WO2013008365A1 - Air-conditioning device - Google Patents

Air-conditioning device Download PDF

Info

Publication number
WO2013008365A1
WO2013008365A1 PCT/JP2012/001980 JP2012001980W WO2013008365A1 WO 2013008365 A1 WO2013008365 A1 WO 2013008365A1 JP 2012001980 W JP2012001980 W JP 2012001980W WO 2013008365 A1 WO2013008365 A1 WO 2013008365A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
heat
heat medium
heat exchanger
operation mode
Prior art date
Application number
PCT/JP2012/001980
Other languages
French (fr)
Japanese (ja)
Inventor
傑 鳩村
山下 浩司
裕之 森本
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2014505797A priority Critical patent/JP5773063B2/en
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to US14/118,344 priority patent/US9494361B2/en
Priority to JP2013523772A priority patent/JP5791717B2/en
Priority to EP12811031.9A priority patent/EP2733444B1/en
Priority to CN201280031532.0A priority patent/CN103620325B/en
Priority to ES12811031T priority patent/ES2904812T3/en
Publication of WO2013008365A1 publication Critical patent/WO2013008365A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/06Removing frost
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0231Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units with simultaneous cooling and heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0232Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units with bypasses
    • F25B2313/02322Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units with bypasses during defrosting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/0272Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using bridge circuits of one-way valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02732Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using two three-way valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02741Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using one four-way valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B25/00Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00
    • F25B25/005Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00 using primary and secondary systems

Definitions

  • the present invention relates to an air conditioner applied to, for example, a building multi air conditioner.
  • Some air conditioners include a heat source unit (outdoor unit) arranged outside a building and an indoor unit arranged inside a building, such as a building multi-air conditioner.
  • the refrigerant circulating in the refrigerant circuit of such an air conditioner radiates heat (heat absorption) to the air supplied to the heat exchanger of the indoor unit, and heats or cools the air.
  • the heated or cooled air is sent into the air-conditioning target space for heating or cooling.
  • a building normally has a plurality of indoor spaces, and accordingly, the indoor unit also includes a plurality of indoor units.
  • the refrigerant pipe connecting the outdoor unit and the indoor unit may be 100 m. When the length of the pipe connecting the outdoor unit and the indoor unit is long, the amount of refrigerant charged in the refrigerant circuit increases accordingly.
  • Such indoor units of multi-air conditioners for buildings are usually arranged and used in indoor spaces where people are present (for example, office spaces, living rooms, stores, etc.). If for some reason the refrigerant leaks from the indoor unit placed in the indoor space, depending on the type of refrigerant, it may be flammable or toxic, which may be a problem from the perspective of human impact and safety There is. Moreover, even if it is a refrigerant
  • a secondary loop method is adopted, a refrigerant is circulated in the primary loop, and a heat medium such as water and brine is circulated in the secondary loop, There is a method of transferring the heat or cold of the refrigerant to the heat medium (see, for example, Patent Document 1).
  • the technology described in Patent Document 1 transmits the heat and cold generated in the primary loop to the secondary loop via a heat exchanger between heat media such as a plate heat exchanger and a double pipe. Heat and cold are supplied to the indoor unit by the secondary loop.
  • Patent Document 1 suppresses the influence on the human body due to refrigerant leakage because the piping corresponding to the secondary loop through which the non-hazardous heat medium circulates is disposed in the vicinity of the space where the person is present. Is something that can be done.
  • the air conditioning apparatus provided with the bypass piping which bypasses the heat exchanger between heat media is proposed (for example, refer patent document 2).
  • the technique described in Patent Document 2 is configured such that the flow resistance of the bypass pipe is smaller than that of the heat exchanger related to heat medium, the amount of refrigerant flowing into the heat exchanger related to heat medium is reduced, and the heat medium of the secondary loop It is intended to suppress freezing.
  • Patent Document 1 does not describe the suppression of freezing of the heat medium during the defrost operation. If the technique described in Patent Document 2 is adopted in the technique described in Patent Document 1, and the defrost operation is performed, the amount of low-temperature / low-pressure refrigerant flowing out of the expansion device flows into the heat exchanger between the heat mediums. Suppression is possible. However, even in this case, the low-temperature / low-pressure refrigerant flows into the heat exchanger between the heat mediums, and the countermeasure for suppressing freezing of the heat medium in the secondary loop is not sufficient. And if the heat medium of the secondary side loop freezes, circulation of the heat medium to the indoor unit is hindered, and air conditioning efficiency may be reduced.
  • An object of the air conditioning apparatus according to the present invention is to provide an air conditioning apparatus that suppresses freezing of a heat medium, an antifreeze liquid, and the like and improves operational reliability during defrost operation.
  • the air conditioner according to the present invention includes an outdoor unit on which a compressor, a first refrigerant flow switching device, and a heat source side heat exchanger are mounted, a heat exchanger between heat media, a throttling device, and a second refrigerant flow switching.
  • Apparatus a heat medium converter mounted with a pump, and at least one indoor unit mounted with a use-side heat exchanger, the compressor, the first refrigerant flow switching device, the expansion device,
  • a refrigeration cycle circuit is configured by connecting the second refrigerant flow switching device and the heat exchanger between heat medium with a refrigerant pipe, and the heat exchanger between heat medium and the use side heat exchanger are connected with a heat medium pipe.
  • a defrost operation in which a heat medium circulation circuit in which a heat medium different from the refrigerant circulates is configured, the first refrigerant flow switching device is switched, and the refrigerant discharged from the compressor is supplied to the heat source side heat exchanger.
  • the differential In the strike operation mode a part of the refrigerant flowing out from the heat source side heat exchanger is supplied to the heat exchanger related to heat medium without going through the expansion device, and the rest is the expansion device and the heat. It returns to the outdoor unit without going through the inter-medium heat exchanger.
  • the air conditioner according to the present invention supplies the refrigerant flowing from the outdoor unit to the heat medium converter in the defrost operation mode from the side not connected to the expansion device to the heat exchanger related to heat medium.
  • FIG. 6 is a refrigerant circuit diagram illustrating a refrigerant flow in a defrost operation mode 2-5, which is one form of the defrost operation mode 2.
  • the air conditioner according to the present embodiment is an improvement that reduces the amount of low-temperature refrigerant so that it flows into a heat exchanger (heat exchanger 15 between heat medium) that exchanges heat between the refrigerant and the heat medium during defrost operation.
  • a heat exchanger heat exchanger 15 between heat medium
  • FIG. 1 is a schematic diagram illustrating an installation example of an air conditioner according to an embodiment of the present invention.
  • This air conditioner has a refrigerant circulation circuit A that circulates a refrigerant (heat source side refrigerant) and a heat medium circulation circuit B that circulates a heat medium, and the indoor unit 2 is operated in a cooling mode or a heating mode. Can be freely selected.
  • the air conditioner employs a method of indirectly using a refrigerant (indirect method). That is, the cold or warm heat stored in the heat source side refrigerant is transmitted to a refrigerant (hereinafter referred to as a heat medium) different from the heat source side refrigerant, and the air-conditioning target space is cooled or heated with the cold heat or heat stored in the heat medium.
  • a refrigerant hereinafter referred to as a heat medium
  • the air-conditioning apparatus includes a single outdoor unit 1 that is a heat source unit, a plurality of indoor units 2, and an outdoor unit 1 and an indoor unit 2. And a heat medium relay unit 3 interposed therebetween.
  • the heat medium relay unit 3 performs heat exchange between the heat source side refrigerant and the heat medium.
  • the outdoor unit 1 and the heat medium relay unit 3 are connected by a refrigerant pipe 4 for circulating the heat source side refrigerant.
  • the heat medium relay unit 3 and the indoor unit 2 are connected by a pipe (heat medium pipe) 5 for circulating the heat medium.
  • the cold or warm heat generated by the outdoor unit 1 is delivered to the indoor unit 2 via the heat medium converter 3.
  • the outdoor unit 1 is usually disposed in an outdoor space 6 that is a space (for example, a rooftop) outside a building 9 such as a building, and supplies cold or hot energy to the indoor unit 2 via the heat medium converter 3. It is.
  • the indoor unit 2 is disposed at a position where cooling air or heating air can be supplied to the indoor space 7 which is a space (for example, a living room) inside the building 9, and is used for cooling the indoor space 7 serving as a space to be air-conditioned. Air or heating air is supplied.
  • the heat medium relay unit 3 is installed at a position different from the outdoor space 6 and the indoor space 7 as a separate housing from the outdoor unit 1 and the indoor unit 2.
  • the heat medium converter 3 is connected to the outdoor unit 1 and the indoor unit 2 via the refrigerant pipe 4 and the pipe 5, respectively, and transmits cold heat or hot heat supplied from the outdoor unit 1 to the indoor unit 2. is there.
  • the outdoor unit 1 and the heat medium converter 3 are connected via two refrigerant pipes 4, and the heat medium converter 3 and Each indoor unit 2a to 2d is connected via two pipes 5.
  • construction is easy by connecting each unit (the outdoor unit 1, the indoor unit 2, and the heat medium relay unit 3) via the refrigerant pipe 4 and the pipe 5. It has become.
  • the heat medium converter 3 is inside the building 9 but is a space other than the indoor space 7 such as a ceiling (for example, a space such as a ceiling behind the building 9, hereinafter, It is illustrated by way of example as being installed in a space 8).
  • the heat medium relay 3 may be installed in a common space where there is an elevator or the like.
  • the indoor unit 2 is a ceiling cassette type is shown as an example, it is not limited to this. That is, the air conditioner according to the present embodiment is a ceiling-embedded type, ceiling-suspended type, as long as heating air or cooling air can be blown directly into the indoor space 7 by a duct or the like, It can be of any kind.
  • the outdoor unit 1 is installed in the outdoor space 6 as an example, but the present invention is not limited to this.
  • the outdoor unit 1 may be installed in an enclosed space such as a machine room with a ventilation port, or the interior of the building 9 if the exhaust heat can be exhausted outside the building 9 by an exhaust duct. You may install in. Even when the water-cooled outdoor unit 1 is used, it may be installed inside the building 9. Even if the outdoor unit 1 is installed in such a place, no particular problem occurs.
  • the heat medium converter 3 can also be installed in the vicinity of the outdoor unit 1. However, it should be noted that if the distance from the heat medium relay unit 3 to the indoor unit 2 is too long, the power for transporting the heat medium becomes considerably large, and the energy saving effect is diminished. Furthermore, the number of connected outdoor units 1, indoor units 2, and heat medium converters 3 is not limited to the number illustrated in FIG. 1. For example, the building 9 in which the air conditioner according to the present embodiment is installed. The number of units may be determined according to.
  • FIG. 2 is a refrigerant circuit configuration example of the air-conditioning apparatus (hereinafter referred to as air-conditioning apparatus 100) according to the embodiment of the present invention. Based on FIG. 2, the detailed structure of the air conditioning apparatus 100 is demonstrated. As illustrated in FIG. 2, the outdoor unit 1 and the heat medium relay unit 3 are connected to each other through a heat exchanger related to heat medium 15 a and a heat exchanger related to heat medium 15 b provided in the heat medium converter 3. Connected by piping 4. Moreover, the heat medium relay unit 3 and the indoor unit 2 are also connected by the pipe 5 via the heat exchanger related to heat medium 15a and the heat exchanger related to heat medium 15b. The refrigerant pipe 4 will be described in detail later.
  • the outdoor unit 1 stores a compressor 10 that compresses refrigerant, a first refrigerant flow switching device 11 that includes a four-way valve, a heat source side heat exchanger 12 that functions as an evaporator or a condenser, and excess refrigerant.
  • An accumulator 19 is connected to and mounted on the refrigerant pipe 4.
  • the outdoor unit 1 is also provided with a first connection pipe 4a, a second connection pipe 4b, a check valve 13a, a check valve 13b, a check valve 13c, and a check valve 13d.
  • the heat medium is provided by providing the first connection pipe 4a, the second connection pipe 4b, the check valve 13a, the check valve 13b, the check valve 13c, and the check valve 13d.
  • the flow of the heat source side refrigerant flowing into the converter 3 can be in a certain direction. That is, the refrigerant flowing out of the outdoor unit 1 flows out of the outdoor unit 1 through the refrigerant pipe 4 (first refrigerant pipe) connected to the check valves 13a and 13b, and then from the heat medium converter 3 to the outdoor unit. 1 flows into the outdoor unit 1 through the refrigerant pipe 4 (second refrigerant pipe) connected to the check valves 13c and 13d.
  • the outdoor unit 1 includes a first outdoor temperature sensor 40a that detects the temperature of the refrigerant flowing into the heat source side heat exchanger 12 during the defrost operation for removing frost generated in the heat source side heat exchanger 12, and the heat source side.
  • a second outdoor temperature sensor 40b that detects the temperature of the refrigerant flowing out of the heat exchanger 12 is provided.
  • the compressor 10 sucks the heat source side refrigerant and compresses the heat source side refrigerant to a high temperature and high pressure state.
  • the compressor 10 may be composed of an inverter compressor capable of capacity control.
  • the first refrigerant flow switching device 11 has a flow of the heat source side refrigerant in the heating operation mode (in the heating only operation mode and the heating main operation mode) and in the cooling operation mode (in the all cooling operation mode and the cooling main operation mode). ) To switch the flow of the heat source side refrigerant.
  • the heat source side heat exchanger 12 functions as an evaporator during heating operation, functions as a radiator (gas cooler) during cooling operation, and between the air supplied from a blower such as a fan (not shown) and the heat source side refrigerant. Heat exchange is performed.
  • the accumulator 19 is provided on the suction side of the compressor 10, and surplus refrigerant due to a difference between the heating operation mode and the cooling operation mode, a change in the transient operation (for example, a change in the number of indoor units 2 operated). And excess refrigerant generated by load conditions.
  • the first outdoor temperature sensor 40a detects the temperature of the refrigerant flowing into the heat source side heat exchanger 12 (inlet side temperature).
  • the first outdoor temperature sensor 40 a may be provided in the refrigerant pipe 4 on the inlet side of the heat source side heat exchanger 12.
  • the second outdoor temperature sensor 40b detects the temperature of the refrigerant (outlet side temperature) that has flowed out of the heat source side heat exchanger 12.
  • the second outdoor temperature sensor 40 b may be provided in the refrigerant pipe 4 on the outlet side of the heat source side heat exchanger 12.
  • the first outdoor temperature sensor 40 a and the second outdoor temperature sensor 40 b are connected to a control device 70 that performs overall control of the operation of the air conditioner 100. And the detection result of the 1st outdoor temperature sensor 40a and the 2nd outdoor temperature sensor 40b is transmitted to the control apparatus 70, and the control apparatus 70 judges whether the implementation of the defrosting operation of the heat source side heat exchanger 12 is performed. .
  • the 1st outdoor temperature sensor 40a and the 2nd outdoor temperature sensor 40b are good to comprise, for example with a thermistor etc.
  • a use side heat exchanger 26 is mounted on the indoor unit 2.
  • the use side heat exchanger 26 is connected to the heat medium flow control device 25 and the second heat medium flow switching device 23 of the heat medium converter 3 by the pipe 5.
  • the use-side heat exchanger 26 performs heat exchange between air supplied from a blower such as a fan (not shown) and a heat medium, and generates heating air or cooling air to be supplied to the indoor space 7. To do.
  • FIG. 2 an example is shown in which four indoor units 2 are connected to the heat medium relay unit 3, and as an indoor unit 2a, an indoor unit 2b, an indoor unit 2c, and an indoor unit 2d from the lower side of the page, It is shown.
  • the use side heat exchanger 26 also uses the use side heat exchanger 26a, the use side heat exchanger 26b, the use side heat exchanger 26c, and the use side heat exchange from the lower side of the drawing. It is shown as a container 26d.
  • the number of connected indoor units 2 is not limited to four as shown in FIG.
  • the heat medium converter 3 includes two heat medium heat exchangers 15 (15a, 15b) that exchange heat between the refrigerant and the heat medium, two expansion devices 16 (16a, 16b) that depressurize the refrigerant, and a refrigerant pipe 4.
  • the two heat exchangers 15a, 15b function as condensers (radiators) or evaporators, perform heat exchange between the heat source side refrigerant and the heat medium, and are generated by the outdoor unit 1 and stored in the heat source side refrigerant. The generated cold or warm heat is transmitted to the heat medium.
  • the heat exchanger related to heat medium 15a is provided between the expansion device 16a and the second refrigerant flow switching device 18a in the refrigerant circuit A and serves to cool the heat medium in the cooling / heating mixed operation mode. is there.
  • the heat exchanger related to heat medium 15b is provided between the expansion device 16b and the second refrigerant flow switching device 18b in the refrigerant circuit A and serves to heat the heat medium in the cooling / heating mixed operation mode. is there.
  • the two expansion devices 16a and 16b function as a pressure reducing valve and an expansion valve, and expand the heat source side refrigerant by reducing the pressure.
  • the expansion device 16a is provided on the upstream side of the heat exchanger related to heat medium 15a in the flow of the heat source side refrigerant in the cooling only operation mode.
  • the expansion device 16b is provided on the upstream side of the heat exchanger related to heat medium 15b in the flow of the heat source side refrigerant in the cooling only operation mode.
  • the two expansion devices 16 may be configured by a device whose opening degree can be variably controlled, for example, an electronic expansion valve.
  • the two opening / closing devices 17a and 17b are configured by a two-way valve or the like and open / close the refrigerant pipe 4. That is, the opening / closing of the two opening / closing devices 17a and 17b is controlled according to an operation mode to be described later in order to adjust the flow of the refrigerant supplied from the refrigerant piping 4 (first refrigerant piping).
  • the two second refrigerant flow switching devices 18a and 18b are configured by four-way valves or the like, and switch the flow of the heat source side refrigerant according to the operation mode.
  • the second refrigerant flow switching device 18a is provided on the downstream side of the heat exchanger related to heat medium 15a in the flow of the heat source side refrigerant in the cooling only operation mode.
  • the second refrigerant flow switching device 18b is provided on the downstream side of the heat exchanger related to heat medium 15b in the flow of the heat source side refrigerant in the cooling only operation mode.
  • the second refrigerant flow switching device 18 may not be a four-way valve, and may be configured by combining, for example, a three-way valve, a two-way valve, and an electromagnetic valve.
  • the two pumps 21 a and 21 b circulate the heat medium in the pipe 5.
  • the pump 21 a is provided in the pipe 5 between the heat exchanger related to heat medium 15 a and the second heat medium flow switching device 23.
  • the pump 21 b is provided in the pipe 5 between the heat exchanger related to heat medium 15 b and the second heat medium flow switching device 23.
  • These pumps 21 may be constituted by, for example, pumps capable of capacity control.
  • the pump 21a may be provided in the pipe 5 between the heat exchanger related to heat medium 15a and the first heat medium flow switching device 22.
  • the pump 21b may be provided in the pipe 5 between the heat exchanger related to heat medium 15b and the first heat medium flow switching device 22.
  • the four first heat medium flow switching devices 22a to 22d are configured by three-way valves or the like, and switch the heat medium flow paths.
  • the first heat medium flow switching device 22 is provided in a number (here, four) according to the number of indoor units 2 installed.
  • one of the three sides is in the heat exchanger 15a
  • one of the three is in the heat exchanger 15b
  • one of the three is in the heat medium flow rate.
  • Each is connected to the adjusting device 25 and provided on the outlet side of the heat medium flow path of the use side heat exchanger 26.
  • the four second heat medium flow switching devices 23a to 23d are constituted by three-way valves or the like, and switch the heat medium flow paths.
  • the number of the second heat medium flow switching devices 23 is set according to the number of installed indoor units 2 (here, four).
  • the second heat medium flow switching device 23 one of the three heat transfer medium heat exchangers 15a, one of the three heat transfer medium heat exchangers 15b, and one of the three heat transfer side heats.
  • the heat exchanger is connected to the exchanger 26 and provided on the inlet side of the heat medium flow path of the use side heat exchanger 26.
  • the second heat medium flow switching device 23a, the second heat medium flow switching device 23b, the second heat medium flow switching device 23c, and the second heat medium flow from the lower side of the drawing. This is illustrated as a switching device 23d.
  • the four heat medium flow control devices 25a to 25d are configured by two-way valves or the like that can control the opening area, and adjust the flow rate of the heat medium flowing through the pipe 5.
  • the number of the heat medium flow control devices 25 is set according to the number of indoor units 2 installed (four in this case).
  • One of the heat medium flow control devices 25 is connected to the use side heat exchanger 26 and the other is connected to the first heat medium flow switching device 22, and is connected to the outlet side of the heat medium flow channel of the use side heat exchanger 26. Is provided.
  • the heat medium flow adjustment device 25 a, the heat medium flow adjustment device 25 b, the heat medium flow adjustment device 25 c, and the heat medium flow adjustment device 25 d are illustrated from the lower side of the drawing. Further, the heat medium flow control device 25 may be provided on the inlet side of the heat medium flow path of the use side heat exchanger 26.
  • the heat medium relay 3 includes various detection means (two first temperature sensors 31 (31a, 31b), four second temperature sensors 34 (34a to 34d), and four third temperature sensors 35 (35a to 35a). 35d) Two pressure sensors 36 (36a, 36b)) are provided. Information (for example, temperature information, pressure information, and heat source side refrigerant concentration information) detected by these detection means is sent to a control device 70 that performs overall control of the operation of the air conditioner 100, and the drive frequency of the compressor 10.
  • the rotation speed of a blower (not shown) provided near the heat source side heat exchanger 12 and the use side heat exchanger 26, switching of the first refrigerant flow switching device 11, driving frequency of the pump 21, second refrigerant flow switching device 18, switching of the first heat medium flow switching device 22, switching of the second heat medium flow switching device, and the like.
  • the two first temperature sensors 31a and 31b detect the temperature of the heat medium flowing out from the intermediate heat exchanger 15, that is, the temperature of the heat medium at the outlet of the intermediate heat exchanger 15, for example, a thermistor or the like. It is good to comprise.
  • the first temperature sensor 31a is provided in the pipe 5 on the inlet side of the pump 21a.
  • the first temperature sensor 31b is provided in the pipe 5 on the inlet side of the pump 21b.
  • the four second temperature sensors 34a to 34d are provided between the first heat medium flow switching device 22 and the heat medium flow control device 25, and detect the temperature of the heat medium flowing out from the use side heat exchanger 26. It is good that it is composed of a thermistor or the like.
  • the number of the second temperature sensors 34 (four here) according to the number of indoor units 2 installed is provided. In correspondence with the indoor unit 2, the second temperature sensor 34a, the second temperature sensor 34b, the second temperature sensor 34c, and the second temperature sensor 34d are illustrated from the lower side of the drawing.
  • the four third temperature sensors 35a to 35d are provided on the inlet side or the outlet side of the heat source side refrigerant of the heat exchanger related to heat medium 15, and the temperature or heat medium of the heat source side refrigerant flowing into the heat exchanger related to heat medium 15
  • the temperature of the heat source side refrigerant that has flowed out of the intermediate heat exchanger 15 is detected, and it may be constituted by a thermistor or the like.
  • the third temperature sensor 35a is provided between the heat exchanger related to heat medium 15a and the second refrigerant flow switching device 18a.
  • the third temperature sensor 35b is provided between the heat exchanger related to heat medium 15a and the expansion device 16a.
  • the third temperature sensor 35c is provided between the heat exchanger related to heat medium 15b and the second refrigerant flow switching device 18b.
  • the third temperature sensor 35d is provided between the heat exchanger related to heat medium 15b and the expansion device 16b.
  • the two pressure sensors 36a and 36b are for detecting the pressure of the refrigerant.
  • the pressure sensor 36a detects the pressure of the heat source side refrigerant flowing between the heat exchanger related to heat medium 15a and the second refrigerant flow switching device 18a, similarly to the installation position of the third temperature sensor 35a.
  • the pressure sensor 36b is provided between the heat exchanger related to heat medium 15b and the expansion device 16b, and between the heat exchanger related to heat medium 15b and the expansion device 16b. The pressure of the heat source side refrigerant flowing between them is detected.
  • the control device 70 is configured by a microcomputer or the like, and based on detection information from various detection means and instructions from the remote controller, the driving frequency of the compressor 10, the rotational speed of the blower (including ON / OFF), the first refrigerant Switching of the flow switching device 11, driving of the pump 21, opening of the expansion device 16, opening / closing of the switching device 17, switching of the second refrigerant flow switching device 18, switching of the first heat medium flow switching device 22, (2)
  • the switching of the heat medium flow switching device 23 and the opening degree of the heat medium flow control device 25 are controlled. That is, the control device 70 performs overall control of various devices and executes a defrost operation and each operation mode to be described later.
  • control device 70 is provided in the heat medium relay unit 3
  • the present invention is not limited thereto. That is, the control device 70 may be provided for each unit of the indoor unit 2 or may be provided in the heat medium relay unit 3.
  • you may comprise the some control apparatus 70 in the outdoor unit 1, the indoor unit 2, and the heat medium converter 3, so that cooperation control can be performed by communication.
  • the piping 5 for circulating the heat medium is composed of one connected to the heat exchanger related to heat medium 15a and one connected to the heat exchanger related to heat medium 15b.
  • the pipe 5 is branched (here, four branches each) according to the number of indoor units 2 connected to the heat medium relay unit 3.
  • the pipe 5 is connected by a first heat medium flow switching device 22 and a second heat medium flow switching device 23.
  • the first heat medium flow switching device 22 and the second heat medium flow switching device 23 By controlling the first heat medium flow switching device 22 and the second heat medium flow switching device 23, the heat medium from the heat exchanger related to heat medium 15a flows into the use-side heat exchanger 26, or the heat medium Whether the heat medium from the intermediate heat exchanger 15b flows into the use side heat exchanger 26 is determined.
  • the refrigerant of the compressor 10 the first refrigerant flow switching device 11, the heat source side heat exchanger 12, the switchgear 17, the second refrigerant flow switching device 18, and the heat exchanger related to heat medium 15 is used.
  • the flow path, the expansion device 16 and the accumulator 19 are connected by the refrigerant pipe 4 to constitute the refrigerant circulation circuit A.
  • the switching device 23 is connected by a pipe 5 to constitute a heat medium circulation circuit B. That is, a plurality of usage-side heat exchangers 26 are connected in parallel to each of the heat exchangers between heat media 15, and the heat medium circulation circuit B has a plurality of systems.
  • the outdoor unit 1 and the heat medium converter 3 are connected via the heat exchanger related to heat medium 15 provided in the heat medium converter 3, so that the heat medium converter 3 and the indoor unit
  • the machine 2 is also connected through a heat exchanger 15 between heat media. That is, in the air conditioner 100, the heat source side refrigerant circulating in the refrigerant circuit A and the heat medium circulating in the heat medium circuit B exchange heat in the intermediate heat exchanger 15a and the intermediate heat exchanger 15b. It is supposed to be.
  • the air conditioner 100 can perform a cooling operation or a heating operation in the indoor unit 2 based on an instruction from each indoor unit 2. That is, the air conditioning apparatus 100 can perform the same operation for all the indoor units 2 and can perform different operations for each of the indoor units 2.
  • the operation mode executed by the air conditioner 100 includes a cooling only operation mode in which all the driven indoor units 2 execute a cooling operation, and a heating only operation in which all the driven indoor units 2 execute a heating operation.
  • the operation mode executed by the air-conditioning apparatus 100 according to Embodiment 1 includes a defrost operation mode in which frost attached to the heat source side heat exchanger 12 is removed. Below, each operation mode is demonstrated with the flow of a heat-source side refrigerant
  • FIG. 3 is a refrigerant circuit diagram illustrating a refrigerant flow when the air-conditioning apparatus 100 is in the cooling only operation mode.
  • the cooling only operation mode will be described by taking as an example a case where a cooling load is generated only in the use side heat exchanger 26a and the use side heat exchanger 26b.
  • the piping represented with the thick line has shown the piping through which a refrigerant
  • the flow direction of the heat source side refrigerant is indicated by a solid line arrow, and the flow direction of the heat medium is indicated by a broken line arrow.
  • the first refrigerant flow switching device 11 is switched so that the heat source side refrigerant discharged from the compressor 10 flows into the heat source side heat exchanger 12.
  • the pump 21a and the pump 21b are driven, the heat medium flow control device 25a and the heat medium flow control device 25b are opened, and the heat medium flow control device 25c and the heat medium flow control device 25d are fully closed.
  • the heat medium circulates between the heat exchanger related to heat medium 15a and the heat exchanger related to heat medium 15b and the use side heat exchanger 26a and the use side heat exchanger 26b.
  • the low-temperature and low-pressure refrigerant is compressed by the compressor 10 and discharged as a high-temperature and high-pressure gas refrigerant.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 10 flows into the heat source side heat exchanger 12 via the first refrigerant flow switching device 11. And it becomes a high-pressure liquid refrigerant, radiating heat to outdoor air with the heat source side heat exchanger 12.
  • the high-pressure refrigerant that has flowed out of the heat source side heat exchanger 12 flows out of the outdoor unit 1 through the check valve 13 a, and flows into the heat medium relay unit 3 through the refrigerant pipe 4.
  • the high-pressure refrigerant flowing into the heat medium relay unit 3 is branched after passing through the opening / closing device 17a and expanded by the expansion device 16a and the expansion device 16b to become a low-temperature / low-pressure two-phase refrigerant.
  • the opening / closing device 17b is closed.
  • This two-phase refrigerant flows into each of the heat exchanger related to heat medium 15a and the heat exchanger related to heat medium 15b acting as an evaporator, and absorbs heat from the heat medium circulating in the heat medium circulation circuit B. It becomes a low-temperature, low-pressure gas refrigerant while cooling.
  • the gas refrigerant flowing out of the heat exchanger related to heat medium 15a and the heat exchanger related to heat medium 15b passes through the second refrigerant flow switching device 18a, the second refrigerant flow switching device 18b, and the heat medium converter 3, and is connected to the refrigerant pipe. 4 flows into the outdoor unit 1 again.
  • the refrigerant flowing into the outdoor unit 1 passes through the check valve 13d and is sucked into the compressor 10 again via the first refrigerant flow switching device 11 and the accumulator 19.
  • the second refrigerant flow switching device 18a and the second refrigerant flow switching device 18b are communicated with the low pressure pipe. Further, the opening degree of the expansion device 16a is controlled so that the superheat (superheat degree) obtained as a difference between the temperature detected by the third temperature sensor 35a and the temperature detected by the third temperature sensor 35b becomes constant. Is done. Similarly, the opening degree of the expansion device 16b is controlled so that the superheat obtained as the difference between the temperature detected by the third temperature sensor 35c and the temperature detected by the third temperature sensor 35d is constant.
  • the flow of the heat medium in the heat medium circuit B will be described.
  • the cold heat of the heat source side refrigerant is transmitted to the heat medium in both the heat exchanger related to heat medium 15a and the heat exchanger related to heat medium 15b, and the cooled heat medium is piped 5 by the pump 21a and the pump 21b.
  • the inside will be allowed to flow.
  • the heat medium pressurized and discharged by the pump 21a and the pump 21b passes through the second heat medium flow switching device 23a and the second heat medium flow switching device 23b, and the use side heat exchanger 26a and the use side heat exchange. Flows into the vessel 26b.
  • the heat medium absorbs heat from the indoor air in the use side heat exchanger 26a and the use side heat exchanger 26b, thereby cooling the indoor space 7.
  • the heat medium flows out of the use-side heat exchanger 26a and the use-side heat exchanger 26b and flows into the heat medium flow control device 25a and the heat medium flow control device 25b.
  • the heat medium flow control device 25a and the heat medium flow control device 25b control the flow rate of the heat medium to a flow rate necessary to cover the air conditioning load required in the room, so that the use-side heat exchanger 26a. And it flows into the use side heat exchanger 26b.
  • the heat medium flowing out from the heat medium flow control device 25a and the heat medium flow control device 25b passes through the first heat medium flow switching device 22a and the first heat medium flow switching device 22b, and the heat exchanger related to heat medium 15a. And flows into the heat exchanger related to heat medium 15b, and is sucked into the pump 21a and the pump 21b again.
  • the heat medium is directed from the second heat medium flow switching device 23 to the first heat medium flow switching device 22 via the heat medium flow control device 25.
  • the air conditioning load required in the indoor space 7 includes the temperature detected by the first temperature sensor 31a, the temperature detected by the first temperature sensor 31b, and the temperature detected by the second temperature sensor 34. By controlling so as to keep the difference between the two as a target value, it can be covered.
  • the first heat medium flow switching device 22 and the second heat medium flow switching device 23 ensure a flow path that flows to both the heat exchanger related to heat medium 15a and the heat exchanger related to heat medium 15b.
  • the intermediate opening is set.
  • FIG. 4 is a refrigerant circuit diagram illustrating a refrigerant flow when the air-conditioning apparatus 100 is in the heating only operation mode.
  • the heating only operation mode will be described by taking as an example a case where a thermal load is generated only in the use side heat exchanger 26a and the use side heat exchanger 26b.
  • the pipes represented by the thick lines indicate the pipes through which the refrigerant (heat source side refrigerant and heat medium) flows.
  • the flow direction of the heat source side refrigerant is indicated by solid line arrows
  • the flow direction of the heat medium is indicated by broken line arrows.
  • the first refrigerant flow switching device 11 uses the heat source side refrigerant discharged from the compressor 10 without passing through the heat source side heat exchanger 12. It switches so that it may flow into converter 3.
  • the pump 21a and the pump 21b are driven, the heat medium flow control device 25a and the heat medium flow control device 25b are opened, and the heat medium flow control device 25c and the heat medium flow control device 25d are fully closed.
  • the heat medium circulates between the heat exchanger related to heat medium 15a and the heat exchanger related to heat medium 15b and the use side heat exchanger 26a and the use side heat exchanger 26b.
  • the low-temperature and low-pressure refrigerant is compressed by the compressor 10 and discharged as a high-temperature and high-pressure gas refrigerant.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 10 flows out of the outdoor unit 1 through the first refrigerant flow switching device 11 and the check valve 13b.
  • the high-temperature and high-pressure gas refrigerant that has flowed out of the outdoor unit 1 flows into the heat medium relay unit 3 through the refrigerant pipe 4.
  • the high-temperature and high-pressure gas refrigerant that has flowed into the heat medium relay unit 3 is branched and passes through the second refrigerant flow switching device 18a and the second refrigerant flow switching device 18b, and the heat exchanger related to heat medium 15a and the heat medium. It flows into each of the intermediate heat exchangers 15b.
  • the high-temperature and high-pressure gas refrigerant flowing into the heat exchanger related to heat medium 15a and the heat exchanger related to heat medium 15b becomes a high-pressure liquid refrigerant while dissipating heat to the heat medium circulating in the heat medium circuit B.
  • the liquid refrigerant flowing out of the heat exchanger related to heat medium 15a and the heat exchanger related to heat medium 15b is expanded by the expansion device 16a and the expansion device 16b to become a low-temperature, low-pressure two-phase refrigerant.
  • the two-phase refrigerant flows out of the heat medium relay unit 3 through the opening / closing device 17b, and flows into the outdoor unit 1 through the refrigerant pipe 4 again.
  • the opening / closing device 17a is closed.
  • the refrigerant flowing into the outdoor unit 1 passes through the check valve 13c and flows into the heat source side heat exchanger 12 acting as an evaporator. And the refrigerant
  • the low-temperature and low-pressure gas refrigerant flowing out from the heat source side heat exchanger 12 is again sucked into the compressor 10 via the first refrigerant flow switching device 11 and the accumulator 19.
  • the second refrigerant flow switching device 18a and the second refrigerant flow switching device 18b are in communication with the high-pressure pipe.
  • the expansion device 16a has a constant subcool (degree of subcooling) obtained as a difference between a value obtained by converting the pressure detected by the pressure sensor 36a into a saturation temperature and a temperature detected by the third temperature sensor 35b. The opening degree is controlled.
  • the expansion device 16b has an opening degree so that a subcool obtained as a difference between a value obtained by converting the pressure detected by the pressure sensor 36b into a saturation temperature and a temperature detected by the third temperature sensor 35d is constant. Be controlled.
  • the temperature at the intermediate position of the heat exchanger related to heat medium 15 can be measured, the temperature at the intermediate position may be used instead of the pressure sensor 36, and the system can be configured at low cost.
  • the heat of the heat source side refrigerant is transmitted to the heat medium in both the heat exchanger 15a and the heat exchanger 15b, and the heated heat medium is piped 5 by the pump 21a and the pump 21b.
  • the inside will be allowed to flow.
  • the heat medium pressurized and discharged by the pump 21a and the pump 21b passes through the second heat medium flow switching device 23a and the second heat medium flow switching device 23b, and the use side heat exchanger 26a and the use side heat exchange. Flows into the vessel 26b.
  • the heat medium radiates heat to the indoor air in the use side heat exchanger 26a and the use side heat exchanger 26b, thereby heating the indoor space 7.
  • the heat medium flows out of the use-side heat exchanger 26a and the use-side heat exchanger 26b and flows into the heat medium flow control device 25a and the heat medium flow control device 25b.
  • the heat medium flow control device 25a and the heat medium flow control device 25b control the flow rate of the heat medium to a flow rate necessary to cover the air conditioning load required in the room, so that the use-side heat exchanger 26a. And it flows into the use side heat exchanger 26b.
  • the heat medium flowing out from the heat medium flow control device 25a and the heat medium flow control device 25b passes through the first heat medium flow switching device 22a and the first heat medium flow switching device 22b, and the heat exchanger related to heat medium 15a. And flows into the heat exchanger related to heat medium 15b, and is sucked into the pump 21a and the pump 21b again.
  • the heat medium is directed from the second heat medium flow switching device 23 to the first heat medium flow switching device 22 via the heat medium flow control device 25.
  • the air conditioning load required in the indoor space 7 includes the temperature detected by the first temperature sensor 31a, the temperature detected by the first temperature sensor 31b, and the temperature detected by the second temperature sensor 34. By controlling so as to keep the difference between the two as a target value, it can be covered.
  • the outlet temperature of the heat exchanger related to heat medium 15 either the temperature of the first temperature sensor 31a or the first temperature sensor 31b may be used, or the average temperature thereof may be used.
  • the first heat medium flow switching device 22 and the second heat medium flow switching device 23 ensure a flow path that flows to both the heat exchanger related to heat medium 15a and the heat exchanger related to heat medium 15b.
  • the intermediate opening is set.
  • the usage-side heat exchanger 26a should be controlled by the temperature difference between the inlet and the outlet, but the temperature of the heat medium on the inlet side of the usage-side heat exchanger 26 is detected by the first temperature sensor 31b. By using the first temperature sensor 31b, the number of temperature sensors can be reduced and the system can be configured at low cost.
  • FIG. 5 is a refrigerant circuit diagram illustrating a refrigerant flow when the air-conditioning apparatus 100 is in the cooling main operation mode.
  • the cooling main operation mode will be described by taking as an example a case where a cooling load is generated in the use side heat exchanger 26a and a heating load is generated in the use side heat exchanger 26b.
  • a pipe represented by a thick line shows a pipe through which the refrigerant (heat source side refrigerant and heat medium) circulates.
  • the flow direction of the heat source side refrigerant is indicated by solid line arrows
  • the flow direction of the heat medium is indicated by broken line arrows.
  • the first refrigerant flow switching device 11 is switched so that the heat source side refrigerant discharged from the compressor 10 flows into the heat source side heat exchanger 12.
  • the pump 21a and the pump 21b are driven, the heat medium flow control device 25a and the heat medium flow control device 25b are opened, and the heat medium flow control device 25c and the heat medium flow control device 25d are fully closed.
  • the heat medium is circulated between the heat exchanger related to heat medium 15a and the use side heat exchanger 26a, and between the heat exchanger related to heat medium 15b and the use side heat exchanger 26b.
  • the low-temperature and low-pressure refrigerant is compressed by the compressor 10 and discharged as a high-temperature and high-pressure gas refrigerant.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 10 flows into the heat source side heat exchanger 12 via the first refrigerant flow switching device 11. And it becomes a liquid refrigerant, dissipating heat to outdoor air with the heat source side heat exchanger 12.
  • the refrigerant that has flowed out of the heat source side heat exchanger 12 flows out of the outdoor unit 1 and flows into the heat medium relay unit 3 through the check valve 13 a and the refrigerant pipe 4.
  • the refrigerant that has flowed into the heat medium relay unit 3 flows into the heat exchanger related to heat medium 15b that acts as a condenser through the second refrigerant flow switching device 18b.
  • the refrigerant that has flowed into the heat exchanger related to heat medium 15b becomes a refrigerant whose temperature is further lowered while radiating heat to the heat medium circulating in the heat medium circuit B.
  • the refrigerant flowing out of the heat exchanger related to heat medium 15b is expanded by the expansion device 16b and becomes a low-pressure two-phase refrigerant.
  • This low-pressure two-phase refrigerant flows into the heat exchanger related to heat medium 15a acting as an evaporator via the expansion device 16a.
  • the low-pressure two-phase refrigerant that has flowed into the heat exchanger related to heat medium 15a absorbs heat from the heat medium circulating in the heat medium circuit B, and becomes a low-pressure gas refrigerant while cooling the heat medium.
  • the gas refrigerant flows out of the heat exchanger related to heat medium 15a, flows out of the heat medium converter 3 via the second refrigerant flow switching device 18a, and flows into the outdoor unit 1 again through the refrigerant pipe 4.
  • the refrigerant that has flowed into the outdoor unit 1 is again sucked into the compressor 10 via the check valve 13d, the first refrigerant flow switching device 11, and the accumulator 19.
  • the second refrigerant flow switching device 18a is in communication with the low pressure pipe, while the second refrigerant flow switching device 18b is in communication with the high pressure side piping.
  • the opening degree of the expansion device 16b is controlled so that the superheat obtained as the difference between the temperature detected by the third temperature sensor 35a and the temperature detected by the third temperature sensor 35b becomes constant.
  • the expansion device 16a is fully opened and the opening / closing device 17b is closed.
  • the expansion device 16b controls the opening degree so that a subcool obtained as a difference between a value obtained by converting the pressure detected by the pressure sensor 36 into a saturation temperature and a temperature detected by the third temperature sensor 35d is constant. May be.
  • the expansion device 16b may be fully opened, and the superheat or subcool may be controlled by the expansion device 16a.
  • the heat of the heat source side refrigerant is transmitted to the heat medium in the heat exchanger related to heat medium 15b, and the heated heat medium is caused to flow in the pipe 5 by the pump 21b.
  • the cold heat of the heat source side refrigerant is transmitted to the heat medium by the heat exchanger related to heat medium 15a, and the cooled heat medium is caused to flow in the pipe 5 by the pump 21a.
  • the heat medium pressurized and discharged by the pump 21a and the pump 21b passes through the second heat medium flow switching device 23a and the second heat medium flow switching device 23b, and the use side heat exchanger 26a and the use side heat exchange. Flows into the vessel 26b.
  • the heat medium radiates heat to the indoor air, thereby heating the indoor space 7.
  • the indoor space 7 is cooled by the heat medium absorbing heat from the indoor air.
  • the heat medium flow control device 25a and the heat medium flow control device 25b control the flow rate of the heat medium to a flow rate necessary to cover the air conditioning load required in the room, so that the use-side heat exchanger 26a. And it flows into the use side heat exchanger 26b.
  • the heat medium whose temperature has slightly decreased after passing through the use side heat exchanger 26b flows into the heat exchanger related to heat medium 15b through the heat medium flow control device 25b and the first heat medium flow switching device 22b, and again.
  • the heat medium whose temperature has slightly increased after passing through the use side heat exchanger 26a flows into the heat exchanger related to heat medium 15a through the heat medium flow control device 25a and the first heat medium flow switching device 22a, and again. It is sucked into the pump 21a.
  • the warm heat medium and the cold heat medium are not mixed by the action of the first heat medium flow switching device 22 and the second heat medium flow switching device 23, and the use side has a heat load and a heat load, respectively. It is introduced into the heat exchanger 26.
  • the first heat medium flow switching device 22 from the second heat medium flow switching device 23 via the heat medium flow control device 25 on both the heating side and the cooling side.
  • the heat medium is flowing in the direction to
  • the air conditioning load required in the indoor space 7 is the difference between the temperature detected by the first temperature sensor 31b on the heating side and the temperature detected by the second temperature sensor 34 on the heating side, This can be covered by controlling the difference between the temperature detected by the two temperature sensor 34 and the temperature detected by the first temperature sensor 31a as a target value.
  • FIG. 6 is a refrigerant circuit diagram showing a refrigerant flow when the air-conditioning apparatus 100 is in the heating main operation mode.
  • the heating main operation mode will be described by taking as an example a case where a thermal load is generated in the use side heat exchanger 26a and a cold load is generated in the use side heat exchanger 26b.
  • the piping represented with the thick line has shown the piping through which a refrigerant
  • coolant a heat-source side refrigerant
  • the flow direction of the heat source side refrigerant is indicated by solid line arrows, and the flow direction of the heat medium is indicated by broken line arrows.
  • the first refrigerant flow switching device 11 uses the heat source side refrigerant discharged from the compressor 10 without passing through the heat source side heat exchanger 12. It switches so that it may flow into converter 3.
  • the pump 21a and the pump 21b are driven, the heat medium flow control device 25a and the heat medium flow control device 25b are opened, and the heat medium flow control device 25c and the heat medium flow control device 25d are fully closed.
  • the heat medium circulates between the heat exchanger related to heat medium 15a and the use-side heat exchanger 26b, and between the heat exchanger related to heat medium 15b and the use-side heat exchanger 26a.
  • the low-temperature and low-pressure refrigerant is compressed by the compressor 10 and discharged as a high-temperature and high-pressure gas refrigerant.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 10 flows out of the outdoor unit 1 through the first refrigerant flow switching device 11 and the check valve 13b.
  • the high-temperature and high-pressure gas refrigerant that has flowed out of the outdoor unit 1 flows into the heat medium relay unit 3 through the refrigerant pipe 4.
  • the high-temperature and high-pressure gas refrigerant that has flowed into the heat medium relay unit 3 flows into the heat exchanger related to heat medium 15b that acts as a condenser through the second refrigerant flow switching device 18b.
  • the gas refrigerant flowing into the heat exchanger related to heat medium 15b becomes liquid refrigerant while dissipating heat to the heat medium circulating in the heat medium circuit B.
  • the refrigerant flowing out of the heat exchanger related to heat medium 15b is expanded by the expansion device 16b and becomes a low-pressure two-phase refrigerant.
  • This low-pressure two-phase refrigerant flows into the heat exchanger related to heat medium 15a acting as an evaporator via the expansion device 16a.
  • the low-pressure two-phase refrigerant that has flowed into the heat exchanger related to heat medium 15a evaporates by absorbing heat from the heat medium circulating in the heat medium circuit B, thereby cooling the heat medium.
  • the low-pressure two-phase refrigerant flows out of the heat exchanger related to heat medium 15a, flows out of the heat medium converter 3 through the second refrigerant flow switching device 18a, and flows into the outdoor unit 1 again.
  • the refrigerant flowing into the outdoor unit 1 passes through the check valve 13c and flows into the heat source side heat exchanger 12 acting as an evaporator. And the refrigerant
  • the low-temperature and low-pressure gas refrigerant flowing out from the heat source side heat exchanger 12 is again sucked into the compressor 10 via the first refrigerant flow switching device 11 and the accumulator 19.
  • the second refrigerant flow switching device 18a is in communication with the low pressure side piping, while the second refrigerant flow switching device 18b is in communication with the high pressure side piping. Further, the opening of the expansion device 16b is controlled so that a subcool obtained as a difference between a value obtained by converting the pressure detected by the pressure sensor 36b into a saturation temperature and a temperature detected by the third temperature sensor 35b is constant. Is done. Further, the expansion device 16a is fully opened, and the opening / closing device 17a is closed. Note that the expansion device 16b may be fully opened, and the subcooling may be controlled by the expansion device 16a.
  • the heat of the heat source side refrigerant is transmitted to the heat medium in the heat exchanger related to heat medium 15b, and the heated heat medium is caused to flow in the pipe 5 by the pump 21b.
  • the cold heat of the heat source side refrigerant is transmitted to the heat medium by the heat exchanger related to heat medium 15a, and the cooled heat medium is caused to flow in the pipe 5 by the pump 21a.
  • the heat medium pressurized and discharged by the pump 21a and the pump 21b passes through the second heat medium flow switching device 23a and the second heat medium flow switching device 23b, and the use side heat exchanger 26a and the use side heat exchange. Flows into the vessel 26b.
  • the heat medium absorbs heat from the indoor air, thereby cooling the indoor space 7. Moreover, in the use side heat exchanger 26a, the heat medium radiates heat to the indoor air, thereby heating the indoor space 7.
  • the heat medium flow control device 25a and the heat medium flow control device 25b control the flow rate of the heat medium to a flow rate necessary to cover the air conditioning load required in the room, so that the use-side heat exchanger 26a. And it flows into the use side heat exchanger 26b.
  • the heat medium whose temperature has slightly increased after passing through the use side heat exchanger 26b flows into the heat exchanger related to heat medium 15a through the heat medium flow control device 25b and the first heat medium flow switching device 22b, and again.
  • the heat medium whose temperature has slightly decreased after passing through the use side heat exchanger 26a flows into the heat exchanger related to heat medium 15b through the heat medium flow control device 25a and the first heat medium flow switching device 22a, and again. It is sucked into the pump 21b.
  • the warm heat medium and the cold heat medium are not mixed by the action of the first heat medium flow switching device 22 and the second heat medium flow switching device 23, and the use side has a heat load and a heat load, respectively. It is introduced into the heat exchanger 26.
  • the first heat medium flow switching device 22 from the second heat medium flow switching device 23 via the heat medium flow control device 25 on both the heating side and the cooling side.
  • the heat medium is flowing in the direction to
  • the air conditioning load required in the indoor space 7 is the difference between the temperature detected by the first temperature sensor 31b on the heating side and the temperature detected by the second temperature sensor 34 on the heating side, This can be covered by controlling the difference between the temperature detected by the two temperature sensor 34 and the temperature detected by the first temperature sensor 31a as a target value.
  • FIG. 7 is a refrigerant circuit diagram illustrating a refrigerant flow when the air-conditioning apparatus 100 according to the embodiment of the present invention is in the defrosting operation mode.
  • the flow direction of the heat source side refrigerant is indicated by a solid line arrow, and the flow direction of the heat medium is indicated by a broken line arrow.
  • the defrost operation mode 1 is performed when the detection result of the first outdoor temperature sensor 40a is equal to or less than a first predetermined value. That is, when the air-conditioning apparatus 100 performs the heating only operation or the heating main operation, and the detection result of the first outdoor temperature sensor 40a is equal to or lower than the first predetermined value, the control device 70 is applied to the fins of the heat source side heat exchanger 12. It is determined that a predetermined amount of frost formation has occurred, and the defrost operation mode 1 is entered. In the description of the present embodiment, it is assumed that all four indoor units 2a to 2d are performing the heating operation.
  • the first predetermined value may be set to a temperature at which frost formation occurs on the heat source side heat exchanger 12, for example, about ⁇ 10 ° C. or less.
  • the defrost operation mode 1 of the air-conditioning apparatus 100 in the outdoor unit 1, the blower (not shown) is stopped, and the first refrigerant flow switching device 11 is replaced with the heat source side refrigerant discharged from the compressor 10. Is switched to flow into the heat source side heat exchanger 12.
  • the opening / closing devices 17a and 17b are opened, the second refrigerant flow switching devices 18a and 18b are switched to the heating side, and the expansion devices 16a and 16b are fully closed.
  • the heating operation of the indoor units 2a to 2d is continued.
  • the heat medium is conveyed to the four indoor units 2a to 2d and the operation of the blower fan attached to the four indoor units 2a to 2d is continued.
  • the pumps 21a and 21b are driven, the first heat medium flow switching devices 22a to 22d, the second heat medium flow switching devices 23a to 23d, and the heat medium flow rate adjustment.
  • the devices 25a to 25d are opened, and the heat medium is circulated between the heat exchangers between heat mediums 15a and 15b and the use side heat exchangers 26a to 26d.
  • the indoor unit when there is no request for heating operation or there is an indoor unit 2 that is stopped, the indoor unit is arranged so as not to convey the heat medium to the use side heat exchanger 26 corresponding to the indoor unit 2.
  • the heat medium flow control device 25 corresponding to 2 may be closed.
  • the blower (not shown) installed in the indoor unit 2 is stopped and the four heat mediums are stopped.
  • the heat medium may be circulated by opening the flow rate adjusting devices 25a to 25d. Thereby, it can suppress that the refrigerant
  • the low-temperature and low-pressure refrigerant is compressed by the compressor 10 and discharged as a high-temperature and high-pressure gas refrigerant.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 10 flows into the heat source side heat exchanger 12 via the first refrigerant flow switching device 11.
  • the frost formed on the fins of the heat source side heat exchanger 12 becomes a supercooled liquid or a two-phase refrigerant while dissipating heat, and the frost formed on the fins of the heat source side heat exchanger 12 is removed.
  • the high-pressure refrigerant that has flowed out of the heat source side heat exchanger 12 flows out of the outdoor unit 1 through the check valve 13a, and flows into the heat medium relay unit 3 through the refrigerant pipe 4.
  • One of the high-pressure refrigerants that has flowed into the heat medium relay unit 3 is reduced in pressure by passing through the switchgear 17a and the switchgear 17b to become a low-pressure two-phase refrigerant. And this low-pressure two-phase refrigerant is again outdoors through the bypass refrigerant pipe 4c and the refrigerant pipe 4 without circulating through the refrigerant side flow paths of the heat exchanger related to heat medium 15a and the heat exchanger related to heat medium 15b. It flows into the machine 1.
  • the refrigerant flowing into the outdoor unit 1 is again sucked into the compressor 10 via the check valve 13d, the first refrigerant flow switching device 11, and the accumulator 19.
  • the other of the high-pressure refrigerant that has flowed into the heat medium relay unit 3 flows into the heat exchangers 15a and 15b via the second refrigerant flow switching devices 18a and 18b.
  • the control device 70 ends the defrost operation mode 1 and shifts again to the heating only operation mode or the heating main operation mode.
  • the second predetermined value may be set to a temperature at which it can be determined that the frost in the heat source side heat exchanger 12 has been removed, for example, about 30 ° C. or higher.
  • the second refrigerant flow switching devices 18a and 18b communicate with the high-pressure pipe.
  • the refrigerant that has flowed into the heat exchanger related to heat medium 15a, 15b from the side where the second refrigerant flow switching devices 18a, 18b are connected is approximately equal to the pressure of the heat-source-side refrigerant flowing into the heat medium converter 3.
  • the refrigerant flowing into the intermediate heat exchangers 15a and 15b has a high saturation temperature due to its high pressure, and the saturation temperature is 0 ° C. or higher.
  • the heat exchangers 15a and 15b between heat media cool to the low temperature below 0 degreeC. That is, since the heat medium is prevented from freezing due to the refrigerant flowing into the heat exchangers between heat mediums 15a and 15b, the operation reliability of the air conditioner 100 can be improved.
  • the case where there is refrigerant leakage in the expansion devices 16a and 16b will be described. If the refrigerant flows in the direction from the expansion devices 16a and 16b toward the heat exchangers 15a and 15b, the pressure is reduced by the operation of the expansion devices 16a and 16b, and the saturation temperature of the refrigerant is 0 ° C. or lower. May be reduced. In other words, when the decompressed refrigerant flows into the heat exchangers 15a and 15b, the heat exchangers 15a and 15b may be cooled to a low temperature of 0 ° C. or lower and the heat medium may be frozen. There is sex.
  • the side connected to the heat exchangers 15a and 15b among the expansion devices 16a and 16b has a high pressure. This prevents the refrigerant from flowing from the expansion devices 16a, 16b toward the heat exchangers 15a, 15b even if the refrigerant leaks in the expansion devices 16a, 16b. That is, even if the refrigerant leaks in the expansion devices 16a and 16b, the refrigerant flows into the heat exchangers 15a and 15b from the expansion devices 16a and 16b, and the freezing of the heat medium is suppressed. That's what it means.
  • the heat medium is caused to flow in the pipe 5 by the pumps 21a and 21b. That is, the heat medium pressurized and discharged by the pumps 21a and 21b flows into the use side heat exchangers 26a to 26d via the second heat medium flow switching devices 23a to 23d.
  • the heat medium flowing into the use side heat exchangers 26a to 26d stores the heat generated in the full warm operation mode before the transition to the defrost operation mode 1. Therefore, the heating operation can be continued by conveying the heat medium to the use side heat exchangers 26a to 26d.
  • the heat medium flowing out from the use side heat exchangers 26a to 26d flows into the heat exchangers between heat mediums 15a and 15b via the heat medium flow control devices 25a to 25d and the first heat medium flow switching devices 22a to 22d.
  • the heat medium flowing out from the heat exchangers between heat mediums 15a and 15b is sucked into the pumps 21a and 21b again.
  • the air-conditioning apparatus 100 circulates a heat medium such as water or antifreeze liquid in the heat medium circulation circuit B, so that the heat exchangers between heat mediums 15a and 15b are in the defrost operation mode 1. It is possible to prevent the heat medium from being frozen by the heat source side refrigerant flowing in. Thereby, the operation
  • FIG. 7 it demonstrated and demonstrated as an example the case where it transfers to a defrost operation from a full warm operation mode. If the heating main operation mode is shifted to the defrost operation, the cooling medium and the heating operation of the indoor space 7 are continued by changing the flow of the heat medium in the heat medium circuit B to the flow of the heating main operation mode. I can do it.
  • FIG. 8 is a refrigerant circuit diagram showing a refrigerant flow in the defrost operation mode 2-1, which is one of the five defrost operation modes 2.
  • FIG. 9 is a refrigerant circuit diagram showing a refrigerant flow in the defrost operation mode 2-5, which is one form of the defrost operation mode 2.
  • the air conditioner 100 includes five operation modes as a defrost operation mode 2 different from the defrost operation mode 1.
  • the defrosting operation mode 2 includes “defrosting operation mode 2-1 in which the switching device 17a is closed and the mode is changed from the heating only operation mode, and the refrigerant is circulated through both the heat exchangers 15a and 15b”, Close the device 17a, shift from the heating main operation mode, defrost operation mode 2-2 in which the refrigerant is circulated only to the heat exchanger related to heat medium 15b, "open and close the switchgear 17a, shift from the heating only operation mode, “Defrost operation mode 2-3 in which refrigerant is circulated through both heat exchangers 15a and 15b” and “Opening and closing device 17a is opened to shift from the heating main operation mode, and refrigerant is supplied only to heat exchanger 15b.
  • Defrost operation mode 2-4 that circulates the refrigerant, and "defrost that makes a transition from the heating-main operation mode and circulates refrigerant to both the heat exchangers 15a and 15b. And an operation mode 2-5 ".
  • the defrost operation mode 2 is performed when the detection result of the first outdoor temperature sensor 40a is equal to or less than the first predetermined value. That is, when the air-conditioning apparatus 100 performs the heating only operation or the heating main operation, and the detection result of the first outdoor temperature sensor 40a is equal to or lower than the first predetermined value, the control device 70 is applied to the fins of the heat source side heat exchanger 12. It is determined that a predetermined amount of frost formation has occurred, and the defrost operation mode 2 is entered. When it is desired to shorten the defrosting time, this defrost operation mode 2 may be adopted rather than the defrost operation mode 1.
  • (Defrost operation mode 2-1) In the defrost operation mode 2-1 of the air-conditioning apparatus 100 according to the present embodiment, in the outdoor unit 1, the blower (not shown) is stopped, and the first refrigerant flow switching device 11 is used as the heat source discharged from the compressor 10. The side refrigerant is switched to flow into the heat source side heat exchanger 12. In the heat medium relay unit 3, the opening / closing device 17a is closed, the opening / closing device 17b is opened, the second refrigerant flow switching device 18 is switched to the heating side, and the expansion device 16 is opened. Also, in the defrost operation mode 2-1 of the air-conditioning apparatus 100 according to the present embodiment, the heating operation of the indoor units 2 a to 2 d is continued as in the embodiment.
  • the pumps 21a and 21b are driven, and the first heat medium flow switching devices 22a to 22d, the second heat medium flow switching devices 23a to 23d, and the heat medium flow control devices 25a to 25d. And the heat medium is circulated between the heat exchangers between heat exchangers 15a and 15b and the use side heat exchangers 26a to 26d.
  • the indoor unit when there is no request for heating operation or there is an indoor unit 2 that is stopped, the indoor unit is arranged so as not to convey the heat medium to the use side heat exchanger 26 corresponding to the indoor unit 2.
  • the heat medium flow control device 25 corresponding to 2 may be closed.
  • the blower (not shown) installed in the indoor unit 2 is stopped and the four heat mediums are stopped.
  • the heat medium may be circulated by opening the flow rate adjusting devices 25a to 25d.
  • the low-temperature and low-pressure refrigerant is compressed by the compressor 10 and discharged as a high-temperature and high-pressure gas refrigerant.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 10 flows into the heat source side heat exchanger 12 via the first refrigerant flow switching device 11.
  • the frost formed on the fins of the heat source side heat exchanger 12 becomes a supercooled liquid or a two-phase refrigerant while dissipating heat, and the frost formed on the fins of the heat source side heat exchanger 12 is removed.
  • the high-pressure refrigerant that has flowed out of the heat source side heat exchanger 12 flows out of the outdoor unit 1 through the check valve 13 a, and flows into the heat medium relay unit 3 through the refrigerant pipe 4.
  • the supercooled liquid or two-phase refrigerant that has flowed into the heat medium relay unit 3 flows into the heat exchangers 15a and 15b, and after absorbing heat from the heat medium, the throttling device 16a having an opening degree close to or fully open. It is expanded at 16b and becomes a low-pressure two-phase refrigerant.
  • the low-pressure two-phase refrigerant again flows into the outdoor unit 1 through the bypass refrigerant pipe 4c and the refrigerant pipe 4.
  • the refrigerant flowing into the outdoor unit 1 is again sucked into the compressor 10 via the check valve 13d, the first refrigerant flow switching device 11, and the accumulator 19.
  • the second predetermined value may be set to about 30 ° C. or higher, for example.
  • the second refrigerant flow switching devices 18a and 18b communicate with the high-pressure pipe.
  • the refrigerant that has flowed into the heat exchangers 15a, 15b from one of the heat exchangers 15a, 15b is a supercooled liquid that is substantially equal to the pressure of the heat source refrigerant flowing into the heat exchanger 3; Or it is a two-phase refrigerant.
  • the supercooled liquid or the two-phase refrigerant has a saturation temperature of about 0 ° C. or higher.
  • the heat medium in the heat medium circuit B is heated to about 20 ° C. or more by the heating only operation mode before the defrost operation mode 2-1.
  • the refrigerant in the refrigerant circuit A absorbs heat from the heat medium in the heat medium circuit B, so that among the low-pressure two-phase refrigerants flowing out from the expansion devices 16a and 16b, The proportion occupied by the gas layer increases. That is, the ratio of the low-temperature and low-pressure gas refrigerant to the refrigerant sucked into the compressor 10 increases. Thereby, the heat capacity of the high-temperature and high-pressure gas refrigerant discharged from the compressor 10 is increased, and the defrosting operation time of the heat source side heat exchanger 12 can be shortened.
  • the temperature of the refrigerant flowing into the heat exchangers 15a and 15b between the heat mediums is about 0 ° C. or higher, and the cooling of the heat medium to a low temperature of 0 ° C. or lower is suppressed. That is, the heat medium is prevented from freezing due to the refrigerant flowing into the heat exchangers between heat mediums 15a and 15b.
  • the heat medium in the heat medium circuit B is caused to flow in the pipe 5 by the pumps 21a and 21b. That is, the heat medium pressurized and discharged by the pumps 21a and 21b flows into the use side heat exchangers 26a to 26d via the second heat medium flow switching devices 23a to 23d.
  • the heat medium flowing into the use side heat exchangers 26a to 26d stores the heat generated in the full warm operation mode before the transition to the defrost operation mode 2-1. Therefore, the heating operation can be continued by conveying the heat medium to the use side heat exchangers 26a to 26d.
  • the heat medium flowing out from the use side heat exchangers 26a to 26d flows into the heat exchangers between heat mediums 15a and 15b via the heat medium flow control devices 25a to 25d and the first heat medium flow switching devices 22a to 22d.
  • the heat medium flowing out from the heat exchangers between heat mediums 15a and 15b is sucked into the pumps 21a and 21b again.
  • a heat medium such as water or antifreeze in the heat medium circuit B
  • the heat source side refrigerant flowing into the heat exchangers between heat mediums 15a and 15b in the defrost operation mode 2-1 generates heat. It is possible to prevent the medium from freezing.
  • the defrost operation mode 2-2 for performing the defrost operation from the heating main operation mode shown in FIG. 6 will be described.
  • the case where heating is required for the indoor unit 2a and the cooling is required for the indoor unit 2b will be described as an example.
  • the expansion device 16a is fully closed, or the opening is such that the refrigerant does not flow, and the heat exchanger related to heat medium 15a that has generated cold for cooling is used.
  • the expansion device 16b is opened, and the heat exchanger related to heat medium 15b in which the heat is generated for heating circulates the refrigerant.
  • coolant flow path switching device 18a, 18b both are switched to the heating side, and are connected with a high voltage
  • the flow of the heat medium in the heat medium circulation circuit B is the flow in the heating main operation mode, and is generated in the heat exchanger related to heat medium 15a in the heating main operation mode before the transition to the defrost operation mode 2-2. It is possible to continue the cooling operation and the heating operation of the indoor space 7 using the cold heat and the heat generated by the heat exchanger related to heat medium 15b.
  • the refrigerant flowing into the heat exchanger related to heat medium 15a, 15b via the second refrigerant flow switching devices 18a, 18b is a supercooled liquid substantially equal to the pressure of the heat source side refrigerant flowing into the heat medium converter 3, or two It is a phase refrigerant.
  • the supercooled liquid or the two-phase refrigerant has a saturation temperature of about 0 ° C. or higher.
  • the heat medium in the heat medium circulation circuit B is heated to about 20 ° C. or more by the heat exchanger related to heat medium 15b in the heating main operation mode before the defrost operation mode 2-2.
  • the temperature of the refrigerant flowing into the heat exchangers between heat mediums 15a and 15b is about 0 ° C. or higher, and the cooling of the heat medium to a low temperature of 0 ° C. or lower is suppressed. That is, it is suppressed that the heat medium freezes due to the refrigerant flowing into the heat exchanger related to heat medium 15b.
  • the defrosting operation mode 2-3 is a defrosting operation mode for shifting from the heating only operation mode, and the opening / closing device 17a is open.
  • the case where heating is required for the indoor unit 2a and the cooling is required for the indoor unit 2b will be described as an example.
  • the heat source side refrigerant flowing out from the expansion device 16a via the second refrigerant flow switching device 18a and the heat exchanger related to heat medium 15a, and the second refrigerant The heat-source-side refrigerant flowing out of the expansion device 16b and the heat-source-side refrigerant flowing in from the opening / closing device 17a merge through the flow path switching device 18b and the heat exchanger related to heat medium 15b. Thereafter, the merged refrigerant flows out of the heat medium relay unit 3 through the opening / closing device 17b and the bypass refrigerant pipe 4c.
  • the refrigerant that has flowed into the heat medium converter 3 and passed through the opening / closing device 17a merges with the refrigerant that flows out of the expansion devices 16a, 16b.
  • the opening / closing device 17a when the opening / closing device 17a is opened, there is a heat source side refrigerant flowing into the bypass refrigerant pipe 4c via the opening / closing device 17a, so the second refrigerant flow switching device 18 and the heat exchanger related to heat medium 15 have The circulating amount of refrigerant flowing in is reduced, and the pressure loss of the heat source side refrigerant is reduced.
  • the refrigerant pressure in the heat exchangers 15a and 15b can be kept high. Thereby, since the temperature of the heat exchangers 15a and 15b between heat media can be kept high, freezing of a heat medium, an antifreeze liquid, etc. can be suppressed.
  • the defrosting operation mode 2-4 In the defrosting operation mode 2-2, the opening / closing device 17a has been described as being closed. However, the defrosting operation mode 2-4 in which the opening / closing device 17a is open may be performed. That is, the defrost operation mode 2-4 is a defrost operation mode that is shifted from the heating main operation mode, and the opening / closing device 17a is open.
  • the defrost operation mode 2-4 is a defrost operation mode that is shifted from the heating main operation mode, and the opening / closing device 17a is open.
  • the case where heating is required for the indoor unit 2a and the cooling is required for the indoor unit 2b will be described as an example.
  • the expansion device 16a When shifting from the heating main operation mode to the defrosting operation mode 2-4, the expansion device 16a is fully closed or the opening is set so that the refrigerant does not flow, and the heat exchanger 15a between the heat medium in which cold heat is generated for cooling is used. Thus, the expansion device 16b is opened, and the heat exchanger related to heat medium 15b in which the heat is generated for heating circulates the refrigerant. Moreover, about 2nd refrigerant
  • the flow of the heat medium in the heat medium circuit B is the flow in the heating main operation mode, and is generated in the heat exchanger related to heat medium 15a in the heating main operation mode before the transition to the defrost operation mode 2-4. It is possible to continue the cooling operation and the heating operation of the indoor space 7 using the cold heat and the heat generated by the heat exchanger related to heat medium 15b.
  • the refrigerant that has flowed into the heat medium relay unit 3 and passed through the opening / closing device 17a merges with the refrigerant that flows out of the expansion device 16b. That is, in the defrost operation mode 2-4, the heat source side refrigerant flowing out from the expansion device 16a via the second refrigerant flow switching device 18a and the heat exchanger related to heat medium 15a, and the heat source side refrigerant flowing in from the opening / closing device 17a Join. Then, the merged refrigerant then flows out of the heat medium relay unit 3 through the opening / closing device 17b and the bypass refrigerant pipe 4c.
  • the opening / closing device 17a when the opening / closing device 17a is opened, there is a heat source side refrigerant flowing into the bypass refrigerant pipe 4c via the opening / closing device 17a, so the second refrigerant flow switching device 18 and the heat exchanger related to heat medium 15 have The circulating amount of refrigerant flowing in is reduced, and the pressure loss of the heat source side refrigerant is reduced. And since the pressure loss of the heat source side refrigerant can be reduced, the refrigerant pressure in the heat exchanger related to heat medium 15b can be kept high. Thereby, since the temperature of the heat exchanger related to heat medium 15b can be kept high, freezing of the heat medium and the antifreeze liquid can be suppressed.
  • Defrost operation mode 2-5) In the defrost operation mode 2-2 and the defrost operation mode 2-4, the operation mode is such that the refrigerant is not supplied to the heat exchanger related to heat medium 15a, but the defrost that supplies the refrigerant to the heat exchanger related to heat medium 15a.
  • Operation mode 2-5 may be implemented (see FIG. 9).
  • the defrosting operation mode 2-5 is a defrosting operation mode for shifting from the heating main operation mode.
  • the refrigerant is also supplied to the heat exchanger related to heat medium 15a, and the opening / closing device 17a is closed and the opening / closing device 17b is opened.
  • FIG. 9 The defrosting operation mode 2-5 is a defrosting operation mode for shifting from the heating main operation mode.
  • the refrigerant In the defrost operation mode 2-5, the refrigerant is also supplied to the heat exchanger related to heat medium 15a, and the opening / closing device 17a is closed and the opening / closing device
  • the defrosting operation mode 2-5 is preferably performed when it is desired to improve both the cooling capacity of the indoor unit that is continuing the cooling operation and to shorten the defrosting time.
  • both the expansion devices 16a and 16b are fully open or close to full open, and the heat exchanger 15a that has generated cold heat for cooling and hot heat is generated for heating.
  • the refrigerant is circulated through both the heat exchanger related to heat medium 15b.
  • coolant flow path switching device 18a, 18b both are switched to the heating side, and are connected with a high voltage
  • the flow of the heat medium in the heat medium circuit B is the flow in the heating main operation mode, so that the cooling operation and the heating operation of the indoor space 7 are continued.
  • the heat exchanger 15a By flowing a supercooled liquid having a refrigerant temperature of about 0 ° C. or a two-phase refrigerant through the heat exchanger 15a between the heat medium, the heat medium between the heat medium circulating in the indoor unit 2d that continues the cooling operation in the defrost operation mode 2-5
  • the heat medium in the heat exchanger 15a is cooled by radiating heat to the refrigerant, and the cooling capacity is improved as compared with the case where the refrigerant does not flow through the heat exchanger related to heat medium 15a.
  • the refrigerant in the heat exchanger related to heat medium 15a absorbs heat from the heat medium, so that among the low-pressure two-phase refrigerant flowing out from the expansion device 16a, compared to the case where the refrigerant does not flow into the heat exchanger related to heat medium 15a.
  • the ratio of the gas layer increases, the ratio of the low-temperature and low-pressure gas refrigerant sucked into the compressor 10 increases, and the heat capacity of the high-temperature and high-pressure gas refrigerant discharged from the compressor 10 increases.
  • the defrosting operation time of the heat source side heat exchanger 12 can be shortened.
  • the refrigerant flowing into the heat exchanger related to heat medium 15a, 15b via the second refrigerant flow switching devices 18a, 18b is a supercooled liquid substantially equal to the pressure of the heat source side refrigerant flowing into the heat medium converter 3, or two It is a phase refrigerant.
  • the supercooled liquid or the two-phase refrigerant has a saturation temperature of about 0 ° C. or higher.
  • the heat medium heated by the inter-heat medium heat exchanger 15b is heated to about 20 ° C. or more by the heating main operation mode before the defrost operation mode 2-5. It is warm.
  • the heat medium cooled by the inter-heat medium heat exchanger 15a is about 5 to 10 ° C. or higher.
  • the temperature of the refrigerant flowing into the heat exchangers between heat mediums 15a and 15b becomes about 0 ° C. or higher, and the cooling of the heat medium to a low temperature of 0 ° C. or lower is suppressed. That is, the heat medium is prevented from freezing due to the refrigerant flowing into the heat exchangers 15a and 15b.
  • the temperature of the heat medium flowing into the heat exchanger related to heat medium 15a is a predetermined temperature (for example, about 3 ° C.).
  • the expansion device 16a is closed for the refrigerant circulation circuit A, and the circulation of the heat medium is preferably continued for the heat medium circulation circuit B.
  • the blower (not shown) installed in the indoor unit 2 is stopped and the defrosting operation mode 2- If the heat medium flow control device 25 corresponding to the indoor heat exchanger 26 installed in the indoor unit 2 or all the indoor units 2 that were operating before the transition to 5 is opened and the heat medium is circulated, Well, since the heat medium is circulated through the heat medium circuit B in this way, the heat medium does not radiate to the air from the use side heat exchanger 26, so that the defrost time can be further shortened.
  • the air conditioning apparatus 100 has several operation modes. In these operation modes, the heat source side refrigerant flows through the refrigerant pipe 4 that connects the outdoor unit 1 and the heat medium relay unit 3.
  • a heat medium such as water or antifreeze flows through the pipe 5 connecting the heat medium converter 3 and the indoor unit 2.
  • Heat source side refrigerant As the heat source side refrigerant, HFO1234yf, HFO1234ze, R32, HC, a mixed refrigerant containing R32 and HFO1234yf, or a refrigerant using a mixed refrigerant containing at least one component of the aforementioned refrigerant can be used as the heat source side refrigerant.
  • These refrigerants are all flammable refrigerants. If the plate heat exchanger is damaged due to freezing or the like, these refrigerants may flow into the heat medium. However, the air conditioner 100 is not easily damaged because the heat exchangers 15a and 15b are not easily frozen. That is, even if a combustible refrigerant is employed, the possibility that the refrigerant leaks into the air-conditioning target space can be reduced.
  • Heat medium for example, brine (antifreeze), water, a mixed solution of brine and water, a mixed solution of water and an additive having a high anticorrosive effect, or the like can be used. Therefore, in the air conditioning apparatus 100, even if the heat medium leaks into the indoor space 7 through the indoor unit 2, it contributes to the improvement of safety because a highly safe heat medium is used. Become.
  • the air conditioner 100 is configured such that the heat exchanger related to heat medium 15b is always on the heating side and the heat exchanger related to heat medium 15a is on the cooling side in both the cooling main operation mode and the heating main operation mode. is doing.
  • the first heat medium flow switching device corresponding to the use side heat exchanger 26 performing the heating operation. 22 and the second heat medium flow switching device 23 are switched to flow paths connected to the heat exchanger related to heat medium 15b for heating, and the first heat medium corresponding to the use side heat exchanger 26 performing the cooling operation
  • the flow path switching device 22 and the second heat medium flow path switching device 23 By switching the flow path switching device 22 and the second heat medium flow path switching device 23 to a flow path connected to the heat exchanger related to heat medium 15a for cooling, in each indoor unit 2, heating operation and cooling operation are performed. It can be done freely.
  • the air conditioning apparatus 100 has been described as being capable of mixed cooling and heating operation, the present invention is not limited to this.
  • the heat source side heat exchanger 12 and the use side heat exchanger 26 are provided with a blower, and in many cases, condensation or evaporation is promoted by blowing air, but this is not restrictive.
  • the use side heat exchanger 26 may be a panel heater using radiation, and the heat source side heat exchanger 12 is of a water-cooled type that moves heat by water or antifreeze. Can also be used. That is, the heat source side heat exchanger 12 and the use side heat exchanger 26 can be used regardless of the type as long as they have a structure capable of radiating heat or absorbing heat.

Abstract

An air-conditioning device (100) provided with the following: an outdoor unit (1) containing a compressor (10), a first refrigerant-path switching device (11), and a heat-source-side heat exchanger (12); a heat-medium exchanger (3) containing an inter-heat-medium heat exchanger (15), a flow-restriction device (16), a second refrigerant-path switching device (18), and a pump (21); and at least one indoor unit (2) containing a usage-side heat exchanger (26). The compressor (10), the first refrigerant-path switching device (11), the flow-restriction device (16), the second refrigerant-path switching device (18), and the inter-heat-medium heat exchanger (15) are connected by refrigerant piping, forming a refrigeration-cycle circuit. The inter-heat-medium heat exchanger (15) and the usage-side heat exchanger (26) are connected by heat-medium piping, forming a heat-medium circulation circuit through which a heat medium other than the refrigerant circulates. By switching the first refrigerant-path switching device (11), this air-conditioning device enters a defrost mode wherein the refrigerant discharged from the compressor (10) is supplied to the heat-source-side heat exchanger (12). In said defrost mode, some of the refrigerant flowing from the heat-source-side heat exchanger (12) is supplied to the inter-heat-medium heat exchanger (15) without going through the flow-restriction device (16), and the rest is returned to the outdoor unit (1) without going through either the flow-restriction device (16) or the inter-heat-medium heat exchanger (15).

Description

空気調和装置Air conditioner
 本発明は、たとえばビル用マルチエアコン等に適用される空気調和装置に関するものである。 The present invention relates to an air conditioner applied to, for example, a building multi air conditioner.
 空気調和装置には、ビル用マルチエアコンなどのように、熱源機(室外機)が建物外に配置され、室内機が建物の室内に配置されたものがある。このような空気調和装置の冷媒回路を循環する冷媒は、室内機の熱交換器に供給される空気に放熱(吸熱)して、当該空気を加温又は冷却する。そして、加温又は冷却された空気が、空調対象空間に送り込まれて暖房又は冷房が行われるようになっている。
 このような空気調和装置は、通常ビルが室内空間を複数有しているので、それに応じて室内機も複数からなる。また、ビルの規模が大きい場合には、室外機と室内機とを接続する冷媒配管が100mになる場合がある。室外機と室内機とを接続する配管長が長いと、その分だけ冷媒回路に充填される冷媒量が増加する。
Some air conditioners include a heat source unit (outdoor unit) arranged outside a building and an indoor unit arranged inside a building, such as a building multi-air conditioner. The refrigerant circulating in the refrigerant circuit of such an air conditioner radiates heat (heat absorption) to the air supplied to the heat exchanger of the indoor unit, and heats or cools the air. The heated or cooled air is sent into the air-conditioning target space for heating or cooling.
In such an air conditioner, a building normally has a plurality of indoor spaces, and accordingly, the indoor unit also includes a plurality of indoor units. Moreover, when the scale of the building is large, the refrigerant pipe connecting the outdoor unit and the indoor unit may be 100 m. When the length of the pipe connecting the outdoor unit and the indoor unit is long, the amount of refrigerant charged in the refrigerant circuit increases accordingly.
 このようなビル用マルチエアコンの室内機は、人が居る室内空間(たとえば、オフィス空間や居室、店舗等)に配置されて利用されることが通常である。何らかの原因によって、室内空間に配置された室内機から冷媒が漏れた場合、冷媒の種類によっては引火性、有毒性を有しており、人体への影響及び安全性の観点から問題となる可能性がある。また、人体に有害ではない冷媒であったとしても、冷媒漏れによって、室内空間での酸素濃度が低下し、人体に影響を及ぼすことも想定される。
 このような課題に対応するために、2次ループ方式を採用し、1次側ループには冷媒を循環させ、また、2次側ループには有害でない水やブラインなどの熱媒体を循環させ、冷媒の温熱又は冷熱を熱媒体に伝達させる方法がある(たとえば、特許文献1参照)。特許文献1に記載の技術は、1次側ループで生成された温熱や冷熱を、プレート式熱交換器や二重管などの熱媒体間熱交換器を介して、2次側ループに伝達し、2次側ループにより、室内機に温熱や冷熱を供給するものである。また、特許文献1に記載の技術は、この有害でない熱媒体が循環する2次側ループに対応する配管が人の居る空間の近傍に配設されるので、冷媒漏れによる人体への影響を抑制することができるものである。
Such indoor units of multi-air conditioners for buildings are usually arranged and used in indoor spaces where people are present (for example, office spaces, living rooms, stores, etc.). If for some reason the refrigerant leaks from the indoor unit placed in the indoor space, depending on the type of refrigerant, it may be flammable or toxic, which may be a problem from the perspective of human impact and safety There is. Moreover, even if it is a refrigerant | coolant which is not harmful to a human body, the oxygen concentration in indoor space falls by a refrigerant | coolant leak, and it is assumed that it influences a human body.
In order to cope with such problems, a secondary loop method is adopted, a refrigerant is circulated in the primary loop, and a heat medium such as water and brine is circulated in the secondary loop, There is a method of transferring the heat or cold of the refrigerant to the heat medium (see, for example, Patent Document 1). The technology described in Patent Document 1 transmits the heat and cold generated in the primary loop to the secondary loop via a heat exchanger between heat media such as a plate heat exchanger and a double pipe. Heat and cold are supplied to the indoor unit by the secondary loop. Further, the technology described in Patent Document 1 suppresses the influence on the human body due to refrigerant leakage because the piping corresponding to the secondary loop through which the non-hazardous heat medium circulates is disposed in the vicinity of the space where the person is present. Is something that can be done.
 一方、暖房運転を実行して室外機熱交換器が蒸発器として機能するとき、室外が低外気であるところの室外機熱交換器のフィンが着霜しやすくなる。この着霜により、ファンなどにより供給される室外空気と室外機熱交換器のチューブを流れる冷媒との熱交換が阻害され、熱交換効率が低減してしまう。そこで、室外機熱交換器の霜を除去するため、室外機熱交換器に高温の冷媒を供給するデフロスト運転を実施する技術が知られている。 On the other hand, when performing the heating operation and the outdoor unit heat exchanger functions as an evaporator, the fins of the outdoor unit heat exchanger where the outdoor is low outside air are likely to be frosted. Due to this frost formation, heat exchange between the outdoor air supplied by the fan and the refrigerant flowing through the tubes of the outdoor unit heat exchanger is hindered, and the heat exchange efficiency is reduced. Therefore, a technique for performing a defrost operation for supplying a high-temperature refrigerant to the outdoor unit heat exchanger in order to remove frost from the outdoor unit heat exchanger is known.
 特許文献1に記載の技術に、このデフロスト運転を採用すると、室外機熱交換器及び絞り装置を介して熱媒体間熱交換器に流入し、熱媒体間熱交換器から流出した冷媒が再び圧縮機に吸入される。ここで、絞り装置から流出した冷媒は、室外熱交換器の凝縮器としての作用により低温になっており、また、絞り装置の作用により減圧させられている。
 これにより、絞り装置から流出した冷媒は、二次側ループの熱媒体から吸熱して熱媒体間熱交換器で蒸発し、該熱媒体を凍結させてしまう可能性がある。そこで、熱媒体間熱交換器をバイパスするバイパス配管を備えた空気調和装置が提案されている(たとえば、特許文献2参照)。特許文献2に記載の技術は、バイパス配管の流路抵抗を熱媒体間熱交換器よりも小さく構成し、熱媒体間熱交換器に流入する冷媒量を低減し、二次側ループの熱媒体の凍結を抑制するものである。
When this defrost operation is adopted in the technique described in Patent Document 1, the refrigerant flowing into the heat exchanger related to heat medium through the outdoor unit heat exchanger and the expansion device is compressed again. Inhaled into the machine. Here, the refrigerant that has flowed out of the expansion device has a low temperature due to the action of the condenser of the outdoor heat exchanger, and is depressurized by the action of the expansion device.
As a result, the refrigerant that has flowed out of the expansion device absorbs heat from the heat medium in the secondary side loop, evaporates in the heat exchanger related to heat medium, and may freeze the heat medium. Then, the air conditioning apparatus provided with the bypass piping which bypasses the heat exchanger between heat media is proposed (for example, refer patent document 2). The technique described in Patent Document 2 is configured such that the flow resistance of the bypass pipe is smaller than that of the heat exchanger related to heat medium, the amount of refrigerant flowing into the heat exchanger related to heat medium is reduced, and the heat medium of the secondary loop It is intended to suppress freezing.
WO10/049998号公報(たとえば、3頁及び図1参照) WO 10/049998 (for example, see page 3 and FIG. 1) 特開2005-274134号公報(たとえば、2頁及び図3参照)Japanese Patent Laying-Open No. 2005-274134 (for example, see page 2 and FIG. 3)
 特許文献1に記載の技術には、デフロスト運転時の熱媒体の凍結抑制についての記載がされていない。仮に、特許文献1に記載の技術に、特許文献2に記載の技術を採用してデフロスト運転を実施した場合、絞り装置から流出した低温・低圧冷媒の熱媒体間熱交換器に流入する量の抑制は可能である。しかし、この場合においても、熱媒体間熱交換器に低温・低圧冷媒が流入してしまうことには変わりがなく、二次側ループの熱媒体の凍結抑制の対策が充分ではなかった。そして、二次側ループの熱媒体が凍結してしまうと室内機への熱媒体の循環が阻害されてしまい、空調効率が低減する可能性があった。また、熱媒体の循環が阻害されることにより、熱媒体配管の圧力が上昇して配管破損を招く可能性があるため、安全性への配慮を更に充実させることが望まれていた。
 すなわち、特許文献1の技術に、特許文献2に記載の技術を採用してデフロスト運転を実施した場合には、空気調和装置の動作信頼性の低減を招く可能性があった。
The technique described in Patent Document 1 does not describe the suppression of freezing of the heat medium during the defrost operation. If the technique described in Patent Document 2 is adopted in the technique described in Patent Document 1, and the defrost operation is performed, the amount of low-temperature / low-pressure refrigerant flowing out of the expansion device flows into the heat exchanger between the heat mediums. Suppression is possible. However, even in this case, the low-temperature / low-pressure refrigerant flows into the heat exchanger between the heat mediums, and the countermeasure for suppressing freezing of the heat medium in the secondary loop is not sufficient. And if the heat medium of the secondary side loop freezes, circulation of the heat medium to the indoor unit is hindered, and air conditioning efficiency may be reduced. Further, since the circulation of the heat medium is hindered, there is a possibility that the pressure of the heat medium pipe may be increased and the pipe may be broken. Therefore, it has been desired to further enhance safety considerations.
That is, when the technique described in Patent Document 2 is adopted in the technique of Patent Document 1 and the defrost operation is performed, the operation reliability of the air conditioner may be reduced.
 本発明に係る空気調和装置は、デフロスト運転時において、熱媒体や不凍液などの凍結を抑制し、動作信頼性を向上させた空気調和装置を提供することを目的としている。 An object of the air conditioning apparatus according to the present invention is to provide an air conditioning apparatus that suppresses freezing of a heat medium, an antifreeze liquid, and the like and improves operational reliability during defrost operation.
 本発明に係る空気調和装置は、圧縮機、第1冷媒流路切替装置、及び熱源側熱交換器が搭載された室外機と、熱媒体間熱交換器、絞り装置、第2冷媒流路切替装置、及びポンプが搭載された熱媒体変換機と、利用側熱交換器が搭載された少なくとも1つの室内機とを備え、前記圧縮機、前記第1冷媒流路切替装置、前記絞り装置、前記第2冷媒流路切替装置及び前記熱媒体間熱交換器を冷媒配管で接続して冷凍サイクル回路を構成し、前記熱媒体間熱交換器、及び利用側熱交換器を熱媒体配管で接続し、前記冷媒と異なる熱媒体が循環する熱媒体循環回路を構成し、前記第1冷媒流路切替装置を切り替えて、前記圧縮機から吐出された冷媒を前記熱源側熱交換器に供給するデフロスト運転モードを実行する空気調和装置において、前記デフロスト運転モード時において、前記熱源側熱交換器から流出した冷媒は、その一部が、前記絞り装置を介さずに前記熱媒体間熱交換器に供給され、残りが、前記絞り装置及び前記熱媒体間熱交換器を介さずに前記室外機に戻される。 The air conditioner according to the present invention includes an outdoor unit on which a compressor, a first refrigerant flow switching device, and a heat source side heat exchanger are mounted, a heat exchanger between heat media, a throttling device, and a second refrigerant flow switching. Apparatus, a heat medium converter mounted with a pump, and at least one indoor unit mounted with a use-side heat exchanger, the compressor, the first refrigerant flow switching device, the expansion device, A refrigeration cycle circuit is configured by connecting the second refrigerant flow switching device and the heat exchanger between heat medium with a refrigerant pipe, and the heat exchanger between heat medium and the use side heat exchanger are connected with a heat medium pipe. A defrost operation in which a heat medium circulation circuit in which a heat medium different from the refrigerant circulates is configured, the first refrigerant flow switching device is switched, and the refrigerant discharged from the compressor is supplied to the heat source side heat exchanger. In the air conditioner for executing the mode, the differential In the strike operation mode, a part of the refrigerant flowing out from the heat source side heat exchanger is supplied to the heat exchanger related to heat medium without going through the expansion device, and the rest is the expansion device and the heat. It returns to the outdoor unit without going through the inter-medium heat exchanger.
 本発明に係る空気調和装置は、デフロスト運転モード時において、室外機から熱媒体変換機に流入する冷媒を、絞り装置と接続されていない側から、熱媒体間熱交換器に供給する。このようにすることにより、本発明に係る空気調和装置は、熱媒体間熱交換器に流入した冷媒の蒸発が抑制されるため、熱媒体や不凍液などの凍結を抑制することができる。これにより、本発明に係る空気調和装置は、空気調和装置の動作信頼性を向上させることができる。 The air conditioner according to the present invention supplies the refrigerant flowing from the outdoor unit to the heat medium converter in the defrost operation mode from the side not connected to the expansion device to the heat exchanger related to heat medium. By doing in this way, since the evaporation of the refrigerant | coolant which flowed into the heat exchanger between heat media is suppressed, the air conditioning apparatus which concerns on this invention can suppress freezing of a heat medium, an antifreeze liquid, etc. Thereby, the air conditioning apparatus which concerns on this invention can improve the operation | movement reliability of an air conditioning apparatus.
本発明の実施の形態に係る空気調和装置の設置例を示す概略図である。It is the schematic which shows the example of installation of the air conditioning apparatus which concerns on embodiment of this invention. 本発明の実施の形態に係る空気調和装置の冷媒回路構成例である。It is a refrigerant circuit structural example of the air conditioning apparatus which concerns on embodiment of this invention. 図2に示す空気調和装置の全冷房運転モード時における冷媒の流れを示す冷媒回路図である。It is a refrigerant circuit figure which shows the flow of the refrigerant | coolant at the time of the cooling only operation mode of the air conditioning apparatus shown in FIG. 図2に示す空気調和装置の全暖房運転モード時における冷媒の流れを示す冷媒回路図である。It is a refrigerant circuit figure which shows the flow of the refrigerant | coolant at the time of the heating only operation mode of the air conditioning apparatus shown in FIG. 図2に示す空気調和装置の冷房主体運転モード時における冷媒の流れを示す冷媒回路図である。It is a refrigerant circuit diagram which shows the flow of the refrigerant | coolant at the time of the cooling main operation mode of the air conditioning apparatus shown in FIG. 図2に示す空気調和装置の暖房主体運転モード時における冷媒の流れを示す冷媒回路図である。It is a refrigerant circuit figure which shows the flow of the refrigerant | coolant at the time of heating main operation mode of the air conditioning apparatus shown in FIG. 図2に示す空気調和装置のデフロスト運転モード時における冷媒の流れを示す冷媒回路図である。It is a refrigerant circuit diagram which shows the flow of the refrigerant | coolant at the time of the defrost operation mode of the air conditioning apparatus shown in FIG. 5つの形態からなるデフロスト運転モード2のうちの1形態であるデフロスト運転モード2-1における冷媒の流れを示す冷媒回路図である。It is a refrigerant circuit diagram which shows the flow of the refrigerant | coolant in the defrost operation mode 2-1 which is one form among the defrost operation modes 2 which consists of five forms. デフロスト運転モード2のうちの1形態であるデフロスト運転モード2-5における冷媒の流れを示す冷媒回路図である。FIG. 6 is a refrigerant circuit diagram illustrating a refrigerant flow in a defrost operation mode 2-5, which is one form of the defrost operation mode 2.
 以下、図面に基づいて本発明の実施の形態について説明する。
 本実施の形態に係る空気調和装置は、デフロスト運転時において、冷媒と熱媒体とを熱交換させる熱交換器(熱媒体間熱交換器15)に流入するように低温冷媒の量を低減する改良がなされたものである。まず、図1に基づいて、空気調和装置の設置例について説明する。
 図1は、本発明の実施の形態に係る空気調和装置の設置例を示す概略図である。この空気調和装置は、冷媒(熱源側冷媒)を循環させる冷媒循環回路Aと、熱媒体を循環させる熱媒体循環回路Bとを有しており、室内機2が運転モードとして冷房モードあるいは暖房モードを自由に選択できるものである。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
The air conditioner according to the present embodiment is an improvement that reduces the amount of low-temperature refrigerant so that it flows into a heat exchanger (heat exchanger 15 between heat medium) that exchanges heat between the refrigerant and the heat medium during defrost operation. Has been made. First, an installation example of an air conditioner will be described with reference to FIG.
FIG. 1 is a schematic diagram illustrating an installation example of an air conditioner according to an embodiment of the present invention. This air conditioner has a refrigerant circulation circuit A that circulates a refrigerant (heat source side refrigerant) and a heat medium circulation circuit B that circulates a heat medium, and the indoor unit 2 is operated in a cooling mode or a heating mode. Can be freely selected.
 空気調和装置は、冷媒を間接的に利用する方式(間接方式)を採用している。すなわち、熱源側冷媒に貯えた冷熱または温熱を、熱源側冷媒とは異なる冷媒(以下、熱媒体と称する)に伝達し、熱媒体に貯えた冷熱または温熱で空調対象空間を冷房または暖房する。 The air conditioner employs a method of indirectly using a refrigerant (indirect method). That is, the cold or warm heat stored in the heat source side refrigerant is transmitted to a refrigerant (hereinafter referred to as a heat medium) different from the heat source side refrigerant, and the air-conditioning target space is cooled or heated with the cold heat or heat stored in the heat medium.
 図1に図示されるように、本実施の形態に係る空気調和装置は、熱源機である1台の室外機1と、複数台の室内機2と、室外機1と室内機2との間に介在する熱媒体変換機3と、を有している。熱媒体変換機3は、熱源側冷媒と熱媒体とで熱交換を行なうものである。室外機1と熱媒体変換機3とは、熱源側冷媒を循環させるための冷媒配管4で接続されている。熱媒体変換機3と室内機2とは、熱媒体を循環させるための配管(熱媒体配管)5で接続されている。そして、室外機1で生成された冷熱あるいは温熱は、熱媒体変換機3を介して室内機2に配送されるようになっている。 As shown in FIG. 1, the air-conditioning apparatus according to the present embodiment includes a single outdoor unit 1 that is a heat source unit, a plurality of indoor units 2, and an outdoor unit 1 and an indoor unit 2. And a heat medium relay unit 3 interposed therebetween. The heat medium relay unit 3 performs heat exchange between the heat source side refrigerant and the heat medium. The outdoor unit 1 and the heat medium relay unit 3 are connected by a refrigerant pipe 4 for circulating the heat source side refrigerant. The heat medium relay unit 3 and the indoor unit 2 are connected by a pipe (heat medium pipe) 5 for circulating the heat medium. The cold or warm heat generated by the outdoor unit 1 is delivered to the indoor unit 2 via the heat medium converter 3.
 室外機1は、通常、ビル等の建物9の外の空間(たとえば、屋上等)である室外空間6に配置され、熱媒体変換機3を介して室内機2に冷熱又は温熱を供給するものである。
 室内機2は、建物9の内部の空間(たとえば、居室等)である室内空間7に冷房用空気、或いは暖房用空気を供給できる位置に配置され、空調対象空間となる室内空間7に冷房用空気あるいは暖房用空気を供給するものである。
 熱媒体変換機3は、室外機1及び室内機2とは別筐体として、室外空間6及び室内空間7とは別の位置に設置されるものである。この熱媒体変換機3は、室外機1及び室内機2と、冷媒配管4及び配管5を介してそれぞれ接続され、室外機1から供給される冷熱、又は温熱を室内機2に伝達するものである。
The outdoor unit 1 is usually disposed in an outdoor space 6 that is a space (for example, a rooftop) outside a building 9 such as a building, and supplies cold or hot energy to the indoor unit 2 via the heat medium converter 3. It is.
The indoor unit 2 is disposed at a position where cooling air or heating air can be supplied to the indoor space 7 which is a space (for example, a living room) inside the building 9, and is used for cooling the indoor space 7 serving as a space to be air-conditioned. Air or heating air is supplied.
The heat medium relay unit 3 is installed at a position different from the outdoor space 6 and the indoor space 7 as a separate housing from the outdoor unit 1 and the indoor unit 2. The heat medium converter 3 is connected to the outdoor unit 1 and the indoor unit 2 via the refrigerant pipe 4 and the pipe 5, respectively, and transmits cold heat or hot heat supplied from the outdoor unit 1 to the indoor unit 2. is there.
 図1に図示されるように、本実施の形態に係る空気調和装置においては、室外機1と熱媒体変換機3とが2本の冷媒配管4を介して接続され、熱媒体変換機3と各室内機2a~2dとが2本の配管5を介して接続されている。このように、実施の形態に係る空気調和装置では、冷媒配管4、及び配管5を介して各ユニット(室外機1、室内機2及び熱媒体変換機3)を接続することにより、施工が容易となっている。 As shown in FIG. 1, in the air conditioner according to the present embodiment, the outdoor unit 1 and the heat medium converter 3 are connected via two refrigerant pipes 4, and the heat medium converter 3 and Each indoor unit 2a to 2d is connected via two pipes 5. Thus, in the air conditioning apparatus according to the embodiment, construction is easy by connecting each unit (the outdoor unit 1, the indoor unit 2, and the heat medium relay unit 3) via the refrigerant pipe 4 and the pipe 5. It has become.
 なお、図1においては、熱媒体変換機3が、建物9の内部ではあるが室内空間7とは別の空間である天井裏等の空間(たとえば、建物9における天井裏などのスペース、以下、単に空間8と称する)に設置されている状態を例として図示している。熱媒体変換機3は、その他、エレベーター等がある共用空間等に設置してもよい。また、図1においては、室内機2が天井カセット型である場合を例に示してあるが、これに限定されるものではない。すなわち、本実施の形態に係る空気調和装置は、天井埋込型、天井吊下式、室内空間7に直接又はダクト等により、暖房用空気あるいは冷房用空気を吹き出せるようになっていれば、どんな種類のものでもよい。 In FIG. 1, the heat medium converter 3 is inside the building 9 but is a space other than the indoor space 7 such as a ceiling (for example, a space such as a ceiling behind the building 9, hereinafter, It is illustrated by way of example as being installed in a space 8). The heat medium relay 3 may be installed in a common space where there is an elevator or the like. Moreover, in FIG. 1, although the case where the indoor unit 2 is a ceiling cassette type is shown as an example, it is not limited to this. That is, the air conditioner according to the present embodiment is a ceiling-embedded type, ceiling-suspended type, as long as heating air or cooling air can be blown directly into the indoor space 7 by a duct or the like, It can be of any kind.
 また、図1においては、室外機1が室外空間6に設置されている場合を例に示しているが、これに限定するものではない。たとえば、室外機1は、換気口付の機械室等の囲まれた空間に設置してもよいし、排気ダクトで廃熱を建物9の外に排気することができるのであれば建物9の内部に設置してもよい。また、水冷式の室外機1を用いる場合においても、建物9の内部に設置するようにしてもよい。このような場所に室外機1を設置するとしても、特段の問題が発生することはない。 Further, in FIG. 1, the case where the outdoor unit 1 is installed in the outdoor space 6 is shown as an example, but the present invention is not limited to this. For example, the outdoor unit 1 may be installed in an enclosed space such as a machine room with a ventilation port, or the interior of the building 9 if the exhaust heat can be exhausted outside the building 9 by an exhaust duct. You may install in. Even when the water-cooled outdoor unit 1 is used, it may be installed inside the building 9. Even if the outdoor unit 1 is installed in such a place, no particular problem occurs.
 また、熱媒体変換機3は、室外機1の近傍に設置することもできる。ただし、熱媒体変換機3から室内機2までの距離が長すぎると、熱媒体の搬送動力がかなり大きくなるため、省エネの効果は薄れることに留意が必要である。さらに、室外機1、室内機2及び熱媒体変換機3の接続台数を図1に図示された台数に限定するものではなく、たとえば、本実施の形態に係る空気調和装置が設置される建物9に応じて台数を決定すればよい。 The heat medium converter 3 can also be installed in the vicinity of the outdoor unit 1. However, it should be noted that if the distance from the heat medium relay unit 3 to the indoor unit 2 is too long, the power for transporting the heat medium becomes considerably large, and the energy saving effect is diminished. Furthermore, the number of connected outdoor units 1, indoor units 2, and heat medium converters 3 is not limited to the number illustrated in FIG. 1. For example, the building 9 in which the air conditioner according to the present embodiment is installed. The number of units may be determined according to.
  図2は、本発明の実施の形態に係る空気調和装置(以下、空気調和装置100と称する)の冷媒回路構成例である。図2に基づいて、空気調和装置100の詳しい構成について説明する。図2に図示されるように、室外機1と熱媒体変換機3とが、熱媒体変換機3に備えられている熱媒体間熱交換器15a及び熱媒体間熱交換器15bを介して冷媒配管4で接続されている。また、熱媒体変換機3と室内機2とも、熱媒体間熱交換器15a及び熱媒体間熱交換器15bを介して配管5で接続されている。なお、冷媒配管4については後段で詳述するものとする。 FIG. 2 is a refrigerant circuit configuration example of the air-conditioning apparatus (hereinafter referred to as air-conditioning apparatus 100) according to the embodiment of the present invention. Based on FIG. 2, the detailed structure of the air conditioning apparatus 100 is demonstrated. As illustrated in FIG. 2, the outdoor unit 1 and the heat medium relay unit 3 are connected to each other through a heat exchanger related to heat medium 15 a and a heat exchanger related to heat medium 15 b provided in the heat medium converter 3. Connected by piping 4. Moreover, the heat medium relay unit 3 and the indoor unit 2 are also connected by the pipe 5 via the heat exchanger related to heat medium 15a and the heat exchanger related to heat medium 15b. The refrigerant pipe 4 will be described in detail later.
[室外機1]
 室外機1には、冷媒を圧縮する圧縮機10、四方弁等で構成される第1冷媒流路切替装置11、蒸発器又は凝縮器として機能する熱源側熱交換器12、及び余剰冷媒を貯留するアキュムレーター19が冷媒配管4に接続されて搭載されている。
 また、室外機1には、第1接続配管4a、第2接続配管4b、逆止弁13a、逆止弁13b、逆止弁13c、及び逆止弁13dが設けられている。第1接続配管4a、第2接続配管4b、逆止弁13a、逆止弁13b、逆止弁13c、及び逆止弁13dを設けることで、室内機2の要求する運転に関わらず、熱媒体変換機3に流入させる熱源側冷媒の流れを一定方向にすることができる。すなわち、室外機1から流出する冷媒は逆止弁13a、13bに接続された方の冷媒配管4(第1の冷媒配管)を介して室外機1から流出し、熱媒体変換機3から室外機1に流入する冷媒は逆止弁13c、13dに接続された方の冷媒配管4(第2の冷媒配管)を介して室外機1に流入する。
 さらに、室外機1には、熱源側熱交換器12に発生した霜を除去するデフロスト運転時において、熱源側熱交換器12に流入する冷媒温度を検知する第1室外温度センサー40a、及び熱源側熱交換器12から流出する冷媒温度を検知する第2室外温度センサー40bが設けられている。
[Outdoor unit 1]
The outdoor unit 1 stores a compressor 10 that compresses refrigerant, a first refrigerant flow switching device 11 that includes a four-way valve, a heat source side heat exchanger 12 that functions as an evaporator or a condenser, and excess refrigerant. An accumulator 19 is connected to and mounted on the refrigerant pipe 4.
The outdoor unit 1 is also provided with a first connection pipe 4a, a second connection pipe 4b, a check valve 13a, a check valve 13b, a check valve 13c, and a check valve 13d. Regardless of the operation that the indoor unit 2 requires, the heat medium is provided by providing the first connection pipe 4a, the second connection pipe 4b, the check valve 13a, the check valve 13b, the check valve 13c, and the check valve 13d. The flow of the heat source side refrigerant flowing into the converter 3 can be in a certain direction. That is, the refrigerant flowing out of the outdoor unit 1 flows out of the outdoor unit 1 through the refrigerant pipe 4 (first refrigerant pipe) connected to the check valves 13a and 13b, and then from the heat medium converter 3 to the outdoor unit. 1 flows into the outdoor unit 1 through the refrigerant pipe 4 (second refrigerant pipe) connected to the check valves 13c and 13d.
Further, the outdoor unit 1 includes a first outdoor temperature sensor 40a that detects the temperature of the refrigerant flowing into the heat source side heat exchanger 12 during the defrost operation for removing frost generated in the heat source side heat exchanger 12, and the heat source side. A second outdoor temperature sensor 40b that detects the temperature of the refrigerant flowing out of the heat exchanger 12 is provided.
 圧縮機10は、熱源側冷媒を吸入し、その熱源側冷媒を圧縮して高温・高圧の状態にするものであり、たとえば容量制御可能なインバータ圧縮機等で構成するとよい。
 第1冷媒流路切替装置11は、暖房運転モード時(全暖房運転モード時及び暖房主体運転モード時)における熱源側冷媒の流れと冷房運転モード時(全冷房運転モード時及び冷房主体運転モード時)における熱源側冷媒の流れとを切り替えるものである。
The compressor 10 sucks the heat source side refrigerant and compresses the heat source side refrigerant to a high temperature and high pressure state. For example, the compressor 10 may be composed of an inverter compressor capable of capacity control.
The first refrigerant flow switching device 11 has a flow of the heat source side refrigerant in the heating operation mode (in the heating only operation mode and the heating main operation mode) and in the cooling operation mode (in the all cooling operation mode and the cooling main operation mode). ) To switch the flow of the heat source side refrigerant.
 熱源側熱交換器12は、暖房運転時には蒸発器として機能し、冷房運転時には放熱器(ガスクーラー)として機能し、図示省略のファン等の送風機から供給される空気と熱源側冷媒との間で熱交換を行なうものである。
 アキュムレーター19は、圧縮機10の吸入側に設けられており、暖房運転モード時と冷房運転モード時の違いによる余剰冷媒、過渡的な運転の変化(たとえば、室内機2の運転台数の変化)や負荷条件によって発生した余剰冷媒を貯留するものである。
The heat source side heat exchanger 12 functions as an evaporator during heating operation, functions as a radiator (gas cooler) during cooling operation, and between the air supplied from a blower such as a fan (not shown) and the heat source side refrigerant. Heat exchange is performed.
The accumulator 19 is provided on the suction side of the compressor 10, and surplus refrigerant due to a difference between the heating operation mode and the cooling operation mode, a change in the transient operation (for example, a change in the number of indoor units 2 operated). And excess refrigerant generated by load conditions.
 第1室外温度センサー40aは、熱源側熱交換器12に流入する冷媒の温度(入口側温度)を検知するものである。この第1室外温度センサー40aは、熱源側熱交換器12の入口側の冷媒配管4に設けられているとよい。
 また、第2室外温度センサー40bは、熱源側熱交換器12から流出した冷媒の温度(出口側温度)を検知するものである。この第2室外温度センサー40bは、熱源側熱交換器12の出口側の冷媒配管4に設けられているとよい。
The first outdoor temperature sensor 40a detects the temperature of the refrigerant flowing into the heat source side heat exchanger 12 (inlet side temperature). The first outdoor temperature sensor 40 a may be provided in the refrigerant pipe 4 on the inlet side of the heat source side heat exchanger 12.
The second outdoor temperature sensor 40b detects the temperature of the refrigerant (outlet side temperature) that has flowed out of the heat source side heat exchanger 12. The second outdoor temperature sensor 40 b may be provided in the refrigerant pipe 4 on the outlet side of the heat source side heat exchanger 12.
 第1室外温度センサー40a及び第2室外温度センサー40bは、空気調和装置100の動作を統括制御する制御装置70に接続されている。そして、第1室外温度センサー40a及び第2室外温度センサー40bの検出結果は制御装置70に送信され、制御装置70が熱源側熱交換器12の除霜運転の実施をするか否かを判断する。なお、第1室外温度センサー40a及び第2室外温度センサー40bは、たとえばサーミスター等で構成するとよい。 The first outdoor temperature sensor 40 a and the second outdoor temperature sensor 40 b are connected to a control device 70 that performs overall control of the operation of the air conditioner 100. And the detection result of the 1st outdoor temperature sensor 40a and the 2nd outdoor temperature sensor 40b is transmitted to the control apparatus 70, and the control apparatus 70 judges whether the implementation of the defrosting operation of the heat source side heat exchanger 12 is performed. . In addition, the 1st outdoor temperature sensor 40a and the 2nd outdoor temperature sensor 40b are good to comprise, for example with a thermistor etc.
[室内機2]
 室内機2には、利用側熱交換器26が搭載されている。この利用側熱交換器26は、配管5によって熱媒体変換機3の熱媒体流量調整装置25と第2熱媒体流路切替装置23に接続されている。この利用側熱交換器26は、図示省略のファン等の送風機から供給される空気と熱媒体との間で熱交換を行ない、室内空間7に供給するための暖房用空気あるいは冷房用空気を生成するものである。
[Indoor unit 2]
A use side heat exchanger 26 is mounted on the indoor unit 2. The use side heat exchanger 26 is connected to the heat medium flow control device 25 and the second heat medium flow switching device 23 of the heat medium converter 3 by the pipe 5. The use-side heat exchanger 26 performs heat exchange between air supplied from a blower such as a fan (not shown) and a heat medium, and generates heating air or cooling air to be supplied to the indoor space 7. To do.
 この図2では、4台の室内機2が熱媒体変換機3に接続されている場合を例に示しており、紙面下側から室内機2a、室内機2b、室内機2c、室内機2dとして図示している。また、室内機2a~室内機2dに応じて、利用側熱交換器26も、紙面下側から利用側熱交換器26a、利用側熱交換器26b、利用側熱交換器26c、利用側熱交換器26dとして図示している。なお、室内機2の接続台数は、図2に図示されるように4台に限定されるものではない。 In FIG. 2, an example is shown in which four indoor units 2 are connected to the heat medium relay unit 3, and as an indoor unit 2a, an indoor unit 2b, an indoor unit 2c, and an indoor unit 2d from the lower side of the page, It is shown. In accordance with the indoor unit 2a to the indoor unit 2d, the use side heat exchanger 26 also uses the use side heat exchanger 26a, the use side heat exchanger 26b, the use side heat exchanger 26c, and the use side heat exchange from the lower side of the drawing. It is shown as a container 26d. The number of connected indoor units 2 is not limited to four as shown in FIG.
[熱媒体変換機3]
 熱媒体変換機3には、冷媒と熱媒体とが熱交換する2つの熱媒体間熱交換器15(15a、15b)、冷媒を減圧させる2つの絞り装置16(16a、16b)、冷媒配管4の流路を開閉する2つの開閉装置17(17a、17b)、冷媒流路を切り替える2つの第2冷媒流路切替装置18(18a、18b)、熱媒体を循環させる2つのポンプ21(21a、21b)、配管5の一方に接続される4つの第1熱媒体流路切替装置22(22a~22d)、配管5の他方に接続される4つの第2熱媒体流路切替装置23(23a~23d)、及び、第2熱媒体流路切替装置22が接続される方の配管5に接続される4つの熱媒体流量調整装置25(25a~25d)が設けられている。
[Heat medium converter 3]
The heat medium converter 3 includes two heat medium heat exchangers 15 (15a, 15b) that exchange heat between the refrigerant and the heat medium, two expansion devices 16 (16a, 16b) that depressurize the refrigerant, and a refrigerant pipe 4. Two opening / closing devices 17 (17a, 17b) for opening and closing the flow path, two second refrigerant flow switching devices 18 (18a, 18b) for switching the refrigerant flow path, and two pumps 21 (21a, 21b), four first heat medium flow switching devices 22 (22a to 22d) connected to one of the pipes 5, and four second heat medium flow switching devices 23 (23a to 22d) connected to the other of the pipes 5 23d) and four heat medium flow control devices 25 (25a to 25d) connected to the pipe 5 to which the second heat medium flow switching device 22 is connected.
 2つの熱媒体間熱交換器15a、15bは、凝縮器(放熱器)又は蒸発器として機能し、熱源側冷媒と熱媒体とで熱交換を行ない、室外機1で生成され熱源側冷媒に貯えられた冷熱又は温熱を熱媒体に伝達するものである。熱媒体間熱交換器15aは、冷媒循環回路Aにおける絞り装置16aと第2冷媒流路切替装置18aとの間に設けられており、冷房暖房混在運転モード時において熱媒体の冷却に供するものである。熱媒体間熱交換器15bは、冷媒循環回路Aにおける絞り装置16bと第2冷媒流路切替装置18bとの間に設けられており、冷房暖房混在運転モード時において熱媒体の加熱に供するものである。 The two heat exchangers 15a, 15b function as condensers (radiators) or evaporators, perform heat exchange between the heat source side refrigerant and the heat medium, and are generated by the outdoor unit 1 and stored in the heat source side refrigerant. The generated cold or warm heat is transmitted to the heat medium. The heat exchanger related to heat medium 15a is provided between the expansion device 16a and the second refrigerant flow switching device 18a in the refrigerant circuit A and serves to cool the heat medium in the cooling / heating mixed operation mode. is there. The heat exchanger related to heat medium 15b is provided between the expansion device 16b and the second refrigerant flow switching device 18b in the refrigerant circuit A and serves to heat the heat medium in the cooling / heating mixed operation mode. is there.
 2つの絞り装置16a、16bは、減圧弁や膨張弁としての機能を有し、熱源側冷媒を減圧して膨張させるものである。絞り装置16aは、全冷房運転モード時の熱源側冷媒の流れにおいて熱媒体間熱交換器15aの上流側に設けられている。絞り装置16bは、全冷房運転モード時の熱源側冷媒の流れにおいて熱媒体間熱交換器15bの上流側に設けられている。2つの絞り装置16は、開度が可変に制御可能なもの、たとえば電子式膨張弁等で構成するとよい。 The two expansion devices 16a and 16b function as a pressure reducing valve and an expansion valve, and expand the heat source side refrigerant by reducing the pressure. The expansion device 16a is provided on the upstream side of the heat exchanger related to heat medium 15a in the flow of the heat source side refrigerant in the cooling only operation mode. The expansion device 16b is provided on the upstream side of the heat exchanger related to heat medium 15b in the flow of the heat source side refrigerant in the cooling only operation mode. The two expansion devices 16 may be configured by a device whose opening degree can be variably controlled, for example, an electronic expansion valve.
 2つの開閉装置17a、17bは、二方弁等で構成されており、冷媒配管4を開閉するものである。すなわち、2つの開閉装置17a、17bは、冷媒配管4(第1の冷媒配管)から供給された冷媒の流れを調整するために、後述する運転モードに応じて開閉が制御される。 The two opening / closing devices 17a and 17b are configured by a two-way valve or the like and open / close the refrigerant pipe 4. That is, the opening / closing of the two opening / closing devices 17a and 17b is controlled according to an operation mode to be described later in order to adjust the flow of the refrigerant supplied from the refrigerant piping 4 (first refrigerant piping).
 2つの第2冷媒流路切替装置18a、18bは、四方弁等で構成され、運転モードに応じて熱源側冷媒の流れを切り替えるものである。第2冷媒流路切替装置18aは、全冷房運転モード時の熱源側冷媒の流れにおいて熱媒体間熱交換器15aの下流側に設けられている。第2冷媒流路切替装置18bは、全冷房運転モード時の熱源側冷媒の流れにおいて熱媒体間熱交換器15bの下流側に設けられている。
 なお、第2冷媒流路切替装置18は、四方弁でなくともよく、たとえば三方弁、二方弁、及び電磁弁を組み合わせて構成してもよい。
The two second refrigerant flow switching devices 18a and 18b are configured by four-way valves or the like, and switch the flow of the heat source side refrigerant according to the operation mode. The second refrigerant flow switching device 18a is provided on the downstream side of the heat exchanger related to heat medium 15a in the flow of the heat source side refrigerant in the cooling only operation mode. The second refrigerant flow switching device 18b is provided on the downstream side of the heat exchanger related to heat medium 15b in the flow of the heat source side refrigerant in the cooling only operation mode.
Note that the second refrigerant flow switching device 18 may not be a four-way valve, and may be configured by combining, for example, a three-way valve, a two-way valve, and an electromagnetic valve.
 2つのポンプ21a、21bは、配管5内の熱媒体を循環させるものである。ポンプ21aは、熱媒体間熱交換器15aと第2熱媒体流路切替装置23との間における配管5に設けられている。ポンプ21bは、熱媒体間熱交換器15bと第2熱媒体流路切替装置23との間における配管5に設けられている。これらのポンプ21は、たとえば容量制御可能なポンプ等で構成するとよい。なお、ポンプ21aを、熱媒体間熱交換器15aと第1熱媒体流路切替装置22との間における配管5に設けてもよい。また、ポンプ21bを、熱媒体間熱交換器15bと第1熱媒体流路切替装置22との間における配管5に設けてもよい。 The two pumps 21 a and 21 b circulate the heat medium in the pipe 5. The pump 21 a is provided in the pipe 5 between the heat exchanger related to heat medium 15 a and the second heat medium flow switching device 23. The pump 21 b is provided in the pipe 5 between the heat exchanger related to heat medium 15 b and the second heat medium flow switching device 23. These pumps 21 may be constituted by, for example, pumps capable of capacity control. The pump 21a may be provided in the pipe 5 between the heat exchanger related to heat medium 15a and the first heat medium flow switching device 22. Further, the pump 21b may be provided in the pipe 5 between the heat exchanger related to heat medium 15b and the first heat medium flow switching device 22.
 4つの第1熱媒体流路切替装置22a~22dは、三方弁等で構成されており、熱媒体の流路を切り替えるものである。第1熱媒体流路切替装置22は、室内機2の設置台数に応じた個数(ここでは4つ)が設けられるようになっている。第1熱媒体流路切替装置22は、三方のうちの一つが熱媒体間熱交換器15aに、三方のうちの一つが熱媒体間熱交換器15bに、三方のうちの一つが熱媒体流量調整装置25に、それぞれ接続され、利用側熱交換器26の熱媒体流路の出口側に設けられている。なお、室内機2に対応させて、紙面下側から第1熱媒体流路切替装置22a、第1熱媒体流路切替装置22b、第1熱媒体流路切替装置22c、第1熱媒体流路切替装置22dとして図示している。 The four first heat medium flow switching devices 22a to 22d are configured by three-way valves or the like, and switch the heat medium flow paths. The first heat medium flow switching device 22 is provided in a number (here, four) according to the number of indoor units 2 installed. In the first heat medium flow switching device 22, one of the three sides is in the heat exchanger 15a, one of the three is in the heat exchanger 15b, and one of the three is in the heat medium flow rate. Each is connected to the adjusting device 25 and provided on the outlet side of the heat medium flow path of the use side heat exchanger 26. In correspondence with the indoor unit 2, the first heat medium flow switching device 22a, the first heat medium flow switching device 22b, the first heat medium flow switching device 22c, and the first heat medium flow from the lower side of the drawing. This is illustrated as a switching device 22d.
 4つの第2熱媒体流路切替装置23a~23dは、三方弁等で構成されており、熱媒体の流路を切り替えるものである。第2熱媒体流路切替装置23は、室内機2の設置台数に応じた個数(ここでは4つ)が設けられるようになっている。第2熱媒体流路切替装置23は、三方のうちの一つが熱媒体間熱交換器15aに、三方のうちの一つが熱媒体間熱交換器15bに、三方のうちの一つが利用側熱交換器26に、それぞれ接続され、利用側熱交換器26の熱媒体流路の入口側に設けられている。なお、室内機2に対応させて、紙面下側から第2熱媒体流路切替装置23a、第2熱媒体流路切替装置23b、第2熱媒体流路切替装置23c、第2熱媒体流路切替装置23dとして図示している。 The four second heat medium flow switching devices 23a to 23d are constituted by three-way valves or the like, and switch the heat medium flow paths. The number of the second heat medium flow switching devices 23 is set according to the number of installed indoor units 2 (here, four). In the second heat medium flow switching device 23, one of the three heat transfer medium heat exchangers 15a, one of the three heat transfer medium heat exchangers 15b, and one of the three heat transfer side heats. The heat exchanger is connected to the exchanger 26 and provided on the inlet side of the heat medium flow path of the use side heat exchanger 26. In correspondence with the indoor unit 2, the second heat medium flow switching device 23a, the second heat medium flow switching device 23b, the second heat medium flow switching device 23c, and the second heat medium flow from the lower side of the drawing. This is illustrated as a switching device 23d.
 4つの熱媒体流量調整装置25a~25dは、開口面積を制御できる二方弁等で構成されており、配管5に流れる熱媒体の流量を調整するものである。熱媒体流量調整装置25は、室内機2の設置台数に応じた個数(ここでは4つ)が設けられるようになっている。熱媒体流量調整装置25は、一方が利用側熱交換器26に、他方が第1熱媒体流路切替装置22に、それぞれ接続され、利用側熱交換器26の熱媒体流路の出口側に設けられている。なお、室内機2に対応させて、紙面下側から熱媒体流量調整装置25a、熱媒体流量調整装置25b、熱媒体流量調整装置25c、熱媒体流量調整装置25dとして図示している。また、熱媒体流量調整装置25を利用側熱交換器26の熱媒体流路の入口側に設けてもよい。 The four heat medium flow control devices 25a to 25d are configured by two-way valves or the like that can control the opening area, and adjust the flow rate of the heat medium flowing through the pipe 5. The number of the heat medium flow control devices 25 is set according to the number of indoor units 2 installed (four in this case). One of the heat medium flow control devices 25 is connected to the use side heat exchanger 26 and the other is connected to the first heat medium flow switching device 22, and is connected to the outlet side of the heat medium flow channel of the use side heat exchanger 26. Is provided. In correspondence with the indoor unit 2, the heat medium flow adjustment device 25 a, the heat medium flow adjustment device 25 b, the heat medium flow adjustment device 25 c, and the heat medium flow adjustment device 25 d are illustrated from the lower side of the drawing. Further, the heat medium flow control device 25 may be provided on the inlet side of the heat medium flow path of the use side heat exchanger 26.
 また、熱媒体変換機3には、各種検知手段(2つの第1温度センサー31(31a、31b)、4つの第2温度センサー34(34a~34d)、4つの第3温度センサー35(35a~35d)、2つの圧力センサー36(36a、36b))が設けられている。これらの検知手段で検知された情報(たとえば、温度情報や圧力情報、熱源側冷媒の濃度情報)は、空気調和装置100の動作を統括制御する制御装置70に送られ、圧縮機10の駆動周波数、熱源側熱交換器12及び利用側熱交換器26近傍に設けられる図示省略の送風機の回転数、第1冷媒流路切替装置11の切り替え、ポンプ21の駆動周波数、第2冷媒流路切替装置18の切り替え、第1熱媒体流路切替装置22の切替、第2熱媒体流路切替装置の切替等の制御に利用されることになる。 Further, the heat medium relay 3 includes various detection means (two first temperature sensors 31 (31a, 31b), four second temperature sensors 34 (34a to 34d), and four third temperature sensors 35 (35a to 35a). 35d) Two pressure sensors 36 (36a, 36b)) are provided. Information (for example, temperature information, pressure information, and heat source side refrigerant concentration information) detected by these detection means is sent to a control device 70 that performs overall control of the operation of the air conditioner 100, and the drive frequency of the compressor 10. The rotation speed of a blower (not shown) provided near the heat source side heat exchanger 12 and the use side heat exchanger 26, switching of the first refrigerant flow switching device 11, driving frequency of the pump 21, second refrigerant flow switching device 18, switching of the first heat medium flow switching device 22, switching of the second heat medium flow switching device, and the like.
 2つの第1温度センサー31a、31bは、熱媒体間熱交換器15から流出した熱媒体、つまり熱媒体間熱交換器15の出口における熱媒体の温度を検知するものであり、たとえばサーミスター等で構成するとよい。第1温度センサー31aは、ポンプ21aの入口側における配管5に設けられている。第1温度センサー31bは、ポンプ21bの入口側における配管5に設けられている。 The two first temperature sensors 31a and 31b detect the temperature of the heat medium flowing out from the intermediate heat exchanger 15, that is, the temperature of the heat medium at the outlet of the intermediate heat exchanger 15, for example, a thermistor or the like. It is good to comprise. The first temperature sensor 31a is provided in the pipe 5 on the inlet side of the pump 21a. The first temperature sensor 31b is provided in the pipe 5 on the inlet side of the pump 21b.
 4つの第2温度センサー34a~34dは、第1熱媒体流路切替装置22と熱媒体流量調整装置25との間に設けられ、利用側熱交換器26から流出した熱媒体の温度を検知するものであり、サーミスター等で構成するとよい。第2温度センサー34は、室内機2の設置台数に応じた個数(ここでは4つ)が設けられるようになっている。なお、室内機2に対応させて、紙面下側から第2温度センサー34a、第2温度センサー34b、第2温度センサー34c、第2温度センサー34dとして図示している。 The four second temperature sensors 34a to 34d are provided between the first heat medium flow switching device 22 and the heat medium flow control device 25, and detect the temperature of the heat medium flowing out from the use side heat exchanger 26. It is good that it is composed of a thermistor or the like. The number of the second temperature sensors 34 (four here) according to the number of indoor units 2 installed is provided. In correspondence with the indoor unit 2, the second temperature sensor 34a, the second temperature sensor 34b, the second temperature sensor 34c, and the second temperature sensor 34d are illustrated from the lower side of the drawing.
 4つの第3温度センサー35a~35dは、熱媒体間熱交換器15の熱源側冷媒の入口側または出口側に設けられ、熱媒体間熱交換器15に流入する熱源側冷媒の温度または熱媒体間熱交換器15から流出した熱源側冷媒の温度を検知するものであり、サーミスター等で構成するとよい。第3温度センサー35aは、熱媒体間熱交換器15aと第2冷媒流路切替装置18aとの間に設けられている。第3温度センサー35bは、熱媒体間熱交換器15aと絞り装置16aとの間に設けられている。第3温度センサー35cは、熱媒体間熱交換器15bと第2冷媒流路切替装置18bとの間に設けられている。第3温度センサー35dは、熱媒体間熱交換器15bと絞り装置16bとの間に設けられている。 The four third temperature sensors 35a to 35d are provided on the inlet side or the outlet side of the heat source side refrigerant of the heat exchanger related to heat medium 15, and the temperature or heat medium of the heat source side refrigerant flowing into the heat exchanger related to heat medium 15 The temperature of the heat source side refrigerant that has flowed out of the intermediate heat exchanger 15 is detected, and it may be constituted by a thermistor or the like. The third temperature sensor 35a is provided between the heat exchanger related to heat medium 15a and the second refrigerant flow switching device 18a. The third temperature sensor 35b is provided between the heat exchanger related to heat medium 15a and the expansion device 16a. The third temperature sensor 35c is provided between the heat exchanger related to heat medium 15b and the second refrigerant flow switching device 18b. The third temperature sensor 35d is provided between the heat exchanger related to heat medium 15b and the expansion device 16b.
 2つの圧力センサー36a、36bは、冷媒の圧力を検知するものである。圧力センサー36aは、第3温度センサー35aの設置位置と同様に、熱媒体間熱交換器15aと第2冷媒流路切替装置18aとの間を流れる熱源側冷媒の圧力を検知するものである。また、圧力センサー36bは、第3温度センサー35dの設置位置と同様に、熱媒体間熱交換器15bと絞り装置16bとの間に設けられ、熱媒体間熱交換器15bと絞り装置16bとの間を流れる熱源側冷媒の圧力を検知するものである。 The two pressure sensors 36a and 36b are for detecting the pressure of the refrigerant. The pressure sensor 36a detects the pressure of the heat source side refrigerant flowing between the heat exchanger related to heat medium 15a and the second refrigerant flow switching device 18a, similarly to the installation position of the third temperature sensor 35a. Similarly to the installation position of the third temperature sensor 35d, the pressure sensor 36b is provided between the heat exchanger related to heat medium 15b and the expansion device 16b, and between the heat exchanger related to heat medium 15b and the expansion device 16b. The pressure of the heat source side refrigerant flowing between them is detected.
 制御装置70は、マイコン等で構成されており、各種検知手段での検知情報及びリモコンからの指示に基づいて、圧縮機10の駆動周波数、送風機の回転数(ON/OFF含む)、第1冷媒流路切替装置11の切り替え、ポンプ21の駆動、絞り装置16の開度、開閉装置17の開閉、第2冷媒流路切替装置18の切り替え、第1熱媒体流路切替装置22の切り替え、第2熱媒体流路切替装置23の切り替え、及び、熱媒体流量調整装置25の開度等を制御するものである。すなわち、制御装置70は、各種機器を統括制御して、後述するデフロスト運転、及び各運転モードを実行するものである。図2では、制御装置70が熱媒体変換機3に設けられた例を図示しているが、それに限定されるものではない。すなわち、制御装置70は、室内機2のユニット毎に設けられていてもよいし熱媒体変換機3に設けられていてもよい。また、複数の制御装置70を、室外機1、室内器2及び熱媒体変換機3に設け、通信で連携制御をできるように構成してもよい。 The control device 70 is configured by a microcomputer or the like, and based on detection information from various detection means and instructions from the remote controller, the driving frequency of the compressor 10, the rotational speed of the blower (including ON / OFF), the first refrigerant Switching of the flow switching device 11, driving of the pump 21, opening of the expansion device 16, opening / closing of the switching device 17, switching of the second refrigerant flow switching device 18, switching of the first heat medium flow switching device 22, (2) The switching of the heat medium flow switching device 23 and the opening degree of the heat medium flow control device 25 are controlled. That is, the control device 70 performs overall control of various devices and executes a defrost operation and each operation mode to be described later. In FIG. 2, an example in which the control device 70 is provided in the heat medium relay unit 3 is illustrated, but the present invention is not limited thereto. That is, the control device 70 may be provided for each unit of the indoor unit 2 or may be provided in the heat medium relay unit 3. Moreover, you may comprise the some control apparatus 70 in the outdoor unit 1, the indoor unit 2, and the heat medium converter 3, so that cooperation control can be performed by communication.
 熱媒体を循環させるための配管5は、熱媒体間熱交換器15aに接続されるものと、熱媒体間熱交換器15bに接続されるものと、で構成されている。配管5は、熱媒体変換機3に接続される室内機2の台数に応じて分岐(ここでは、各4分岐)されている。そして、配管5は、第1熱媒体流路切替装置22、及び第2熱媒体流路切替装置23で接続されている。第1熱媒体流路切替装置22及び第2熱媒体流路切替装置23を制御することで、熱媒体間熱交換器15aからの熱媒体を利用側熱交換器26に流入させるか、熱媒体間熱交換器15bからの熱媒体を利用側熱交換器26に流入させるか、が決定されるようになっている。 The piping 5 for circulating the heat medium is composed of one connected to the heat exchanger related to heat medium 15a and one connected to the heat exchanger related to heat medium 15b. The pipe 5 is branched (here, four branches each) according to the number of indoor units 2 connected to the heat medium relay unit 3. The pipe 5 is connected by a first heat medium flow switching device 22 and a second heat medium flow switching device 23. By controlling the first heat medium flow switching device 22 and the second heat medium flow switching device 23, the heat medium from the heat exchanger related to heat medium 15a flows into the use-side heat exchanger 26, or the heat medium Whether the heat medium from the intermediate heat exchanger 15b flows into the use side heat exchanger 26 is determined.
 そして、空気調和装置100では、圧縮機10、第1冷媒流路切替装置11、熱源側熱交換器12、開閉装置17、第2冷媒流路切替装置18、熱媒体間熱交換器15の冷媒流路、絞り装置16、及び、アキュムレーター19を、冷媒配管4で接続して冷媒循環回路Aを構成している。また、熱媒体間熱交換器15の熱媒体流路、ポンプ21、第1熱媒体流路切替装置22、熱媒体流量調整装置25、利用側熱交換器26、及び、第2熱媒体流路切替装置23を、配管5で接続して熱媒体循環回路Bを構成している。つまり、熱媒体間熱交換器15のそれぞれに複数台の利用側熱交換器26が並列に接続され、熱媒体循環回路Bを複数系統としているのである。 In the air conditioner 100, the refrigerant of the compressor 10, the first refrigerant flow switching device 11, the heat source side heat exchanger 12, the switchgear 17, the second refrigerant flow switching device 18, and the heat exchanger related to heat medium 15 is used. The flow path, the expansion device 16 and the accumulator 19 are connected by the refrigerant pipe 4 to constitute the refrigerant circulation circuit A. Further, the heat medium flow path of the intermediate heat exchanger 15, the pump 21, the first heat medium flow switching device 22, the heat medium flow control device 25, the use side heat exchanger 26, and the second heat medium flow path The switching device 23 is connected by a pipe 5 to constitute a heat medium circulation circuit B. That is, a plurality of usage-side heat exchangers 26 are connected in parallel to each of the heat exchangers between heat media 15, and the heat medium circulation circuit B has a plurality of systems.
 よって、空気調和装置100では、室外機1と熱媒体変換機3とが、熱媒体変換機3に設けられている熱媒体間熱交換器15を介して接続され、熱媒体変換機3と室内機2とも、熱媒体間熱交換器15を介して接続されている。すなわち、空気調和装置100では、熱媒体間熱交換器15a及び熱媒体間熱交換器15bで、冷媒循環回路Aを循環する熱源側冷媒と熱媒体循環回路Bを循環する熱媒体とが熱交換するようになっている。 Therefore, in the air conditioning apparatus 100, the outdoor unit 1 and the heat medium converter 3 are connected via the heat exchanger related to heat medium 15 provided in the heat medium converter 3, so that the heat medium converter 3 and the indoor unit The machine 2 is also connected through a heat exchanger 15 between heat media. That is, in the air conditioner 100, the heat source side refrigerant circulating in the refrigerant circuit A and the heat medium circulating in the heat medium circuit B exchange heat in the intermediate heat exchanger 15a and the intermediate heat exchanger 15b. It is supposed to be.
[運転モードの説明]
 次に、空気調和装置100が実行する各運転モードについて説明する。この空気調和装置100は、各室内機2からの指示に基づいて、その室内機2で冷房運転あるいは暖房運転が可能になっている。つまり、空気調和装置100は、室内機2の全部で同一運転をすることができるとともに、室内機2のそれぞれで異なる運転をすることができるようになっている。
[Description of operation mode]
Next, each operation mode executed by the air conditioner 100 will be described. The air conditioner 100 can perform a cooling operation or a heating operation in the indoor unit 2 based on an instruction from each indoor unit 2. That is, the air conditioning apparatus 100 can perform the same operation for all the indoor units 2 and can perform different operations for each of the indoor units 2.
 空気調和装置100が実行する運転モードには、駆動している室内機2の全てが冷房運転を実行する全冷房運転モード、駆動している室内機2の全てが暖房運転を実行する全暖房運転モード、冷房負荷の方が大きい冷房暖房混在運転モードとしての冷房主体運転モード、及び、暖房負荷の方が大きい冷房暖房混在運転モードとしての暖房主体運転モードがある。これら4つの通常運転に加えて、本実施の形態1に係る空気調和装置100の実行する運転モードには、熱源側熱交換器12に付着した霜を除去するデフロスト運転モードがある。
 以下に、各運転モードについて、熱源側冷媒及び熱媒体の流れとともに説明する。
The operation mode executed by the air conditioner 100 includes a cooling only operation mode in which all the driven indoor units 2 execute a cooling operation, and a heating only operation in which all the driven indoor units 2 execute a heating operation. There are a cooling main operation mode as a cooling / heating mixed operation mode with a larger mode and a cooling load, and a heating main operation mode as a cooling / heating mixed operation mode with a larger heating load. In addition to these four normal operations, the operation mode executed by the air-conditioning apparatus 100 according to Embodiment 1 includes a defrost operation mode in which frost attached to the heat source side heat exchanger 12 is removed.
Below, each operation mode is demonstrated with the flow of a heat-source side refrigerant | coolant and a heat medium.
[全冷房運転モード]
 図3は、空気調和装置100の全冷房運転モード時における冷媒の流れを示す冷媒回路図である。この図3では、利用側熱交換器26a及び利用側熱交換器26bでのみ冷熱負荷が発生している場合を例に全冷房運転モードについて説明する。なお、図3では、太線で表された配管が冷媒(熱源側冷媒及び熱媒体)の流れる配管を示している。また、図3では、熱源側冷媒の流れ方向を実線矢印で、熱媒体の流れ方向を破線矢印で示している。
[Cooling operation mode]
FIG. 3 is a refrigerant circuit diagram illustrating a refrigerant flow when the air-conditioning apparatus 100 is in the cooling only operation mode. In FIG. 3, the cooling only operation mode will be described by taking as an example a case where a cooling load is generated only in the use side heat exchanger 26a and the use side heat exchanger 26b. In addition, in FIG. 3, the piping represented with the thick line has shown the piping through which a refrigerant | coolant (a heat source side refrigerant | coolant and a heat medium) flows. In FIG. 3, the flow direction of the heat source side refrigerant is indicated by a solid line arrow, and the flow direction of the heat medium is indicated by a broken line arrow.
 図3に示す全冷房運転モードの場合、室外機1では、第1冷媒流路切替装置11を、圧縮機10から吐出された熱源側冷媒を熱源側熱交換器12へ流入させるように切り替える。熱媒体変換機3では、ポンプ21a及びポンプ21bを駆動させ、熱媒体流量調整装置25a及び熱媒体流量調整装置25bを開放し、熱媒体流量調整装置25c及び熱媒体流量調整装置25dを全閉とし、熱媒体間熱交換器15a及び熱媒体間熱交換器15bのそれぞれと利用側熱交換器26a及び利用側熱交換器26bとの間を熱媒体が循環するようにしている。 3, in the cooling only operation mode shown in FIG. 3, in the outdoor unit 1, the first refrigerant flow switching device 11 is switched so that the heat source side refrigerant discharged from the compressor 10 flows into the heat source side heat exchanger 12. In the heat medium converter 3, the pump 21a and the pump 21b are driven, the heat medium flow control device 25a and the heat medium flow control device 25b are opened, and the heat medium flow control device 25c and the heat medium flow control device 25d are fully closed. The heat medium circulates between the heat exchanger related to heat medium 15a and the heat exchanger related to heat medium 15b and the use side heat exchanger 26a and the use side heat exchanger 26b.
 まず始めに、冷媒循環回路Aにおける熱源側冷媒の流れについて説明する。
 低温・低圧の冷媒が圧縮機10によって圧縮され、高温・高圧のガス冷媒となって吐出される。圧縮機10から吐出された高温・高圧のガス冷媒は、第1冷媒流路切替装置11を介して熱源側熱交換器12に流入する。そして、熱源側熱交換器12で室外空気に放熱しながら高圧の液冷媒となる。熱源側熱交換器12から流出した高圧冷媒は、逆止弁13aを通って、室外機1から流出し、冷媒配管4を通って熱媒体変換機3に流入する。熱媒体変換機3に流入した高圧冷媒は、開閉装置17aを経由した後に分岐されて絞り装置16a及び絞り装置16bで膨張させられて、低温・低圧の二相冷媒となる。なお、開閉装置17bは閉となっている。
First, the flow of the heat source side refrigerant in the refrigerant circuit A will be described.
The low-temperature and low-pressure refrigerant is compressed by the compressor 10 and discharged as a high-temperature and high-pressure gas refrigerant. The high-temperature and high-pressure gas refrigerant discharged from the compressor 10 flows into the heat source side heat exchanger 12 via the first refrigerant flow switching device 11. And it becomes a high-pressure liquid refrigerant, radiating heat to outdoor air with the heat source side heat exchanger 12. The high-pressure refrigerant that has flowed out of the heat source side heat exchanger 12 flows out of the outdoor unit 1 through the check valve 13 a, and flows into the heat medium relay unit 3 through the refrigerant pipe 4. The high-pressure refrigerant flowing into the heat medium relay unit 3 is branched after passing through the opening / closing device 17a and expanded by the expansion device 16a and the expansion device 16b to become a low-temperature / low-pressure two-phase refrigerant. The opening / closing device 17b is closed.
 この二相冷媒は、蒸発器として作用する熱媒体間熱交換器15a及び熱媒体間熱交換器15bのそれぞれに流入し、熱媒体循環回路Bを循環する熱媒体から吸熱することで、熱媒体を冷却しながら、低温・低圧のガス冷媒となる。熱媒体間熱交換器15a及び熱媒体間熱交換器15bから流出したガス冷媒は、第2冷媒流路切替装置18a、第2冷媒流路切替装置18b、熱媒体変換機3を介し、冷媒配管4を通って再び室外機1へ流入する。室外機1に流入した冷媒は、逆止弁13dを通って、第1冷媒流路切替装置11及びアキュムレーター19を介して、圧縮機10へ再度吸入される。 This two-phase refrigerant flows into each of the heat exchanger related to heat medium 15a and the heat exchanger related to heat medium 15b acting as an evaporator, and absorbs heat from the heat medium circulating in the heat medium circulation circuit B. It becomes a low-temperature, low-pressure gas refrigerant while cooling. The gas refrigerant flowing out of the heat exchanger related to heat medium 15a and the heat exchanger related to heat medium 15b passes through the second refrigerant flow switching device 18a, the second refrigerant flow switching device 18b, and the heat medium converter 3, and is connected to the refrigerant pipe. 4 flows into the outdoor unit 1 again. The refrigerant flowing into the outdoor unit 1 passes through the check valve 13d and is sucked into the compressor 10 again via the first refrigerant flow switching device 11 and the accumulator 19.
 このとき、第2冷媒流路切替装置18a及び第2冷媒流路切替装置18bは低圧配管と連通されている。また、絞り装置16aは、第3温度センサー35aで検出された温度と第3温度センサー35bで検出された温度との差として得られるスーパーヒート(過熱度)が一定になるように開度が制御される。同様に、絞り装置16bは、第3温度センサー35cで検出された温度と第3温度センサー35dで検出された温度との差として得られるスーパーヒートが一定になるように開度が制御される。 At this time, the second refrigerant flow switching device 18a and the second refrigerant flow switching device 18b are communicated with the low pressure pipe. Further, the opening degree of the expansion device 16a is controlled so that the superheat (superheat degree) obtained as a difference between the temperature detected by the third temperature sensor 35a and the temperature detected by the third temperature sensor 35b becomes constant. Is done. Similarly, the opening degree of the expansion device 16b is controlled so that the superheat obtained as the difference between the temperature detected by the third temperature sensor 35c and the temperature detected by the third temperature sensor 35d is constant.
 次に、熱媒体循環回路Bにおける熱媒体の流れについて説明する。
 全冷房運転モードでは、熱媒体間熱交換器15a及び熱媒体間熱交換器15bの双方で熱源側冷媒の冷熱が熱媒体に伝えられ、冷やされた熱媒体がポンプ21a及びポンプ21bによって配管5内を流動させられることになる。ポンプ21a及びポンプ21bで加圧されて流出した熱媒体は、第2熱媒体流路切替装置23a及び第2熱媒体流路切替装置23bを介して、利用側熱交換器26a及び利用側熱交換器26bに流入する。そして、熱媒体が利用側熱交換器26a及び利用側熱交換器26bで室内空気から吸熱することで、室内空間7の冷房を行なう。
Next, the flow of the heat medium in the heat medium circuit B will be described.
In the cooling only operation mode, the cold heat of the heat source side refrigerant is transmitted to the heat medium in both the heat exchanger related to heat medium 15a and the heat exchanger related to heat medium 15b, and the cooled heat medium is piped 5 by the pump 21a and the pump 21b. The inside will be allowed to flow. The heat medium pressurized and discharged by the pump 21a and the pump 21b passes through the second heat medium flow switching device 23a and the second heat medium flow switching device 23b, and the use side heat exchanger 26a and the use side heat exchange. Flows into the vessel 26b. The heat medium absorbs heat from the indoor air in the use side heat exchanger 26a and the use side heat exchanger 26b, thereby cooling the indoor space 7.
 それから、熱媒体は、利用側熱交換器26a及び利用側熱交換器26bから流出して熱媒体流量調整装置25a及び熱媒体流量調整装置25bに流入する。このとき、熱媒体流量調整装置25a及び熱媒体流量調整装置25bの作用によって熱媒体の流量が室内にて必要とされる空調負荷を賄うのに必要な流量に制御されて利用側熱交換器26a及び利用側熱交換器26bに流入するようになっている。熱媒体流量調整装置25a及び熱媒体流量調整装置25bから流出した熱媒体は、第1熱媒体流路切替装置22a及び第1熱媒体流路切替装置22bを通って、熱媒体間熱交換器15a及び熱媒体間熱交換器15bへ流入し、再びポンプ21a及びポンプ21bへ吸い込まれる。 Then, the heat medium flows out of the use-side heat exchanger 26a and the use-side heat exchanger 26b and flows into the heat medium flow control device 25a and the heat medium flow control device 25b. At this time, the heat medium flow control device 25a and the heat medium flow control device 25b control the flow rate of the heat medium to a flow rate necessary to cover the air conditioning load required in the room, so that the use-side heat exchanger 26a. And it flows into the use side heat exchanger 26b. The heat medium flowing out from the heat medium flow control device 25a and the heat medium flow control device 25b passes through the first heat medium flow switching device 22a and the first heat medium flow switching device 22b, and the heat exchanger related to heat medium 15a. And flows into the heat exchanger related to heat medium 15b, and is sucked into the pump 21a and the pump 21b again.
 なお、利用側熱交換器26の配管5内では、第2熱媒体流路切替装置23から熱媒体流量調整装置25を経由して第1熱媒体流路切替装置22へ至る向きに熱媒体が流れている。また、室内空間7にて必要とされる空調負荷は、第1温度センサー31aで検出された温度、あるいは、第1温度センサー31bで検出された温度と第2温度センサー34で検出された温度との差を目標値として保つように制御することにより、賄うことができる。熱媒体間熱交換器15の出口温度は、第1温度センサー31aまたは第1温度センサー31bのどちらの温度を使用してもよいし、これらの平均温度を使用してもよい。このとき、第1熱媒体流路切替装置22及び第2熱媒体流路切替装置23は、熱媒体間熱交換器15a及び熱媒体間熱交換器15bの双方へ流れる流路が確保されるように、中間的な開度にしている。 In the pipe 5 of the use side heat exchanger 26, the heat medium is directed from the second heat medium flow switching device 23 to the first heat medium flow switching device 22 via the heat medium flow control device 25. Flowing. The air conditioning load required in the indoor space 7 includes the temperature detected by the first temperature sensor 31a, the temperature detected by the first temperature sensor 31b, and the temperature detected by the second temperature sensor 34. By controlling so as to keep the difference between the two as a target value, it can be covered. As the outlet temperature of the heat exchanger related to heat medium 15, either the temperature of the first temperature sensor 31a or the first temperature sensor 31b may be used, or the average temperature thereof may be used. At this time, the first heat medium flow switching device 22 and the second heat medium flow switching device 23 ensure a flow path that flows to both the heat exchanger related to heat medium 15a and the heat exchanger related to heat medium 15b. In addition, the intermediate opening is set.
 全冷房運転モードを実行する際、熱負荷のない利用側熱交換器26(サーモオフを含む)へは熱媒体を流す必要がないため、熱媒体流量調整装置25により流路を閉じて、利用側熱交換器26へ熱媒体が流れないようにする。図3においては、利用側熱交換器26a及び利用側熱交換器26bにおいては熱負荷があるため熱媒体を流しているが、利用側熱交換器26c及び利用側熱交換器26dにおいては熱負荷がなく、対応する熱媒体流量調整装置25c及び熱媒体流量調整装置25dを全閉としている。そして、利用側熱交換器26cや利用側熱交換器26dから熱負荷の発生があった場合には、熱媒体流量調整装置25cや熱媒体流量調整装置25dを開放し、熱媒体を循環させればよい。 When the cooling only operation mode is executed, it is not necessary to flow the heat medium to the use side heat exchanger 26 (including the thermo-off) without the heat load. The heat medium is prevented from flowing to the heat exchanger 26. In FIG. 3, a heat medium flows because there is a heat load in the use side heat exchanger 26a and the use side heat exchanger 26b. However, in the use side heat exchanger 26c and the use side heat exchanger 26d, the heat load is supplied. The corresponding heat medium flow control device 25c and heat medium flow control device 25d are fully closed. When a heat load is generated from the use side heat exchanger 26c or the use side heat exchanger 26d, the heat medium flow control device 25c or the heat medium flow control device 25d is opened to circulate the heat medium. That's fine.
[全暖房運転モード]
 図4は、空気調和装置100の全暖房運転モード時における冷媒の流れを示す冷媒回路図である。この図4では、利用側熱交換器26a及び利用側熱交換器26bでのみ温熱負荷が発生している場合を例に全暖房運転モードについて説明する。なお、図4では、太線で表された配管が冷媒(熱源側冷媒及び熱媒体)の流れる配管を示している。また、図4では、熱源側冷媒の流れ方向を実線矢印で、熱媒体の流れ方向を破線矢印で示している。
[Heating operation mode]
FIG. 4 is a refrigerant circuit diagram illustrating a refrigerant flow when the air-conditioning apparatus 100 is in the heating only operation mode. In FIG. 4, the heating only operation mode will be described by taking as an example a case where a thermal load is generated only in the use side heat exchanger 26a and the use side heat exchanger 26b. In FIG. 4, the pipes represented by the thick lines indicate the pipes through which the refrigerant (heat source side refrigerant and heat medium) flows. In FIG. 4, the flow direction of the heat source side refrigerant is indicated by solid line arrows, and the flow direction of the heat medium is indicated by broken line arrows.
 図4に示す全暖房運転モードの場合、室外機1では、第1冷媒流路切替装置11を、圧縮機10から吐出された熱源側冷媒を熱源側熱交換器12を経由させずに熱媒体変換機3へ流入させるように切り替える。熱媒体変換機3では、ポンプ21a及びポンプ21bを駆動させ、熱媒体流量調整装置25a及び熱媒体流量調整装置25bを開放し、熱媒体流量調整装置25c及び熱媒体流量調整装置25dを全閉とし、熱媒体間熱交換器15a及び熱媒体間熱交換器15bのそれぞれと利用側熱交換器26a及び利用側熱交換器26bとの間を熱媒体が循環するようにしている。 In the heating only operation mode shown in FIG. 4, in the outdoor unit 1, the first refrigerant flow switching device 11 uses the heat source side refrigerant discharged from the compressor 10 without passing through the heat source side heat exchanger 12. It switches so that it may flow into converter 3. In the heat medium converter 3, the pump 21a and the pump 21b are driven, the heat medium flow control device 25a and the heat medium flow control device 25b are opened, and the heat medium flow control device 25c and the heat medium flow control device 25d are fully closed. The heat medium circulates between the heat exchanger related to heat medium 15a and the heat exchanger related to heat medium 15b and the use side heat exchanger 26a and the use side heat exchanger 26b.
 まず始めに、冷媒循環回路Aにおける熱源側冷媒の流れについて説明する。
 低温・低圧の冷媒が圧縮機10によって圧縮され、高温・高圧のガス冷媒となって吐出される。圧縮機10から吐出された高温・高圧のガス冷媒は、第1冷媒流路切替装置11、逆止弁13bを通り、室外機1から流出する。室外機1から流出した高温・高圧のガス冷媒は、冷媒配管4を通って熱媒体変換機3に流入する。熱媒体変換機3に流入した高温・高圧のガス冷媒は、分岐されて第2冷媒流路切替装置18a及び第2冷媒流路切替装置18bを通って、熱媒体間熱交換器15a及び熱媒体間熱交換器15bのそれぞれに流入する。
First, the flow of the heat source side refrigerant in the refrigerant circuit A will be described.
The low-temperature and low-pressure refrigerant is compressed by the compressor 10 and discharged as a high-temperature and high-pressure gas refrigerant. The high-temperature and high-pressure gas refrigerant discharged from the compressor 10 flows out of the outdoor unit 1 through the first refrigerant flow switching device 11 and the check valve 13b. The high-temperature and high-pressure gas refrigerant that has flowed out of the outdoor unit 1 flows into the heat medium relay unit 3 through the refrigerant pipe 4. The high-temperature and high-pressure gas refrigerant that has flowed into the heat medium relay unit 3 is branched and passes through the second refrigerant flow switching device 18a and the second refrigerant flow switching device 18b, and the heat exchanger related to heat medium 15a and the heat medium. It flows into each of the intermediate heat exchangers 15b.
 熱媒体間熱交換器15a及び熱媒体間熱交換器15bに流入した高温・高圧のガス冷媒は、熱媒体循環回路Bを循環する熱媒体に放熱しながら高圧の液冷媒となる。熱媒体間熱交換器15a及び熱媒体間熱交換器15bから流出した液冷媒は、絞り装置16a及び絞り装置16bで膨張させられて、低温・低圧の二相冷媒となる。この二相冷媒は、開閉装置17bを通って、熱媒体変換機3から流出し、冷媒配管4を通って再び室外機1へ流入する。なお、開閉装置17aは閉となっている。 The high-temperature and high-pressure gas refrigerant flowing into the heat exchanger related to heat medium 15a and the heat exchanger related to heat medium 15b becomes a high-pressure liquid refrigerant while dissipating heat to the heat medium circulating in the heat medium circuit B. The liquid refrigerant flowing out of the heat exchanger related to heat medium 15a and the heat exchanger related to heat medium 15b is expanded by the expansion device 16a and the expansion device 16b to become a low-temperature, low-pressure two-phase refrigerant. The two-phase refrigerant flows out of the heat medium relay unit 3 through the opening / closing device 17b, and flows into the outdoor unit 1 through the refrigerant pipe 4 again. The opening / closing device 17a is closed.
 室外機1に流入した冷媒は、逆止弁13cを通って、蒸発器として作用する熱源側熱交換器12に流入する。そして、熱源側熱交換器12に流入した冷媒は、熱源側熱交換器12で室外空気から吸熱して、低温・低圧のガス冷媒となる。熱源側熱交換器12から流出した低温・低圧のガス冷媒は、第1冷媒流路切替装置11及びアキュムレーター19を介して圧縮機10へ再度吸入される。 The refrigerant flowing into the outdoor unit 1 passes through the check valve 13c and flows into the heat source side heat exchanger 12 acting as an evaporator. And the refrigerant | coolant which flowed into the heat source side heat exchanger 12 absorbs heat from outdoor air in the heat source side heat exchanger 12, and becomes a low-temperature and low-pressure gas refrigerant. The low-temperature and low-pressure gas refrigerant flowing out from the heat source side heat exchanger 12 is again sucked into the compressor 10 via the first refrigerant flow switching device 11 and the accumulator 19.
 このとき、第2冷媒流路切替装置18a及び第2冷媒流路切替装置18bは高圧配管と連通されている。また、絞り装置16aは、圧力センサー36aで検出された圧力を飽和温度に換算した値と第3温度センサー35bで検出された温度との差として得られるサブクール(過冷却度)が一定になるように開度が制御される。同様に、絞り装置16bは、圧力センサー36bで検出された圧力を飽和温度に換算した値と第3温度センサー35dで検出された温度との差として得られるサブクールが一定になるように開度が制御される。なお、熱媒体間熱交換器15の中間位置の温度が測定できる場合は、その中間位置での温度を圧力センサー36の代わりに用いてもよく、安価にシステムを構成できる。 At this time, the second refrigerant flow switching device 18a and the second refrigerant flow switching device 18b are in communication with the high-pressure pipe. Further, the expansion device 16a has a constant subcool (degree of subcooling) obtained as a difference between a value obtained by converting the pressure detected by the pressure sensor 36a into a saturation temperature and a temperature detected by the third temperature sensor 35b. The opening degree is controlled. Similarly, the expansion device 16b has an opening degree so that a subcool obtained as a difference between a value obtained by converting the pressure detected by the pressure sensor 36b into a saturation temperature and a temperature detected by the third temperature sensor 35d is constant. Be controlled. When the temperature at the intermediate position of the heat exchanger related to heat medium 15 can be measured, the temperature at the intermediate position may be used instead of the pressure sensor 36, and the system can be configured at low cost.
 次に、熱媒体循環回路Bにおける熱媒体の流れについて説明する。
 全暖房運転モードでは、熱媒体間熱交換器15a及び熱媒体間熱交換器15bの双方で熱源側冷媒の温熱が熱媒体に伝えられ、暖められた熱媒体がポンプ21a及びポンプ21bによって配管5内を流動させられることになる。ポンプ21a及びポンプ21bで加圧されて流出した熱媒体は、第2熱媒体流路切替装置23a及び第2熱媒体流路切替装置23bを介して、利用側熱交換器26a及び利用側熱交換器26bに流入する。そして、熱媒体が利用側熱交換器26a及び利用側熱交換器26bで室内空気に放熱することで、室内空間7の暖房を行なう。
Next, the flow of the heat medium in the heat medium circuit B will be described.
In the heating only operation mode, the heat of the heat source side refrigerant is transmitted to the heat medium in both the heat exchanger 15a and the heat exchanger 15b, and the heated heat medium is piped 5 by the pump 21a and the pump 21b. The inside will be allowed to flow. The heat medium pressurized and discharged by the pump 21a and the pump 21b passes through the second heat medium flow switching device 23a and the second heat medium flow switching device 23b, and the use side heat exchanger 26a and the use side heat exchange. Flows into the vessel 26b. The heat medium radiates heat to the indoor air in the use side heat exchanger 26a and the use side heat exchanger 26b, thereby heating the indoor space 7.
 それから、熱媒体は、利用側熱交換器26a及び利用側熱交換器26bから流出して熱媒体流量調整装置25a及び熱媒体流量調整装置25bに流入する。このとき、熱媒体流量調整装置25a及び熱媒体流量調整装置25bの作用によって熱媒体の流量が室内にて必要とされる空調負荷を賄うのに必要な流量に制御されて利用側熱交換器26a及び利用側熱交換器26bに流入するようになっている。熱媒体流量調整装置25a及び熱媒体流量調整装置25bから流出した熱媒体は、第1熱媒体流路切替装置22a及び第1熱媒体流路切替装置22bを通って、熱媒体間熱交換器15a及び熱媒体間熱交換器15bへ流入し、再びポンプ21a及びポンプ21bへ吸い込まれる。 Then, the heat medium flows out of the use-side heat exchanger 26a and the use-side heat exchanger 26b and flows into the heat medium flow control device 25a and the heat medium flow control device 25b. At this time, the heat medium flow control device 25a and the heat medium flow control device 25b control the flow rate of the heat medium to a flow rate necessary to cover the air conditioning load required in the room, so that the use-side heat exchanger 26a. And it flows into the use side heat exchanger 26b. The heat medium flowing out from the heat medium flow control device 25a and the heat medium flow control device 25b passes through the first heat medium flow switching device 22a and the first heat medium flow switching device 22b, and the heat exchanger related to heat medium 15a. And flows into the heat exchanger related to heat medium 15b, and is sucked into the pump 21a and the pump 21b again.
 なお、利用側熱交換器26の配管5内では、第2熱媒体流路切替装置23から熱媒体流量調整装置25を経由して第1熱媒体流路切替装置22へ至る向きに熱媒体が流れている。また、室内空間7にて必要とされる空調負荷は、第1温度センサー31aで検出された温度、あるいは、第1温度センサー31bで検出された温度と第2温度センサー34で検出された温度との差を目標値として保つように制御することにより、賄うことができる。熱媒体間熱交換器15の出口温度は、第1温度センサー31aまたは第1温度センサー31bのどちらの温度を使用してもよいし、これらの平均温度を使用してもよい。 In the pipe 5 of the use side heat exchanger 26, the heat medium is directed from the second heat medium flow switching device 23 to the first heat medium flow switching device 22 via the heat medium flow control device 25. Flowing. The air conditioning load required in the indoor space 7 includes the temperature detected by the first temperature sensor 31a, the temperature detected by the first temperature sensor 31b, and the temperature detected by the second temperature sensor 34. By controlling so as to keep the difference between the two as a target value, it can be covered. As the outlet temperature of the heat exchanger related to heat medium 15, either the temperature of the first temperature sensor 31a or the first temperature sensor 31b may be used, or the average temperature thereof may be used.
 このとき、第1熱媒体流路切替装置22及び第2熱媒体流路切替装置23は、熱媒体間熱交換器15a及び熱媒体間熱交換器15bの双方へ流れる流路が確保されるように、中間的な開度にしている。また、本来、利用側熱交換器26aは、その入口と出口の温度差で制御すべきであるが、利用側熱交換器26の入口側の熱媒体温度は、第1温度センサー31bで検出された温度とほとんど同じ温度であり、第1温度センサー31bを使用することにより温度センサーの数を減らすことができ、安価にシステムを構成できる。 At this time, the first heat medium flow switching device 22 and the second heat medium flow switching device 23 ensure a flow path that flows to both the heat exchanger related to heat medium 15a and the heat exchanger related to heat medium 15b. In addition, the intermediate opening is set. In addition, the usage-side heat exchanger 26a should be controlled by the temperature difference between the inlet and the outlet, but the temperature of the heat medium on the inlet side of the usage-side heat exchanger 26 is detected by the first temperature sensor 31b. By using the first temperature sensor 31b, the number of temperature sensors can be reduced and the system can be configured at low cost.
 全暖房運転モードを実行する際、熱負荷のない利用側熱交換器26(サーモオフを含む)へは熱媒体を流す必要がないため、熱媒体流量調整装置25により流路を閉じて、利用側熱交換器26へ熱媒体が流れないようにする。図4においては、利用側熱交換器26a及び利用側熱交換器26bにおいては熱負荷があるため熱媒体を流しているが、利用側熱交換器26c及び利用側熱交換器26dにおいては熱負荷がなく、対応する熱媒体流量調整装置25c及び熱媒体流量調整装置25dを全閉としている。そして、利用側熱交換器26cや利用側熱交換器26dから熱負荷の発生があった場合には、熱媒体流量調整装置25cや熱媒体流量調整装置25dを開放し、熱媒体を循環させればよい。 When the heating only operation mode is executed, it is not necessary to flow the heat medium to the use side heat exchanger 26 (including the thermo-off) without the heat load. The heat medium is prevented from flowing to the heat exchanger 26. In FIG. 4, a heat medium flows because there is a heat load in the use side heat exchanger 26a and the use side heat exchanger 26b. However, in the use side heat exchanger 26c and the use side heat exchanger 26d, the heat load is passed. The corresponding heat medium flow control device 25c and heat medium flow control device 25d are fully closed. When a heat load is generated from the use side heat exchanger 26c or the use side heat exchanger 26d, the heat medium flow control device 25c or the heat medium flow control device 25d is opened to circulate the heat medium. That's fine.
[冷房主体運転モード]
 図5は、空気調和装置100の冷房主体運転モード時における冷媒の流れを示す冷媒回路図である。この図5では、利用側熱交換器26aで冷熱負荷が発生し、利用側熱交換器26bで温熱負荷が発生している場合を例に冷房主体運転モードについて説明する。なお、図5では、太線で表された配管が冷媒(熱源側冷媒及び熱媒体)の循環する配管を示している。また、図5では、熱源側冷媒の流れ方向を実線矢印で、熱媒体の流れ方向を破線矢印で示している。
[Cooling operation mode]
FIG. 5 is a refrigerant circuit diagram illustrating a refrigerant flow when the air-conditioning apparatus 100 is in the cooling main operation mode. In FIG. 5, the cooling main operation mode will be described by taking as an example a case where a cooling load is generated in the use side heat exchanger 26a and a heating load is generated in the use side heat exchanger 26b. Note that in FIG. 5, a pipe represented by a thick line shows a pipe through which the refrigerant (heat source side refrigerant and heat medium) circulates. Further, in FIG. 5, the flow direction of the heat source side refrigerant is indicated by solid line arrows, and the flow direction of the heat medium is indicated by broken line arrows.
 図5に示す冷房主体運転モードの場合、室外機1では、第1冷媒流路切替装置11を、圧縮機10から吐出された熱源側冷媒を熱源側熱交換器12へ流入させるように切り替える。熱媒体変換機3では、ポンプ21a及びポンプ21bを駆動させ、熱媒体流量調整装置25a及び熱媒体流量調整装置25bを開放し、熱媒体流量調整装置25c及び熱媒体流量調整装置25dを全閉とし、熱媒体間熱交換器15aと利用側熱交換器26aとの間を、熱媒体間熱交換器15bと利用側熱交換器26bとの間を、それぞれ熱媒体が循環するようにしている。 In the cooling main operation mode shown in FIG. 5, in the outdoor unit 1, the first refrigerant flow switching device 11 is switched so that the heat source side refrigerant discharged from the compressor 10 flows into the heat source side heat exchanger 12. In the heat medium converter 3, the pump 21a and the pump 21b are driven, the heat medium flow control device 25a and the heat medium flow control device 25b are opened, and the heat medium flow control device 25c and the heat medium flow control device 25d are fully closed. The heat medium is circulated between the heat exchanger related to heat medium 15a and the use side heat exchanger 26a, and between the heat exchanger related to heat medium 15b and the use side heat exchanger 26b.
 まず始めに、冷媒循環回路Aにおける熱源側冷媒の流れについて説明する。
 低温・低圧の冷媒が圧縮機10によって圧縮され、高温・高圧のガス冷媒となって吐出される。圧縮機10から吐出された高温・高圧のガス冷媒は、第1冷媒流路切替装置11を介して熱源側熱交換器12に流入する。そして、熱源側熱交換器12で室外空気に放熱しながら液冷媒となる。熱源側熱交換器12から流出した冷媒は、室外機1から流出し、逆止弁13a、冷媒配管4を通って熱媒体変換機3に流入する。熱媒体変換機3に流入した冷媒は、第2冷媒流路切替装置18bを通って凝縮器として作用する熱媒体間熱交換器15bに流入する。
First, the flow of the heat source side refrigerant in the refrigerant circuit A will be described.
The low-temperature and low-pressure refrigerant is compressed by the compressor 10 and discharged as a high-temperature and high-pressure gas refrigerant. The high-temperature and high-pressure gas refrigerant discharged from the compressor 10 flows into the heat source side heat exchanger 12 via the first refrigerant flow switching device 11. And it becomes a liquid refrigerant, dissipating heat to outdoor air with the heat source side heat exchanger 12. The refrigerant that has flowed out of the heat source side heat exchanger 12 flows out of the outdoor unit 1 and flows into the heat medium relay unit 3 through the check valve 13 a and the refrigerant pipe 4. The refrigerant that has flowed into the heat medium relay unit 3 flows into the heat exchanger related to heat medium 15b that acts as a condenser through the second refrigerant flow switching device 18b.
 熱媒体間熱交換器15bに流入した冷媒は、熱媒体循環回路Bを循環する熱媒体に放熱しながら、さらに温度が低下した冷媒となる。熱媒体間熱交換器15bから流出した冷媒は、絞り装置16bで膨張させられて低圧二相冷媒となる。この低圧二相冷媒は、絞り装置16aを介して蒸発器として作用する熱媒体間熱交換器15aに流入する。熱媒体間熱交換器15aに流入した低圧二相冷媒は、熱媒体循環回路Bを循環する熱媒体から吸熱することで、熱媒体を冷却しながら、低圧のガス冷媒となる。このガス冷媒は、熱媒体間熱交換器15aから流出し、第2冷媒流路切替装置18aを介して熱媒体変換機3から流出し、冷媒配管4を通って再び室外機1へ流入する。室外機1に流入した冷媒は、逆止弁13d、第1冷媒流路切替装置11及びアキュムレーター19を介して、圧縮機10へ再度吸入される。 The refrigerant that has flowed into the heat exchanger related to heat medium 15b becomes a refrigerant whose temperature is further lowered while radiating heat to the heat medium circulating in the heat medium circuit B. The refrigerant flowing out of the heat exchanger related to heat medium 15b is expanded by the expansion device 16b and becomes a low-pressure two-phase refrigerant. This low-pressure two-phase refrigerant flows into the heat exchanger related to heat medium 15a acting as an evaporator via the expansion device 16a. The low-pressure two-phase refrigerant that has flowed into the heat exchanger related to heat medium 15a absorbs heat from the heat medium circulating in the heat medium circuit B, and becomes a low-pressure gas refrigerant while cooling the heat medium. The gas refrigerant flows out of the heat exchanger related to heat medium 15a, flows out of the heat medium converter 3 via the second refrigerant flow switching device 18a, and flows into the outdoor unit 1 again through the refrigerant pipe 4. The refrigerant that has flowed into the outdoor unit 1 is again sucked into the compressor 10 via the check valve 13d, the first refrigerant flow switching device 11, and the accumulator 19.
 このとき、第2冷媒流路切替装置18aは低圧配管と連通されており、一方、第2冷媒流路切替装置18bは高圧側配管と連通されている。また、絞り装置16bは、第3温度センサー35aで検出された温度と第3温度センサー35bで検出された温度との差として得られるスーパーヒートが一定になるように開度が制御される。また、絞り装置16aは全開、開閉装置17bは閉となっている。なお、絞り装置16bは、圧力センサー36で検出された圧力を飽和温度に換算した値と第3温度センサー35dで検出された温度との差として得られるサブクールが一定になるように開度を制御してもよい。また、絞り装置16bを全開とし、絞り装置16aでスーパーヒートまたはサブクールを制御するようにしてもよい。 At this time, the second refrigerant flow switching device 18a is in communication with the low pressure pipe, while the second refrigerant flow switching device 18b is in communication with the high pressure side piping. Further, the opening degree of the expansion device 16b is controlled so that the superheat obtained as the difference between the temperature detected by the third temperature sensor 35a and the temperature detected by the third temperature sensor 35b becomes constant. Further, the expansion device 16a is fully opened and the opening / closing device 17b is closed. The expansion device 16b controls the opening degree so that a subcool obtained as a difference between a value obtained by converting the pressure detected by the pressure sensor 36 into a saturation temperature and a temperature detected by the third temperature sensor 35d is constant. May be. Alternatively, the expansion device 16b may be fully opened, and the superheat or subcool may be controlled by the expansion device 16a.
 次に、熱媒体循環回路Bにおける熱媒体の流れについて説明する。
 冷房主体運転モードでは、熱媒体間熱交換器15bで熱源側冷媒の温熱が熱媒体に伝えられ、暖められた熱媒体がポンプ21bによって配管5内を流動させられることになる。また、冷房主体運転モードでは、熱媒体間熱交換器15aで熱源側冷媒の冷熱が熱媒体に伝えられ、冷やされた熱媒体がポンプ21aによって配管5内を流動させられることになる。ポンプ21a及びポンプ21bで加圧されて流出した熱媒体は、第2熱媒体流路切替装置23a及び第2熱媒体流路切替装置23bを介して、利用側熱交換器26a及び利用側熱交換器26bに流入する。
Next, the flow of the heat medium in the heat medium circuit B will be described.
In the cooling main operation mode, the heat of the heat source side refrigerant is transmitted to the heat medium in the heat exchanger related to heat medium 15b, and the heated heat medium is caused to flow in the pipe 5 by the pump 21b. In the cooling main operation mode, the cold heat of the heat source side refrigerant is transmitted to the heat medium by the heat exchanger related to heat medium 15a, and the cooled heat medium is caused to flow in the pipe 5 by the pump 21a. The heat medium pressurized and discharged by the pump 21a and the pump 21b passes through the second heat medium flow switching device 23a and the second heat medium flow switching device 23b, and the use side heat exchanger 26a and the use side heat exchange. Flows into the vessel 26b.
 利用側熱交換器26bでは熱媒体が室内空気に放熱することで、室内空間7の暖房を行なう。また、利用側熱交換器26aでは熱媒体が室内空気から吸熱することで、室内空間7の冷房を行なう。このとき、熱媒体流量調整装置25a及び熱媒体流量調整装置25bの作用によって熱媒体の流量が室内にて必要とされる空調負荷を賄うのに必要な流量に制御されて利用側熱交換器26a及び利用側熱交換器26bに流入するようになっている。利用側熱交換器26bを通過し若干温度が低下した熱媒体は、熱媒体流量調整装置25b及び第1熱媒体流路切替装置22bを通って、熱媒体間熱交換器15bへ流入し、再びポンプ21bへ吸い込まれる。利用側熱交換器26aを通過し若干温度が上昇した熱媒体は、熱媒体流量調整装置25a及び第1熱媒体流路切替装置22aを通って、熱媒体間熱交換器15aへ流入し、再びポンプ21aへ吸い込まれる。 In the use side heat exchanger 26b, the heat medium radiates heat to the indoor air, thereby heating the indoor space 7. In the use-side heat exchanger 26a, the indoor space 7 is cooled by the heat medium absorbing heat from the indoor air. At this time, the heat medium flow control device 25a and the heat medium flow control device 25b control the flow rate of the heat medium to a flow rate necessary to cover the air conditioning load required in the room, so that the use-side heat exchanger 26a. And it flows into the use side heat exchanger 26b. The heat medium whose temperature has slightly decreased after passing through the use side heat exchanger 26b flows into the heat exchanger related to heat medium 15b through the heat medium flow control device 25b and the first heat medium flow switching device 22b, and again. It is sucked into the pump 21b. The heat medium whose temperature has slightly increased after passing through the use side heat exchanger 26a flows into the heat exchanger related to heat medium 15a through the heat medium flow control device 25a and the first heat medium flow switching device 22a, and again. It is sucked into the pump 21a.
 この間、暖かい熱媒体と冷たい熱媒体とは、第1熱媒体流路切替装置22及び第2熱媒体流路切替装置23の作用により、混合することなく、それぞれ温熱負荷、冷熱負荷がある利用側熱交換器26へ導入される。なお、利用側熱交換器26の配管5内では、暖房側、冷房側ともに、第2熱媒体流路切替装置23から熱媒体流量調整装置25を経由して第1熱媒体流路切替装置22へ至る向きに熱媒体が流れている。また、室内空間7にて必要とされる空調負荷は、暖房側においては第1温度センサー31bで検出された温度と第2温度センサー34で検出された温度との差を、冷房側においては第2温度センサー34で検出された温度と第1温度センサー31aで検出された温度との差を目標値として保つように制御することにより、賄うことができる。 During this time, the warm heat medium and the cold heat medium are not mixed by the action of the first heat medium flow switching device 22 and the second heat medium flow switching device 23, and the use side has a heat load and a heat load, respectively. It is introduced into the heat exchanger 26. In the pipe 5 of the use side heat exchanger 26, the first heat medium flow switching device 22 from the second heat medium flow switching device 23 via the heat medium flow control device 25 on both the heating side and the cooling side. The heat medium is flowing in the direction to The air conditioning load required in the indoor space 7 is the difference between the temperature detected by the first temperature sensor 31b on the heating side and the temperature detected by the second temperature sensor 34 on the heating side, This can be covered by controlling the difference between the temperature detected by the two temperature sensor 34 and the temperature detected by the first temperature sensor 31a as a target value.
 冷房主体運転モードを実行する際、熱負荷のない利用側熱交換器26(サーモオフを含む)へは熱媒体を流す必要がないため、熱媒体流量調整装置25により流路を閉じて、利用側熱交換器26へ熱媒体が流れないようにする。図5においては、利用側熱交換器26a及び利用側熱交換器26bにおいては熱負荷があるため熱媒体を流しているが、利用側熱交換器26c及び利用側熱交換器26dにおいては熱負荷がなく、対応する熱媒体流量調整装置25c及び熱媒体流量調整装置25dを全閉としている。そして、利用側熱交換器26cや利用側熱交換器26dから熱負荷の発生があった場合には、熱媒体流量調整装置25cや熱媒体流量調整装置25dを開放し、熱媒体を循環させればよい。 When executing the cooling main operation mode, it is not necessary to flow the heat medium to the use side heat exchanger 26 (including the thermo-off) without the heat load, so the flow path is closed by the heat medium flow control device 25 and the use side The heat medium is prevented from flowing to the heat exchanger 26. In FIG. 5, a heat medium flows because there is a heat load in the use side heat exchanger 26a and the use side heat exchanger 26b. However, in the use side heat exchanger 26c and the use side heat exchanger 26d, the heat load is supplied. The corresponding heat medium flow control device 25c and heat medium flow control device 25d are fully closed. When a heat load is generated from the use side heat exchanger 26c or the use side heat exchanger 26d, the heat medium flow control device 25c or the heat medium flow control device 25d is opened to circulate the heat medium. That's fine.
[暖房主体運転モード]
 図6は、空気調和装置100の暖房主体運転モード時における冷媒の流れを示す冷媒回路図である。この図6では、利用側熱交換器26aで温熱負荷が発生し、利用側熱交換器26bで冷熱負荷が発生している場合を例に暖房主体運転モードについて説明する。なお、図6では、太線で表された配管が冷媒(熱源側冷媒及び熱媒体)の循環する配管を示している。また、図6では、熱源側冷媒の流れ方向を実線矢印で、熱媒体の流れ方向を破線矢印で示している。
[Heating main operation mode]
FIG. 6 is a refrigerant circuit diagram showing a refrigerant flow when the air-conditioning apparatus 100 is in the heating main operation mode. In FIG. 6, the heating main operation mode will be described by taking as an example a case where a thermal load is generated in the use side heat exchanger 26a and a cold load is generated in the use side heat exchanger 26b. In addition, in FIG. 6, the piping represented with the thick line has shown the piping through which a refrigerant | coolant (a heat-source side refrigerant | coolant and a heat medium) circulates. In FIG. 6, the flow direction of the heat source side refrigerant is indicated by solid line arrows, and the flow direction of the heat medium is indicated by broken line arrows.
 図6に示す暖房主体運転モードの場合、室外機1では、第1冷媒流路切替装置11を、圧縮機10から吐出された熱源側冷媒を熱源側熱交換器12を経由させずに熱媒体変換機3へ流入させるように切り替える。熱媒体変換機3では、ポンプ21a及びポンプ21bを駆動させ、熱媒体流量調整装置25a及び熱媒体流量調整装置25bを開放し、熱媒体流量調整装置25c及び熱媒体流量調整装置25dを全閉とし、熱媒体間熱交換器15aと利用側熱交換器26bとの間を、熱媒体間熱交換器15bと利用側熱交換器26aとの間を、それぞれ熱媒体が循環するようにしている。 In the heating-main operation mode shown in FIG. 6, in the outdoor unit 1, the first refrigerant flow switching device 11 uses the heat source side refrigerant discharged from the compressor 10 without passing through the heat source side heat exchanger 12. It switches so that it may flow into converter 3. In the heat medium converter 3, the pump 21a and the pump 21b are driven, the heat medium flow control device 25a and the heat medium flow control device 25b are opened, and the heat medium flow control device 25c and the heat medium flow control device 25d are fully closed. The heat medium circulates between the heat exchanger related to heat medium 15a and the use-side heat exchanger 26b, and between the heat exchanger related to heat medium 15b and the use-side heat exchanger 26a.
 まず始めに、冷媒循環回路Aにおける熱源側冷媒の流れについて説明する。
 低温・低圧の冷媒が圧縮機10によって圧縮され、高温・高圧のガス冷媒となって吐出される。圧縮機10から吐出された高温・高圧のガス冷媒は、第1冷媒流路切替装置11、逆止弁13bを通り、室外機1から流出する。室外機1から流出した高温・高圧のガス冷媒は、冷媒配管4を通って熱媒体変換機3に流入する。熱媒体変換機3に流入した高温・高圧のガス冷媒は、第2冷媒流路切替装置18bを通って凝縮器として作用する熱媒体間熱交換器15bに流入する。
First, the flow of the heat source side refrigerant in the refrigerant circuit A will be described.
The low-temperature and low-pressure refrigerant is compressed by the compressor 10 and discharged as a high-temperature and high-pressure gas refrigerant. The high-temperature and high-pressure gas refrigerant discharged from the compressor 10 flows out of the outdoor unit 1 through the first refrigerant flow switching device 11 and the check valve 13b. The high-temperature and high-pressure gas refrigerant that has flowed out of the outdoor unit 1 flows into the heat medium relay unit 3 through the refrigerant pipe 4. The high-temperature and high-pressure gas refrigerant that has flowed into the heat medium relay unit 3 flows into the heat exchanger related to heat medium 15b that acts as a condenser through the second refrigerant flow switching device 18b.
 熱媒体間熱交換器15bに流入したガス冷媒は、熱媒体循環回路Bを循環する熱媒体に放熱しながら液冷媒となる。熱媒体間熱交換器15bから流出した冷媒は、絞り装置16bで膨張させられて低圧二相冷媒となる。この低圧二相冷媒は、絞り装置16aを介して蒸発器として作用する熱媒体間熱交換器15aに流入する。熱媒体間熱交換器15aに流入した低圧二相冷媒は、熱媒体循環回路Bを循環する熱媒体から吸熱することで蒸発し、熱媒体を冷却する。この低圧二相冷媒は、熱媒体間熱交換器15aから流出し、第2冷媒流路切替装置18aを介し、熱媒体変換機3から流出し、再び室外機1へ流入する。 The gas refrigerant flowing into the heat exchanger related to heat medium 15b becomes liquid refrigerant while dissipating heat to the heat medium circulating in the heat medium circuit B. The refrigerant flowing out of the heat exchanger related to heat medium 15b is expanded by the expansion device 16b and becomes a low-pressure two-phase refrigerant. This low-pressure two-phase refrigerant flows into the heat exchanger related to heat medium 15a acting as an evaporator via the expansion device 16a. The low-pressure two-phase refrigerant that has flowed into the heat exchanger related to heat medium 15a evaporates by absorbing heat from the heat medium circulating in the heat medium circuit B, thereby cooling the heat medium. The low-pressure two-phase refrigerant flows out of the heat exchanger related to heat medium 15a, flows out of the heat medium converter 3 through the second refrigerant flow switching device 18a, and flows into the outdoor unit 1 again.
 室外機1に流入した冷媒は、逆止弁13cを通って、蒸発器として作用する熱源側熱交換器12に流入する。そして、熱源側熱交換器12に流入した冷媒は、熱源側熱交換器12で室外空気から吸熱して、低温・低圧のガス冷媒となる。熱源側熱交換器12から流出した低温・低圧のガス冷媒は、第1冷媒流路切替装置11及びアキュムレーター19を介して圧縮機10へ再度吸入される。 The refrigerant flowing into the outdoor unit 1 passes through the check valve 13c and flows into the heat source side heat exchanger 12 acting as an evaporator. And the refrigerant | coolant which flowed into the heat source side heat exchanger 12 absorbs heat from outdoor air in the heat source side heat exchanger 12, and becomes a low-temperature and low-pressure gas refrigerant. The low-temperature and low-pressure gas refrigerant flowing out from the heat source side heat exchanger 12 is again sucked into the compressor 10 via the first refrigerant flow switching device 11 and the accumulator 19.
 このとき、第2冷媒流路切替装置18aは低圧側配管と連通されており、一方、第2冷媒流路切替装置18bは高圧側配管と連通されている。 また、絞り装置16bは、圧力センサー36bで検出された圧力を飽和温度に換算した値と第3温度センサー35bで検出された温度との差として得られるサブクールが一定になるように開度が制御される。また、絞り装置16aは全開、開閉装置17aは閉となっている。なお、絞り装置16bを全開とし、絞り装置16aでサブクールを制御するようにしてもよい。 At this time, the second refrigerant flow switching device 18a is in communication with the low pressure side piping, while the second refrigerant flow switching device 18b is in communication with the high pressure side piping. Further, the opening of the expansion device 16b is controlled so that a subcool obtained as a difference between a value obtained by converting the pressure detected by the pressure sensor 36b into a saturation temperature and a temperature detected by the third temperature sensor 35b is constant. Is done. Further, the expansion device 16a is fully opened, and the opening / closing device 17a is closed. Note that the expansion device 16b may be fully opened, and the subcooling may be controlled by the expansion device 16a.
 次に、熱媒体循環回路Bにおける熱媒体の流れについて説明する。
 暖房主体運転モードでは、熱媒体間熱交換器15bで熱源側冷媒の温熱が熱媒体に伝えられ、暖められた熱媒体がポンプ21bによって配管5内を流動させられることになる。また、暖房主体運転モードでは、熱媒体間熱交換器15aで熱源側冷媒の冷熱が熱媒体に伝えられ、冷やされた熱媒体がポンプ21aによって配管5内を流動させられることになる。ポンプ21a及びポンプ21bで加圧されて流出した熱媒体は、第2熱媒体流路切替装置23a及び第2熱媒体流路切替装置23bを介して、利用側熱交換器26a及び利用側熱交換器26bに流入する。
Next, the flow of the heat medium in the heat medium circuit B will be described.
In the heating main operation mode, the heat of the heat source side refrigerant is transmitted to the heat medium in the heat exchanger related to heat medium 15b, and the heated heat medium is caused to flow in the pipe 5 by the pump 21b. In the heating main operation mode, the cold heat of the heat source side refrigerant is transmitted to the heat medium by the heat exchanger related to heat medium 15a, and the cooled heat medium is caused to flow in the pipe 5 by the pump 21a. The heat medium pressurized and discharged by the pump 21a and the pump 21b passes through the second heat medium flow switching device 23a and the second heat medium flow switching device 23b, and the use side heat exchanger 26a and the use side heat exchange. Flows into the vessel 26b.
 利用側熱交換器26bでは熱媒体が室内空気から吸熱することで、室内空間7の冷房を行なう。また、利用側熱交換器26aでは熱媒体が室内空気に放熱することで、室内空間7の暖房を行なう。このとき、熱媒体流量調整装置25a及び熱媒体流量調整装置25bの作用によって熱媒体の流量が室内にて必要とされる空調負荷を賄うのに必要な流量に制御されて利用側熱交換器26a及び利用側熱交換器26bに流入するようになっている。利用側熱交換器26bを通過し若干温度が上昇した熱媒体は、熱媒体流量調整装置25b及び第1熱媒体流路切替装置22bを通って、熱媒体間熱交換器15aに流入し、再びポンプ21aへ吸い込まれる。利用側熱交換器26aを通過し若干温度が低下した熱媒体は、熱媒体流量調整装置25a及び第1熱媒体流路切替装置22aを通って、熱媒体間熱交換器15bへ流入し、再びポンプ21bへ吸い込まれる。 In the use side heat exchanger 26b, the heat medium absorbs heat from the indoor air, thereby cooling the indoor space 7. Moreover, in the use side heat exchanger 26a, the heat medium radiates heat to the indoor air, thereby heating the indoor space 7. At this time, the heat medium flow control device 25a and the heat medium flow control device 25b control the flow rate of the heat medium to a flow rate necessary to cover the air conditioning load required in the room, so that the use-side heat exchanger 26a. And it flows into the use side heat exchanger 26b. The heat medium whose temperature has slightly increased after passing through the use side heat exchanger 26b flows into the heat exchanger related to heat medium 15a through the heat medium flow control device 25b and the first heat medium flow switching device 22b, and again. It is sucked into the pump 21a. The heat medium whose temperature has slightly decreased after passing through the use side heat exchanger 26a flows into the heat exchanger related to heat medium 15b through the heat medium flow control device 25a and the first heat medium flow switching device 22a, and again. It is sucked into the pump 21b.
 この間、暖かい熱媒体と冷たい熱媒体とは、第1熱媒体流路切替装置22及び第2熱媒体流路切替装置23の作用により、混合することなく、それぞれ温熱負荷、冷熱負荷がある利用側熱交換器26へ導入される。なお、利用側熱交換器26の配管5内では、暖房側、冷房側ともに、第2熱媒体流路切替装置23から熱媒体流量調整装置25を経由して第1熱媒体流路切替装置22へ至る向きに熱媒体が流れている。また、室内空間7にて必要とされる空調負荷は、暖房側においては第1温度センサー31bで検出された温度と第2温度センサー34で検出された温度との差を、冷房側においては第2温度センサー34で検出された温度と第1温度センサー31aで検出された温度との差を目標値として保つように制御することにより、賄うことができる。 During this time, the warm heat medium and the cold heat medium are not mixed by the action of the first heat medium flow switching device 22 and the second heat medium flow switching device 23, and the use side has a heat load and a heat load, respectively. It is introduced into the heat exchanger 26. In the pipe 5 of the use side heat exchanger 26, the first heat medium flow switching device 22 from the second heat medium flow switching device 23 via the heat medium flow control device 25 on both the heating side and the cooling side. The heat medium is flowing in the direction to The air conditioning load required in the indoor space 7 is the difference between the temperature detected by the first temperature sensor 31b on the heating side and the temperature detected by the second temperature sensor 34 on the heating side, This can be covered by controlling the difference between the temperature detected by the two temperature sensor 34 and the temperature detected by the first temperature sensor 31a as a target value.
 暖房主体運転モードを実行する際、熱負荷のない利用側熱交換器26(サーモオフを含む)へは熱媒体を流す必要がないため、熱媒体流量調整装置25により流路を閉じて、利用側熱交換器26へ熱媒体が流れないようにする。図6においては、利用側熱交換器26a及び利用側熱交換器26bにおいては熱負荷があるため熱媒体を流しているが、利用側熱交換器26c及び利用側熱交換器26dにおいては熱負荷がなく、対応する熱媒体流量調整装置25c及び熱媒体流量調整装置25dを全閉としている。そして、利用側熱交換器26cや利用側熱交換器26dから熱負荷の発生があった場合には、熱媒体流量調整装置25cや熱媒体流量調整装置25dを開放し、熱媒体を循環させればよい。 When the heating main operation mode is executed, it is not necessary to flow the heat medium to the use side heat exchanger 26 (including the thermo-off) without the heat load, so the flow path is closed by the heat medium flow control device 25 and the use side The heat medium is prevented from flowing to the heat exchanger 26. In FIG. 6, since there is a heat load in the use-side heat exchanger 26a and the use-side heat exchanger 26b, a heat medium is flowing, but in the use-side heat exchanger 26c and the use-side heat exchanger 26d, the heat load is passed. The corresponding heat medium flow control device 25c and heat medium flow control device 25d are fully closed. When a heat load is generated from the use side heat exchanger 26c or the use side heat exchanger 26d, the heat medium flow control device 25c or the heat medium flow control device 25d is opened to circulate the heat medium. That's fine.
[デフロスト運転モード1]
 図7は、本発明の実施の形態に係る空気調和装置100のデフロスト運転モード時における冷媒の流れを示す冷媒回路図である。図7では、熱源側冷媒の流れ方向を実線矢印で、熱媒体の流れ方向を破線矢印で示している。
[Defrost operation mode 1]
FIG. 7 is a refrigerant circuit diagram illustrating a refrigerant flow when the air-conditioning apparatus 100 according to the embodiment of the present invention is in the defrosting operation mode. In FIG. 7, the flow direction of the heat source side refrigerant is indicated by a solid line arrow, and the flow direction of the heat medium is indicated by a broken line arrow.
 本実施の形態に係るデフロスト運転モード1は、第1室外温度センサー40aの検出結果が、第1の所定値以下であるときに実施される。すなわち、空気調和装置100が全暖房運転又は暖房主体運転を実施し、第1室外温度センサー40aの検出結果が第1の所定値以下となると、制御装置70が熱源側熱交換器12のフィンに着霜が所定量発生したと判定し、デフロスト運転モード1に移行する。本実施の形態の説明では、4つの室内機2a~2dの全部が暖房運転を実施していたものとして説明する。なお、第1の所定値は、熱源側熱交換器12に着霜が生じるような温度、たとえば約-10℃以下などに設定するとよい。 The defrost operation mode 1 according to the present embodiment is performed when the detection result of the first outdoor temperature sensor 40a is equal to or less than a first predetermined value. That is, when the air-conditioning apparatus 100 performs the heating only operation or the heating main operation, and the detection result of the first outdoor temperature sensor 40a is equal to or lower than the first predetermined value, the control device 70 is applied to the fins of the heat source side heat exchanger 12. It is determined that a predetermined amount of frost formation has occurred, and the defrost operation mode 1 is entered. In the description of the present embodiment, it is assumed that all four indoor units 2a to 2d are performing the heating operation. The first predetermined value may be set to a temperature at which frost formation occurs on the heat source side heat exchanger 12, for example, about −10 ° C. or less.
 本実施の形態に係る空気調和装置100のデフロスト運転モード1において、室外機1では、図示省略の送風機を停止し、第1冷媒流路切替装置11を、圧縮機10から吐出された熱源側冷媒を熱源側熱交換器12へ流入させるように切替える。また、熱媒体変換機3においては、開閉装置17a、17bを開とし、第2冷媒流路切替装置18a、18bを暖房側に切り替え、絞り装置16a、16bを全閉とする。
 また、本実施の形態に係る空気調和装置100のデフロスト運転モード1では、室内機2a~2dの暖房運転を継続するものとする。すなわち、4つの室内機2a~2dに熱媒体を搬送するとともに、4つの室内機2a~2dに付設される送風ファンの運転を継続するということである。具体的に説明すると、熱媒体変換機3では、ポンプ21a、21bを駆動させ、第1熱媒体流路切替装置22a~22d、第2熱媒体流路切替装置23a~23d、及び熱媒体流量調整装置25a~25dを開放し、熱媒体間熱交換器15a、15bと利用側熱交換器26a~26dとの間に熱媒体を循環させる。
In the defrost operation mode 1 of the air-conditioning apparatus 100 according to the present embodiment, in the outdoor unit 1, the blower (not shown) is stopped, and the first refrigerant flow switching device 11 is replaced with the heat source side refrigerant discharged from the compressor 10. Is switched to flow into the heat source side heat exchanger 12. In the heat medium relay unit 3, the opening / closing devices 17a and 17b are opened, the second refrigerant flow switching devices 18a and 18b are switched to the heating side, and the expansion devices 16a and 16b are fully closed.
In the defrost operation mode 1 of the air conditioner 100 according to the present embodiment, the heating operation of the indoor units 2a to 2d is continued. That is, the heat medium is conveyed to the four indoor units 2a to 2d and the operation of the blower fan attached to the four indoor units 2a to 2d is continued. Specifically, in the heat medium relay unit 3, the pumps 21a and 21b are driven, the first heat medium flow switching devices 22a to 22d, the second heat medium flow switching devices 23a to 23d, and the heat medium flow rate adjustment. The devices 25a to 25d are opened, and the heat medium is circulated between the heat exchangers between heat mediums 15a and 15b and the use side heat exchangers 26a to 26d.
 なお、暖房運転の要求がない、あるいは、停止している室内機2がある場合などにおいては、その室内機2に対応する利用側熱交換器26に熱媒体を搬送しないように、その室内機2に対応する熱媒体流量調整装置25を閉とすればよい。
 また、4つの室内機2a~2dの全てに暖房運転の要求がない、あるいは、停止している場合には、室内機2に設置してある図示省略の送風機を停止させるとともに、4つの熱媒体流量調整装置25a~25dを開として熱媒体を循環させるとよい。これにより、熱媒体間熱交換器15に流入した冷媒循環回路Aの冷媒が、熱媒体循環回路Bの熱媒体を、凍結させてしまうことを抑制することができる。
In addition, when there is no request for heating operation or there is an indoor unit 2 that is stopped, the indoor unit is arranged so as not to convey the heat medium to the use side heat exchanger 26 corresponding to the indoor unit 2. The heat medium flow control device 25 corresponding to 2 may be closed.
When all four indoor units 2a to 2d do not require heating operation or are stopped, the blower (not shown) installed in the indoor unit 2 is stopped and the four heat mediums are stopped. The heat medium may be circulated by opening the flow rate adjusting devices 25a to 25d. Thereby, it can suppress that the refrigerant | coolant of the refrigerant circuit A which flowed into the heat exchanger 15 between heat media freezes the heat medium of the heat medium circuit B.
 まず始めに、冷媒循環回路Aにおける熱源側冷媒の流れについて説明する。
 低温・低圧の冷媒が圧縮機10によって圧縮され、高温・高圧のガス冷媒となって吐出される。圧縮機10から吐出された高温・高圧のガス冷媒は、第1冷媒流路切替装置11を介して熱源側熱交換器12に流入する。そして、熱源側熱交換器12のフィンに着霜した霜に、放熱しながら過冷却液、もしくは二相冷媒となり、熱源側熱交換器12のフィンに着霜した霜は取り除かれる。熱源側熱交換器12から流出した高圧冷媒は、逆止弁13aを介して室外機1から流出し、冷媒配管4を介して熱媒体変換機3に流入する。
First, the flow of the heat source side refrigerant in the refrigerant circuit A will be described.
The low-temperature and low-pressure refrigerant is compressed by the compressor 10 and discharged as a high-temperature and high-pressure gas refrigerant. The high-temperature and high-pressure gas refrigerant discharged from the compressor 10 flows into the heat source side heat exchanger 12 via the first refrigerant flow switching device 11. Then, the frost formed on the fins of the heat source side heat exchanger 12 becomes a supercooled liquid or a two-phase refrigerant while dissipating heat, and the frost formed on the fins of the heat source side heat exchanger 12 is removed. The high-pressure refrigerant that has flowed out of the heat source side heat exchanger 12 flows out of the outdoor unit 1 through the check valve 13a, and flows into the heat medium relay unit 3 through the refrigerant pipe 4.
 熱媒体変換機3に流入した高圧冷媒の一方は、開閉装置17a及び開閉装置17bを通過することで減圧され低圧二相冷媒となる。そして、この低圧二相冷媒は、熱媒体間熱交換器15a、及び熱媒体間熱交換器15bの冷媒側流路を循環することなく、バイパス冷媒配管4c及び冷媒配管4を介して、再び室外機1へ流入する。そして、室外機1に流入した冷媒は、逆止弁13d、第1冷媒流路切替装置11、及びアキュムレーター19を介して、圧縮機10へ再度吸入される。
 一方、熱媒体変換機3に流入した高圧冷媒の他方は、第2冷媒流路切替装置18a、18bを介して熱媒体間熱交換器15a、15bに流入する。
One of the high-pressure refrigerants that has flowed into the heat medium relay unit 3 is reduced in pressure by passing through the switchgear 17a and the switchgear 17b to become a low-pressure two-phase refrigerant. And this low-pressure two-phase refrigerant is again outdoors through the bypass refrigerant pipe 4c and the refrigerant pipe 4 without circulating through the refrigerant side flow paths of the heat exchanger related to heat medium 15a and the heat exchanger related to heat medium 15b. It flows into the machine 1. The refrigerant flowing into the outdoor unit 1 is again sucked into the compressor 10 via the check valve 13d, the first refrigerant flow switching device 11, and the accumulator 19.
On the other hand, the other of the high-pressure refrigerant that has flowed into the heat medium relay unit 3 flows into the heat exchangers 15a and 15b via the second refrigerant flow switching devices 18a and 18b.
 第2室外温度センサー40bが第2の所定値以上を検出したときには、制御装置70がデフロスト運転モード1を終了させて、再び全暖房運転モード、若しくは暖房主体運転モードに移行する。なお、第2の所定値は、熱源側熱交換器12の霜が除去されたと判定しうる温度、たとえば約30℃以上などに設定するとよい。
 また、デフロスト運転モード1の終了後に、全暖房運転モード、若しくは暖房主体運転モードに移行すると述べたが、たとえばユーザーからそれら以外の運転モードを実行する指示があった場合には、その指示に応じた運転モードを実行する。
When the second outdoor temperature sensor 40b detects the second predetermined value or more, the control device 70 ends the defrost operation mode 1 and shifts again to the heating only operation mode or the heating main operation mode. The second predetermined value may be set to a temperature at which it can be determined that the frost in the heat source side heat exchanger 12 has been removed, for example, about 30 ° C. or higher.
Moreover, although it described that it transfers to a heating only operation mode or the heating main operation mode after completion | finish of the defrost operation mode 1, for example, when there exists an instruction | indication which performs other operation modes from those, according to the instruction | indication Execute the selected operation mode.
 図7に図示されるように、デフロスト運転モード1のときには、第2冷媒流路切替装置18a、18bが高圧配管と連通している。これにより、第2冷媒流路切替装置18a、18bが接続された側から、熱媒体間熱交換器15a、15bに流入した冷媒は、熱媒体変換機3に流入する熱源側冷媒の圧力とほぼ等しい過冷却液、もしくは二相冷媒となっている。この熱媒体間熱交換器15a、15bに流入した冷媒は高圧である分飽和温度が高く、その飽和温度は0℃以上である。これにより、熱媒体間熱交換器15a、15bを0℃以下の低温まで冷却してしまうことが抑制される。すなわち、この熱媒体間熱交換器15a、15bに流入した冷媒が原因で熱媒体が凍結してしまうことは抑制されるので、空気調和装置100の動作信頼性を向上させることができる。 7, in the defrost operation mode 1, the second refrigerant flow switching devices 18a and 18b communicate with the high-pressure pipe. Thereby, the refrigerant that has flowed into the heat exchanger related to heat medium 15a, 15b from the side where the second refrigerant flow switching devices 18a, 18b are connected is approximately equal to the pressure of the heat-source-side refrigerant flowing into the heat medium converter 3. Equal supercooled liquid or two-phase refrigerant. The refrigerant flowing into the intermediate heat exchangers 15a and 15b has a high saturation temperature due to its high pressure, and the saturation temperature is 0 ° C. or higher. Thereby, it is suppressed that the heat exchangers 15a and 15b between heat media cool to the low temperature below 0 degreeC. That is, since the heat medium is prevented from freezing due to the refrigerant flowing into the heat exchangers between heat mediums 15a and 15b, the operation reliability of the air conditioner 100 can be improved.
 ここで、絞り装置16a、16bにて冷媒漏洩があった場合について説明する。仮に、冷媒が、絞り装置16a、16bから熱媒体間熱交換器15a、15bに向かう方向に冷媒が流れるとすると、絞り装置16a、16bの作用により減圧させられ、冷媒の飽和温度が0℃以下に低下する可能性がある。すなわち、この減圧させられた冷媒が、熱媒体間熱交換器15a、15bに流入すると、熱媒体間熱交換器15a、15bを0℃以下の低温まで冷却し、熱媒体を凍結させてしまう可能性がある。
 しかし、本実施の形態に係る空気調和装置100は、絞り装置16a、16bのうち、熱媒体間熱交換器15a、15bに接続された側が高圧となっている。これにより、絞り装置16a、16bにて冷媒漏洩があったとしても、絞り装置16a、16bから熱媒体間熱交換器15a、15bに向かって冷媒が流れてしまうことが防止されている。すなわち、絞り装置16a、16bで冷媒の漏洩があったとしても、絞り装置16a、16bから熱媒体間熱交換器15a、15bに冷媒が流入し、熱媒体を凍結させてしまうことが抑制されるということである。
Here, the case where there is refrigerant leakage in the expansion devices 16a and 16b will be described. If the refrigerant flows in the direction from the expansion devices 16a and 16b toward the heat exchangers 15a and 15b, the pressure is reduced by the operation of the expansion devices 16a and 16b, and the saturation temperature of the refrigerant is 0 ° C. or lower. May be reduced. In other words, when the decompressed refrigerant flows into the heat exchangers 15a and 15b, the heat exchangers 15a and 15b may be cooled to a low temperature of 0 ° C. or lower and the heat medium may be frozen. There is sex.
However, in the air conditioner 100 according to the present embodiment, the side connected to the heat exchangers 15a and 15b among the expansion devices 16a and 16b has a high pressure. This prevents the refrigerant from flowing from the expansion devices 16a, 16b toward the heat exchangers 15a, 15b even if the refrigerant leaks in the expansion devices 16a, 16b. That is, even if the refrigerant leaks in the expansion devices 16a and 16b, the refrigerant flows into the heat exchangers 15a and 15b from the expansion devices 16a and 16b, and the freezing of the heat medium is suppressed. That's what it means.
 次に、熱媒体循環回路Bにおける熱媒体の流れについて説明する。
 本実施の形態に係る空気調和装置100のデフロスト運転モード1では、熱媒体がポンプ21a、21bによって配管5内を流動させられることになる。すなわち、ポンプ21a、21bで加圧されて流出した熱媒体は、第2熱媒体流路切替装置23a~23dを介して、利用側熱交換器26a~26dに流入する。利用側熱交換器26a~26dに流入する熱媒体には、デフロスト運転モード1に移行する前の全暖運転モードにて生成されていた温熱が蓄えられている。このため、利用側熱交換器26a~26dに熱媒体を搬送することで、暖房運転を継続することができる。
 利用側熱交換器26a~26dから流出した熱媒体は、熱媒体流量調整装置25a~25d、及び第1熱媒体流路切替装置22a~22dを介して熱媒体間熱交換器15a、15bに流入し、熱媒体間熱交換器15a、15bから流出した熱媒体は再びポンプ21a、21bに吸い込まれる。
 このように、本実施の形態に係る空気調和装置100は、熱媒体循環回路Bに水や不凍液等の熱媒体を循環させることにより、デフロスト運転モード1時に、熱媒体間熱交換器15a、15b内へ流入する熱源側冷媒によって、熱媒体が凍結してしまうことを抑制することができる。これにより、空気調和装置100の動作信頼性を向上させることができる。
Next, the flow of the heat medium in the heat medium circuit B will be described.
In the defrost operation mode 1 of the air conditioner 100 according to the present embodiment, the heat medium is caused to flow in the pipe 5 by the pumps 21a and 21b. That is, the heat medium pressurized and discharged by the pumps 21a and 21b flows into the use side heat exchangers 26a to 26d via the second heat medium flow switching devices 23a to 23d. The heat medium flowing into the use side heat exchangers 26a to 26d stores the heat generated in the full warm operation mode before the transition to the defrost operation mode 1. Therefore, the heating operation can be continued by conveying the heat medium to the use side heat exchangers 26a to 26d.
The heat medium flowing out from the use side heat exchangers 26a to 26d flows into the heat exchangers between heat mediums 15a and 15b via the heat medium flow control devices 25a to 25d and the first heat medium flow switching devices 22a to 22d. The heat medium flowing out from the heat exchangers between heat mediums 15a and 15b is sucked into the pumps 21a and 21b again.
As described above, the air-conditioning apparatus 100 according to the present embodiment circulates a heat medium such as water or antifreeze liquid in the heat medium circulation circuit B, so that the heat exchangers between heat mediums 15a and 15b are in the defrost operation mode 1. It is possible to prevent the heat medium from being frozen by the heat source side refrigerant flowing in. Thereby, the operation | movement reliability of the air conditioning apparatus 100 can be improved.
 なお、図7では、全暖運転モードからデフロスト運転に移行した場合を例にして説明して説明した。もし、暖房主体運転モードからデフロスト運転に移行した場合には、熱媒体循環回路Bの熱媒体の流れを、暖房主体運転モードの流れとすることで、室内空間7の冷房運転、暖房運転を継続出来る。 In addition, in FIG. 7, it demonstrated and demonstrated as an example the case where it transfers to a defrost operation from a full warm operation mode. If the heating main operation mode is shifted to the defrost operation, the cooling medium and the heating operation of the indoor space 7 are continued by changing the flow of the heat medium in the heat medium circuit B to the flow of the heating main operation mode. I can do it.
[デフロスト運転モード2]
 図8は、5つの形態からなるデフロスト運転モード2のうちの1形態であるデフロスト運転モード2-1における冷媒の流れを示す冷媒回路図である。図9は、デフロスト運転モード2のうちの1形態であるデフロスト運転モード2-5における冷媒の流れを示す冷媒回路図である。この空気調和装置100は、デフロスト運転モード1とは異なるデフロスト運転モード2として、5つの運転モードを備えている。
 すなわち、デフロスト運転モード2は、「開閉装置17aを閉じ、全暖房運転モードから移行し、熱媒体間熱交換器15a、15bの両方に冷媒を循環させるデフロスト運転モード2-1」と、「開閉装置17aを閉じ、暖房主体運転モードから移行し、熱媒体間熱交換器15bのみに冷媒を循環させるデフロスト運転モード2-2」と、「開閉装置17aを開き、全暖房運転モードから移行し、熱媒体間熱交換器15a、15bの両方に冷媒を循環させるデフロスト運転モード2-3」と、「開閉装置17aを開き、暖房主体運転モードから移行し、熱媒体間熱交換器15bのみに冷媒を循環させるデフロスト運転モード2-4」と、「暖房主体運転モードから移行し、熱媒体間熱交換器15a、15bの両方に冷媒を循環させるデフロスト運転モード2-5」とを備えている。
 デフロスト運転モード2もデフロスト運転モード1と同様に、第1室外温度センサー40aの検出結果が、第1の所定値以下であるときに実施される。すなわち、空気調和装置100が全暖房運転又は暖房主体運転を実施し、第1室外温度センサー40aの検出結果が第1の所定値以下となると、制御装置70が熱源側熱交換器12のフィンに着霜が所定量発生したと判定し、デフロスト運転モード2に移行する。
 除霜時間を短縮させたい場合には、デフロスト運転モード1よりもこのデフロスト運転モード2を採用するとよい。
[Defrost operation mode 2]
FIG. 8 is a refrigerant circuit diagram showing a refrigerant flow in the defrost operation mode 2-1, which is one of the five defrost operation modes 2. FIG. 9 is a refrigerant circuit diagram showing a refrigerant flow in the defrost operation mode 2-5, which is one form of the defrost operation mode 2. The air conditioner 100 includes five operation modes as a defrost operation mode 2 different from the defrost operation mode 1.
That is, the defrosting operation mode 2 includes “defrosting operation mode 2-1 in which the switching device 17a is closed and the mode is changed from the heating only operation mode, and the refrigerant is circulated through both the heat exchangers 15a and 15b”, Close the device 17a, shift from the heating main operation mode, defrost operation mode 2-2 in which the refrigerant is circulated only to the heat exchanger related to heat medium 15b, "open and close the switchgear 17a, shift from the heating only operation mode, “Defrost operation mode 2-3 in which refrigerant is circulated through both heat exchangers 15a and 15b” and “Opening and closing device 17a is opened to shift from the heating main operation mode, and refrigerant is supplied only to heat exchanger 15b. Defrost operation mode 2-4 that circulates the refrigerant, and "defrost that makes a transition from the heating-main operation mode and circulates refrigerant to both the heat exchangers 15a and 15b. And an operation mode 2-5 ".
Similarly to the defrost operation mode 1, the defrost operation mode 2 is performed when the detection result of the first outdoor temperature sensor 40a is equal to or less than the first predetermined value. That is, when the air-conditioning apparatus 100 performs the heating only operation or the heating main operation, and the detection result of the first outdoor temperature sensor 40a is equal to or lower than the first predetermined value, the control device 70 is applied to the fins of the heat source side heat exchanger 12. It is determined that a predetermined amount of frost formation has occurred, and the defrost operation mode 2 is entered.
When it is desired to shorten the defrosting time, this defrost operation mode 2 may be adopted rather than the defrost operation mode 1.
(デフロスト運転モード2-1)
 本実施の形態に係る空気調和装置100のデフロスト運転モード2-1では、室外機1では、図示省略の送風機を停止し、第1冷媒流路切替装置11を、圧縮機10から吐出された熱源側冷媒を熱源側熱交換器12へ流入させるように切替える。熱媒体変換機3では、開閉装置17aを閉、開閉装置17bを開とし、第2冷媒流路切替装置18を暖房側に切り替え、絞り装置16を開とする。
 また、本実施の形態に係る空気調和装置100のデフロスト運転モード2-1においても実施の形態と同様に、室内機2a~2dの暖房運転を継続するものとする。すなわち、熱媒体変換機3では、ポンプ21a、21bを駆動させ、第1熱媒体流路切替装置22a~22d、第2熱媒体流路切替装置23a~23d、及び熱媒体流量調整装置25a~25dを開放し、熱媒体間熱交換器15a、15bと利用側熱交換器26a~26dとの間に熱媒体を循環させる。
(Defrost operation mode 2-1)
In the defrost operation mode 2-1 of the air-conditioning apparatus 100 according to the present embodiment, in the outdoor unit 1, the blower (not shown) is stopped, and the first refrigerant flow switching device 11 is used as the heat source discharged from the compressor 10. The side refrigerant is switched to flow into the heat source side heat exchanger 12. In the heat medium relay unit 3, the opening / closing device 17a is closed, the opening / closing device 17b is opened, the second refrigerant flow switching device 18 is switched to the heating side, and the expansion device 16 is opened.
Also, in the defrost operation mode 2-1 of the air-conditioning apparatus 100 according to the present embodiment, the heating operation of the indoor units 2 a to 2 d is continued as in the embodiment. That is, in the heat medium relay unit 3, the pumps 21a and 21b are driven, and the first heat medium flow switching devices 22a to 22d, the second heat medium flow switching devices 23a to 23d, and the heat medium flow control devices 25a to 25d. And the heat medium is circulated between the heat exchangers between heat exchangers 15a and 15b and the use side heat exchangers 26a to 26d.
 なお、暖房運転の要求がない、あるいは、停止している室内機2がある場合などにおいては、その室内機2に対応する利用側熱交換器26に熱媒体を搬送しないように、その室内機2に対応する熱媒体流量調整装置25を閉とすればよい。
 また、4つの室内機2a~2dの全てに暖房運転の要求がない、あるいは、停止している場合には、室内機2に設置してある図示省略の送風機を停止させるとともに、4つの熱媒体流量調整装置25a~25dを開として熱媒体を循環させるとよい。
In addition, when there is no request for heating operation or there is an indoor unit 2 that is stopped, the indoor unit is arranged so as not to convey the heat medium to the use side heat exchanger 26 corresponding to the indoor unit 2. The heat medium flow control device 25 corresponding to 2 may be closed.
When all four indoor units 2a to 2d do not require heating operation or are stopped, the blower (not shown) installed in the indoor unit 2 is stopped and the four heat mediums are stopped. The heat medium may be circulated by opening the flow rate adjusting devices 25a to 25d.
 まず始めに、冷媒循環回路Aにおける熱源側冷媒の流れについて説明する。
 低温・低圧の冷媒が圧縮機10によって圧縮され、高温・高圧のガス冷媒となって吐出される。圧縮機10から吐出された高温・高圧のガス冷媒は、第1冷媒流路切替装置11を介して熱源側熱交換器12に流入する。そして、熱源側熱交換器12のフィンに着霜した霜に、放熱しながら過冷却液、もしくは二相冷媒となり、熱源側熱交換器12のフィンに着霜した霜は取り除かれる。熱源側熱交換器12から流出した高圧冷媒は、逆止弁13aを通って、室外機1から流出し、冷媒配管4を通って熱媒体変換機3に流入する。
First, the flow of the heat source side refrigerant in the refrigerant circuit A will be described.
The low-temperature and low-pressure refrigerant is compressed by the compressor 10 and discharged as a high-temperature and high-pressure gas refrigerant. The high-temperature and high-pressure gas refrigerant discharged from the compressor 10 flows into the heat source side heat exchanger 12 via the first refrigerant flow switching device 11. Then, the frost formed on the fins of the heat source side heat exchanger 12 becomes a supercooled liquid or a two-phase refrigerant while dissipating heat, and the frost formed on the fins of the heat source side heat exchanger 12 is removed. The high-pressure refrigerant that has flowed out of the heat source side heat exchanger 12 flows out of the outdoor unit 1 through the check valve 13 a, and flows into the heat medium relay unit 3 through the refrigerant pipe 4.
 熱媒体変換機3に流入した過冷却液、もしくは二相冷媒は熱媒体間熱交換器15a、15bに流入し、熱媒体から吸熱した後に、全開、もしくは全開に近い開度の絞り装置16a、16bで膨張させられ、低圧二相冷媒となる。この低圧二相冷媒は、バイパス冷媒配管4c及び冷媒配管4を介して再び室外機1へ流入する。室外機1に流入した冷媒は、逆止弁13d、第1冷媒流路切替装置11、及びアキュムレーター19を介して、圧縮機10へ再び吸入される。
 なお、第2室外温度センサー40bが第2の所定値以上を検出したときに、制御装置70がデフロスト運転モード2-1を終了させて、再び全暖房運転モード、若しくは暖房主体運転モードに移行する。なお、第2の所定値は、たとえば約30℃以上などに設定するとよい。
The supercooled liquid or two-phase refrigerant that has flowed into the heat medium relay unit 3 flows into the heat exchangers 15a and 15b, and after absorbing heat from the heat medium, the throttling device 16a having an opening degree close to or fully open. It is expanded at 16b and becomes a low-pressure two-phase refrigerant. The low-pressure two-phase refrigerant again flows into the outdoor unit 1 through the bypass refrigerant pipe 4c and the refrigerant pipe 4. The refrigerant flowing into the outdoor unit 1 is again sucked into the compressor 10 via the check valve 13d, the first refrigerant flow switching device 11, and the accumulator 19.
When the second outdoor temperature sensor 40b detects the second predetermined value or more, the control device 70 ends the defrost operation mode 2-1, and again shifts to the heating only operation mode or the heating main operation mode. . The second predetermined value may be set to about 30 ° C. or higher, for example.
 図8に図示されるように、デフロスト運転モード2-1のときには、第2冷媒流路切替装置18a、18bが高圧配管と連通している。これにより、熱媒体間熱交換器15a、15bの一方から熱媒体間熱交換器15a、15bに流入した冷媒は、熱媒体変換機3に流入する熱源側冷媒の圧力とほぼ等しい過冷却液、もしくは二相冷媒となっている。なお、この過冷却液、もしくは二相冷媒は、飽和温度が約0℃以上である。また、熱媒体循環回路Bの熱媒体は、デフロスト運転モード2ー1前の全暖房運転モードにより、約20℃以上に加温されている。
 したがって、熱媒体間熱交換器15a、15bにおいて、冷媒循環回路Aの冷媒が、熱媒体循環回路Bの熱媒体から吸熱することで、絞り装置16a、16bから流出する低圧二相冷媒のうち、ガス層が占める割合が増加する。すなわち、圧縮機10に吸入される冷媒は、低温・低圧のガス冷媒が占める割合が増加することになる。これにより、圧縮機10から吐出される高温・高圧のガス冷媒の熱容量が大きくなり、熱源側熱交換器12のデフロスト運転時間を短縮することができる。
As shown in FIG. 8, in the defrost operation mode 2-1, the second refrigerant flow switching devices 18a and 18b communicate with the high-pressure pipe. Thereby, the refrigerant that has flowed into the heat exchangers 15a, 15b from one of the heat exchangers 15a, 15b is a supercooled liquid that is substantially equal to the pressure of the heat source refrigerant flowing into the heat exchanger 3; Or it is a two-phase refrigerant. The supercooled liquid or the two-phase refrigerant has a saturation temperature of about 0 ° C. or higher. Further, the heat medium in the heat medium circuit B is heated to about 20 ° C. or more by the heating only operation mode before the defrost operation mode 2-1.
Therefore, in the heat exchangers between heat mediums 15a and 15b, the refrigerant in the refrigerant circuit A absorbs heat from the heat medium in the heat medium circuit B, so that among the low-pressure two-phase refrigerants flowing out from the expansion devices 16a and 16b, The proportion occupied by the gas layer increases. That is, the ratio of the low-temperature and low-pressure gas refrigerant to the refrigerant sucked into the compressor 10 increases. Thereby, the heat capacity of the high-temperature and high-pressure gas refrigerant discharged from the compressor 10 is increased, and the defrosting operation time of the heat source side heat exchanger 12 can be shortened.
 なお、熱媒体間熱交換器15a、15bに流入する冷媒温度は約0℃以上となり、熱媒体を0℃以下の低温まで冷却してしまうことが抑制される。すなわち、この熱媒体間熱交換器15a、15bに流入した冷媒が原因で、熱媒体が凍結してしまうことは抑制される。 Note that the temperature of the refrigerant flowing into the heat exchangers 15a and 15b between the heat mediums is about 0 ° C. or higher, and the cooling of the heat medium to a low temperature of 0 ° C. or lower is suppressed. That is, the heat medium is prevented from freezing due to the refrigerant flowing into the heat exchangers between heat mediums 15a and 15b.
 次に、熱媒体循環回路Bにおける熱媒体の流れについて説明する。
 本実施の形態に係る空気調和装置100のデフロスト運転モード2-1においても、熱媒体がポンプ21a、21bによって配管5内を流動させられることになる。すなわち、ポンプ21a、21bで加圧されて流出した熱媒体は、第2熱媒体流路切替装置23a~23dを介して、利用側熱交換器26a~26dに流入する。利用側熱交換器26a~26dに流入する熱媒体には、デフロスト運転モード2-1に移行する前の全暖運転モードにて生成されていた温熱が蓄えられている。このため、利用側熱交換器26a~26dに熱媒体を搬送することで、暖房運転を継続することができる。
 利用側熱交換器26a~26dから流出した熱媒体は、熱媒体流量調整装置25a~25d、及び第1熱媒体流路切替装置22a~22dを介して熱媒体間熱交換器15a、15bに流入し、熱媒体間熱交換器15a、15bから流出した熱媒体は再びポンプ21a、21bに吸い込まれる。
 このように、熱媒体循環回路Bに水や不凍液等の熱媒体を循環させることにより、デフロスト運転モード2-1時に、熱媒体間熱交換器15a、15b内へ流入する熱源側冷媒によって、熱媒体が凍結してしまうことを抑制することができる。
Next, the flow of the heat medium in the heat medium circuit B will be described.
Also in the defrosting operation mode 2-1 of the air conditioner 100 according to the present embodiment, the heat medium is caused to flow in the pipe 5 by the pumps 21a and 21b. That is, the heat medium pressurized and discharged by the pumps 21a and 21b flows into the use side heat exchangers 26a to 26d via the second heat medium flow switching devices 23a to 23d. The heat medium flowing into the use side heat exchangers 26a to 26d stores the heat generated in the full warm operation mode before the transition to the defrost operation mode 2-1. Therefore, the heating operation can be continued by conveying the heat medium to the use side heat exchangers 26a to 26d.
The heat medium flowing out from the use side heat exchangers 26a to 26d flows into the heat exchangers between heat mediums 15a and 15b via the heat medium flow control devices 25a to 25d and the first heat medium flow switching devices 22a to 22d. The heat medium flowing out from the heat exchangers between heat mediums 15a and 15b is sucked into the pumps 21a and 21b again.
In this way, by circulating a heat medium such as water or antifreeze in the heat medium circuit B, the heat source side refrigerant flowing into the heat exchangers between heat mediums 15a and 15b in the defrost operation mode 2-1 generates heat. It is possible to prevent the medium from freezing.
(デフロスト運転モード2-2)
 次に、図6に示した暖房主体運転モードからデフロスト運転を実施するデフロスト運転モード2-2について説明する。なお、ここでは室内機2aに暖房が要求され、室内機2bに冷房が要求されている場合を例として説明する。
 暖房主体運転モードからデフロスト運転モード2-2に移行する場合には、絞り装置16aを全閉、もしくは冷媒が流れない開度とし、冷房用に冷熱が生成されていた熱媒体間熱交換器15aに冷媒が流れないようにし、絞り装置16bを開とし、暖房用に温熱が生成されていた熱媒体間熱交換器15bは冷媒を循環させる。また、第2冷媒流路切替装置18a、18bについては、両方ともに暖房側に切り替えて、高圧配管と連通させる。
 熱媒体循環回路Bの熱媒体の流れは、暖房主体運転モードの流れとすることで、デフロスト運転モード2-2に移行する前の暖房主体運転モード時に、熱媒体間熱交換器15aで生成された冷熱と、熱媒体間熱交換器15bで生成された温熱を使用して、室内空間7の冷房運転、暖房運転を継続することが可能である。
(Defrost operation mode 2-2)
Next, the defrost operation mode 2-2 for performing the defrost operation from the heating main operation mode shown in FIG. 6 will be described. Here, the case where heating is required for the indoor unit 2a and the cooling is required for the indoor unit 2b will be described as an example.
When shifting from the heating-main operation mode to the defrost operation mode 2-2, the expansion device 16a is fully closed, or the opening is such that the refrigerant does not flow, and the heat exchanger related to heat medium 15a that has generated cold for cooling is used. Thus, the expansion device 16b is opened, and the heat exchanger related to heat medium 15b in which the heat is generated for heating circulates the refrigerant. Moreover, about 2nd refrigerant | coolant flow path switching device 18a, 18b, both are switched to the heating side, and are connected with a high voltage | pressure piping.
The flow of the heat medium in the heat medium circulation circuit B is the flow in the heating main operation mode, and is generated in the heat exchanger related to heat medium 15a in the heating main operation mode before the transition to the defrost operation mode 2-2. It is possible to continue the cooling operation and the heating operation of the indoor space 7 using the cold heat and the heat generated by the heat exchanger related to heat medium 15b.
 第2冷媒流路切替装置18a、18bを介して熱媒体間熱交換器15a、15bに流入した冷媒は、熱媒体変換機3に流入する熱源側冷媒の圧力とほぼ等しい過冷却液、もしくは二相冷媒となっている。なお、この過冷却液、もしくは二相冷媒は飽和温度が約0℃以上となっている。また、熱媒体循環回路Bの熱媒体は、デフロスト運転モード2-2前の暖房主体運転モード時により、熱媒体間熱交換器15bで加温されて約20℃以上となっている。熱媒体間熱交換器15a、15bに流入する冷媒温度は約0℃以上となり、熱媒体を0℃以下の低温まで冷却してしまうことが抑制される。すなわち、この熱媒体間熱交換器15bに流入した冷媒が原因で、熱媒体が凍結してしまうことは抑制されている。 The refrigerant flowing into the heat exchanger related to heat medium 15a, 15b via the second refrigerant flow switching devices 18a, 18b is a supercooled liquid substantially equal to the pressure of the heat source side refrigerant flowing into the heat medium converter 3, or two It is a phase refrigerant. The supercooled liquid or the two-phase refrigerant has a saturation temperature of about 0 ° C. or higher. Further, the heat medium in the heat medium circulation circuit B is heated to about 20 ° C. or more by the heat exchanger related to heat medium 15b in the heating main operation mode before the defrost operation mode 2-2. The temperature of the refrigerant flowing into the heat exchangers between heat mediums 15a and 15b is about 0 ° C. or higher, and the cooling of the heat medium to a low temperature of 0 ° C. or lower is suppressed. That is, it is suppressed that the heat medium freezes due to the refrigerant flowing into the heat exchanger related to heat medium 15b.
(デフロスト運転モード2-3)
 デフロスト運転モード2-1では、開閉装置17aを閉とするものとして説明したが、開とするデフロスト運転モード2-3を実施してもよい。すなわち、このデフロスト運転モード2-3は、全暖房運転モードから移行するデフロスト運転モードであり、開閉装置17aについては開としている。なお、ここでは室内機2aに暖房が要求され、室内機2bに冷房が要求されている場合を例として説明する。
 デフロスト運転モード2-3では、開閉装置17aを開とするため、第2冷媒流路切替装置18a及び熱媒体間熱交換器15aを介して絞り装置16aから流出する熱源側冷媒と、第2冷媒流路切替装置18b及び熱媒体間熱交換器15bを介して絞り装置16bから流出する熱源側冷媒と、開閉装置17aから流入する熱源側冷媒とが合流する。合流した冷媒は、その後、開閉装置17b及びバイパス冷媒配管4cを介して、熱媒体変換機3から流出する。
(Defrost operation mode 2-3)
Although the defrosting operation mode 2-1 has been described as closing the opening / closing device 17a, the defrosting operation mode 2-3 may be performed. That is, the defrosting operation mode 2-3 is a defrosting operation mode for shifting from the heating only operation mode, and the opening / closing device 17a is open. Here, the case where heating is required for the indoor unit 2a and the cooling is required for the indoor unit 2b will be described as an example.
In the defrost operation mode 2-3, in order to open the opening / closing device 17a, the heat source side refrigerant flowing out from the expansion device 16a via the second refrigerant flow switching device 18a and the heat exchanger related to heat medium 15a, and the second refrigerant The heat-source-side refrigerant flowing out of the expansion device 16b and the heat-source-side refrigerant flowing in from the opening / closing device 17a merge through the flow path switching device 18b and the heat exchanger related to heat medium 15b. Thereafter, the merged refrigerant flows out of the heat medium relay unit 3 through the opening / closing device 17b and the bypass refrigerant pipe 4c.
 このように、開閉装置17aを開としても、熱媒体変換機3に流入して開閉装置17aを通過した冷媒は、絞り装置16a、16bから流出する冷媒と合流する。ここで、開閉装置17aを開とする方が、開閉装置17aを介してバイパス冷媒配管4cに流入する熱源側冷媒があるため、第2冷媒流路切替装置18及び熱媒体間熱交換器15に流入する冷媒循環量が減少し、熱源側冷媒の圧力損失が小さくなる。そして、熱源側冷媒の圧力損失を低減することができる分、熱媒体間熱交換器15a、15b内の冷媒圧力を高く保つことができる。これにより、熱媒体間熱交換器15a、15bの温度を高く保つことができるため、熱媒体や不凍液などの凍結を抑制することができる。 Thus, even if the opening / closing device 17a is opened, the refrigerant that has flowed into the heat medium converter 3 and passed through the opening / closing device 17a merges with the refrigerant that flows out of the expansion devices 16a, 16b. Here, when the opening / closing device 17a is opened, there is a heat source side refrigerant flowing into the bypass refrigerant pipe 4c via the opening / closing device 17a, so the second refrigerant flow switching device 18 and the heat exchanger related to heat medium 15 have The circulating amount of refrigerant flowing in is reduced, and the pressure loss of the heat source side refrigerant is reduced. And since the pressure loss of the heat source side refrigerant can be reduced, the refrigerant pressure in the heat exchangers 15a and 15b can be kept high. Thereby, since the temperature of the heat exchangers 15a and 15b between heat media can be kept high, freezing of a heat medium, an antifreeze liquid, etc. can be suppressed.
(デフロスト運転モード2-4)
 デフロスト運転モード2-2では、開閉装置17aを閉とするものとして説明したが、開とするデフロスト運転モード2-4を実施してもよい。すなわち、このデフロスト運転モード2-4は、暖房主体運転モードから移行するデフロスト運転モードであり、開閉装置17aについては開としている。なお、ここでは室内機2aに暖房が要求され、室内機2bに冷房が要求されている場合を例として説明する。
 暖房主体運転モードからデフロスト運転モード2-4に移行する場合には、絞り装置16aを全閉、もしくは冷媒が流れない開度とし、冷房用に冷熱が生成されていた熱媒体間熱交換器15aに冷媒が流れないようにし、絞り装置16bを開とし、暖房用に温熱が生成されていた熱媒体間熱交換器15bは冷媒を循環させる。また、第2冷媒流路切替装置18a、18bについては、両方ともに暖房側に切り替えて、高圧配管と連通させる。
 熱媒体循環回路Bの熱媒体の流れは、暖房主体運転モードの流れとすることで、デフロスト運転モード2-4に移行する前の暖房主体運転モード時に、熱媒体間熱交換器15aで生成された冷熱と、熱媒体間熱交換器15bで生成された温熱を使用して、室内空間7の冷房運転、暖房運転を継続することが可能である。
(Defrost operation mode 2-4)
In the defrosting operation mode 2-2, the opening / closing device 17a has been described as being closed. However, the defrosting operation mode 2-4 in which the opening / closing device 17a is open may be performed. That is, the defrost operation mode 2-4 is a defrost operation mode that is shifted from the heating main operation mode, and the opening / closing device 17a is open. Here, the case where heating is required for the indoor unit 2a and the cooling is required for the indoor unit 2b will be described as an example.
When shifting from the heating main operation mode to the defrosting operation mode 2-4, the expansion device 16a is fully closed or the opening is set so that the refrigerant does not flow, and the heat exchanger 15a between the heat medium in which cold heat is generated for cooling is used. Thus, the expansion device 16b is opened, and the heat exchanger related to heat medium 15b in which the heat is generated for heating circulates the refrigerant. Moreover, about 2nd refrigerant | coolant flow path switching device 18a, 18b, both are switched to the heating side, and are connected with a high voltage | pressure piping.
The flow of the heat medium in the heat medium circuit B is the flow in the heating main operation mode, and is generated in the heat exchanger related to heat medium 15a in the heating main operation mode before the transition to the defrost operation mode 2-4. It is possible to continue the cooling operation and the heating operation of the indoor space 7 using the cold heat and the heat generated by the heat exchanger related to heat medium 15b.
 このように、開閉装置17aを開としても、熱媒体変換機3に流入して開閉装置17aを通過した冷媒は、絞り装置16bから流出する冷媒と合流する。すなわち、デフロスト運転モード2-4では、第2冷媒流路切替装置18a及び熱媒体間熱交換器15aを介して絞り装置16aから流出する熱源側冷媒と、開閉装置17aから流入する熱源側冷媒とが合流する。そして、合流した冷媒は、その後、開閉装置17b及びバイパス冷媒配管4cを介して、熱媒体変換機3から流出する。
 ここで、開閉装置17aを開とする方が、開閉装置17aを介してバイパス冷媒配管4cに流入する熱源側冷媒があるため、第2冷媒流路切替装置18及び熱媒体間熱交換器15に流入する冷媒循環量が減少し、熱源側冷媒の圧力損失が小さくなる。そして、熱源側冷媒の圧力損失を低減することができる分、熱媒体間熱交換器15b内の冷媒圧力を高く保つことができる。これにより、熱媒体間熱交換器15bの温度を高く保つことができるため、熱媒体や不凍液などの凍結を抑制することができる。
Thus, even if the opening / closing device 17a is opened, the refrigerant that has flowed into the heat medium relay unit 3 and passed through the opening / closing device 17a merges with the refrigerant that flows out of the expansion device 16b. That is, in the defrost operation mode 2-4, the heat source side refrigerant flowing out from the expansion device 16a via the second refrigerant flow switching device 18a and the heat exchanger related to heat medium 15a, and the heat source side refrigerant flowing in from the opening / closing device 17a Join. Then, the merged refrigerant then flows out of the heat medium relay unit 3 through the opening / closing device 17b and the bypass refrigerant pipe 4c.
Here, when the opening / closing device 17a is opened, there is a heat source side refrigerant flowing into the bypass refrigerant pipe 4c via the opening / closing device 17a, so the second refrigerant flow switching device 18 and the heat exchanger related to heat medium 15 have The circulating amount of refrigerant flowing in is reduced, and the pressure loss of the heat source side refrigerant is reduced. And since the pressure loss of the heat source side refrigerant can be reduced, the refrigerant pressure in the heat exchanger related to heat medium 15b can be kept high. Thereby, since the temperature of the heat exchanger related to heat medium 15b can be kept high, freezing of the heat medium and the antifreeze liquid can be suppressed.
(デフロスト運転モード2-5)
 デフロスト運転モード2-2及びデフロスト運転モード2-4では、熱媒体間熱交換器15aに冷媒を供給しないようにする運転モードであったが、熱媒体間熱交換器15aに冷媒を供給するデフロスト運転モード2-5を実施してもよい(図9参照)。このデフロスト運転モード2-5は、暖房主体運転モードから移行するデフロスト運転モードである。そして、デフロスト運転モード2-5は、熱媒体間熱交換器15aにも冷媒を供給し、さらに、開閉装置17a閉とし、開閉装置17bについては開とする。なお、図9では、室内機2a~2cに暖房が要求され、室内機2dに冷房が要求されている場合を例として説明する。
 このデフロスト運転モード2-5は、冷房運転を継続している室内機の冷房能力の向上と、除霜時間の短縮との両方を図りたい場合に実施するとよい。
(Defrost operation mode 2-5)
In the defrost operation mode 2-2 and the defrost operation mode 2-4, the operation mode is such that the refrigerant is not supplied to the heat exchanger related to heat medium 15a, but the defrost that supplies the refrigerant to the heat exchanger related to heat medium 15a. Operation mode 2-5 may be implemented (see FIG. 9). The defrosting operation mode 2-5 is a defrosting operation mode for shifting from the heating main operation mode. In the defrost operation mode 2-5, the refrigerant is also supplied to the heat exchanger related to heat medium 15a, and the opening / closing device 17a is closed and the opening / closing device 17b is opened. In FIG. 9, a case where heating is required for the indoor units 2a to 2c and cooling is required for the indoor unit 2d will be described as an example.
The defrosting operation mode 2-5 is preferably performed when it is desired to improve both the cooling capacity of the indoor unit that is continuing the cooling operation and to shorten the defrosting time.
 デフロスト運転モード2-5では、絞り装置16a、16bともに全開、もしくは全開に近い開度とし、冷房用に冷熱が生成されていた熱媒体間熱交換器15aと、暖房用に温熱が生成されていた熱媒体間熱交換器15bとの両方に冷媒を循環させる。また、第2冷媒流路切替装置18a、18bについては、両方ともに暖房側に切り替えて、高圧配管と連通させる。熱媒体循環回路Bの熱媒体の流れは、暖房主体運転モードの流れとすることで、室内空間7の冷房運転、暖房運転を継続している。 In the defrost operation mode 2-5, both the expansion devices 16a and 16b are fully open or close to full open, and the heat exchanger 15a that has generated cold heat for cooling and hot heat is generated for heating. The refrigerant is circulated through both the heat exchanger related to heat medium 15b. Moreover, about 2nd refrigerant | coolant flow path switching device 18a, 18b, both are switched to the heating side, and are connected with a high voltage | pressure piping. The flow of the heat medium in the heat medium circuit B is the flow in the heating main operation mode, so that the cooling operation and the heating operation of the indoor space 7 are continued.
 熱媒体間熱交換器15aに冷媒温度約0℃の過冷却液、もしくは二相冷媒を流すことにより、デフロスト運転モード2-5で冷房運転を継続している室内機2dを循環する熱媒体間熱交換器15a内の熱媒体が、冷媒に放熱することで冷却され、熱媒体間熱交換器15aに冷媒を流さない場合よりも冷房能力が向上する。
 さらに、熱媒体間熱交換器15a内の冷媒は熱媒体から吸熱することで、熱媒体間熱交換器15aに冷媒を流さない場合よりも、絞り装置16aから流出する低圧二相冷媒のうちのガス層が占める割合が増加し、圧縮機10に吸入される冷媒の低温・低圧のガス冷媒が占める割合は増加し、圧縮機10から吐出される高温・高圧のガス冷媒の熱容量が大きくなり、熱源側熱交換器12のデフロスト運転時間を短縮することができる。
By flowing a supercooled liquid having a refrigerant temperature of about 0 ° C. or a two-phase refrigerant through the heat exchanger 15a between the heat medium, the heat medium between the heat medium circulating in the indoor unit 2d that continues the cooling operation in the defrost operation mode 2-5 The heat medium in the heat exchanger 15a is cooled by radiating heat to the refrigerant, and the cooling capacity is improved as compared with the case where the refrigerant does not flow through the heat exchanger related to heat medium 15a.
Furthermore, the refrigerant in the heat exchanger related to heat medium 15a absorbs heat from the heat medium, so that among the low-pressure two-phase refrigerant flowing out from the expansion device 16a, compared to the case where the refrigerant does not flow into the heat exchanger related to heat medium 15a. The ratio of the gas layer increases, the ratio of the low-temperature and low-pressure gas refrigerant sucked into the compressor 10 increases, and the heat capacity of the high-temperature and high-pressure gas refrigerant discharged from the compressor 10 increases. The defrosting operation time of the heat source side heat exchanger 12 can be shortened.
 第2冷媒流路切替装置18a、18bを介して熱媒体間熱交換器15a、15bに流入した冷媒は、熱媒体変換機3に流入する熱源側冷媒の圧力とほぼ等しい過冷却液、もしくは二相冷媒となっている。なお、この過冷却液、もしくは二相冷媒は飽和温度が約0℃以上となっている。
 また、デフロスト運転モード2-5前の暖房主体運転モード時により、熱媒体循環回路Bの熱媒体のうち、熱媒体間熱交換器15bで加温された熱媒体は、約20℃以上に加温されている。一方、熱媒体循環回路Bの熱媒体のうち、熱媒体間熱交換器15aで冷却された熱媒体は、約5~10℃以上となっている。これにより、熱媒体間熱交換器15a、15bに流入する冷媒温度は約0℃以上となり、熱媒体を0℃以下の低温まで冷却してしまうことが抑制される。すなわち、この熱媒体間熱交換器15a、15bに流入した冷媒が原因で、熱媒体が凍結してしまうことは抑制されている。
The refrigerant flowing into the heat exchanger related to heat medium 15a, 15b via the second refrigerant flow switching devices 18a, 18b is a supercooled liquid substantially equal to the pressure of the heat source side refrigerant flowing into the heat medium converter 3, or two It is a phase refrigerant. The supercooled liquid or the two-phase refrigerant has a saturation temperature of about 0 ° C. or higher.
In addition, of the heat medium in the heat medium circuit B, the heat medium heated by the inter-heat medium heat exchanger 15b is heated to about 20 ° C. or more by the heating main operation mode before the defrost operation mode 2-5. It is warm. On the other hand, of the heat medium in the heat medium circuit B, the heat medium cooled by the inter-heat medium heat exchanger 15a is about 5 to 10 ° C. or higher. Thereby, the temperature of the refrigerant flowing into the heat exchangers between heat mediums 15a and 15b becomes about 0 ° C. or higher, and the cooling of the heat medium to a low temperature of 0 ° C. or lower is suppressed. That is, the heat medium is prevented from freezing due to the refrigerant flowing into the heat exchangers 15a and 15b.
 また、熱媒体間熱交換器15aの熱媒体が凍結してしまうことをさらに抑制したい場合には、熱媒体間熱交換器15aに流入する熱媒体の温度が所定の温度(たとえば、約3℃以下)より低下したときに、冷媒循環回路Aに関しては絞り装置16aを閉じ、熱媒体循環回路Bに関しては熱媒体の循環を継続させるとよい。 Further, when it is desired to further prevent the heat medium in the heat exchanger related to heat medium 15a from freezing, the temperature of the heat medium flowing into the heat exchanger related to heat medium 15a is a predetermined temperature (for example, about 3 ° C.). When the temperature decreases below, the expansion device 16a is closed for the refrigerant circulation circuit A, and the circulation of the heat medium is preferably continued for the heat medium circulation circuit B.
 また、室内空間7の暖房運転、もしくは冷房運転の要求がない場合や、デフロスト時間を短縮させたい場合は、室内機2に設置してある、図示省略の送風機を停止させ、デフロスト運転モード2-5に移行する前に運転していた室内機2、もしくは全ての室内機2に設置してある利用側熱交換器26に対応した熱媒体流量調整装置25を開き、熱媒体を循環させればよく、このように熱媒体循環回路Bに熱媒体を循環させることで、利用側熱交換器26から熱媒体が空気に放熱することがないため、デフロスト時間のさらなる短縮が図れる。 When there is no request for heating operation or cooling operation of the indoor space 7 or when it is desired to shorten the defrosting time, the blower (not shown) installed in the indoor unit 2 is stopped and the defrosting operation mode 2- If the heat medium flow control device 25 corresponding to the indoor heat exchanger 26 installed in the indoor unit 2 or all the indoor units 2 that were operating before the transition to 5 is opened and the heat medium is circulated, Well, since the heat medium is circulated through the heat medium circuit B in this way, the heat medium does not radiate to the air from the use side heat exchanger 26, so that the defrost time can be further shortened.
[冷媒配管4]
 以上説明したように空気調和装置100は、幾つかの運転モードを具備している。これらの運転モードにおいては、室外機1と熱媒体変換機3とを接続する冷媒配管4には熱源側冷媒が流れている。
[Refrigerant piping 4]
As described above, the air conditioning apparatus 100 has several operation modes. In these operation modes, the heat source side refrigerant flows through the refrigerant pipe 4 that connects the outdoor unit 1 and the heat medium relay unit 3.
[配管5]
 空気調和装置100が実行する幾つかの運転モードにおいては、熱媒体変換機3と室内機2を接続する配管5には水や不凍液等の熱媒体が流れている。
[Piping 5]
In some operation modes executed by the air conditioner 100, a heat medium such as water or antifreeze flows through the pipe 5 connecting the heat medium converter 3 and the indoor unit 2.
[熱源側冷媒]
 熱源側冷媒としては、HFO1234yf、HFO1234ze、R32、HC、R32とHFO1234yfとを含む混合冷媒、前述冷媒が少なくとも一成分含む混合冷媒を用いた冷媒を、熱源側冷媒として用いることができる。
 これらの冷媒は、いずれも可燃性を有する冷媒である。凍結などによりプレート式熱交換器が損傷すると、これらの冷媒が熱媒体に流れ込む可能性がある。しかし、空気調和装置100は、熱媒体間熱交換器15a、15bが凍結しにくいため損傷しにくい。すなわち、可燃性冷媒を採用したとしても、冷媒が空調対象空間に漏洩する可能性を低減できる。
[Heat source side refrigerant]
As the heat source side refrigerant, HFO1234yf, HFO1234ze, R32, HC, a mixed refrigerant containing R32 and HFO1234yf, or a refrigerant using a mixed refrigerant containing at least one component of the aforementioned refrigerant can be used as the heat source side refrigerant.
These refrigerants are all flammable refrigerants. If the plate heat exchanger is damaged due to freezing or the like, these refrigerants may flow into the heat medium. However, the air conditioner 100 is not easily damaged because the heat exchangers 15a and 15b are not easily frozen. That is, even if a combustible refrigerant is employed, the possibility that the refrigerant leaks into the air-conditioning target space can be reduced.
[熱媒体]
 熱媒体としては、たとえばブライン(不凍液)や水、ブラインと水の混合液、水と防食効果が高い添加剤の混合液等を用いることができる。したがって、空気調和装置100においては、熱媒体が室内機2を介して室内空間7に漏洩したとしても、熱媒体に安全性の高いものを使用しているため安全性の向上に寄与することになる。
[Heat medium]
As the heat medium, for example, brine (antifreeze), water, a mixed solution of brine and water, a mixed solution of water and an additive having a high anticorrosive effect, or the like can be used. Therefore, in the air conditioning apparatus 100, even if the heat medium leaks into the indoor space 7 through the indoor unit 2, it contributes to the improvement of safety because a highly safe heat medium is used. Become.
 また、冷房主体運転モードと暖房主体運転モードにおいて、熱媒体間熱交換器15bと熱媒体間熱交換器15aの状態(加熱または冷却)が変化すると、今まで温水だったものが冷やされて冷水になり、冷水だったものが温められて温水になり、エネルギーの無駄が発生する。そこで、空気調和装置100では、冷房主体運転モード及び暖房主体運転モードのいずれにおいても、常に、熱媒体間熱交換器15bが暖房側、熱媒体間熱交換器15aが冷房側となるように構成している。 Further, in the cooling main operation mode and the heating main operation mode, when the state (heating or cooling) of the heat exchanger related to heat medium 15b and the heat exchanger related to heat medium 15a is changed, the water that has been used up to now is cooled down. As a result, cold water is heated to become hot water, resulting in wasted energy. Therefore, the air conditioner 100 is configured such that the heat exchanger related to heat medium 15b is always on the heating side and the heat exchanger related to heat medium 15a is on the cooling side in both the cooling main operation mode and the heating main operation mode. is doing.
 さらに、利用側熱交換器26にて暖房負荷と冷房負荷とが混在して発生している場合は、暖房運転を行なっている利用側熱交換器26に対応する第1熱媒体流路切替装置22及び第2熱媒体流路切替装置23を加熱用の熱媒体間熱交換器15bに接続される流路へ切り替え、冷房運転を行なっている利用側熱交換器26に対応する第1熱媒体流路切替装置22及び第2熱媒体流路切替装置23を冷却用の熱媒体間熱交換器15aに接続される流路へ切り替えることにより、各室内機2にて、暖房運転、冷房運転を自由に行なうことができる。 Further, when the heating load and the cooling load are mixed in the use side heat exchanger 26, the first heat medium flow switching device corresponding to the use side heat exchanger 26 performing the heating operation. 22 and the second heat medium flow switching device 23 are switched to flow paths connected to the heat exchanger related to heat medium 15b for heating, and the first heat medium corresponding to the use side heat exchanger 26 performing the cooling operation By switching the flow path switching device 22 and the second heat medium flow path switching device 23 to a flow path connected to the heat exchanger related to heat medium 15a for cooling, in each indoor unit 2, heating operation and cooling operation are performed. It can be done freely.
 空気調和装置100は、冷房暖房混在運転ができるものとして説明をしてきたが、これに限定するものではない。たとえば、熱媒体間熱交換器15及び絞り装置16がそれぞれ1つで、それらに複数の利用側熱交換器26と熱媒体流量調整装置25が並列に接続され、冷房運転か暖房運転のいずれかしか行なえない構成であっても同様の効果を奏する。 Although the air conditioning apparatus 100 has been described as being capable of mixed cooling and heating operation, the present invention is not limited to this. For example, there is one heat exchanger 15 between the heat medium and one expansion device 16, and a plurality of use side heat exchangers 26 and heat medium flow control devices 25 are connected in parallel to either the cooling operation or the heating operation. Even in a configuration that can only be performed, the same effect can be obtained.
 また、利用側熱交換器26と熱媒体流量調整装置25とが1つしか接続されていない場合でも同様のことが成り立つのは言うまでもなく、更に熱媒体間熱交換器15及び絞り装置16として、同じ動きをするものが複数個設置されていても、当然問題ない。さらに、熱媒体流量調整装置25は、熱媒体変換機3に内蔵されている場合を例に説明したが、これに限るものではなく、室内機2に内蔵されていてもよく、熱媒体変換機3と室内機2とは別体に構成されていてもよい。 Moreover, it goes without saying that the same holds true even when only one use-side heat exchanger 26 and one heat medium flow control device 25 are connected. As the heat exchanger 15 between heat mediums 15 and the expansion device 16, Of course, there is no problem even if there are multiple things that move in the same way. Further, the case where the heat medium flow control device 25 is built in the heat medium converter 3 has been described as an example. However, the heat medium flow control device 25 is not limited thereto, and may be built in the indoor unit 2. 3 and the indoor unit 2 may be configured separately.
 また、一般的に、熱源側熱交換器12及び利用側熱交換器26には、送風機が取り付けられており、送風により凝縮あるいは蒸発を促進させる場合が多いが、これに限るものではない。たとえば、利用側熱交換器26としては放射を利用したパネルヒーターのようなものを用いることもできるし、熱源側熱交換器12としては、水や不凍液により熱を移動させる水冷式のタイプのものを用いることもできる。つまり、熱源側熱交換器12及び利用側熱交換器26としては、放熱あるいは吸熱をできる構造のものであれば種類を問わず、用いることができる。 In general, the heat source side heat exchanger 12 and the use side heat exchanger 26 are provided with a blower, and in many cases, condensation or evaporation is promoted by blowing air, but this is not restrictive. For example, the use side heat exchanger 26 may be a panel heater using radiation, and the heat source side heat exchanger 12 is of a water-cooled type that moves heat by water or antifreeze. Can also be used. That is, the heat source side heat exchanger 12 and the use side heat exchanger 26 can be used regardless of the type as long as they have a structure capable of radiating heat or absorbing heat.
 1 室外機、2 室内機、2a~2d 室内機、3 熱媒体変換機、4 冷媒配管、4a 第1接続配管、4b 第2接続配管、4c バイパス冷媒配管、5 配管、6 室外空間、7 室内空間、8 空間、9 建物、10 圧縮機、11 第1冷媒流路切替装置、12 熱源側熱交換器、13a~13d 逆止弁、15 熱媒体間熱交換器、15a、15b 熱媒体間熱交換器、16 絞り装置、16a、16b 絞り装置、17 開閉装置、17a、17b 開閉装置、18a、18b 第2冷媒流路切替装置、19 アキュムレーター、21a、21b ポンプ、22 第1熱媒体流路切替装置、22a~22d 第1熱媒体流路切替装置、23 第2熱媒体流路切替装置、23a~23d 第2熱媒体流路切替装置、25 熱媒体流量調整装置、25a~25d 熱媒体流量調整装置、26 利用側熱交換器、26a~26d 利用側熱交換器、31a、31b 第1温度センサー、34 第2温度センサー、34a~34d 第2温度センサー、35 第3温度センサー、35a~35d 第3温度センサー、36 圧力センサー、36a、36b 圧力センサー、40a 第1室外温度センサー、40b 第2室外温度センサー、70 制御装置、100 空気調和装置、A 冷媒循環回路、B 熱媒体循環回路。 1 outdoor unit, 2 indoor unit, 2a to 2d indoor unit, 3 heat medium converter, 4 refrigerant piping, 4a first connection piping, 4b second connection piping, 4c bypass refrigerant piping, 5 piping, 6 outdoor space, 7 indoors Space, 8 space, 9 building, 10 compressor, 11 first refrigerant flow switching device, 12 heat source side heat exchanger, 13a-13d check valve, 15 heat exchanger between heat medium, 15a, 15b heat between heat medium Exchanger, 16 throttle device, 16a, 16b throttle device, 17 switchgear, 17a, 17b switchgear, 18a, 18b second refrigerant flow switching device, 19 accumulator, 21a, 21b pump, 22 first heat medium flow channel Switching device, 22a to 22d, first heat medium flow switching device, 23, second heat medium flow switching device, 23a to 23d, second heat medium flow switching device, 25 heat medium Flow rate adjustment device, 25a to 25d Heat medium flow rate adjustment device, 26 User side heat exchanger, 26a to 26d User side heat exchanger, 31a, 31b First temperature sensor, 34 Second temperature sensor, 34a to 34d Second temperature sensor , 35 3rd temperature sensor, 35a-35d 3rd temperature sensor, 36 pressure sensor, 36a, 36b pressure sensor, 40a 1st outdoor temperature sensor, 40b 2nd outdoor temperature sensor, 70 control device, 100 air conditioner, A refrigerant Circulation circuit, B Heat medium circulation circuit.

Claims (9)

  1.  圧縮機、第1冷媒流路切替装置、及び熱源側熱交換器が搭載された室外機と、
     熱媒体間熱交換器、絞り装置、第2冷媒流路切替装置、及びポンプが搭載された熱媒体変換機と、
     利用側熱交換器が搭載された少なくとも1つの室内機とを備え、
     前記圧縮機、前記第1冷媒流路切替装置、前記絞り装置、前記第2冷媒流路切替装置及び前記熱媒体間熱交換器を冷媒配管で接続して冷凍サイクル回路を構成し、
     前記熱媒体間熱交換器、及び利用側熱交換器を熱媒体配管で接続し、前記冷媒と異なる熱媒体が循環する熱媒体循環回路を構成し、
     前記第1冷媒流路切替装置を切り替えて、前記圧縮機から吐出された冷媒を前記熱源側熱交換器に供給するデフロスト運転モードを実行する空気調和装置において、
     前記デフロスト運転モード時において、
     前記熱源側熱交換器から流出した冷媒は、
     その一部が、前記絞り装置を介さずに前記熱媒体間熱交換器に供給され、
     残りが、前記絞り装置及び前記熱媒体間熱交換器を介さずに前記室外機に戻される
     ことを特徴とする空気調和装置。
    An outdoor unit equipped with a compressor, a first refrigerant flow switching device, and a heat source side heat exchanger;
    A heat exchanger including a heat exchanger between heat media, a throttle device, a second refrigerant flow switching device, and a pump;
    And at least one indoor unit equipped with a use side heat exchanger,
    Connecting the compressor, the first refrigerant flow switching device, the throttle device, the second refrigerant flow switching device, and the heat exchanger related to heat medium with a refrigerant pipe to constitute a refrigeration cycle circuit;
    Connecting the heat exchanger between heat medium and the heat exchanger on the use side with a heat medium pipe to constitute a heat medium circulation circuit in which a heat medium different from the refrigerant circulates;
    In the air conditioner that executes the defrost operation mode of switching the first refrigerant flow switching device and supplying the refrigerant discharged from the compressor to the heat source side heat exchanger,
    In the defrost operation mode,
    The refrigerant flowing out of the heat source side heat exchanger is
    A part thereof is supplied to the heat exchanger related to heat medium without going through the expansion device,
    The remainder is returned to the outdoor unit without passing through the expansion device and the heat exchanger related to heat medium.
  2.  前記デフロスト運転モード時において、
     前記ポンプを駆動して、前記熱媒体循環回路の熱媒体を循環させる
     ことを特徴とする請求項1に記載の空気調和装置。
    In the defrost operation mode,
    The air conditioner according to claim 1, wherein the pump is driven to circulate the heat medium in the heat medium circulation circuit.
  3.  前記室外機から前記熱媒体変換機に流入する冷媒を流す配管を第1の冷媒配管とし、
     前記熱媒体変換機から前記室外機に流入する冷媒を流す配管を第2の冷媒配管としたとき、
     一端が前記第1の冷媒配管に接続され、他端が前記第2の冷媒配管に接続され、前記熱媒体間熱交換器及び前記絞り装置をバイパスするバイパス配管と、
     前記第1の冷媒配管に設けられ、前記第1の冷媒配管と前記バイパス配管の接続箇所より前記室外機側に位置し、前記第1の冷媒配管から前記熱媒体間熱交換器に流入する冷媒の流れを調整する第1開閉装置と、
     前記バイパス配管に設けられ、前記バイパス配管からバイパスする冷媒の流れを調整する第2開閉装置とを有する
     ことを特徴とする請求項1又は2に記載の空気調和装置。
    A pipe through which the refrigerant flowing from the outdoor unit into the heat medium relay machine is a first refrigerant pipe,
    When the pipe for flowing the refrigerant flowing into the outdoor unit from the heat medium converter is the second refrigerant pipe,
    One end is connected to the first refrigerant pipe, the other end is connected to the second refrigerant pipe, and the bypass pipe bypassing the heat exchanger related to heat medium and the expansion device;
    Refrigerant that is provided in the first refrigerant pipe, is located closer to the outdoor unit than a connection point between the first refrigerant pipe and the bypass pipe, and flows into the heat exchanger related to heat medium from the first refrigerant pipe A first opening / closing device for adjusting the flow of
    The air conditioner according to claim 1, further comprising: a second opening / closing device that is provided in the bypass pipe and adjusts a flow of the refrigerant bypassed from the bypass pipe.
  4. (デフロスト運転モード1)
     前記絞り装置を閉じ、前記第1開閉装置及び前記第2開閉装置を開いて、
     前記熱源側熱交換器から流出した冷媒を、前記第1の冷媒配管、前記第1開閉装置、前記バイパス配管、前記第2開閉装置及び前記第2の冷媒配管を介して前記室外機に戻す
     ことを特徴とする請求項3に記載の空気調和装置。
    (Defrost operation mode 1)
    Close the expansion device, open the first opening and closing device and the second opening and closing device,
    Returning the refrigerant that has flowed out of the heat source side heat exchanger to the outdoor unit via the first refrigerant pipe, the first switchgear, the bypass pipe, the second switchgear, and the second refrigerant pipe. The air conditioner according to claim 3.
  5. (デフロスト運転モード2-1、2-2)
     前記絞り装置を開き、前記第1開閉装置を閉じ、前記第2開閉装置を開いて、
     前記熱源側熱交換器から流出した冷媒を、前記第1の冷媒配管、前記第2冷媒流路切替装置、前記熱媒体間熱交換器、前記絞り装置、前記バイパス配管、前記第2開閉装置及び前記第2の冷媒配管を介して前記室外機に戻す
     ことを特徴とする請求項2に従属する請求項3に記載の空気調和装置。
    (Defrost operation mode 2-1, 2-2)
    Open the throttle device, close the first opening and closing device, open the second opening and closing device,
    Refrigerant flowing out from the heat source side heat exchanger, the first refrigerant pipe, the second refrigerant flow switching device, the heat exchanger between heat medium, the expansion device, the bypass pipe, the second opening and closing device, The air conditioner according to claim 3, which is dependent on claim 2, wherein the air conditioner is returned to the outdoor unit via the second refrigerant pipe.
  6. (デフロスト運転モード2-3、2-4)
     前記絞り装置、前記第1開閉装置及び前記第2開閉装置を開き、
     前記熱源側熱交換器から流出した冷媒の一部を、前記第1の冷媒配管、前記第2冷媒流路切替装置、前記熱媒体間熱交換器及び前記絞り装置を介して前記バイパス配管に流入させ、
     前記熱源側熱交換器から流出した冷媒の残りを、前記第1の冷媒配管、及び前記第1開閉装置を介して前記バイパス配管に流入させ、
     前記バイパス配管に流入した前記冷媒の一部及び前記冷媒の残りを、前記第2開閉装置及び前記第2の冷媒配管を介して前記室外機に戻す
     ことを特徴とする請求項2に従属する請求項3に記載の空気調和装置。
    (Defrost operation mode 2-3, 2-4)
    Open the throttle device, the first opening / closing device and the second opening / closing device,
    Part of the refrigerant flowing out of the heat source side heat exchanger flows into the bypass pipe through the first refrigerant pipe, the second refrigerant flow switching device, the heat exchanger related to heat medium, and the expansion device. Let
    The remaining refrigerant flowing out of the heat source side heat exchanger is caused to flow into the bypass pipe via the first refrigerant pipe and the first opening / closing device,
    The subordinate to claim 2, wherein a part of the refrigerant flowing into the bypass pipe and the remainder of the refrigerant are returned to the outdoor unit via the second opening / closing device and the second refrigerant pipe. Item 4. The air conditioner according to Item 3.
  7. (デフロスト運転モード2-5)
     暖房主体運転モードから前記デフロスト運転モードへの移行時において、
     前記絞り装置を開き、前記第1開閉装置を閉じ、前記第2開閉装置を開いて、
     前記熱源側熱交換器から流出した冷媒を、前記第1の冷媒配管、前記第2冷媒流路切替装置、前記熱媒体間熱交換器、前記絞り装置、前記バイパス配管、前記第2開閉装置及び前記第2の冷媒配管を介して前記室外機に戻し、
     前記暖房主体運転モード時において蒸発器として機能していた前記熱媒体間熱交換器から、冷房運転を実施する前記室内機に対応する前記利用側熱交換器に熱媒体を供給する
     ことを特徴とする請求項2に従属する請求項3に記載の空気調和装置。
    (Defrost operation mode 2-5)
    At the time of transition from the heating main operation mode to the defrost operation mode,
    Open the throttle device, close the first opening and closing device, open the second opening and closing device,
    Refrigerant flowing out from the heat source side heat exchanger, the first refrigerant pipe, the second refrigerant flow switching device, the heat exchanger between heat medium, the expansion device, the bypass pipe, the second opening and closing device, Return to the outdoor unit via the second refrigerant pipe,
    A heat medium is supplied from the inter-heat medium heat exchanger functioning as an evaporator in the heating main operation mode to the use side heat exchanger corresponding to the indoor unit that performs the cooling operation. The air conditioning apparatus according to claim 3, which is dependent on claim 2.
  8.  前記第2冷媒流路切替装置は、
     四方弁、三方弁、二方弁、及び電磁弁のうち、少なくとも1つにより構成された
     ことを特徴とする請求項1~7のいずれか一項に記載の空気調和装置。
    The second refrigerant flow switching device includes:
    The air conditioner according to any one of claims 1 to 7, wherein the air conditioner is configured by at least one of a four-way valve, a three-way valve, a two-way valve, and a solenoid valve.
  9.  前記熱源側冷媒として、
     HFO1234yf、HFO1234ze、R32、HC、R32とHFO1234yfの混合冷媒、又はこれらの冷媒を少なくとも1つ含む混合冷媒が採用された
     ことを特徴とする請求項1~8のいずれか一項に記載の空気調和装置。
    As the heat source side refrigerant,
    The air conditioning according to any one of claims 1 to 8, wherein HFO1234yf, HFO1234ze, R32, HC, a mixed refrigerant of R32 and HFO1234yf, or a mixed refrigerant including at least one of these refrigerants is employed. apparatus.
PCT/JP2012/001980 2011-07-14 2012-03-22 Air-conditioning device WO2013008365A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2014505797A JP5773063B2 (en) 2012-03-21 2012-03-21 Radiation detector signal processing apparatus and radiation detector provided with the same
US14/118,344 US9494361B2 (en) 2011-07-14 2012-03-22 Air-conditioning apparatus with improved defrost operation mode
JP2013523772A JP5791717B2 (en) 2011-07-14 2012-03-22 Air conditioner
EP12811031.9A EP2733444B1 (en) 2011-07-14 2012-03-22 Air-conditioning device
CN201280031532.0A CN103620325B (en) 2011-07-14 2012-03-22 Conditioner
ES12811031T ES2904812T3 (en) 2011-07-14 2012-03-22 air conditioning device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PCT/JP2011/004030 WO2013008278A1 (en) 2011-07-14 2011-07-14 Air-conditioning device
JPPCT/JP2011/004030 2011-07-14

Publications (1)

Publication Number Publication Date
WO2013008365A1 true WO2013008365A1 (en) 2013-01-17

Family

ID=47505601

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2011/004030 WO2013008278A1 (en) 2011-07-14 2011-07-14 Air-conditioning device
PCT/JP2012/001980 WO2013008365A1 (en) 2011-07-14 2012-03-22 Air-conditioning device

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/004030 WO2013008278A1 (en) 2011-07-14 2011-07-14 Air-conditioning device

Country Status (5)

Country Link
US (1) US9494361B2 (en)
EP (1) EP2733444B1 (en)
CN (1) CN103620325B (en)
ES (1) ES2904812T3 (en)
WO (2) WO2013008278A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014128970A1 (en) * 2013-02-25 2014-08-28 三菱電機株式会社 Air conditioner
WO2020161805A1 (en) * 2019-02-05 2020-08-13 三菱電機株式会社 Air conditioner control device, outdoor unit, relay unit, heat source unit, and air conditioner
JPWO2020213130A1 (en) * 2019-04-18 2020-10-22
JP2021046953A (en) * 2019-09-17 2021-03-25 東芝キヤリア株式会社 Air conditioner

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9732992B2 (en) * 2011-01-27 2017-08-15 Mitsubishi Electric Corporation Air-conditioning apparatus for preventing the freezing of non-azeotropic refrigerant
EP2927623B1 (en) * 2012-11-29 2019-02-06 Mitsubishi Electric Corporation Air-conditioning device
WO2014097439A1 (en) * 2012-12-20 2014-06-26 三菱電機株式会社 Air-conditioning device
WO2014155980A1 (en) * 2013-03-29 2014-10-02 株式会社日本クライメイトシステムズ Vehicle air conditioner
KR101637745B1 (en) * 2014-11-25 2016-07-07 현대자동차주식회사 Radiator having air guide for preventing heat damage in bus
JP6945741B2 (en) * 2018-07-20 2021-10-06 三菱電機株式会社 Air conditioner control device, outdoor unit, repeater, heat source unit and air conditioner
KR20200114123A (en) * 2019-03-27 2020-10-07 엘지전자 주식회사 An air conditioning apparatus
JP7098064B2 (en) * 2019-08-23 2022-07-08 三菱電機株式会社 Air conditioner

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6158468U (en) * 1984-09-19 1986-04-19
JP2008224088A (en) * 2007-03-09 2008-09-25 Mitsubishi Electric Corp Hot water system
WO2010050002A1 (en) * 2008-10-29 2010-05-06 三菱電機株式会社 Air conditioner
JP2011127775A (en) * 2009-12-15 2011-06-30 Mitsubishi Electric Corp Air conditioner

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2705031B2 (en) * 1989-06-13 1998-01-26 松下冷機株式会社 Multi-room air conditioner
JPH0518645A (en) * 1991-07-10 1993-01-26 Nippondenso Co Ltd Heat pump type air conditioning device
JPH0534029A (en) * 1991-07-24 1993-02-09 Mitsubishi Heavy Ind Ltd Heat pump type air conditioner
JP3888403B2 (en) * 1997-12-18 2007-03-07 株式会社富士通ゼネラル Method and apparatus for controlling air conditioner
JP2002106995A (en) * 2000-09-29 2002-04-10 Hitachi Ltd Air conditioner
JP3998024B2 (en) 2001-09-28 2007-10-24 三菱電機株式会社 Heat pump floor heating air conditioner
JP4089326B2 (en) * 2002-07-17 2008-05-28 富士電機リテイルシステムズ株式会社 Refrigerant circuit and vending machine using the same
KR100788302B1 (en) * 2006-04-13 2007-12-27 주식회사 코벡엔지니어링 High speed defrosting heat pump
JP5236008B2 (en) 2008-10-29 2013-07-17 三菱電機株式会社 Air conditioner
EP2314945B1 (en) * 2008-10-29 2017-07-26 Mitsubishi Electric Corporation Air conditioner
JPWO2011030429A1 (en) * 2009-09-10 2013-02-04 三菱電機株式会社 Air conditioner
WO2011052038A1 (en) 2009-10-27 2011-05-05 三菱電機株式会社 Air conditioning device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6158468U (en) * 1984-09-19 1986-04-19
JP2008224088A (en) * 2007-03-09 2008-09-25 Mitsubishi Electric Corp Hot water system
WO2010050002A1 (en) * 2008-10-29 2010-05-06 三菱電機株式会社 Air conditioner
JP2011127775A (en) * 2009-12-15 2011-06-30 Mitsubishi Electric Corp Air conditioner

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2733444A4 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014128970A1 (en) * 2013-02-25 2014-08-28 三菱電機株式会社 Air conditioner
CN105074359A (en) * 2013-02-25 2015-11-18 三菱电机株式会社 Air conditioner
EP2960602A4 (en) * 2013-02-25 2016-09-28 Mitsubishi Electric Corp Air conditioner
JPWO2014128970A1 (en) * 2013-02-25 2017-02-02 三菱電機株式会社 Air conditioner
WO2020161805A1 (en) * 2019-02-05 2020-08-13 三菱電機株式会社 Air conditioner control device, outdoor unit, relay unit, heat source unit, and air conditioner
JPWO2020161805A1 (en) * 2019-02-05 2021-11-25 三菱電機株式会社 Air conditioner control device, outdoor unit, repeater, heat source unit and air conditioner
JP7134265B2 (en) 2019-02-05 2022-09-09 三菱電機株式会社 Control devices for air conditioners, outdoor units, repeaters, heat source units, and air conditioners
JPWO2020213130A1 (en) * 2019-04-18 2020-10-22
JP7209816B2 (en) 2019-04-18 2023-01-20 三菱電機株式会社 Control devices for air conditioners, outdoor units, repeaters, heat source units, and air conditioners
JP2021046953A (en) * 2019-09-17 2021-03-25 東芝キヤリア株式会社 Air conditioner
JP7360285B2 (en) 2019-09-17 2023-10-12 東芝キヤリア株式会社 air conditioner

Also Published As

Publication number Publication date
WO2013008278A1 (en) 2013-01-17
US20140182320A1 (en) 2014-07-03
CN103620325A (en) 2014-03-05
EP2733444A1 (en) 2014-05-21
EP2733444A4 (en) 2015-06-24
US9494361B2 (en) 2016-11-15
ES2904812T3 (en) 2022-04-06
EP2733444B1 (en) 2021-12-29
CN103620325B (en) 2016-06-29

Similar Documents

Publication Publication Date Title
WO2013008365A1 (en) Air-conditioning device
JP5752148B2 (en) Air conditioner
JP5784117B2 (en) Air conditioner
JP5611376B2 (en) Air conditioner
JP5279919B2 (en) Air conditioner
JP6095764B2 (en) Air conditioner
JP5595521B2 (en) Heat pump equipment
JP5236080B2 (en) Air conditioner
WO2011099054A1 (en) Air conditioner
WO2014097438A1 (en) Air-conditioning device
JP5490245B2 (en) Air conditioner
WO2014097439A1 (en) Air-conditioning device
JPWO2011099063A1 (en) Air conditioner
JPWO2011064827A1 (en) Air conditioner
WO2016194145A1 (en) Air-conditioning device
WO2011099058A1 (en) Air-conditioning device
JP5420057B2 (en) Air conditioner
WO2011052049A1 (en) Air conditioning device
JPWO2011099067A1 (en) Refrigeration cycle equipment
JP5312681B2 (en) Air conditioner
JP5312616B2 (en) Air conditioner
JP6537603B2 (en) Air conditioner
JP5791717B2 (en) Air conditioner
WO2011030420A1 (en) Air conditioning device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12811031

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013523772

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14118344

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2012811031

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE