows into the heat exchanger 14 during the cooling operation. Then, heat exchange is performed between the suction gas and the discharge gas from the compressor 1 in the heat exchanger 14 to cool the discharge gas. On the other hand, the heat radiation control means 222 switches and controls the three-way valve so that the refrigerant before compression does not flow to the heat exchanger 14 during the heating operation. Then, since the suction gas does not flow in the heat exchanger 14, the discharge gas from the compressor 1 is not cooled.
 上述した実施形態3であっても、冷房運転時には蒸発器出口から圧縮機吸入の圧力損失を低減し、かつ、吐出ガス冷却装置202で冷媒の放熱が行われることでCOPを向上することができる。一方、暖房運転時には吐出ガス冷却装置202での冷却を行わないため、室外熱交換器(凝縮器)9でのエンタルピ差の縮小を防止し、COP低下を防止できる。さらに、冷房運転時に放熱を行う際、圧縮機1に冷媒が吸入される前に冷媒を熱交換器14において加熱することができ、液状の冷媒が圧縮機1に戻り圧縮機1を損傷することを防止できる。 Even in the third embodiment described above, the COP can be improved by reducing the pressure loss of the compressor suction from the outlet of the evaporator during the cooling operation and radiating the refrigerant in the discharge gas cooling device 202. . On the other hand, since the cooling by the discharge gas cooling device 202 is not performed during the heating operation, reduction of the enthalpy difference in the outdoor heat exchanger (condenser) 9 can be prevented and COP reduction can be prevented. Furthermore, when performing heat dissipation during cooling operation, the refrigerant can be heated in the heat exchanger 14 before the refrigerant is sucked into the compressor 1, and the liquid refrigerant returns to the compressor 1 and damages the compressor 1. Can be prevented.
実施の形態4.
 図10は本発明の空気調和装置の実施形態4を示す模式図であり、図10を参照して空気調和装置300について説明する。なお、図10の空気調和装置300において図1の空気調和装置100と同一の構成を有する部位には同一の符号を付してその説明を省略する。図10の空気調和装置300が図1の空気調和装置100と異なる点は、吐出ガス冷却装置302の構成である。
Embodiment 4 FIG.
FIG. 10 is a schematic view showing Embodiment 4 of the air conditioner of the present invention, and the air conditioner 300 will be described with reference to FIG. In addition, in the air conditioning apparatus 300 of FIG. 10, the same code | symbol is attached | subjected to the site | part which has the same structure as the air conditioning apparatus 100 of FIG. 1, and the description is abbreviate | omitted. The air conditioning apparatus 300 in FIG. 10 is different from the air conditioning apparatus 100 in FIG.
 図10の吐出ガス冷却装置302は、圧縮機1の吐出側配管と油分離器3との間に接続された放熱器13と、送風機16から送風される風の一部の放熱器13への送風を遮断させるもしくは通過させるダンパー311とを備えている。なお、送風機16と放熱器13との間に送風機16からの風を導くためのダクトを設置してもよい。ダンパー311は、送風機16から送り出される風が放熱器13に当たる方向と遮断する方向とに向きを変える機能を有しており、その動作は放熱制御手段322により制御されている。なお、放熱器13にフィンなどを付けて表面積を大きくすることにより冷却効果を大きくすることができる。 The discharge gas cooling device 302 in FIG. 10 is connected to the radiator 13 connected between the discharge side piping of the compressor 1 and the oil separator 3, and a part of the air blown from the blower 16 to the radiator 13. And a damper 311 for blocking or passing the air flow. Note that a duct for guiding the wind from the blower 16 may be installed between the blower 16 and the radiator 13. The damper 311 has a function of changing the direction in which the wind sent from the blower 16 hits the heat radiator 13 and the direction in which the air is blocked, and its operation is controlled by the heat radiation control means 322. In addition, a cooling effect can be enlarged by attaching a fin etc. to the heat radiator 13 and enlarging a surface area.
 放熱制御手段322は、冷房運転時にはダンパー311を開いて放熱器13に風を送るように制御する。すると、放熱器13において吐出ガスの冷却が行われる。一方、放熱制御手段322は、暖房運転時にはダンパー311を閉じて放熱器13への風を遮断する。すると、吐出ガス冷却装置2において吐出ガスの冷却が行われない。 The heat radiation control means 322 controls to open the damper 311 and send wind to the radiator 13 during the cooling operation. Then, the discharge gas is cooled in the radiator 13. On the other hand, the heat dissipation control means 322 closes the damper 311 during the heating operation and blocks the wind to the radiator 13. Then, the discharge gas cooling device 2 does not cool the discharge gas.
 上述した実施形態4であっても、冷媒から冷凍機油の分離が促進されるため、冷房運転時には蒸発器出口から圧縮機吸入までの圧力損失を低減し、かつ、吐出ガス冷却装置302で放熱を行うことでCOPを向上することができる。一方、暖房運転時には吐出ガス冷却装置302での冷却(放熱)を行わないため、室外熱交換器(凝縮器)6でのエンタルピ差の縮小を防止し、COP低下を防止できる。さらに、図10に示すような構成とすることで、放熱器13の放熱量調整が室外機10のみで行うことができる。 Even in Embodiment 4 described above, since the separation of the refrigeration oil from the refrigerant is promoted, the pressure loss from the evaporator outlet to the compressor suction is reduced during the cooling operation, and the discharge gas cooling device 302 radiates heat. By doing so, COP can be improved. On the other hand, since cooling (heat radiation) is not performed in the discharge gas cooling device 302 during heating operation, reduction of the enthalpy difference in the outdoor heat exchanger (condenser) 6 can be prevented, and COP reduction can be prevented. Furthermore, with the configuration as shown in FIG. 10, the heat dissipation amount of the radiator 13 can be adjusted only by the outdoor unit 10.
実施形態5.
 図11は本発明の空気調和装置の実施形態5を示す模式図であり、図11を参照して空気調和装置400について説明する。なお、図11の空気調和装置400において図1の空気調和装置100と同一の構成を有する部位には同一の符号を付してその説明を省略する。図11の空気調和装置400が図1の空気調和装置100と異なる点は、吐出ガス冷却装置の構成である。
Embodiment 5. FIG.
FIG. 11 is a schematic view showing Embodiment 5 of the air-conditioning apparatus of the present invention, and the air-conditioning apparatus 400 will be described with reference to FIG. In addition, in the air conditioning apparatus 400 of FIG. 11, the site | part which has the same structure as the air conditioning apparatus 100 of FIG. 1 attaches | subjects the same code | symbol, and abbreviate | omits the description. The air conditioning apparatus 400 in FIG. 11 is different from the air conditioning apparatus 100 in FIG. 1 in the configuration of the discharge gas cooling apparatus.
 吐出ガス冷却装置402は、ポンプ12と、ポンプ12に接続された放熱器13と、放熱器13に接続された、圧縮機1からの吐出ガスと循環する水等との熱交換を行う熱交換器14と、二方が圧縮機1の吐出配管と熱交換器14とに接続されており、一方が圧縮機1の吐出配管から油分離器3の入口へとバイパスするよう接続された第2の三方弁418とを備えている。つまり、第2の三方弁の切替により圧縮機1からの吐出ガスが熱交換器14を通過する流路と、熱交換器14を通過せずにバイパスして油分離器3に流れる流路とが切り替えられることになる。この第2の三方弁418の動作は放熱制御手段22により制御されている。 The discharge gas cooling device 402 performs heat exchange between the pump 12, the radiator 13 connected to the pump 12, and the discharge gas from the compressor 1 connected to the radiator 13 and circulating water. A second one connected to the discharge pipe of the compressor 1 and the heat exchanger 14, one of which is bypassed from the discharge pipe of the compressor 1 to the inlet of the oil separator 3. The three-way valve 418 is provided. That is, a flow path through which the discharge gas from the compressor 1 passes through the heat exchanger 14 by switching the second three-way valve, and a flow path that bypasses the heat exchanger 14 and flows to the oil separator 3. Will be switched. The operation of the second three-way valve 418 is controlled by the heat radiation control means 22.
 放熱制御手段422は、冷房運転時には圧縮機1からの吐出ガスが熱交換器14を通過するように第2の三方弁418を切り替える。すると、熱交換器14において吐出ガスが冷却される。一方、放熱制御手段422は、暖房運転時には圧縮機1の吐出配管との熱交換を行う熱交換器14をバイパスさせるように第2の三方弁418を切り替える。すると、吐出ガスは熱交換器14を通過せずに油分離器3に流れ込むことになり、吐出ガスは冷却されないことになる。 The heat dissipation control means 422 switches the second three-way valve 418 so that the discharge gas from the compressor 1 passes through the heat exchanger 14 during the cooling operation. Then, the discharge gas is cooled in the heat exchanger 14. On the other hand, the heat release control means 422 switches the second three-way valve 418 so as to bypass the heat exchanger 14 that performs heat exchange with the discharge pipe of the compressor 1 during the heating operation. Then, the discharge gas flows into the oil separator 3 without passing through the heat exchanger 14, and the discharge gas is not cooled.
 上述した実施の形態5であっても、冷媒から冷凍機油の分離が促進されるため、冷房運転時には蒸発器出口から圧縮機吸入の圧力損失を低減し、かつ、吐出ガス冷却装置402で冷媒の放熱を行うことでCOPを向上することができる。一方、暖房運転時には吐出ガス冷却装置402での冷却(放熱)を行わないため、室外熱交換器(凝縮器)6でのエンタルピ差の縮小を防止し、COP低下を防止できる。 Even in the fifth embodiment described above, since the separation of the refrigerating machine oil from the refrigerant is promoted, the pressure loss of the compressor suction from the evaporator outlet is reduced during the cooling operation, and the discharge gas cooling device 402 reduces the refrigerant pressure. COP can be improved by performing heat dissipation. On the other hand, since cooling (heat radiation) is not performed in the discharge gas cooling device 402 during heating operation, reduction of the enthalpy difference in the outdoor heat exchanger (condenser) 6 can be prevented, and COP reduction can be prevented.
 本発明の実施の形態は、上記実施の形態に限定されない。たとえば、放熱制御手段22、222、322、422は、冷房運転のときに放熱し、冷房運転ではないときに放熱しないように制御する場合について例示しているが、冷房運転時に放熱量の強弱を行うように調整するものであってもよい。たとえば、図8のように冷房運転時であって設定運転周波数frefよりも小さい場合には、熱交換器14における冷却流路14a側の流量を少なくする、もしくは図10においては放熱器13へ送風する量を少なくするようにダンパー311を制御する等により冷却能力を低く設定した状態で冷却を行うようにしてもよい。 The embodiment of the present invention is not limited to the above embodiment. For example, the heat radiation control means 22, 222, 322, and 422 exemplify a case where control is performed so that heat is dissipated during cooling operation, and heat is not dissipated when cooling operation is not performed. You may adjust so that it may do. For example, when the cooling operation is performed as shown in FIG. 8 and is lower than the set operation frequency fref, the flow rate on the cooling flow path 14a side in the heat exchanger 14 is reduced, or the air flow to the radiator 13 in FIG. Cooling may be performed in a state where the cooling capacity is set low by controlling the damper 311 so as to reduce the amount to be reduced.
 また、油分離器3の構成として中空容器を用いる場合について例示しているが、たとえば冷媒ガスの流速を遅くして、油の微粒子を自重により落下させる方法、油分離器内にフィルタを設け油の微粒子を捕集する方法等種々の公知の技術を用いることができる。 Further, the case where a hollow container is used as an example of the configuration of the oil separator 3 is illustrated. For example, a method in which the flow rate of the refrigerant gas is decreased and oil fine particles are dropped by its own weight, and a filter is provided in the oil separator. Various known techniques such as a method of collecting the fine particles can be used.
1 圧縮機、2、202、302、402 吐出ガス冷却装置、3 油分離器、4 四方弁、5 ガス側延長配管、6 室内熱交換器、7 冷媒液側延長配管、8 膨張弁、9 室外熱交換器、10 室外機、11 室内機、12 ポンプ、13 放熱器、14 熱交換器、14a 冷却流路、16 送風機、20 室外機コントローラ、21 運転判定手段、22、222、322、422 放熱制御手段、100、200、300、400 空気調和装置、215 第1の三方弁、311 ダンパー、418 第2の三方弁、f 運転周波数、fref 設定運転周波数。 1 compressor, 2, 202, 302, 402 discharge gas cooling device, 3 oil separator, 4 four-way valve, 5 gas side extension piping, 6 indoor heat exchanger, 7 refrigerant liquid side extension piping, 8 expansion valve, 9 outdoor Heat exchanger, 10 outdoor unit, 11 indoor unit, 12 pump, 13 radiator, 14 heat exchanger, 14a cooling flow path, 16 blower, 20 outdoor unit controller, 21 operation determination means, 22, 222, 322, 422 Control means, 100, 200, 300, 400, air conditioner, 215, first three-way valve, 311 damper, 418, second three-way valve, f operating frequency, fref set operating frequency.

Claims (7)

  1.  圧縮機、吐出ガス冷却装置、油分離器、四方弁、室内熱交換器、膨張弁、室外熱交換器が環状に接続された冷媒回路を有し、前記四方弁による流路の切替により冷房運転と暖房運転とが可能な空気調和装置であって、
     運転状態が冷房運転であるか暖房運転であるかを判定する運転判定手段と、
     前記運転判定手段が前記冷房運転であると判定した場合、前記圧縮機から吐出される吐出ガスを冷却するように前記吐出ガス冷却装置を制御し、前記暖房運転であると判定した場合、前記吐出ガスを冷却しないように前記吐出ガス冷却装置を制御する放熱制御手段と
     を備えたものであることを特徴とする空気調和装置。
    Compressor, discharge gas cooling device, oil separator, four-way valve, indoor heat exchanger, expansion valve, outdoor heat exchanger have a refrigerant circuit connected in an annular shape, cooling operation by switching the flow path by the four-way valve And an air conditioner capable of heating operation,
    An operation determination means for determining whether the operation state is a cooling operation or a heating operation;
    When the operation determination unit determines that the cooling operation is performed, the discharge gas cooling device is controlled to cool the discharge gas discharged from the compressor, and when it is determined that the heating operation is performed, the discharge An air conditioner comprising: heat radiation control means for controlling the discharge gas cooling device so as not to cool the gas.
  2.  前記放熱制御手段が、前記圧縮機の運転周波数を検出する機能を有するものであり、前記運転判定手段が前記冷房運転であると判定した場合であって、検出された前記運転周波数が予め設定された設定運転周波数以上のときには前記吐出ガスの冷却を行い、前記設定運転周波数よりも小さいときには前記吐出ガスの冷却を行わないように制御するものであることを特徴とする請求項1に記載の空気調和装置。 The heat dissipation control means has a function of detecting the operation frequency of the compressor, and the operation determination means determines that the operation is in the cooling operation, and the detected operation frequency is preset. 2. The air according to claim 1, wherein the discharge gas is cooled when it is equal to or higher than the set operation frequency, and the discharge gas is not cooled when the frequency is lower than the set operation frequency. Harmony device.
  3.  前記吐出ガス冷却装置が、
     循環物質を循環させるためのポンプと、前記ポンプに接続された前記循環物質の放熱を行う放熱器と、前記放熱器および前記ポンプに接続され前記循環物質と前記吐出ガスとの熱交換を行う熱交換器とを備えたものであり、
     前記放熱制御手段が、冷房運転時には前記ポンプを駆動して前記熱交換器における前記吐出ガスの冷却を行い、暖房運転時には前記ポンプの駆動を停止して前記熱交換器における前記吐出ガスの冷却を行わないように制御することを特徴とする請求項1または2に記載の空気調和装置。
    The discharge gas cooling device comprises:
    A pump for circulating the circulating material, a radiator for dissipating the circulating material connected to the pump, and heat for exchanging heat between the circulating material and the discharge gas connected to the radiator and the pump. With an exchange,
    The heat radiation control means drives the pump during cooling operation to cool the discharge gas in the heat exchanger, and stops heating the pump during heating operation to cool the discharge gas in the heat exchanger. It controls so that it may not perform, The air conditioning apparatus of Claim 1 or 2 characterized by the above-mentioned.
  4.  前記吐出ガス冷却装置が、
     前記圧縮機からの前記吐出ガスが流れる冷媒流路と、前記圧縮機に吸入される吸入ガスが流入するように前記圧縮機の吸入側配管に接続された冷却流路とを有する熱交換器と、
     二方が前記圧縮機の吸入側配管に接続されており、一方が前記熱交換器の前記冷却流路の流出側に接続された第1の三方弁と
     を備えたものであり、
     前記放熱制御手段が、冷房運転時には前記熱交換器の前記冷却流路に前記吸入ガスを循環させて前記吐出ガスの冷却を行い、暖房運転時には前記熱交換器の前記冷却流路への前記吸入ガスの流出を止めて前記吐出ガスを冷却しないように前記第1の三方弁を制御するものであることを特徴とする請求項1または2に記載の空気調和装置。
    The discharge gas cooling device comprises:
    A heat exchanger having a refrigerant flow path through which the discharge gas from the compressor flows, and a cooling flow path connected to a suction side pipe of the compressor so that suction gas sucked into the compressor flows in; ,
    A first three-way valve connected to the outflow side of the cooling flow path of the heat exchanger, one of which is connected to the suction side piping of the compressor;
    The heat dissipation control means circulates the suction gas through the cooling channel of the heat exchanger during cooling operation to cool the discharge gas, and the suction into the cooling channel of the heat exchanger during heating operation. The air conditioner according to claim 1 or 2, wherein the first three-way valve is controlled so as to stop the outflow of gas and not cool the discharge gas.
  5.  前記室外熱交換器が送風機を備えたものであり、
     前記吐出ガス冷却装置が、前記圧縮機の吐出側配管と前記油分離器との間に接続された放熱器と、前記放熱器と前記送風機との間に配置された、前記送風機からの送風を遮断もしくは通過させるように開閉可能なダンパーとを備えたものであり、
     前記放熱制御手段が、冷房運転時には前記ダンパーを開いて前記送風機からの送風を前記放熱器に当てて前記吐出ガスの冷却を行い、暖房運転時には前記ダンパーを閉じて前記送風機から前記放熱器への送風を遮断して前記吐出ガスの冷却を行わないように前記ダンパーを制御することを特徴とする請求項1または2に記載の空気調和装置。
    The outdoor heat exchanger is provided with a blower;
    The discharge gas cooling device is arranged between the discharge pipe of the compressor and the oil separator, and between the radiator and the blower. It is equipped with a damper that can be opened or closed to block or pass,
    The heat dissipation control means opens the damper during cooling operation and applies the air blown from the blower to the radiator to cool the discharged gas, and closes the damper during heating operation to connect the blower to the radiator. The air conditioner according to claim 1 or 2, wherein the damper is controlled so as not to cool the discharge gas by shutting off the blowing.
  6.  前記吐出ガス冷却装置が、循環物質を循環させるためのポンプと、前記ポンプに接続された前記循環物質の放熱を行う放熱器と、前記放熱器および前記ポンプに接続され前記循環物質と前記吐出ガスとの熱交換を行う熱交換器と、二方が前記圧縮機の吐出側配管と前記熱交換器の吸入側配管との間に接続されており、一方が前記熱交換器の吐出側と前記油分離器の入口との間に接続された第2の三方弁とを備えたものであり、
     前記放熱制御手段が、前記冷房運転時には前記熱交換器に前記吐出ガスを通過させて前記吐出ガスの冷却を行い、前記暖房運転時には前記吐出ガスが前記熱交換器を通過せず冷却されないように前記第2の三方弁を制御することを特徴とする請求項1または2に記載の空気調和装置。
    The discharge gas cooling device includes a pump for circulating the circulating material, a radiator for radiating heat of the circulating material connected to the pump, the circulating material and the discharge gas connected to the radiator and the pump. A heat exchanger for exchanging heat with each other, and two are connected between a discharge side pipe of the compressor and a suction side pipe of the heat exchanger, one of which is connected to the discharge side of the heat exchanger and the A second three-way valve connected between the oil separator inlet and
    The heat radiation control means cools the discharge gas by passing the discharge gas through the heat exchanger during the cooling operation, and prevents the discharge gas from being cooled without passing through the heat exchanger during the heating operation. The air conditioner according to claim 1 or 2, wherein the second three-way valve is controlled.
  7.  圧縮機、吐出ガス冷却装置、油分離器、流路切替器、室内熱交換器、膨張弁、室外熱交換器が環状に接続された冷媒回路を有し、前記流路切替器による流路の切替により冷房運転と暖房運転とが可能な空気調和装置の制御方法であって、
     運転状態が冷房運転であるか暖房運転であるかを判定し、
     前記冷房運転であると判定した場合、前記圧縮機から吐出される吐出ガスを冷却するように前記吐出ガス冷却装置を制御し、前記暖房運転であると判定した場合、前記吐出ガスを冷却しないように前記吐出ガス冷却装置を制御する
     ことを特徴とする空気調和装置の制御方法。
    A compressor, a discharge gas cooling device, an oil separator, a flow path switch, an indoor heat exchanger, an expansion valve, and an outdoor heat exchanger have a refrigerant circuit connected in a ring shape, and the flow path by the flow path switch A control method of an air conditioner capable of cooling operation and heating operation by switching,
    Determine whether the operating state is cooling operation or heating operation,
    When it is determined that the cooling operation is performed, the discharge gas cooling device is controlled to cool the discharge gas discharged from the compressor, and when it is determined that the heating operation is performed, the discharge gas is not cooled. And controlling the discharge gas cooling device. A control method for an air conditioner.
PCT/JP2012/004235 2012-06-29 2012-06-29 Air conditioner and control method therefor WO2014002145A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
GB1421070.2A GB2517346B (en) 2012-06-29 2012-06-29 Air-conditioning apparatus and method for controlling the same
JP2014522229A JPWO2014002145A1 (en) 2012-06-29 2012-06-29 Air conditioning apparatus and control method thereof
PCT/JP2012/004235 WO2014002145A1 (en) 2012-06-29 2012-06-29 Air conditioner and control method therefor
US14/402,447 US20150153079A1 (en) 2012-06-29 2012-06-29 Air-conditioning apparatus and method for controlling the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/004235 WO2014002145A1 (en) 2012-06-29 2012-06-29 Air conditioner and control method therefor

Publications (1)

Publication Number Publication Date
WO2014002145A1 true WO2014002145A1 (en) 2014-01-03

Family

ID=49782383

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/004235 WO2014002145A1 (en) 2012-06-29 2012-06-29 Air conditioner and control method therefor

Country Status (4)

Country Link
US (1) US20150153079A1 (en)
JP (1) JPWO2014002145A1 (en)
GB (1) GB2517346B (en)
WO (1) WO2014002145A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5822616U (en) * 1982-08-02 1983-02-12 三菱電機株式会社 air conditioner
JPH07305901A (en) * 1994-05-09 1995-11-21 Nippon Kentetsu Co Ltd Freezer
JPH11337195A (en) * 1998-05-28 1999-12-10 Mitsubishi Electric Corp Chiller
JP2005106360A (en) * 2003-09-30 2005-04-21 Sanyo Electric Co Ltd Refrigerant circuit and heat pump water heater
JP2009030840A (en) * 2007-07-25 2009-02-12 Sanyo Electric Co Ltd Refrigerating device
JP2009216383A (en) * 2009-06-30 2009-09-24 Toyo Eng Works Ltd Multiple heat pump type steam/hot water generating device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5269153A (en) * 1991-05-22 1993-12-14 Artesian Building Systems, Inc. Apparatus for controlling space heating and/or space cooling and water heating
JP3953377B2 (en) * 2002-07-16 2007-08-08 トヨタ自動車株式会社 Air conditioner
US7114347B2 (en) * 2003-10-28 2006-10-03 Ajay Khatri Closed cycle refrigeration system and mixed component refrigerant
KR101266657B1 (en) * 2006-10-17 2013-05-28 엘지전자 주식회사 air conditioner

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5822616U (en) * 1982-08-02 1983-02-12 三菱電機株式会社 air conditioner
JPH07305901A (en) * 1994-05-09 1995-11-21 Nippon Kentetsu Co Ltd Freezer
JPH11337195A (en) * 1998-05-28 1999-12-10 Mitsubishi Electric Corp Chiller
JP2005106360A (en) * 2003-09-30 2005-04-21 Sanyo Electric Co Ltd Refrigerant circuit and heat pump water heater
JP2009030840A (en) * 2007-07-25 2009-02-12 Sanyo Electric Co Ltd Refrigerating device
JP2009216383A (en) * 2009-06-30 2009-09-24 Toyo Eng Works Ltd Multiple heat pump type steam/hot water generating device

Also Published As

Publication number Publication date
GB201421070D0 (en) 2015-01-14
JPWO2014002145A1 (en) 2016-05-26
GB2517346B (en) 2018-12-26
GB2517346A (en) 2015-02-18
US20150153079A1 (en) 2015-06-04

Similar Documents

Publication Publication Date Title
JP5169295B2 (en) Refrigeration equipment
JP2004150750A (en) Method for determining pressure of high pressure cooling medium in refrigerating cycle device
JP5916488B2 (en) Control apparatus and method, program, and multi-type air conditioning system including the same
JPWO2011135616A1 (en) Refrigeration cycle equipment
JP5318057B2 (en) Refrigerator, refrigeration equipment and air conditioner
JP2007212040A (en) Turbo refrigerator and its control method
JP2006300371A (en) Air conditioner
JP2006300374A (en) Air conditioner
JP2007051841A (en) Refrigeration cycle device
JP2011133133A (en) Refrigerating device
JP2006300369A (en) Air conditioner
JP2009243842A (en) Operation method of multiple-type air conditioner and outdoor unit
KR20120122704A (en) An air conditioner and a control method the same
JP2006284034A (en) Air conditioner and its expansion valve control method
JP5517891B2 (en) Air conditioner
WO2014002145A1 (en) Air conditioner and control method therefor
JP2010032167A (en) Refrigerating device
JP2008051464A (en) Air conditioner
CN206291522U (en) A kind of microchannel air-conditioner
WO2017138243A1 (en) Refrigeration cycle device
KR20060069714A (en) Over heating control method of compressor in air-conditioner
JP2006284058A (en) Air conditioner and its control method
JP5908177B1 (en) Refrigeration cycle apparatus, air conditioner, and control method for refrigeration cycle apparatus
JP2011133132A (en) Refrigerating device
JP5673290B2 (en) Air conditioner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12879929

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014522229

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14402447

Country of ref document: US

ENP Entry into the national phase

Ref document number: 1421070

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20120629

WWE Wipo information: entry into national phase

Ref document number: 1421070.2

Country of ref document: GB

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12879929

Country of ref document: EP

Kind code of ref document: A1