WO2014128970A1 - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
WO2014128970A1
WO2014128970A1 PCT/JP2013/054788 JP2013054788W WO2014128970A1 WO 2014128970 A1 WO2014128970 A1 WO 2014128970A1 JP 2013054788 W JP2013054788 W JP 2013054788W WO 2014128970 A1 WO2014128970 A1 WO 2014128970A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
heat medium
refrigerant
operation mode
heat exchanger
Prior art date
Application number
PCT/JP2013/054788
Other languages
French (fr)
Japanese (ja)
Inventor
祐治 本村
嶋本 大祐
孝好 本多
森本 修
浩二 西岡
小野 達生
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2015501232A priority Critical patent/JP6095764B2/en
Priority to EP13875678.8A priority patent/EP2960602B1/en
Priority to US14/765,864 priority patent/US20150369498A1/en
Priority to CN201380073760.9A priority patent/CN105074359A/en
Priority to PCT/JP2013/054788 priority patent/WO2014128970A1/en
Publication of WO2014128970A1 publication Critical patent/WO2014128970A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0007Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater cooling apparatus specially adapted for use in air-conditioning
    • F24F5/001Compression cycle type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/06Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the arrangements for the supply of heat-exchange fluid for the subsequent treatment of primary air in the room units
    • F24F3/065Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the arrangements for the supply of heat-exchange fluid for the subsequent treatment of primary air in the room units with a plurality of evaporators or condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/02Defrosting cycles
    • F25B47/022Defrosting cycles hot gas defrosting
    • F25B47/025Defrosting cycles hot gas defrosting by reversing the cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/003Indoor unit with water as a heat sink or heat source
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0231Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units with simultaneous cooling and heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02732Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using two three-way valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02741Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using one four-way valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/031Sensor arrangements
    • F25B2313/0312Pressure sensors near the indoor heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/031Sensor arrangements
    • F25B2313/0314Temperature sensors near the indoor heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/031Sensor arrangements
    • F25B2313/0315Temperature sensors near the outdoor heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B25/00Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00
    • F25B25/005Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00 using primary and secondary systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/19Calculation of parameters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/26Problems to be solved characterised by the startup of the refrigeration cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2513Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21151Temperatures of a compressor or the drive means therefor at the suction side of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21152Temperatures of a compressor or the drive means therefor at the discharge side of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2116Temperatures of a condenser
    • F25B2700/21161Temperatures of a condenser of the fluid heated by the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2116Temperatures of a condenser
    • F25B2700/21162Temperatures of a condenser of the refrigerant at the inlet of the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2116Temperatures of a condenser
    • F25B2700/21163Temperatures of a condenser of the refrigerant at the outlet of the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator
    • F25B2700/21171Temperatures of an evaporator of the fluid cooled by the evaporator
    • F25B2700/21173Temperatures of an evaporator of the fluid cooled by the evaporator at the outlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator
    • F25B2700/21174Temperatures of an evaporator of the refrigerant at the inlet of the evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator
    • F25B2700/21175Temperatures of an evaporator of the refrigerant at the outlet of the evaporator

Definitions

  • the present invention relates to an air conditioner applied to, for example, a building multi air conditioner.
  • a refrigerant is circulated between, for example, an outdoor unit that is a heat source device arranged outside a building and an indoor unit arranged inside a building.
  • the refrigerant coolant thermally radiated and absorbed heat, and air-conditioning object space was cooled or heated with the air heated and cooled.
  • an HFC (hydrofluorocarbon) refrigerant is often used.
  • a natural refrigerant such as carbon dioxide (CO 2 ) has been proposed.
  • an air conditioner called a chiller
  • heat or heat is generated by a heat source device arranged outside the building.
  • water, antifreeze, etc. are heated and cooled by a heat exchanger arranged in the heat source machine, and this is transferred to a fan coil unit, a panel heater, etc., which are indoor units, for cooling or heating (for example, Patent Documents) 1).
  • a waste heat recovery type chiller which is connected to four water pipes between the heat source unit and the indoor unit, supplies cooled and heated water at the same time, and can freely select cooling or heating in the indoor unit (For example, refer to Patent Document 2).
  • a refrigerant such as water is circulated from the outdoor unit to the repeater and a heat medium such as water is circulated from the repeater to the indoor unit.
  • a heat medium such as water is circulated from the repeater to the indoor unit.
  • Japanese Patent Laying-Open No. 2005-140444 page 4, FIG. 1, etc.
  • JP-A-5-280818 (4th, 5th page, FIG. 1 etc.)
  • Japanese Patent Laid-Open No. 2001-289465 pages 5 to 8, FIG. 1, FIG. 2, etc.
  • JP 2003-343936 A (Page 5, FIG. 1)
  • WO 2010/050002 pages 11 to 15, FIG. 8 etc.
  • the blower is stopped during the defrosting operation in order to prevent cold air from entering the room due to outside air taking in. To do. By doing so, the heating operation according to the requested indoor heating load cannot be executed.
  • the present invention has been made to solve the above-described problems, and an object thereof is to provide an air conditioner having a plurality of defrosting operation modes and maintaining comfort.
  • An air conditioner includes a compressor, a heat source side heat exchanger, a plurality of expansion devices, a refrigerant side flow path of a plurality of heat exchangers between heat media, and a plurality of refrigerant flow switching devices that switch a refrigerant circulation path.
  • a refrigerant circulation circuit that circulates the heat source side refrigerant by connecting with a refrigerant pipe, a plurality of heat medium transfer devices provided corresponding to each of the plurality of heat exchangers between heat media, and a plurality of use side heat exchangers
  • a heat medium circulation circuit that circulates the heat medium by connecting the heat medium side flow paths of the plurality of heat medium heat exchangers with a heat medium transport pipe, and bypasses at least the heat medium heat exchanger
  • an air conditioner that includes a bypass pipe installed so that the heat source side refrigerant can be returned to the compressor, and in which the heat source side refrigerant and the heat medium exchange heat in the heat exchanger between heat mediums.
  • the refrigerant flow switching device to the heating side In other words, the heat medium is heated by at least one of the heat exchangers between the heat mediums, and at least one of the heat medium transfer devices is operated and heated to at least one of the use side heat exchangers.
  • the refrigerant flow switching device In the heating operation mode for supplying the heat medium, and during the heating operation mode, the refrigerant flow switching device is switched to a cooling side to operate at least one of the heat medium transport devices, and the heat exchange between the heat media
  • a heat recovery defrosting operation mode in which the heat source side refrigerant absorbs heat of the heat medium in at least one of the heaters and melts frost formed around the heat source side heat exchanger; and during the heating operation mode, Bypass defrosting operation mode in which frost formed around the heat source side heat exchanger is melted by switching the refrigerant flow switching device to the cooling side and flowing a part or all of the heat source side refrigerant to the bypass pipe.
  • frost formed around the heat source side heat exchanger is melted by switching the refrigerant flow switching device to the cooling side and flowing a part or all of the heat source side refrigerant to the bypass pipe.
  • the air conditioning apparatus has the “heat recovery defrosting operation mode” and the “bypass defrosting operation mode” as the defrosting operation mode, one of the defrosting operation modes is executed. It is possible to maintain comfort.
  • FIG. 1 is a schematic diagram illustrating an installation example of an air conditioner according to an embodiment of the present invention. Based on FIG. 1, the installation example of an air conditioning apparatus is demonstrated.
  • This air conditioner uses a refrigeration cycle (refrigerant circulation circuit A, heat medium circulation circuit B) that circulates refrigerant (heat source side refrigerant, heat medium) so that each indoor unit can be in the cooling mode or the heating mode as an operation mode. You can choose freely.
  • FIG. 1 schematically shows an entire air conditioner connecting a plurality of indoor units 3.
  • the relationship of the size of each component may be different from the actual one.
  • the air-conditioning apparatus includes an outdoor unit (heat source unit) 1, a plurality of indoor units 3, and one relay interposed between the outdoor unit 1 and the indoor unit 3. And a unit 2.
  • the relay unit 2 performs heat exchange between the heat source side refrigerant and the heat medium.
  • the outdoor unit 1 and the relay unit 2 are connected by a refrigerant pipe 4 that conducts the heat source side refrigerant.
  • the relay unit 2 and the indoor unit 3 are connected by a pipe (heat medium transport pipe) 5 that conducts the heat medium.
  • the cold or warm heat generated by the outdoor unit 1 is delivered to the indoor unit 3 via the relay unit 2.
  • the outdoor unit 1 is usually disposed in an outdoor space 6 that is a space (for example, a rooftop) outside a building 9 such as a building, and supplies cold or hot energy to the indoor unit 3 via the relay unit 2. .
  • the indoor unit 3 is disposed at a position where cooling air or heating air can be supplied to the indoor space 7 that is a space (for example, a living room) inside the building 9, and the cooling air is supplied to the indoor space 7 that is the air-conditioning target space. Alternatively, heating air is supplied.
  • the relay unit 2 is configured as a separate housing from the outdoor unit 1 and the indoor unit 3 so as to be installed at a position different from the outdoor space 6 and the indoor space 7.
  • the refrigerant pipe 4 and the pipe 5 are respectively connected to transmit cold heat or hot heat supplied from the outdoor unit 1 to the indoor unit 3.
  • the heat source side refrigerant is conveyed from the outdoor unit 1 to the relay unit 2 through the refrigerant pipe 4.
  • the transported heat source side refrigerant exchanges heat with the heat medium in the heat exchanger related to heat medium in the relay unit 2 (heat exchanger 25 described later), and heats or cools the heat medium. That is, hot water or cold water is produced by the heat exchanger between heat media.
  • the hot water or cold water produced by the relay unit 2 is transported to the indoor unit 3 through the pipe 5 by a heat medium transport device (a pump 31 described later), and the indoor unit 3 performs heating operation (warm water).
  • the operation state may be as long as it is necessary) or a cooling operation (as long as the operation state requires cold water).
  • heat source side refrigerant examples include single refrigerants such as R-22, R-134a, and R-32, pseudo-azeotropic mixed refrigerants such as R-410A and R-404A, and non-azeotropic mixed refrigerants such as R-407C.
  • a refrigerant or mixture thereof containing a double bond in the chemical formula and having a relatively low global warming coefficient such as CF 3 CF ⁇ CH 2 , or a natural refrigerant such as CO 2 or propane can be used.
  • heat medium for example, water, antifreeze, a mixture of water and antifreeze, a mixture of water and an additive having a high anticorrosive effect, or the like can be used.
  • the outdoor unit 1 and the relay unit 2 use two refrigerant pipes 4, and the relay unit 2 and each indoor unit 3 have two. These pipes 5 are connected to each other.
  • each unit outdoor unit 1, indoor unit 3, and relay unit 2 using two pipes (refrigerant pipe 4, pipe 5). Construction is easy.
  • the relay unit 2 is installed in a space such as the back of the ceiling (hereinafter simply referred to as a space 8) that is inside the building 9 but is different from the indoor space 7.
  • a space 8 such as the back of the ceiling (hereinafter simply referred to as a space 8) that is inside the building 9 but is different from the indoor space 7.
  • the relay unit 2 may be installed anywhere as long as it is outside the ceiling or other than the living space and has some ventilation with the outside. It can also be installed in a space that is ventilated. Further, the relay unit 2 can be installed in the vicinity of the outdoor unit 1. However, it should be noted that if the distance from the relay unit 2 to the indoor unit 3 is too long, the transfer power of the heat medium becomes considerably large, so that the effect of energy saving is reduced.
  • FIG. 1 shows an example in which the outdoor unit 1 is installed in the outdoor space 6, but the present invention is not limited to this.
  • the outdoor unit 1 may be installed in an enclosed space such as a machine room with a ventilation opening. If the waste heat can be exhausted outside the building 9 by an exhaust duct, the outdoor unit 1 may be installed inside the building 9. It may be installed, or may be installed inside the building 9 when the water-cooled outdoor unit 1 is used. Even if the outdoor unit 1 is installed in such a place, no particular problem occurs.
  • the indoor unit 3 is a ceiling cassette type
  • the present invention is not limited to this, and the indoor unit 3 is directly or directly connected to the indoor space 7 such as a ceiling embedded type or a ceiling suspended type.
  • the air for heating or the air for cooling can be blown out, any kind may be used.
  • the number of connected outdoor units 1, indoor units 3, and relay units 2 is not limited to the number shown in FIG. 1, but according to the building 9 in which the air conditioner according to the present embodiment is installed. What is necessary is just to determine the number.
  • the plurality of relay units 2 When a plurality of relay units 2 are connected to one outdoor unit 1, the plurality of relay units 2 may be installed in a shared space in a building such as a building or in a space such as a ceiling. it can. By doing so, an air-conditioning load can be covered with the heat exchanger between heat media in each relay unit 2.
  • the indoor unit 3 can be installed at a distance or height within the allowable transfer range of the heat medium transfer device in each relay unit 2, and can be arranged on the entire building such as a building. .
  • FIG. 2 is a schematic circuit configuration diagram showing an example of a circuit configuration of the air conditioning apparatus according to the present embodiment (hereinafter referred to as the air conditioning apparatus 100).
  • the structure of the air conditioning apparatus 100 ie, the effect
  • the outdoor unit 1 and the relay unit 2 include a heat exchanger related to heat medium (refrigerant-water heat exchanger) 25 a and a heat exchanger related to heat medium (refrigerant—) provided in the relay unit 2.
  • the refrigerant pipe 4 is connected via a water heat exchanger 25b.
  • the relay unit 2 and the indoor unit 3 are connected by the piping 5 through the heat exchanger related to heat medium 25a and the heat exchanger related to heat medium 25b.
  • Outdoor unit 1 In the outdoor unit 1, a compressor 10, a first refrigerant flow switching device 11 such as a four-way valve, a heat source side heat exchanger 12, and an accumulator 19 are connected and connected in series through a refrigerant pipe 4. Yes.
  • the outdoor unit 1 is also provided with a refrigerant connection pipe 4a, a refrigerant connection pipe 4b, a check valve 13a, a check valve 13b, a check valve 13c, and a check valve 13d.
  • relay connection pipe 4a, refrigerant connection pipe 4b, check valve 13a, check valve 13b, check valve 13c, and check valve 13d are provided.
  • the flow of the heat source side refrigerant flowing into the unit 2 can be in a certain direction.
  • the compressor 10 sucks the heat source side refrigerant, compresses the heat source side refrigerant, and transfers it to the refrigerant circulation circuit A in a high temperature / high pressure state. Good.
  • the first refrigerant flow switching device 11 has a flow of the heat source side refrigerant in the heating operation mode (in the heating only operation mode and the heating main operation mode) and in the cooling operation mode (in the all cooling operation mode and the cooling main operation mode). ) To switch the flow of the heat source side refrigerant.
  • the heat source side heat exchanger 12 functions as an evaporator during heating operation, functions as a condenser (or radiator) during cooling operation, and fluid such as air supplied from a blower such as a fan (not shown) and the heat source side Heat exchange is performed with the refrigerant, and the heat source side refrigerant is vaporized or condensed and liquefied.
  • the accumulator 19 is provided on the suction side of the compressor 10 and stores excess refrigerant due to a difference between the heating operation and the cooling operation, or excess refrigerant with respect to a transient change in operation.
  • the check valve 13c is provided in the refrigerant pipe 4 between the relay unit 2 and the first refrigerant flow switching device 11, and the heat source side refrigerant is only in a predetermined direction (direction from the relay unit 2 to the outdoor unit 1). It allows flow.
  • the check valve 13a is provided in the refrigerant pipe 4 between the heat source side heat exchanger 12 and the relay unit 2, and flows the heat source side refrigerant only in a predetermined direction (direction from the outdoor unit 1 to the relay unit 2). It is acceptable.
  • the check valve 13d is provided in the refrigerant connection pipe 4a and causes the heat source side refrigerant discharged from the compressor 10 to flow through the relay unit 2 during the heating operation.
  • the check valve 13b is provided in the refrigerant connection pipe 4b, and causes the heat source side refrigerant returned from the relay unit 2 during the heating operation to flow to the suction side of the compressor 10.
  • the refrigerant connection pipe 4 a includes a refrigerant pipe 4 between the first refrigerant flow switching device 11 and the check valve 13 c, and a refrigerant pipe 4 between the check valve 13 a and the relay unit 2.
  • the refrigerant connection pipe 4b includes a refrigerant pipe 4 between the check valve 13c and the relay unit 2, a refrigerant pipe 4 between the heat source side heat exchanger 12 and the check valve 13a, Are connected.
  • FIG. 2 shows an example in which the refrigerant connection pipe 4a, the refrigerant connection pipe 4b, the check valve 13a, the check valve 13b, the check valve 13c, and the check valve 13d are provided.
  • the present invention is not limited to this, and these are not necessarily provided.
  • Each indoor unit 3 is equipped with a use side heat exchanger 35.
  • the use side heat exchanger 35 is connected to the heat medium flow control device 34 and the second heat medium flow switching device 33 of the relay unit 2 by the pipe 5.
  • the use side heat exchanger 35 exchanges heat between air supplied from a blower such as a fan (not shown) and a heat medium, and supplies heating air or cooling air to be supplied to the indoor space 7. Is to generate
  • a duct 43 and the like are attached to the use side heat exchanger 35. And it can also ventilate by taking in outside air via the duct 43 with respect to the indoor space 7 using the air blower which is not illustrated.
  • FIG. 2 shows an example in which four indoor units 3 are connected to the relay unit 2, which are illustrated as an indoor unit 3 a, an indoor unit 3 b, an indoor unit 3 c, and an indoor unit 3 d from the upper side of the drawing.
  • the use side heat exchanger 35 also has a use side heat exchanger 35a, a use side heat exchanger 35b, a use side heat exchanger 35c, and a use side heat exchanger from the upper side of the drawing. It is illustrated as 35d.
  • the number of indoor units 3 connected is not limited to the four shown in FIG.
  • FIG. 2 shows an example in which the duct 43 is connected to the indoor unit 3a.
  • the indoor unit 3 to which the duct 43 can be connected is not limited to one, and the indoor unit 3b to the indoor unit can be connected. It may be connected to any of 3d.
  • the relay unit 2 includes at least two or more heat exchangers for heat medium 25, two expansion devices 26, two opening / closing devices (opening / closing device 27, opening / closing device 29), and two second refrigerant flow switching.
  • Device 28 two heat medium transfer devices (hereinafter referred to as pump 31), four first heat medium flow switching devices 32, four second heat medium flow switching devices 33, and four heat media A flow rate adjusting device 34 is mounted.
  • the two heat exchangers for heat medium 25 are provided with a condenser (when the heat is supplied to the indoor unit 3 in the heating operation).
  • a condenser when the heat is supplied to the indoor unit 3 in the heating operation.
  • the indoor unit 3 When supplying cold heat to the indoor unit 3 that is in the cooling operation as a radiator, it functions as an evaporator, performs heat exchange between the heat-source-side refrigerant and the heat medium, and is generated by the outdoor unit 1
  • the cold heat or warm heat stored in the side refrigerant is transmitted to the heat medium.
  • the heat exchanger related to heat medium 25a is provided between the expansion device 26a and the second refrigerant flow switching device 28a in the refrigerant circuit A, and serves to cool the heat medium in the cooling / heating mixed operation mode.
  • the heat exchanger related to heat medium 25b is provided between the expansion device 26b and the second refrigerant flow switching device 28b in the refrigerant circulation circuit A, and serves to heat the heat medium in the cooling / heating mixed operation mode. Is.
  • the two expansion devices 26 have functions as pressure reducing valves and expansion valves, and expand the heat source side refrigerant by reducing the pressure.
  • the expansion device 26a is provided on the upstream side of the heat exchanger related to heat medium 25a in the flow of the heat source side refrigerant during the cooling operation.
  • the expansion device 26b is provided on the upstream side of the heat exchanger related to heat medium 25b in the flow of the heat source side refrigerant during the cooling operation.
  • the two expansion devices 26 may be constituted by devices whose opening degree can be variably controlled, for example, electronic expansion valves.
  • the two opening / closing devices are configured by electromagnetic valves or the like that can be opened and closed by energization, and open / close the refrigerant pipe 4. That is, the opening and closing of the two opening / closing devices is controlled according to the operation mode, and the flow path of the heat source side refrigerant is switched.
  • the opening / closing device 27 is provided in the refrigerant pipe 4 on the inlet side of the heat-source-side refrigerant (the refrigerant pipe 4 located at the lowest level in the drawing among the refrigerant pipes 4 connecting the outdoor unit 1 and the relay unit 2).
  • the opening / closing device 29 is provided in a pipe (bypass pipe 20) connecting the refrigerant pipe 4 on the inlet side of the heat source side refrigerant and the refrigerant pipe 4 on the outlet side.
  • the opening / closing device 27 and the opening / closing device 29 may be any devices that can switch the refrigerant flow path.
  • an electronic expansion valve or the like that can variably control the opening degree may be used.
  • the two second refrigerant flow switching devices 28 are constituted by, for example, a four-way valve or the like, and the heat exchanger related to heat medium according to the operation mode.
  • the flow of the heat source side refrigerant is switched so that 25 acts as a condenser or an evaporator.
  • the second refrigerant flow switching device 28a is provided on the downstream side of the heat exchanger related to heat medium 25a in the flow of the heat source side refrigerant during the cooling operation.
  • the second refrigerant flow switching device 28b is provided on the downstream side of the heat exchanger related to heat medium 25b in the flow of the heat source side refrigerant in the cooling only operation mode.
  • the two pumps 31 (pump 31a and pump 31b) circulate the heat medium that conducts the pipe 5 to the heat medium circuit B.
  • the pump 31 a is provided in the pipe 5 between the heat exchanger related to heat medium 25 a and the second heat medium flow switching device 33.
  • the pump 31 b is provided in the pipe 5 between the heat exchanger related to heat medium 25 b and the second heat medium flow switching device 33.
  • the two pumps 31 may be configured by, for example, capacity-controllable pumps, and the flow rate thereof may be adjusted according to the load in the indoor unit 3.
  • the four first heat medium flow switching devices 32 are configured by three-way valves or the like, and heat the flow of the heat medium. Switching between the heat exchanger for medium 25a and the heat exchanger 25b for heat medium is performed.
  • the number of first heat medium flow switching devices 32 is set according to the number of indoor units 3 installed (here, four). In the first heat medium flow switching device 32, one of the three sides is in the heat exchanger 25a, one of the three is in the heat exchanger 25b, and one of the three is in the heat medium flow rate. Each is connected to the adjustment device 34 and provided on the outlet side of the heat medium flow path of the use side heat exchanger 35.
  • the switching of the heat medium flow path includes not only complete switching from one to the other but also partial switching from one to the other.
  • the four second heat medium flow switching devices 33 are configured by three-way valves or the like, and heat the flow of the heat medium. Switching between the heat exchanger for medium 25a and the heat exchanger 25b for heat medium is performed.
  • the second heat medium flow switching device 33 is provided in a number (four in this case) corresponding to the number of indoor units 3 installed.
  • one of the three heat transfer medium heat exchangers 25a, one of the three heat transfer medium heat exchangers 25b, and one of the three heat transfer side heats. Each is connected to the exchanger 35 and provided on the inlet side of the heat medium flow path of the use side heat exchanger 35.
  • the second heat medium flow switching device 33a, the second heat medium flow switching device 33b, the second heat medium flow switching device 33c, and the second heat medium flow switching are performed from the upper side of the drawing. Illustrated as device 33d.
  • the switching of the heat medium flow path includes not only complete switching from one to the other but also partial switching from one to the other.
  • the four heat medium flow control devices 34 are configured by two-way valves or the like that can control the opening area, and control the flow rate of the heat medium flowing through the pipe 5. To do.
  • the number of the heat medium flow control devices 34 is set according to the number of indoor units 3 installed (four in this case).
  • One of the heat medium flow control devices 34 is connected to the use side heat exchanger 35 and the other is connected to the first heat medium flow switching device 32, and is connected to the outlet side of the heat medium flow channel of the use side heat exchanger 35. Is provided.
  • the heat medium flow control device 34 adjusts the amount of the heat medium flowing into the indoor unit 3 according to the temperature of the heat medium flowing into the indoor unit 3 and the temperature of the heat medium flowing out, so that the optimum heat according to the indoor load is adjusted.
  • the medium amount can be provided to the indoor unit 3.
  • the heat medium flow rate adjustment device 34a, the heat medium flow rate adjustment device 34b, the heat medium flow rate adjustment device 34c, and the heat medium flow rate adjustment device 34d are illustrated from the upper side of the drawing.
  • the heat medium flow control device 34 may be provided on the inlet side of the heat medium flow path of the use side heat exchanger 35.
  • the heat medium flow control device 34 may be provided on the inlet side of the heat medium flow path of the use side heat exchanger 35 and between the second heat medium flow switching device 33 and the use side heat exchanger 35. Good.
  • the indoor unit 3 does not require a load such as stop or thermo OFF, the heat medium supply to the indoor unit 3 can be stopped by fully closing the heat medium flow control device 34.
  • the heat medium flow control device 34 may be omitted. Is possible.
  • the relay unit 2 is provided with a temperature sensor 40 (temperature sensor 40a, temperature sensor 40b) for detecting the temperature of the heat medium on the outlet side of the heat exchanger 25 between heat mediums.
  • Information (temperature information) detected by the temperature sensor 40 is sent to a control device 50 that performs overall control of the operation of the air conditioner 100, and the driving frequency of the compressor 10, the rotation speed of the blower not shown, and the first refrigerant. It is used for control such as switching of the flow path switching device 11, driving frequency of the pump 31, switching of the second refrigerant flow path switching device 28, switching of the flow path of the heat medium, adjustment of the heat medium flow rate of the indoor unit 3. become.
  • control device 50 is shown as an example in a state where it is mounted separately from each unit, the present invention is not limited to this. At least one of the outdoor unit 1, the indoor unit 3, and the relay unit 2, or Each unit may be mounted so as to be communicable.
  • control apparatus 50 is comprised by the microcomputer etc., Based on the detection information in various detection means, and the instruction
  • the driving parts such as the second heat medium flow switching device 33, the expansion device 26, the second refrigerant flow switching device 28, etc.) are controlled, and each operation mode to be described later is executed.
  • the pipe 5 that conducts the heat medium is composed of one that is connected to the heat exchanger related to heat medium 25a and one that is connected to the heat exchanger related to heat medium 25b.
  • the pipe 5 is branched (here, four branches each) according to the number of indoor units 3 connected to the relay unit 2.
  • the pipe 5 is connected by a first heat medium flow switching device 32 and a second heat medium flow switching device 33. By controlling the first heat medium flow switching device 32 and the second heat medium flow switching device 33, the heat medium from the heat exchanger related to heat medium 25a flows into the use-side heat exchanger 35, or the heat medium Whether the heat medium from the intermediate heat exchanger 25b flows into the use side heat exchanger 35 is determined.
  • the compressor 10 In the air conditioner 100, the compressor 10, the first refrigerant flow switching device 11, the heat source side heat exchanger 12, the switching device 27, the switching device 29, the second refrigerant flow switching device 28, and heat exchange between heat media.
  • the refrigerant flow path, the expansion device 26 and the accumulator 19 of the container 25 are connected by the refrigerant pipe 4 to constitute the refrigerant circulation circuit A.
  • the switching device 33 is connected by the pipe 5 to constitute the heat medium circulation circuit B. That is, a plurality of use side heat exchangers 35 are connected in parallel to each of the heat exchangers 25 between heat mediums, and the heat medium circulation circuit B has a plurality of systems.
  • the outdoor unit 1 and the relay unit 2 are connected via the heat exchanger related to heat medium 25a and the heat exchanger related to heat medium 25b provided in the relay unit 2, and the relay unit 2 is connected.
  • the indoor unit 3 are also connected via the heat exchanger related to heat medium 25a and the heat exchanger related to heat medium 25b. That is, in the air conditioner 100, the heat source side refrigerant circulating in the refrigerant circuit A and the heat medium circulating in the heat medium circuit B exchange heat in the intermediate heat exchanger 25a and the intermediate heat exchanger 25b. It is like that.
  • the air conditioner 100 can realize an optimal cooling operation or heating operation according to the indoor load.
  • the air conditioner 100 can perform a cooling operation or a heating operation in the indoor unit 3 based on an instruction from each indoor unit 3. That is, the air conditioning apparatus 100 can perform the same operation for all the indoor units 3 and can perform different operations for each of the indoor units 3.
  • the operation mode executed by the air conditioner 100 includes a heating only operation mode in which all the driven indoor units 3 execute the heating operation, and a cooling only operation in which all the driven indoor units 3 execute the cooling operation.
  • each operation mode is demonstrated with the flow of the heat source side refrigerant
  • FIG. 3 is a refrigerant circuit diagram illustrating a refrigerant flow when the air-conditioning apparatus 100 is in the cooling only operation mode.
  • the cooling only operation mode will be described by taking as an example a case where a cooling load is generated in all of the use side heat exchangers 35a to 35d.
  • the piping represented by the thick line has shown the piping through which the heat source side refrigerant
  • the flow direction of the heat source side refrigerant is indicated by a solid line arrow, and the flow direction of the heat medium is indicated by a broken line arrow.
  • the first refrigerant flow switching device 11 is switched so that the heat source side refrigerant discharged from the compressor 10 flows into the heat source side heat exchanger 12.
  • the pump 31a and the pump 31b are driven, the heat medium flow control devices 34a to 34d are opened, and the heat medium heat exchanger 25a and the heat medium heat exchanger 25b are used respectively.
  • the heat medium circulates between the side heat exchanger 35a and the use side heat exchanger 35d.
  • the second refrigerant flow switching device 28a and the second refrigerant flow switching device 28b are switched to the cooling side, the opening / closing device 27 is open, and the opening / closing device 29 is closed.
  • the low-temperature and low-pressure refrigerant is compressed by the compressor 10 and discharged as a high-temperature and high-pressure gas refrigerant.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 10 passes through the heat source side heat exchanger 12 via the first refrigerant flow switching device 11, and is the air in the outdoor space 6 (hereinafter referred to as outside air).
  • Heat exchange is performed to obtain a high-temperature / high-pressure liquid or a two-phase refrigerant, and after passing through the check valve 13a, the refrigerant connection pipe 4a is conducted and flows out of the outdoor unit 1.
  • the high-temperature and high-pressure liquid or two-phase refrigerant that has flowed out of the outdoor unit 1 flows into the relay unit 2 through the refrigerant pipe 4.
  • the high-temperature / high-pressure liquid or two-phase refrigerant that has flowed into the relay unit 2 passes through the opening / closing device 27, and is branched and expanded by the expansion device 26a and the expansion device 26b to become a low-temperature / low-pressure two-phase refrigerant.
  • These two-phase refrigerant flows into the heat exchanger related to heat medium 25a and the heat exchanger related to heat medium 25b, evaporates while absorbing heat from the heat medium circulating in the heat medium circuit B, and becomes a low-temperature gas refrigerant. .
  • the pipe 4 is conducted, passes through the check valve 13 c, and is sucked again into the compressor 10 through the first refrigerant flow switching device 11 and the accumulator 19.
  • the expansion device 26 calculates a value obtained by converting the pressure of the heat-source-side refrigerant flowing between the heat exchanger 25 between the heat medium 25 and the expansion device 26 into a saturation temperature and the temperature on the outlet side of the heat exchanger 25 between the heat media.
  • the opening degree is controlled so that the superheat (superheat degree) obtained as the difference becomes constant.
  • the saturation temperature obtained by converting the temperature at the intermediate position may be used instead. In this case, it is not necessary to install a pressure sensor, and the system can be configured at low cost.
  • the cold heat of the heat source side refrigerant is transmitted to the heat medium in both the heat exchangers 25a and 25b, and the cooled heat medium is pressurized by the pump 31a and the pump 31b. It flows out and flows into the use side heat exchanger 35a to the use side heat exchanger 35d via the second heat medium flow switching device 33a to the second heat medium flow switching device 33d.
  • the heat medium absorbs heat from the indoor air in the use side heat exchanger 35a to the use side heat exchanger 35d, thereby cooling the indoor space 7.
  • the heat medium flows out from the use side heat exchanger 35a to the use side heat exchanger 35d and flows into the heat medium flow control device 34a to the heat medium flow control device 34d.
  • the use side heat exchanger 35a is controlled by the operation of the heat medium flow control device 34a to the heat medium flow control device 34d so that the flow rate of the heat medium is controlled to a flow rate necessary to cover the air conditioning load required in the other room. It flows into the use side heat exchanger 35d.
  • the heat medium flowing out from the heat medium flow control device 34a to the heat medium flow control device 34d passes through the first heat medium flow switching device 32a to the first heat medium flow switching device 32d, and then the heat exchanger related to heat medium 25a.
  • the heat medium is directed from the second heat medium flow switching device 33 to the first heat medium flow switching device 32 via the heat medium flow control device 34.
  • the air conditioning load required in the indoor space 7 is the temperature detected by the temperature sensor 40 or the temperature detected by the temperature sensor 40 and the temperature of the heat medium flowing out from the use side heat exchanger 35. This can be covered by controlling the difference to keep it at the target value.
  • the outlet temperature of the heat exchanger related to heat medium 25 either the temperature sensor 40a or the temperature sensor 40b may be used, or an average temperature of these may be used.
  • the first heat medium flow switching device 32 and the second heat medium flow switching device 33 seem to secure a flow path that flows to both the heat medium heat exchanger 25a and the heat medium heat exchanger 25b.
  • the opening degree is controlled to an intermediate opening degree or an opening degree corresponding to the heat medium temperature at the outlet of the heat exchanger related to heat medium 25a and the heat exchanger related to heat medium 25b.
  • the usage-side heat exchanger 35 should be controlled by the temperature difference between the inlet and the outlet, but the temperature of the heat medium on the inlet side of the usage-side heat exchanger 35 is the temperature detected by the temperature sensor 40. The number of temperature sensors can be reduced by using the temperature sensor 40, and the system can be configured at low cost.
  • the cooling only operation mode When the cooling only operation mode is executed, it is not necessary to flow the heat medium to the use side heat exchanger 35 (including the thermo-off) having no heat load, so the flow path is closed by the heat medium flow control device 34 and the use side The heat medium is prevented from flowing to the heat exchanger 35.
  • the heat medium flows because all of the use side heat exchangers 35a to 35d have a heat load.
  • the corresponding heat medium flow control device 34 is used. Should be fully closed. Then, when a heat load is generated again, the corresponding heat medium flow control device 34 is opened, and the heat medium is circulated. The same applies to other operation modes described below.
  • FIG. 4 is a refrigerant circuit diagram illustrating a refrigerant flow when the air-conditioning apparatus 100 is in the heating only operation mode.
  • the heating only operation mode will be described by taking as an example a case where a heating load is generated in all of the use side heat exchanger 35a to the use side heat exchanger 35d.
  • the piping represented by the thick line has shown the piping through which the heat source side refrigerant
  • the flow direction of the heat source side refrigerant is indicated by solid line arrows, and the flow direction of the heat medium is indicated by broken line arrows.
  • the first refrigerant flow switching device 11 is connected to the relay unit without passing the heat source side refrigerant discharged from the compressor 10 through the heat source side heat exchanger 12.
  • Switch to 2 In the relay unit 2, the pump 31a and the pump 31b are driven, the heat medium flow control devices 34a to 34d are opened, and the heat medium heat exchanger 25a and the heat medium heat exchanger 25b are used respectively.
  • the heat medium circulates between the side heat exchanger 35a and the use side heat exchanger 35d.
  • the second refrigerant flow switching device 28a and the second refrigerant flow switching device 28b are switched to the heating side, the opening / closing device 27 is closed, and the opening / closing device 29 is open.
  • the low-temperature and low-pressure refrigerant is compressed by the compressor 10 and discharged as a high-temperature and high-pressure gas refrigerant.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 10 passes through the first refrigerant flow switching device 11, conducts through the refrigerant connection pipe 4 a, passes through the check valve 13 d, and flows out of the outdoor unit 1.
  • the high-temperature and high-pressure gas refrigerant that has flowed out of the outdoor unit 1 flows into the relay unit 2 through the refrigerant pipe 4.
  • the high-temperature and high-pressure gas refrigerant that has flowed into the relay unit 2 is branched and passes through the second refrigerant flow switching device 28a and the second refrigerant flow switching device 28b, and the heat exchanger related to heat medium 25a and heat between the heat media. It flows into each of the exchangers 25b.
  • the high-temperature and high-pressure gas refrigerant flowing into the heat exchanger related to heat medium 25a and the heat exchanger related to heat medium 25b is condensed and liquefied while dissipating heat to the heat medium circulating in the heat medium circuit B, and becomes a high-pressure liquid refrigerant. .
  • the liquid refrigerant flowing out of the heat exchanger related to heat medium 25a and the heat exchanger related to heat medium 25b is expanded by the expansion device 26a and the expansion device 26b to become a low-temperature, low-pressure two-phase refrigerant.
  • These two-phase refrigerants merge, flow out of the relay unit 2 through the opening / closing device 29, and flow into the outdoor unit 1 again through the refrigerant pipe 4.
  • the refrigerant that has flowed into the outdoor unit 1 is conducted through the refrigerant connection pipe 4b, passes through the check valve 13b, and flows into the heat source side heat exchanger 12 that functions as an evaporator.
  • the heat source side refrigerant flowing into the heat source side heat exchanger 12 absorbs heat from the outside air in the heat source side heat exchanger 12 and becomes a low-temperature / low-pressure gas refrigerant.
  • the low-temperature and low-pressure gas refrigerant flowing out from the heat source side heat exchanger 12 is again sucked into the compressor 10 via the first refrigerant flow switching device 11 and the accumulator 19.
  • the expansion device 26 has a value obtained by converting the pressure of the heat-source-side refrigerant flowing between the heat exchanger related to heat medium 25 and the expansion device 26 into a saturation temperature, and the temperature on the outlet side of the heat exchanger related to heat medium 25.
  • the degree of opening is controlled so that the subcool (degree of supercooling) obtained as a difference from the above becomes constant.
  • the heat of the heat source side refrigerant is transmitted to the heat medium in both the heat exchanger related to heat medium 25a and the heat exchanger related to heat medium 25b, and the heated heat medium is piped 5 by the pump 31a and the pump 31b.
  • the inside will be allowed to flow.
  • the heat medium pressurized and discharged by the pump 31a and the pump 31b passes through the second heat medium flow switching device 33a to the second heat medium flow switching device 33d, and the use side heat exchanger 35a to the use side heat exchange.
  • the indoor space 7 is heated by the heat medium radiating heat to the indoor air by the use side heat exchanger 35a to the use side heat exchanger 35d.
  • the heat medium flows out from the use side heat exchanger 35a to the use side heat exchanger 35d and flows into the heat medium flow control device 34a to the heat medium flow control device 34d.
  • the heat medium flow control device 34a to the heat medium flow control device 34d control the flow rate of the heat medium to a flow rate necessary to cover the air conditioning load required indoors, so that the use-side heat exchanger 35a. It flows into the use side heat exchanger 35d.
  • the heat medium flowing out from the heat medium flow control device 34a to the heat medium flow control device 34d passes through the first heat medium flow switching device 32a to the first heat medium flow switching device 32d, and then the heat exchanger related to heat medium 25a.
  • the heat quantity flowing into the heat exchanger related to heat medium 25b and supplied to the indoor space 7 through the indoor unit 3 is received from the refrigerant side and sucked into the pump 31a and the pump 31b again.
  • the heat medium is directed from the second heat medium flow switching device 33 to the first heat medium flow switching device 32 via the heat medium flow control device 34.
  • the air conditioning load required in the indoor space 7 is the temperature detected by the temperature sensor 40 or the temperature detected by the temperature sensor 40 and the temperature of the heat medium flowing out from the use side heat exchanger 35. This can be covered by controlling the difference to keep it at the target value.
  • the outlet temperature of the heat exchanger related to heat medium 25 either the temperature sensor 40a or the temperature sensor 40b may be used, or an average temperature of these may be used.
  • the first heat medium flow switching device 32 and the second heat medium flow switching device 33 seem to secure a flow path that flows to both the heat medium heat exchanger 25a and the heat medium heat exchanger 25b.
  • the opening degree is controlled to an intermediate opening degree or an opening degree corresponding to the heat medium temperature at the outlet of the heat exchanger related to heat medium 25a and the heat exchanger related to heat medium 25b.
  • the usage-side heat exchanger 35 should be controlled by the temperature difference between the inlet and the outlet, but the temperature of the heat medium on the inlet side of the usage-side heat exchanger 35 is the temperature detected by the temperature sensor 40. The number of temperature sensors can be reduced by using the temperature sensor 40, and the system can be configured at low cost.
  • FIG. 5 is a refrigerant circuit diagram illustrating a refrigerant flow when the air-conditioning apparatus 100 is in the cooling / heating mixed operation mode.
  • FIG. 5 among the cooling and heating mixed operation in which the thermal load is generated in any one of the use side heat exchangers 35 and the cooling load is generated in the rest of the use side heat exchangers 35.
  • the heating main operation mode will be described.
  • tube represented by the thick line has shown the piping through which the heat source side refrigerant
  • the flow direction of the heat source side refrigerant is indicated by solid line arrows, and the flow direction of the heat medium is indicated by broken line arrows.
  • the first refrigerant flow switching device 11 is connected to the relay unit without passing the heat source side refrigerant discharged from the compressor 10 through the heat source side heat exchanger 12.
  • Switch to 2 In the relay unit 2, the pump 31a and the pump 31b are driven to open the heat medium flow rate adjusting device 34a to the heat medium flow rate adjusting device 34d, and the heat exchange between the heat medium heat exchanger 25a and the use side heat exchange in which the heat load is generated.
  • the heat medium circulates between the heat exchanger 35 and the heat exchanger 35b between the heat medium and the use side heat exchanger 35 where the heat load is generated.
  • the second refrigerant flow switching device 28a is switched to the cooling side, the second refrigerant flow switching device 28b is switched to the heating side, the expansion device 26a is fully opened, the opening / closing device 27 is closed, and the opening / closing device 29 is closed. ing.
  • the low-temperature and low-pressure refrigerant is compressed by the compressor 10 and discharged as a high-temperature and high-pressure gas refrigerant.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 10 passes through the first refrigerant flow switching device 11, conducts through the refrigerant connection pipe 4 a, passes through the check valve 13 d, and flows out of the outdoor unit 1.
  • the high-temperature and high-pressure gas refrigerant that has flowed out of the outdoor unit 1 flows into the relay unit 2 through the refrigerant pipe 4.
  • the high-temperature and high-pressure gas refrigerant that has flowed into the relay unit 2 flows through the second refrigerant flow switching device 28b into the heat exchanger related to heat medium 25b that acts as a condenser.
  • the gas refrigerant flowing into the heat exchanger related to heat medium 25b is condensed and liquefied while dissipating heat to the heat medium circulating in the heat medium circuit B, and becomes liquid refrigerant.
  • the liquid refrigerant flowing out of the heat exchanger related to heat medium 25b is expanded by the expansion device 26b and becomes a low-pressure two-phase refrigerant.
  • This low-pressure two-phase refrigerant flows into the heat exchanger related to heat medium 25a acting as an evaporator via the expansion device 26a.
  • the low-pressure two-phase refrigerant that has flowed into the heat exchanger related to heat medium 25a evaporates by absorbing heat from the heat medium circulating in the heat medium circuit B, thereby cooling the heat medium.
  • the low-pressure two-phase refrigerant flows out of the heat exchanger related to heat medium 25a, flows out of the relay unit 2 through the second refrigerant flow switching device 28a, and flows into the outdoor unit 1 again through the refrigerant
  • the low-temperature and low-pressure two-phase refrigerant that has flowed into the outdoor unit 1 flows into the heat source side heat exchanger 12 that acts as an evaporator through the check valve 13b.
  • coolant which flowed into the heat source side heat exchanger 12 absorbs heat from external air in the heat source side heat exchanger 12, and turns into a low temperature and low pressure gas refrigerant.
  • the low-temperature and low-pressure gas refrigerant flowing out from the heat source side heat exchanger 12 is again sucked into the compressor 10 via the first refrigerant flow switching device 11 and the accumulator 19.
  • the opening degree of the expansion device 26b is controlled so that the subcooling (supercooling degree) of the outlet refrigerant of the heat exchanger related to heat medium 25b becomes a target value. Note that the expansion device 26b may be fully opened, and the subcool may be controlled by the expansion device 26a.
  • the heat of the heat source side refrigerant is transmitted to the heat medium in the heat exchanger related to heat medium 25b, and the heated heat medium is caused to flow in the pipe 5 by the pump 31b.
  • the cold heat of the heat source side refrigerant is transmitted to the heat medium by the heat exchanger related to heat medium 25a, and the cooled heat medium is caused to flow in the pipe 5 by the pump 31a.
  • the cooled heat medium that has been pressurized and flowed out by the pump 31a flows into the use-side heat exchanger 35 where the cold load is generated via the second heat medium flow switching device 33, and is pressurized by the pump 31b.
  • the heat medium that has flowed out then flows through the second heat medium flow switching device 33 into the use side heat exchanger 35 where the heat load is generated.
  • the second heat medium flow switching device 33 is switched to the direction in which the heat exchanger related to heat medium 25b and the pump 31b are connected.
  • the indoor unit 3 is switched to the direction in which the heat exchanger related to heat medium 25a and the pump 31a are connected. That is, the second heat medium flow switching device 33 can switch the heat medium supplied to the indoor unit 3 between heating and cooling.
  • the cooling operation of the indoor space 7 by the heat medium absorbing heat from the room air or the heating operation of the indoor space 7 by the heat medium radiating heat to the room air is performed.
  • the flow rate of the heat medium is controlled to a flow rate necessary to cover the air conditioning load required indoors by the action of the heat medium flow control device 34 and flows into the use side heat exchanger 35. Yes.
  • the heat medium that has been used for cooling operation and that has passed through the use-side heat exchanger 35 and has slightly increased in temperature passes through the heat medium flow control device 34 and the first heat medium flow switching device 32, and then the heat exchanger between heat media. It flows into 25a and is sucked into the pump 31a again.
  • the heat medium that has been used for heating operation and has passed through the use-side heat exchanger 35 and has slightly decreased in temperature passes through the heat medium flow control device 34 and the first heat medium flow switching device 32, and then the heat exchanger between heat media. It flows into 25b and is sucked into the pump 31a again.
  • the first heat medium flow switching device 32 is switched to the direction in which the heat exchanger related to heat medium 25b and the pump 31b are connected when the connected indoor unit 3 is in the heating operation mode,
  • the indoor unit 3 is switched to the direction in which the heat exchanger related to heat medium 25a and the pump 31a are connected.
  • the warm heat medium and the cold heat medium are not mixed by the action of the first heat medium flow switching device 32 and the second heat medium flow switching device 33, and the use side has a heat load and a heat load, respectively. It is introduced into the heat exchanger 35.
  • the heat medium used in the heating operation mode receives heat from the refrigerant as a heating application
  • the heat medium used in the cooling operation mode receives heat from the heat medium heat exchanger 25b.
  • the heat exchangers 25a, 25a, 25a, 25a, 25c, 25c, 25c, 25c, and 25b are exchanged with the refrigerant, and then are transferred to the pump 31a and the pump 31b.
  • the first heat medium flow switching device 32 via the heat medium flow control device 34 from the second heat medium flow switching device 33 on both the heating side and the cooling side.
  • the heat medium is flowing in the direction to
  • the air conditioning load required in the indoor space 7 is the difference between the temperature detected by the temperature sensor 40b on the heating side and the temperature of the heat medium flowing out from the use side heat exchanger 35 on the cooling side. This can be covered by controlling the difference between the temperature of the heat medium flowing out from the use side heat exchanger 35 and the temperature detected by the temperature sensor 40a as a target value.
  • a cooling load is generated in one of the use side heat exchangers 35, and the remaining heat of the use side heat exchanger 35 is a heating load.
  • the flow of the heat source side refrigerant in the refrigerant circuit A and the flow of the heat medium in the heat medium circuit B are the same as in the heating main operation mode.
  • the heat source side heat exchanger 12 in the outdoor unit 1 serves as an evaporator and performs heat exchange with the outside air. Therefore, when the outside air is low, the evaporation temperature of the heat source side heat exchanger 12 becomes lower, and the moisture of the outside air is frosted on the surface of the heat source side heat exchanger 12, which may reduce the heat exchange performance. It is done. Therefore, in the air conditioner 100, the outdoor unit 1 detects the evaporating temperature, for example, and when the detected evaporating temperature becomes too low, the defrosting operation mode for removing the frost on the surface of the heat source side heat exchanger 12 is performed. Like to do.
  • the heating only operation mode and the heating main operation mode correspond to the “heating operation mode” of the present invention.
  • the air conditioner 100 when the defrosting operation mode is carried out, the heat capacity that the heat medium had in the previous heating operation can be used. That is, the air conditioner 100 switches the first refrigerant flow switching device 11 to the cooling side during the heating operation mode, operates at least one of the pumps 31, and operates in at least one of the heat exchangers related to heat medium 25. The refrigerant absorbs the heat held by the heat medium and melts the frost formed around the heat source side heat exchanger 12 (heat recovery defrosting operation mode). By carrying out like this, in the air conditioning apparatus 100, it is possible to remove the frost of the surface of the heat source side heat exchanger 12 more rapidly than before. On the other hand, in the air conditioning apparatus 100, the heating operation mode in the use side heat exchanger 35 can be continued.
  • the first refrigerant flow switching device 11 is switched to the cooling side, and a part or all of the refrigerant flows through the bypass pipe 20 to surround the heat source side heat exchanger 12. It has a bypass defrosting operation mode that melts frost that has formed on the surface.
  • the temperature of the heat medium is raised through the heat exchanger related to heat medium 25 during the heating operation mode immediately before the defrosting operation mode is performed. And in the air conditioning apparatus 100, after detecting that the temperature of the raised heat medium detected by the temperature sensor 40 is higher than a set temperature (for example, 43 ° C.), the defrosting operation mode is performed. .
  • the air conditioning apparatus 100 can ensure the heat capacity
  • the air conditioner 100 uses the heat capacity possessed by the heat medium to perform “heat recovery defrosting operation”. Mode ".
  • the air conditioner 100 performs the “bypass defrosting operation mode” that does not use the heat capacity of the heat medium.
  • the set temperature can be changed to an arbitrary temperature.
  • the set temperature may include a usage-side air temperature detection device that detects the temperature of the air that is ventilated to the usage-side heat exchanger 35, and may be a value that is equal to or higher than the temperature detected by the usage-side air temperature detection device. preferable. If the temperature is set to such a temperature, either the “heat recovery defrosting operation mode” or the “bypass defrosting operation mode” can be executed while maintaining comfort.
  • the defrosting operation mode performed by the air conditioner 100 includes two types of defrosting operation modes (“heat recovery defrosting operation mode” and “bypass defrosting operation mode” corresponding to the flow of the heat source side refrigerant. ]).
  • the “heat recovery defrosting operation mode” performed during the heating only operation mode will be referred to as a “first heat recovery defrosting operation mode”.
  • the “heat recovery defrosting operation mode” performed during the heating main operation mode is referred to as a “second heat recovery defrosting operation mode”.
  • the “bypass defrosting operation mode” performed during the heating only operation mode will be referred to as a “first bypass defrosting operation mode”.
  • the “bypass defrosting operation mode” performed during the heating main operation mode is referred to as “second bypass defrosting operation mode”.
  • the “first heat recovery defrosting operation mode” performed during the heating only operation mode of the air-conditioning apparatus 100 further includes two types of defrosting operation modes (“first heat recovery operation” depending on the flow of the heat source side refrigerant. Defrosting operation mode (1) "," first heat recovery defrosting operation mode (2) ").
  • FIG. 6 is a refrigerant circuit diagram illustrating a refrigerant flow and a heat medium flow when the air-conditioning apparatus 100 is in the “first heat recovery defrosting operation mode (1)”.
  • the “first heat recovery defrosting operation mode (1)” will be described.
  • the piping represented by the thick line has shown the piping through which the heat source side refrigerant
  • the flow direction of the heat source side cooling is indicated by solid line arrows
  • the flow direction of the heat medium is indicated by broken line arrows.
  • first heat recovery defrosting operation mode (1) during the heating only operation mode of the air conditioner 100, moisture in the outside air is frosted on the heat source side heat exchanger 12 in the outdoor unit 1, This is a defrosting operation mode performed when the evaporation temperature is lowered.
  • the pump 31a and the pump 31b are driven, the heat medium flow control devices 34a to 34d are opened, and the heat medium heat exchanger 25a and the heat medium heat exchanger 25b are used respectively.
  • the heat medium circulates between the side heat exchanger 35a and the use side heat exchanger 35d.
  • the second refrigerant flow switching device 28a and the second refrigerant flow switching device 28b are switched to the cooling side, the opening / closing device 27 is open, and the opening / closing device 29 is closed. Further, the expansion device 26a and the expansion device 26b are fully opened.
  • the diaphragm device 26a and the diaphragm device 26b do not have to be fully opened.
  • the low-temperature and low-pressure refrigerant is compressed by the compressor 10 and discharged as a high-temperature and high-pressure gas refrigerant.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 10 passes through the first refrigerant flow switching device 11 and flows into the heat source side heat exchanger 12.
  • the refrigerant flowing into the heat source side heat exchanger 12 exchanges heat with the frosting part on the heat source side heat exchanger 12.
  • the frosting part on the heat source side heat exchanger 12 is melted by the high-temperature and high-pressure refrigerant.
  • the low-temperature and high-pressure refrigerant that has exchanged heat with the frosting section on the heat source side heat exchanger 12 flows out of the outdoor unit 1 after passing through the check valve 13a.
  • the low-temperature and high-pressure refrigerant that has flowed out of the outdoor unit 1 flows into the relay unit 2 through the refrigerant pipe 4.
  • the refrigerant that has flowed into the relay unit 2 passes through the opening / closing device 27, is branched, passes through the expansion device 26a and the expansion device 26b, and flows into the intermediate heat exchanger 25a and the intermediate heat exchanger 25b.
  • the low-temperature and high-pressure refrigerant that has flowed into the heat exchanger related to heat medium 25a and the heat exchanger related to heat medium 25b exchanges heat with the heat medium that has been used until now to become a high-temperature and high-pressure refrigerant.
  • FIG. 7 is a refrigerant circuit diagram illustrating a refrigerant flow and a heat medium flow when the air-conditioning apparatus 100 is in the “first heat recovery defrosting operation mode (2)”.
  • the “first heat recovery defrosting operation mode (2)” will be described.
  • the piping represented by the thick line has shown the piping through which the heat source side refrigerant
  • the flow direction of the heat source side cooling is indicated by solid line arrows
  • the flow direction of the heat medium is indicated by broken line arrows.
  • the “first heat recovery defrosting operation mode (2)” is the same as the “first heat recovery defrosting operation mode (1)”. This is a defrosting operation mode that is performed when moisture in the outside air is frosted on the heat source side heat exchanger 12 and the evaporation temperature is lowered. However, in the “first heat recovery defrosting operation mode (2)”, the flow of the heat source side refrigerant is different from that in the “first heat recovery defrosting operation mode (1)”. In the air conditioner 100, either the “first heat recovery defrosting operation mode (1)” or the “first heat recovery defrosting operation mode (2)” can be selected.
  • the heat source side refrigerant discharged from the compressor 10 is used as the heat source side heat exchange in the first refrigerant flow switching device 11. Switch to flow into vessel 12.
  • the pump 31a and the pump 31b are driven, the heat medium flow control devices 34a to 34d are opened, and the heat medium heat exchanger 25a and the heat medium heat exchanger 25b are used respectively.
  • the heat medium circulates between the side heat exchanger 35a and the use side heat exchanger 35d.
  • the second refrigerant flow switching device 28a and the second refrigerant flow switching device 28b both maintain the opening direction on the heating side, the opening / closing device 27 is closed, and the opening / closing device 29 is open. Further, the expansion devices 26a and 26b are fully opened.
  • the diaphragm device 26a and the diaphragm device 26b do not have to be fully opened.
  • the low-temperature and low-pressure refrigerant is compressed by the compressor 10 and discharged as a high-temperature and high-pressure gas refrigerant.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 10 passes through the first refrigerant flow switching device 11 and flows into the heat source side heat exchanger 12.
  • the refrigerant flowing into the heat source side heat exchanger 12 exchanges heat with the frosting part on the heat source side heat exchanger 12.
  • the frosting part on the heat source side heat exchanger 12 is melted by the high-temperature and high-pressure refrigerant.
  • the low-temperature and high-pressure refrigerant that has exchanged heat with the frosting section on the heat source side heat exchanger 12 flows out of the outdoor unit 1 after passing through the check valve 13a.
  • the low-temperature and high-pressure refrigerant that has flowed out of the outdoor unit 1 flows into the relay unit 2 through the refrigerant pipe 4.
  • the low-temperature and high-pressure gas refrigerant that has flowed into the relay unit 2 is branched and passes through the second refrigerant flow switching device 28a and the second refrigerant flow switching device 28b, and the heat exchanger related to heat medium 25a and heat between the heat media. It flows into each of the exchangers 25b.
  • the low-temperature and high-pressure refrigerant that has flowed into the heat exchanger related to heat medium 25a and the heat exchanger related to heat medium 25b exchanges heat with the heat medium that has been used until now to become a high-temperature and high-pressure refrigerant.
  • the refrigerant that has flowed out of the heat exchanger related to heat medium 25a and the heat exchanger related to heat medium 25b passes through the expansion device 26a and the expansion device 26b, flows out of the relay unit 2 via the opening / closing device 29, and is conducted through the refrigerant pipe 4. Then, it passes through the check valve 13 c and is sucked again into the compressor 10 through the first refrigerant flow switching device 11 and the accumulator 19.
  • the flow of the heat medium in the heat medium circuit B in the “first heat recovery defrosting operation mode” will be described.
  • the flow of the heat medium in the heat medium circuit B includes “first heat recovery defrosting operation mode (1)” shown in FIG. 6 and “first heat recovery defrosting operation mode ( 2) ". Therefore, hereinafter, the flow of the heat medium will be described by taking the “first heat recovery defrosting operation mode (2)” as an example.
  • the heat medium exchanges heat with the low-temperature and high-pressure gas refrigerant in both the heat exchangers between heat exchangers 25a and 25b, It becomes a low-temperature heat medium.
  • the heat medium that has been cooled to a low temperature by the heat exchanger related to heat medium 25a and the heat exchanger related to heat medium 25b is pressurized by the pump 31a and the pump 31b, and the second heat medium flow switching device 33a to the second heat medium flow path. It flows into the use side heat exchanger 35a to the use side heat exchanger 35d via the switching device 33d.
  • the second heat medium flow switching device 33 has an intermediate opening degree so that the heat medium conveyed from both the heat exchangers between heat exchangers 25a and 25b can be supplied to the indoor unit 3. Or it adjusts to the opening degree according to the heat medium temperature of the exit of the heat exchanger 25a between heat media, and the heat exchanger 25b between heat media.
  • the heat medium flows out from the use side heat exchanger 35a to the use side heat exchanger 35d and flows into the heat medium flow control device 34a to the heat medium flow control device 34d.
  • the heat medium flowing out from the heat medium flow control device 34a to the heat medium flow control device 34d passes through the first heat medium flow switching device 32a to the first heat medium flow switching device 32d.
  • the opening degree of the first heat medium flow switching device 32 is adjusted in the same manner as the second heat medium flow switching device 33, and the heat medium flow control device 34 is fully opened.
  • the heat medium that has passed through the first heat medium flow switching device 32a to the first heat medium flow switching device 32d flows into the heat exchanger related to heat medium 25a and the heat exchanger related to heat medium 25b, and again heat between the heat medium.
  • Heat exchange is performed with the refrigerant flowing through the exchanger 25a and the heat exchanger related to heat medium 25b, and after supplying heat to the refrigerant side, the refrigerant is sucked into the pump 31a and the pump 31b again.
  • the indoor unit 3 that has been performing the heating operation so far in the “first heat recovery defrosting operation mode” receives information that the outdoor unit 1 is in the defrosting operation mode, and uses the heat exchanger on the use side.
  • a blower hereinafter simply referred to as a fan
  • the indoor air temperature and the indoor unit blown air temperature can be detected, there is no problem even if the fan operation is continued until the indoor unit blown air temperature does not become lower than the indoor air temperature. Further, as long as the heat medium temperature at the outlet of the heat exchanger related to heat medium 25 detected by the temperature sensor 40 does not become lower than the indoor air temperature, the fan operation may be continued.
  • FIG. 8 is a refrigerant circuit diagram illustrating the refrigerant flow and the heat medium flow when the air-conditioning apparatus 100 is in the “second heat recovery defrosting operation mode”.
  • the “second heat recovery defrosting operation mode” will be described.
  • tube represented by the thick line has shown the piping through which the heat source side refrigerant
  • the flow direction of the heat source side cooling is indicated by a solid line arrow
  • the flow direction of the heat medium is indicated by a broken line arrow.
  • the heat source side refrigerant discharged from the compressor 10 in the first refrigerant flow switching device 11 is transferred to the heat source side heat exchanger 12. Switch to allow inflow.
  • the pump 31 a and the pump 31 b are driven, the heat medium flow control device 34 for the indoor unit 3 that is performing the cooling operation is opened, and the cooling operation is performed with the inter-heat medium heat exchanger 25 a.
  • the heat medium circulates between the indoor unit 3 and the use side heat exchanger 35, the heat medium flow control device 34 for the indoor unit 3 that is performing the heating operation is fully opened, and the heat exchanger 25b between heat mediums.
  • the heat medium circulates between the heat exchanger 35 and the use side heat exchanger 35 of the indoor unit 3 performing the heating operation.
  • both the second refrigerant flow switching device 28a and the second refrigerant flow switching device 28b maintain the opening direction on the cooling side, the opening / closing device 27 is open, and the opening / closing device 29 is closed. Further, the expansion device 26a is controlled so that the refrigerant state at the outlet of the heat exchanger related to heat medium 25a becomes gas, and the expansion device 26b is fully opened. The diaphragm device 26b does not have to be fully open.
  • the low-temperature and low-pressure refrigerant is compressed by the compressor 10 and discharged as a high-temperature and high-pressure gas refrigerant.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 10 passes through the first refrigerant flow switching device 11 and flows into the heat source side heat exchanger 12.
  • the refrigerant flowing into the heat source side heat exchanger 12 exchanges heat with the frosting part on the heat source side heat exchanger 12.
  • the frosting part on the heat source side heat exchanger 12 is melted by the high-temperature and high-pressure refrigerant.
  • the low-temperature and high-pressure refrigerant that has exchanged heat with the frosting section on the heat source side heat exchanger 12 flows out of the outdoor unit 1 after passing through the check valve 13a.
  • the low-temperature and high-pressure refrigerant that has flowed out of the outdoor unit 1 flows into the relay unit 2 through the refrigerant pipe 4.
  • the refrigerant that has flowed into the relay unit 2 passes through the opening / closing device 27, is branched, passes through the expansion device 26a and the expansion device 26b, and flows into the intermediate heat exchanger 25a and the intermediate heat exchanger 25b.
  • heat exchanger related to heat medium 25a heat exchange with the heat medium is continued by the action of the expansion device 26a, and a low-temperature heat medium for cooling is generated and supplied to the indoor unit 3.
  • the heat source side refrigerant that has lost its heat capacity due to the defrosting of the heat source side heat exchanger 12 is conveyed to the heat exchanger related to heat medium 25b, and heat exchange with the high temperature heat medium that has been in the heating operation until then. By carrying out, it is possible to ensure the heat capacity.
  • the heat medium lowered in temperature by the intermediate heat exchanger 25a and the heat medium lowered in the intermediate heat exchanger 25b are the pump 31a and the pump 31b. And flows into the use side heat exchanger 35a to the use side heat exchanger 35d via the second heat medium flow switching device 33a to the second heat medium flow switching device 33d.
  • the second heat medium flow switching device 33 switches to the direction in which the heat exchanger related to heat medium 25b and the pump 31b are connected when the connected indoor unit 3 is in the heating operation mode.
  • the connected indoor unit 3 is in the cooling operation mode, it is switched to the direction in which the heat exchanger related to heat medium 25a and the pump 31a are connected.
  • the heat medium flowing into the indoor unit 3 by the pump 31a is cooled by exchanging heat with the indoor air in the indoor space 7 by the use side heat exchanger 35 with respect to the indoor unit 3 that has been performing the cooling operation until then. Continue driving. Then, the heat medium exchanged by the use side heat exchanger 35 passes through the heat medium pipe 5 and the heat medium flow control device 34 and is conveyed into the relay unit 2. The flow rate of the heat medium transported to each indoor unit 3 is adjusted by each heat medium flow control device 34. The heat medium flowing out from the heat medium flow control device 34 passes through the first heat medium flow switching device 32.
  • the heat medium flow control device 34 detects the difference between the temperature immediately before the pump 31a and the outlet temperature of the connected indoor unit 3 to adjust the flow rate.
  • the first heat medium flow switching device 32 is switched in the direction in which the heat exchanger related to heat medium 25a and the pump 31a are connected.
  • the pump 31b is driven, but the fan of the indoor unit 3 that has been in the heating operation mode is stopped, and the heating operation mode is stopped. Moreover, in the 2nd heat-medium flow-path switching apparatus 33 connected to the indoor unit 3 which has been implementing heating operation mode until then, it has faced the opening degree direction to which the pump 31b is connected. Further, the heat medium flow control device 34 after passing through the use side heat exchanger 35 is fully opened, and the first heat medium flow switching device 32 has the same opening as the second heat medium flow switching device 33.
  • the heat medium transported to the indoor unit 3 that has been in the heating operation mode is not subjected to heat exchange in the use side heat exchanger 35, and is transferred to the heat exchanger related to heat medium 25b through the first heat medium flow switching device 32. It is conveyed.
  • the heat medium flowing into the heat exchanger related to heat medium 25b is again heat-exchanged with the heat source side refrigerant flowing into the heat exchanger related to heat medium 25b, and supplies heat to the refrigerant. Thereafter, the heat medium is again sucked into the pump 31b.
  • the indoor unit 3 that has been performing the heating operation so far in the “second heat recovery defrosting operation mode” receives information that the outdoor unit 1 is in the defrosting operation mode, and stops the fan.
  • the indoor air temperature and the indoor unit blown air temperature can be detected, there is no problem even if the fan operation is continued until the indoor unit blown air temperature does not become lower than the indoor air temperature.
  • the fan operation may be continued.
  • FIG. 9 is a refrigerant circuit diagram illustrating a refrigerant flow and a heat medium flow when the air-conditioning apparatus 100 is in the “first bypass defrosting operation mode”.
  • the “first bypass defrosting operation mode” will be described.
  • tube represented by the thick line has shown the piping through which the heat source side refrigerant
  • the flow direction of the heat source side cooling is indicated by solid line arrows
  • the flow direction of the heat medium is indicated by broken line arrows.
  • the “first bypass defrosting operation mode” is the same as the “first heat recovery defrosting operation mode”, during the heating only operation mode of the air conditioner 100, the heat source side heat exchanger 12 in the outdoor unit 1. However, unlike the “first heat recovery defrosting operation mode”, the heat capacity from the heat medium is reduced to the refrigerant. Is not allowed to receive.
  • the “first bypass defrosting operation mode” is switched and executed in accordance with a change in the set temperature during the execution of the “first heat recovery defrosting operation mode”.
  • the pump 31a and the pump 31b are driven, the heat medium flow control devices 34a to 34d are opened, and the heat medium heat exchanger 25a and the heat medium heat exchanger 25b are used respectively.
  • the heat medium circulates between the side heat exchanger 35a and the use side heat exchanger 35d.
  • the second refrigerant flow switching device 28a and the second refrigerant flow switching device 28b maintain the state switched to the cooling side, the opening / closing device 27 is open, and the opening / closing device 29 is open. Further, the expansion device 26a and the expansion device 26b are fully closed.
  • the low-temperature and low-pressure refrigerant is compressed by the compressor 10 and discharged as a high-temperature and high-pressure gas refrigerant.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 10 passes through the first refrigerant flow switching device 11 and flows into the heat source side heat exchanger 12.
  • the refrigerant flowing into the heat source side heat exchanger 12 exchanges heat with the frosting part on the heat source side heat exchanger 12.
  • the frosting part on the heat source side heat exchanger 12 is melted by the high-temperature and high-pressure refrigerant.
  • the low-temperature and high-pressure refrigerant that has exchanged heat with the frosting section on the heat source side heat exchanger 12 flows out of the outdoor unit 1 after passing through the check valve 13a.
  • the low-temperature and high-pressure refrigerant that has flowed out of the outdoor unit 1 flows into the relay unit 2 through the refrigerant pipe 4.
  • the refrigerant flowing into the relay unit 2 passes through the switchgear 29 after passing through the switchgear 27. Since the expansion device 26a and the expansion device 26b are fully closed, no refrigerant is conveyed to the intermediate heat exchanger 25a and the intermediate heat exchanger 25b.
  • the refrigerant that has passed through the opening / closing device 29 flows out of the relay unit 2 as it is, and flows into the outdoor unit 1 through the refrigerant pipe 4.
  • the refrigerant flowing into the outdoor unit 1 passes through the check valve 13 c and is sucked into the compressor 10 again through the first refrigerant flow switching device 11 and the accumulator 19.
  • the heat medium has been in a heating operation until then, and as described above, the heat medium is temporarily heated in the heat medium heat exchanger 25 before performing the defrosting operation mode. Therefore, the high temperature is maintained. Therefore, even during the defrosting operation mode, a high-temperature heat medium can be conveyed to the use-side heat exchanger 35, that is, the heating operation can be continued in the indoor unit 3.
  • the heat medium is conveyed by the operation of the pump 31a and the pump 31b connected to the heat exchanger related to heat medium 25a and the heat exchanger related to heat medium 25b.
  • the second heat medium flow switching device 33 connected to each indoor unit 3 has an intermediate opening degree.
  • the heat medium flow control device 34 is controlled so that the outlet temperature of the intermediate heat exchanger 25 and the outlet temperature of the use side heat exchanger 35 are constant.
  • the first heat medium flow switching device 32 has the same opening degree as that of the second heat medium flow switching device 33, and the heating operation by the heat medium conveyance can be continued.
  • the air volume of the fan is reduced as compared with the fan air volume (the set air volume) at the time of the conventional heating operation, so that the use side heat exchanger 35 enters the indoor space.
  • the heat capacity to be released can be limited, and the holding time of the heat capacity of the heat medium can be extended.
  • the setting air volume which is the air volume of the fan at the time of the conventional heating operation can be changed.
  • FIG. 10 is a graph showing an example of the relationship between the fan air volume for each temperature difference at which the heat medium can be lowered and the heat medium temperature holdable time when the heating operation is continued with the air volume. As shown in FIG. 10, it is possible to estimate the amount of heat released to the indoor space by the air blown from the fan and the time with respect to the heat capacity that the heat medium can hold. By doing so, it is possible to determine an appropriate air volume ratio and air volume holding time, and to continue the heating operation mode at an appropriate time and temperature in the defrosting operation mode.
  • FIG. 11 is a refrigerant circuit diagram illustrating a refrigerant flow and a heat medium flow when the air-conditioning apparatus 100 is in the “second bypass defrosting operation mode”.
  • second bypass defrosting operation mode will be described.
  • the piping represented by the thick line has shown the piping through which the heat source side refrigerant
  • the flow direction of the heat source side cooling is indicated by solid line arrows, and the flow direction of the heat medium is indicated by broken line arrows.
  • the “second bypass defrosting operation mode” is switched and executed in accordance with a change in the set temperature during the execution of the “second heat recovery defrosting operation mode”.
  • the pump 31a and the pump 31b are driven, the heat medium flow control devices 34a to 34d are opened, and the heat medium heat exchanger 25a and the heat medium heat exchanger 25b are used respectively.
  • the heat medium circulates between the side heat exchanger 35a and the use side heat exchanger 35d.
  • the second refrigerant flow switching device 28a and the second refrigerant flow switching device 28b maintain the state switched to the cooling side, the opening / closing device 27 is open, and the opening / closing device 29 is open.
  • the expansion device 26a is controlled such that the refrigerant state at the outlet of the heat exchanger related to heat medium 25a is gas, and the expansion device 26b is fully closed.
  • the low-temperature and low-pressure refrigerant is compressed by the compressor 10 and discharged as a high-temperature and high-pressure gas refrigerant.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 10 passes through the first refrigerant flow switching device 11 and flows into the heat source side heat exchanger 12.
  • the refrigerant flowing into the heat source side heat exchanger 12 exchanges heat with the frosting part on the heat source side heat exchanger 12.
  • the frosting part on the heat source side heat exchanger 12 is melted by the high-temperature and high-pressure refrigerant.
  • the low-temperature and high-pressure refrigerant that has exchanged heat with the frosting section on the heat source side heat exchanger 12 flows out of the outdoor unit 1 after passing through the check valve 13a.
  • the low-temperature and high-pressure refrigerant that has flowed out of the outdoor unit 1 flows into the relay unit 2 through the refrigerant pipe 4.
  • the refrigerant that has flowed into the relay unit 2 passes through the opening / closing device 27 and then branches to pass through the opening / closing device 29 and the expansion device 26a.
  • the refrigerant that has passed through the expansion device 26a flows into the heat exchanger related to heat medium 25a.
  • heat exchanger related to heat medium 25a heat exchange with the heat medium is continued by the action of the expansion device 26a, and a low-temperature heat medium for cooling is generated and supplied to the indoor unit 3.
  • the refrigerant is not conveyed to the heat exchanger related to heat medium 25b, and heat exchange with the high-temperature heat medium that has been performed until then is not performed.
  • the refrigerant flowing into the outdoor unit 1 passes through the check valve 13 c and is sucked into the compressor 10 again through the first refrigerant flow switching device 11 and the accumulator 19.
  • the heat medium having a low temperature in the intermediate heat exchanger 25a is pressurized by the pump 31a and corresponds to the indoor unit 3 in the cooling operation mode. It flows into the use side heat exchanger 35a to the use side heat exchanger 35d via the flow path switching device 33a to the second heat medium flow switching device 33d.
  • the heat medium flowing into the indoor unit 3 by the pump 31a is cooled by exchanging heat with the indoor air in the indoor space 7 by the use side heat exchanger 35 with respect to the indoor unit 3 that has been performing the cooling operation until then. Continue driving.
  • the heat medium exchanged by the use side heat exchanger 35 passes through the heat medium pipe 5 and the heat medium flow control device 34 and is conveyed into the relay unit 2.
  • the flow rate of the heat medium transported to each indoor unit 3 is adjusted by each heat medium flow control device 34.
  • the heat medium flowing out from the heat medium flow control device 34 passes through the first heat medium flow switching device 32.
  • the heat medium that has passed through the first heat medium flow switching device 32 is again heat-exchanged with the heat source side refrigerant flowing into the heat exchanger related to heat medium 25a, and supplies heat to the refrigerant side. Thereafter, the heat medium is again sucked into the pump 31a.
  • the heat medium flowing into the heat exchanger related to heat medium 25b is heated in the heating operation until then, and as described above, the heat medium is heated in the heat exchanger related to heat medium before performing the defrosting operation mode. Since the heat capacity is secured by temporarily raising the temperature of the medium, the medium is kept at a high temperature. Therefore, even in the defrosting operation mode, the high-temperature heat medium can be conveyed to the use-side heat exchanger 35 by the conveyance of the heat medium, that is, the heating operation can be continued in the indoor unit 3. .
  • the heat medium is conveyed by the operation of the pump 31b connected to the heat exchanger related to heat medium 25b.
  • the second heat medium flow switching device 33 connected to each indoor unit 3 faces the heat exchanger related to heat medium 25b.
  • the heat medium flow control device 34 after passing through the use side heat exchanger 35 is controlled so that the outlet temperature of the heat exchanger related to heat medium 25b and the outlet temperature of the use side heat exchanger are constant.
  • the first heat medium flow switching device 32 has the same opening as the second heat medium flow switching device 33, and the heating operation by heat medium conveyance can be continued.
  • the air-conditioning apparatus 100 exchanges heat between the refrigerant and the heat medium via the relay unit 2 without directly circulating the refrigerant in the room where the indoor unit 3 is installed. Cooling operation and heating operation are realized by conveying to the indoor unit 3. Thereby, the air conditioning apparatus 100 can avoid refrigerant leakage into the room.
  • the air conditioner 100 can transfer the refrigerant from the outdoor unit 1 to the relay unit 2 so that the relay unit 2 can be installed at an appropriate position, so that the transfer distance of the heat medium can be shortened, and the pump 31a. The power of the pump 31b can be reduced to save energy.
  • the air conditioner 100 performs the heating operation at a low outside air temperature
  • frost formation occurs in the outdoor unit 1
  • the frost of the heat source side heat exchanger 12 in the outdoor unit 1 is detected by detection based on the evaporation temperature or the like.
  • It has a defrosting operation mode for removing water.
  • this defrosting operation mode the heat exchanged by defrosting and the refrigerant having a low temperature are conveyed to the indoor unit 3 during the heating operation, and heated to a high temperature immediately before the defrosting operation and the heat medium It is exchanged and transported to the outdoor unit 1.
  • the air conditioner 100 reduces the fan air volume and sets the fan operation holding time according to the air volume for the indoor unit 3 that has been performing the heating operation until then in the defrosting operation mode. Appropriate heating operation can be continued. Furthermore, even when the indoor unit 3 can take in the outside air, the air conditioner 100 can exchange heat with the heat medium in the defrosting operation mode and continue the heating operation in the same manner as described above. Can do.
  • the first heat medium flow switching device 32 and the second heat medium flow switching device 33 described in the present embodiment can switch a three-way flow such as a three-way valve, and can open and close a two-way flow such as an on-off valve. What is necessary is just to be able to switch a flow path, such as combining two things to perform.
  • the first heat medium can be obtained by combining two things such as a stepping motor drive type mixing valve that can change the flow rate of the three-way flow path and two things that can change the flow rate of the two-way flow path such as an electronic expansion valve.
  • the flow path switching device 32 and the second heat medium flow path switching device 33 may be used. In this case, it is possible to prevent water hammer due to sudden opening and closing of the flow path.
  • the heat medium flow control device 34 is a two-way valve has been described as an example, but it is a control valve having a three-way flow path and a bypass pipe that bypasses the use-side heat exchanger 35. You may make it install.
  • the heat medium flow control device 34 may be a stepping motor driven type that can control the flow rate flowing through the flow path, and may be a two-way valve or a one-way valve with one end closed. Further, as the heat medium flow control device 34, a device that opens and closes a two-way flow path such as an open / close valve may be used, and the average flow rate may be controlled by repeating ON / OFF.
  • the second refrigerant flow switching device 28 is shown as a four-way valve, the present invention is not limited to this, and a plurality of two-way flow switching valves and three-way flow switching valves are used in the same manner. You may comprise so that a refrigerant
  • coolant may flow.
  • the heat medium for example, brine (antifreeze), water, a mixture of brine and water, a mixture of water and an additive having a high anticorrosive effect, or the like can be used. Therefore, in the air conditioning apparatus 100, even if the heat medium leaks into the indoor space 7 through the indoor unit 3, it contributes to the improvement of safety because a highly safe heat medium is used. Become.
  • the air conditioner 100 includes the accumulator 19
  • the heat source side heat exchanger 12 and the use side heat exchanger 35 are provided with a blower, and in many cases, condensation or evaporation is promoted by blowing air, but this is not a limitation.
  • the use side heat exchanger 35 can be a panel heater using radiation
  • the heat source side heat exchanger 12 is a water-cooled type that moves heat by water or antifreeze.
  • the case where there are four usage-side heat exchangers 35 has been described as an example, but the number is not particularly limited.
  • the case where the number of heat exchangers between heat mediums 25a and the heat exchangers between heat mediums 25b is two has been described as an example, naturally the present invention is not limited to this, so that the heat medium can be cooled or / and heated. If it comprises, you may install how many.
  • the number of pumps 31a and 31b is not limited to one, and a plurality of small-capacity pumps may be connected in parallel.

Abstract

An air conditioner (100) executes either a heat recovery defrost operation mode in which the retained heat capacity of a heating medium is utilized, or a bypass defrost operation mode in which the retained heat capacity of the heating medium is not utilized, when frost adheres to a heat source-side heat exchanger during a heating operation mode.

Description

空気調和装置Air conditioner
 本発明は、たとえばビル用マルチエアコン等に適用される空気調和装置に関するものである。 The present invention relates to an air conditioner applied to, for example, a building multi air conditioner.
 従来から、ビル用マルチエアコンなどの空気調和装置においては、たとえば建物外に配置した熱源機である室外ユニットと建物の室内に配置した室内ユニットとの間に冷媒を循環させる。そして、冷媒が放熱、吸熱して、加熱、冷却された空気により空調対象空間の冷房または暖房を行なっていた。このような空気調和装置に使用される冷媒としては、たとえばHFC(ハイドロフルオロカーボン)系冷媒が多く使われている。また、二酸化炭素(CO)等の自然冷媒を使うものも提案されている。 Conventionally, in an air conditioner such as a building multi-air conditioner, a refrigerant is circulated between, for example, an outdoor unit that is a heat source device arranged outside a building and an indoor unit arranged inside a building. And the refrigerant | coolant thermally radiated and absorbed heat, and air-conditioning object space was cooled or heated with the air heated and cooled. As a refrigerant used in such an air conditioner, for example, an HFC (hydrofluorocarbon) refrigerant is often used. In addition, one using a natural refrigerant such as carbon dioxide (CO 2 ) has been proposed.
 また、チラーと呼ばれる空気調和装置においては、建物外に配置した熱源機にて、冷熱または温熱を生成する。そして、熱源機内に配置した熱交換器で水、不凍液等を加熱、冷却し、これを室内ユニットであるファンコイルユニット、パネルヒーター等に搬送して冷房または暖房を行なっていた(たとえば、特許文献1参照)。 Also, in an air conditioner called a chiller, heat or heat is generated by a heat source device arranged outside the building. Then, water, antifreeze, etc. are heated and cooled by a heat exchanger arranged in the heat source machine, and this is transferred to a fan coil unit, a panel heater, etc., which are indoor units, for cooling or heating (for example, Patent Documents) 1).
 また、排熱回収型チラーと呼ばれる、熱源機と室内ユニットの間に4本の水配管を接続し、冷却、加熱した水等を同時に供給し、室内ユニットにおいて冷房または暖房を自由に選択できるものもある(たとえば、特許文献2参照)。 Also, a waste heat recovery type chiller, which is connected to four water pipes between the heat source unit and the indoor unit, supplies cooled and heated water at the same time, and can freely select cooling or heating in the indoor unit (For example, refer to Patent Document 2).
 また、1次冷媒と2次冷媒の熱交換器を各室内ユニットの近傍に配置し、室内ユニットに2次冷媒を搬送するように構成されているものもある(たとえば、特許文献3参照)。 Also, there is a configuration in which a heat exchanger for the primary refrigerant and the secondary refrigerant is disposed in the vicinity of each indoor unit and the secondary refrigerant is conveyed to the indoor unit (for example, see Patent Document 3).
 また、室外ユニットと熱交換器を持つ分岐ユニット間を2本の配管で接続し、室内ユニットに2次冷媒を搬送するように構成されているものもある(たとえば、特許文献4参照)。 Also, there is a configuration in which an outdoor unit and a branch unit having a heat exchanger are connected by two pipes and a secondary refrigerant is conveyed to the indoor unit (for example, see Patent Document 4).
 また、ビル用マルチエアコンなどの空気調和装置において、室外ユニットから中継器まで冷媒を循環させ、中継器から室内ユニットまで水等の熱媒体を循環させることにより、室内ユニットに水等の熱媒体を循環させるように構成されているものもある(たとえば、特許文献5参照)。 Further, in an air conditioner such as a multi air conditioner for buildings, a refrigerant such as water is circulated from the outdoor unit to the repeater and a heat medium such as water is circulated from the repeater to the indoor unit. Some are configured to circulate (see, for example, Patent Document 5).
特開2005-140444号公報(第4頁、図1等)Japanese Patent Laying-Open No. 2005-140444 (page 4, FIG. 1, etc.) 特開平5-280818号公報(第4、5頁、図1等)JP-A-5-280818 (4th, 5th page, FIG. 1 etc.) 特開2001-289465号公報(第5~8頁、図1、図2等)Japanese Patent Laid-Open No. 2001-289465 (pages 5 to 8, FIG. 1, FIG. 2, etc.) 特開2003-343936号公報(第5頁、図1)JP 2003-343936 A (Page 5, FIG. 1) WO2010/050002号公報(第11~15頁、図8等)WO 2010/050002 (pages 11 to 15, FIG. 8 etc.)
 従来のビル用マルチエアコン等の空気調和装置では、室内ユニットまで冷媒を循環させているため、冷媒が室内等に漏れる可能性があった。一方、特許文献1及び特許文献2に記載されているような空気調和装置では、冷媒が室内ユニットを通過することはない。しかしながら、特許文献1及び特許文献2に記載されているような空気調和装置では、建物外の熱源機において熱媒体を加熱または冷却し、室内ユニット側に搬送する必要がある。このため、熱媒体の循環経路が長くなる。ここで、熱媒体により、所定の加熱あるいは冷却の仕事をする熱を搬送しようとすると、搬送動力等によるエネルギーの消費量が冷媒よりも高くなる。そのため、循環経路が長くなると、搬送動力が非常に大きくなる。このことから、空気調和装置において、熱媒体の循環をうまく制御することができれば省エネルギー化を図れることがわかる。 In conventional air conditioners such as multi air conditioners for buildings, since the refrigerant is circulated to the indoor unit, the refrigerant may leak into the room. On the other hand, in the air conditioning apparatus as described in Patent Document 1 and Patent Document 2, the refrigerant does not pass through the indoor unit. However, in the air conditioning apparatus as described in Patent Document 1 and Patent Document 2, it is necessary to heat or cool the heat medium in the heat source unit outside the building and transport it to the indoor unit side. For this reason, the circulation path of a heat medium becomes long. Here, if it is going to convey the heat which carries out the work of predetermined heating or cooling with a heat medium, the amount of energy consumption by conveyance power etc. will become higher than a refrigerant. Therefore, when the circulation path becomes long, the conveyance power becomes very large. From this, it can be seen that energy saving can be achieved in the air conditioner if the circulation of the heat medium can be well controlled.
 特許文献2に記載されているような空気調和装置においては、室内ユニット毎に冷房または暖房を選択できるようにするためには室外側から室内まで4本の配管を接続しなければならず、工事性が悪いものとなっていた。特許文献3に記載されている空気調和装置においては、ポンプ等の2次媒体循環手段を室内ユニット個別に持つ必要があるため、高価なシステムとなるだけでなく、騒音も大きいものとなり、実用的なものではなかった。加えて、熱交換器が室内ユニットの近傍にあるため、冷媒が室内に近い場所で漏れるという可能性を排除することができなかった。 In the air conditioner as described in Patent Document 2, in order to be able to select cooling or heating for each indoor unit, four pipes must be connected from the outdoor side to the indoor side. It was bad. In the air conditioner described in Patent Document 3, since it is necessary to have a secondary medium circulation means such as a pump for each indoor unit, it is not only an expensive system but also a large noise, which is practical. It was not something. In addition, since the heat exchanger is in the vicinity of the indoor unit, the possibility that the refrigerant leaks in a place close to the room could not be excluded.
 特許文献4に記載されているような空気調和装置においては、熱交換後の1次冷媒が熱交換前の1次冷媒と同じ流路に流入しているため、複数の室内ユニットを接続した場合に、各室内ユニットにて最大能力を発揮することができず、エネルギー的に無駄な構成となっていた。また、分岐ユニットと延長配管との接続が冷房2本、暖房2本の合計4本の配管でなされているため、結果的に室外ユニットと分岐ユニットとが4本の配管で接続されているシステムと類似の構成となっており、工事性が悪いシステムとなっていた。 In the air conditioner as described in Patent Document 4, since the primary refrigerant after heat exchange flows into the same flow path as the primary refrigerant before heat exchange, a plurality of indoor units are connected. In addition, the maximum capacity of each indoor unit could not be demonstrated, resulting in a wasteful configuration. In addition, since the branch unit and the extension pipe are connected by a total of four pipes of two cooling units and two heating units, as a result, the system in which the outdoor unit and the branch unit are connected by four pipes. The system was similar in construction to that of poor workability.
 また、従来のビル用マルチエアコン等の空気調和装置では、暖房運転を実施中、室外ユニットにて外気との熱交換を行うことによる室外熱交換器の表面に着霜が発生する。そのために、定期的に除霜運転モードを実施する必要がある。しかしながら、除霜運転を実施している間、室内ユニットが暖房運転を行う上で必要としている高温高圧の冷媒を室内ユニットへ搬送することができず、要求されている室内側暖房負荷に応じた暖房運転を実行することができないようになっていた。 Also, in conventional air conditioners such as multi air conditioners for buildings, frost forms on the surface of the outdoor heat exchanger due to heat exchange with the outside air in the outdoor unit during the heating operation. Therefore, it is necessary to implement defrosting operation mode regularly. However, while the defrosting operation is being performed, the high-temperature and high-pressure refrigerant required for the indoor unit to perform the heating operation cannot be conveyed to the indoor unit, and according to the required indoor heating load. Heating operation could not be performed.
 そのうえ、換気を目的とし、外気を取り込み、室内側へ搬送する機能を持った空気調和装置であっても、霜取運転中においては外気の取り込みによる室内側への冷風防止のため、送風機を停止する。こうすることで、要求されている室内側暖房負荷に応じた暖房運転を実行することができないようになっていた。 In addition, even if the air conditioner has the function of taking outside air and transporting it to the indoor side for the purpose of ventilation, the blower is stopped during the defrosting operation in order to prevent cold air from entering the room due to outside air taking in. To do. By doing so, the heating operation according to the requested indoor heating load cannot be executed.
 特許文献5に記載されているような空気調和装置においては、除霜運転中に室内ユニットに二次熱媒体を循環させることにより室温の低下を抑制できるようにしている。しかしながら、外気を取り込むことによる換気を含んだ室内ユニットの暖房運転の継続についてまでは考慮されていなかった。 In an air conditioner as described in Patent Document 5, a reduction in room temperature can be suppressed by circulating a secondary heat medium through an indoor unit during a defrosting operation. However, the continuation of the heating operation of the indoor unit including ventilation by taking in outside air has not been considered.
 本発明は、上記のような課題を解決するためになされたもので、複数の除霜運転モードを備え、快適性の維持を図るようにした空気調和装置を提供することを目的としている。 The present invention has been made to solve the above-described problems, and an object thereof is to provide an air conditioner having a plurality of defrosting operation modes and maintaining comfort.
 本発明に係る空気調和装置は、圧縮機、熱源側熱交換器、複数の絞り装置、複数の熱媒体間熱交換器の冷媒側流路、冷媒循環経路を切り替える複数の冷媒流路切替装置を冷媒配管で接続して熱源側冷媒を循環させる冷媒循環回路と、前記複数の熱媒体間熱交換器のそれぞれに対応して設けられている複数の熱媒体搬送装置、複数の利用側熱交換器、前記複数の熱媒体間熱交換器の熱媒体側流路を熱媒体搬送配管で接続して熱媒体を循環させる熱媒体循環回路と、を有し、少なくとも前記熱媒体間熱交換器をバイパスし前記熱源側冷媒を前記圧縮機に戻すことができるように設置されたバイパス配管を備え、前記熱媒体間熱交換器において前記熱源側冷媒と前記熱媒体とが熱交換する空気調和装置であって、前記冷媒流路切替装置を暖房側に切り替えて、前記熱媒体間熱交換器の少なくとも1つで前記熱媒体の加熱を行い、前記熱媒体搬送装置の少なくとも1つを動作させ、前記利用側熱交換器の少なくとも1つに加熱した前記熱媒体を供給する暖房運転モードと、前記暖房運転モード中に、前記冷媒流路切替装置を冷房側に切り替えて、前記熱媒体搬送装置の少なくとも1つを動作させ、前記熱媒体間熱交換器の少なくとも1つで前記熱源側冷媒に前記熱媒体の熱を吸熱させ、前記熱源側熱交換器の周囲に着霜した霜を溶かす熱回収除霜運転モードと、前記暖房運転モード中に、前記冷媒流路切替装置を冷房側に切り替えて、前記熱源側冷媒の一部またはすべてを前記バイパス配管に流すことにより前記熱源側熱交換器の周囲に着霜した霜を溶かすバイパス除霜運転モードと、を有するものである。 An air conditioner according to the present invention includes a compressor, a heat source side heat exchanger, a plurality of expansion devices, a refrigerant side flow path of a plurality of heat exchangers between heat media, and a plurality of refrigerant flow switching devices that switch a refrigerant circulation path. A refrigerant circulation circuit that circulates the heat source side refrigerant by connecting with a refrigerant pipe, a plurality of heat medium transfer devices provided corresponding to each of the plurality of heat exchangers between heat media, and a plurality of use side heat exchangers A heat medium circulation circuit that circulates the heat medium by connecting the heat medium side flow paths of the plurality of heat medium heat exchangers with a heat medium transport pipe, and bypasses at least the heat medium heat exchanger And an air conditioner that includes a bypass pipe installed so that the heat source side refrigerant can be returned to the compressor, and in which the heat source side refrigerant and the heat medium exchange heat in the heat exchanger between heat mediums. The refrigerant flow switching device to the heating side In other words, the heat medium is heated by at least one of the heat exchangers between the heat mediums, and at least one of the heat medium transfer devices is operated and heated to at least one of the use side heat exchangers. In the heating operation mode for supplying the heat medium, and during the heating operation mode, the refrigerant flow switching device is switched to a cooling side to operate at least one of the heat medium transport devices, and the heat exchange between the heat media A heat recovery defrosting operation mode in which the heat source side refrigerant absorbs heat of the heat medium in at least one of the heaters and melts frost formed around the heat source side heat exchanger; and during the heating operation mode, Bypass defrosting operation mode in which frost formed around the heat source side heat exchanger is melted by switching the refrigerant flow switching device to the cooling side and flowing a part or all of the heat source side refrigerant to the bypass pipe. And It is intended to.
 本発明に係る空気調和装置は、除霜運転モードとして、「熱回収除霜運転モード」と、「バイパス除霜運転モード」と、を有しているので、いずれかの除霜運転モードを実行することができ、快適性の維持を図ることができる。 Since the air conditioning apparatus according to the present invention has the “heat recovery defrosting operation mode” and the “bypass defrosting operation mode” as the defrosting operation mode, one of the defrosting operation modes is executed. It is possible to maintain comfort.
本発明の実施の形態に係る空気調和装置の設置例を示す概略図である。It is the schematic which shows the example of installation of the air conditioning apparatus which concerns on embodiment of this invention. 本発明の実施の形態に係る空気調和装置の回路構成の一例を示す概略回路構成図である。It is a schematic circuit block diagram which shows an example of the circuit structure of the air conditioning apparatus which concerns on embodiment of this invention. 本発明の実施の形態に係る空気調和装置の全冷房運転モード時における冷媒の流れを示す冷媒回路図である。It is a refrigerant circuit diagram which shows the flow of the refrigerant | coolant at the time of the cooling only operation mode of the air conditioning apparatus which concerns on embodiment of this invention. 本発明の実施の形態に係る空気調和装置の全暖房運転モード時における冷媒の流れを示す冷媒回路図である。It is a refrigerant circuit diagram which shows the flow of the refrigerant | coolant at the time of the heating only operation mode of the air conditioning apparatus which concerns on embodiment of this invention. 本発明の実施の形態に係る空気調和装置の冷房暖房混在運転モード時における冷媒の流れを示す冷媒回路図である。It is a refrigerant circuit diagram which shows the flow of the refrigerant | coolant at the time of the air conditioning apparatus which concerns on embodiment of this invention in the air conditioning heating mixed operation mode. 本発明の実施の形態に係る空気調和装置の「第1の熱回収除霜運転モード(1)」時における冷媒の流れおよび熱媒体の流れを示す冷媒回路図である。It is a refrigerant circuit diagram which shows the flow of the refrigerant | coolant in the "1st heat recovery defrost operation mode (1)" of the air conditioning apparatus which concerns on embodiment of this invention, and the flow of a heat carrier. 本発明の実施の形態に係る空気調和装置の「第1の熱回収除霜運転モード(2)」時における冷媒の流れおよび熱媒体の流れを示す冷媒回路図である。It is a refrigerant circuit diagram which shows the flow of the refrigerant | coolant in the "1st heat recovery defrost operation mode (2)" of the air conditioning apparatus which concerns on embodiment of this invention, and the flow of a heat carrier. 本発明の実施の形態に係る空気調和装置の「第2の熱回収除霜運転モード」時における冷媒の流れおよび熱媒体の流れを示す冷媒回路図である。It is a refrigerant circuit diagram which shows the flow of the refrigerant | coolant at the time of "2nd heat recovery defrost operation mode" of the air conditioning apparatus which concerns on embodiment of this invention, and the flow of a heat carrier. 本発明の実施の形態に係る空気調和装置の「第1のバイパス除霜運転モード」時における冷媒の流れおよび熱媒体の流れを示す冷媒回路図である。It is a refrigerant circuit diagram which shows the flow of the refrigerant | coolant in the "1st bypass defrosting operation mode" of the air conditioning apparatus which concerns on embodiment of this invention, and the flow of a heat carrier. 熱媒体の低下可能な温度の違いごとのファンの風量とその風量で暖房運転を継続した場合における熱媒体温度保持可能時間についての関係の一例を示すグラフである。It is a graph which shows an example of the relationship between the air volume of the fan for every difference of the temperature which can reduce a heat medium, and the heat medium temperature holding | maintenance time when heating operation is continued with the air volume. 本発明の実施の形態に係る空気調和装置の「第2のバイパス除霜運転モード」時における冷媒の流れおよび熱媒体の流れを示す冷媒回路図である。It is a refrigerant circuit diagram which shows the flow of the refrigerant | coolant in the "2nd bypass defrosting operation mode" of the air conditioning apparatus which concerns on embodiment of this invention, and the flow of a heat carrier.
 以下、図面に基づいて本発明の実施の形態について説明する。
 図1は、本発明の実施の形態に係る空気調和装置の設置例を示す概略図である。図1に基づいて、空気調和装置の設置例について説明する。この空気調和装置は、冷媒(熱源側冷媒、熱媒体)を循環させる冷凍サイクル(冷媒循環回路A、熱媒体循環回路B)を利用することで各室内ユニットが運転モードとして冷房モードあるいは暖房モードを自由に選択できるようになっている。図1では、複数台の室内ユニット3を接続している空気調和装置の全体を概略的に示している。なお、図1を含め、以下の図面では各構成部材の大きさの関係が実際のものとは異なる場合がある。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a schematic diagram illustrating an installation example of an air conditioner according to an embodiment of the present invention. Based on FIG. 1, the installation example of an air conditioning apparatus is demonstrated. This air conditioner uses a refrigeration cycle (refrigerant circulation circuit A, heat medium circulation circuit B) that circulates refrigerant (heat source side refrigerant, heat medium) so that each indoor unit can be in the cooling mode or the heating mode as an operation mode. You can choose freely. FIG. 1 schematically shows an entire air conditioner connecting a plurality of indoor units 3. In addition, in the following drawings including FIG. 1, the relationship of the size of each component may be different from the actual one.
 図1においては、本実施の形態に係る空気調和装置は、室外ユニット(熱源機)1と、複数台の室内ユニット3と、室外ユニット1と室内ユニット3との間に介在する1台の中継ユニット2と、を有している。中継ユニット2は、熱源側冷媒と熱媒体とで熱交換を行なうものである。室外ユニット1と中継ユニット2とは、熱源側冷媒を導通する冷媒配管4で接続されている。中継ユニット2と室内ユニット3とは、熱媒体を導通する配管(熱媒体搬送配管)5で接続されている。そして、室外ユニット1で生成された冷熱あるいは温熱は、中継ユニット2を介して室内ユニット3に配送されるようになっている。 In FIG. 1, the air-conditioning apparatus according to the present embodiment includes an outdoor unit (heat source unit) 1, a plurality of indoor units 3, and one relay interposed between the outdoor unit 1 and the indoor unit 3. And a unit 2. The relay unit 2 performs heat exchange between the heat source side refrigerant and the heat medium. The outdoor unit 1 and the relay unit 2 are connected by a refrigerant pipe 4 that conducts the heat source side refrigerant. The relay unit 2 and the indoor unit 3 are connected by a pipe (heat medium transport pipe) 5 that conducts the heat medium. The cold or warm heat generated by the outdoor unit 1 is delivered to the indoor unit 3 via the relay unit 2.
 室外ユニット1は、通常、ビル等の建物9の外の空間(たとえば、屋上等)である室外空間6に配置され、中継ユニット2を介して室内ユニット3に冷熱または温熱を供給するものである。室内ユニット3は、建物9の内部の空間(たとえば、居室等)である室内空間7に冷房用空気あるいは暖房用空気を供給できる位置に配置され、空調対象空間となる室内空間7に冷房用空気あるいは暖房用空気を供給するものである。中継ユニット2は、室外ユニット1及び室内ユニット3とは別筐体として、室外空間6及び室内空間7とは別の位置に設置できるように構成されており、室外ユニット1及び室内ユニット3とは冷媒配管4及び配管5でそれぞれ接続され、室外ユニット1から供給される冷熱あるいは温熱を室内ユニット3に伝達するものである。 The outdoor unit 1 is usually disposed in an outdoor space 6 that is a space (for example, a rooftop) outside a building 9 such as a building, and supplies cold or hot energy to the indoor unit 3 via the relay unit 2. . The indoor unit 3 is disposed at a position where cooling air or heating air can be supplied to the indoor space 7 that is a space (for example, a living room) inside the building 9, and the cooling air is supplied to the indoor space 7 that is the air-conditioning target space. Alternatively, heating air is supplied. The relay unit 2 is configured as a separate housing from the outdoor unit 1 and the indoor unit 3 so as to be installed at a position different from the outdoor space 6 and the indoor space 7. The refrigerant pipe 4 and the pipe 5 are respectively connected to transmit cold heat or hot heat supplied from the outdoor unit 1 to the indoor unit 3.
 本発明の実施の形態に係る空気調和装置の動作を簡単に説明する。
 熱源側冷媒は、室外ユニット1から中継ユニット2に冷媒配管4を通して搬送される。搬送された熱源側冷媒は、中継ユニット2内の熱媒体間熱交換器(後述する熱媒体間熱交換器25)にて熱媒体と熱交換を行ない、熱媒体を加温又は冷却する。つまり、熱媒体間熱交換器で、温水又は冷水が作り出される。中継ユニット2にて作られた温水又は冷水は、熱媒体搬送装置(後述するポンプ31)にて、配管5を通して室内ユニット3へ搬送され、室内ユニット3にて室内空間7に対する暖房運転(温水を必要とする運転状態であればよい)又は冷房運転(冷水を必要とした運転状態であればよい)に供される。
The operation of the air conditioner according to the embodiment of the present invention will be briefly described.
The heat source side refrigerant is conveyed from the outdoor unit 1 to the relay unit 2 through the refrigerant pipe 4. The transported heat source side refrigerant exchanges heat with the heat medium in the heat exchanger related to heat medium in the relay unit 2 (heat exchanger 25 described later), and heats or cools the heat medium. That is, hot water or cold water is produced by the heat exchanger between heat media. The hot water or cold water produced by the relay unit 2 is transported to the indoor unit 3 through the pipe 5 by a heat medium transport device (a pump 31 described later), and the indoor unit 3 performs heating operation (warm water). The operation state may be as long as it is necessary) or a cooling operation (as long as the operation state requires cold water).
 熱源側冷媒としては、たとえばR-22、R-134a、R-32等の単一冷媒、R-410A、R-404A等の擬似共沸混合冷媒、R-407C等の非共沸混合冷媒、化学式内に二重結合を含む、CFCF=CH等の地球温暖化係数が比較的小さい値とされている冷媒やその混合物、あるいはCOやプロパン等の自然冷媒を用いることができる。 Examples of the heat source side refrigerant include single refrigerants such as R-22, R-134a, and R-32, pseudo-azeotropic mixed refrigerants such as R-410A and R-404A, and non-azeotropic mixed refrigerants such as R-407C. A refrigerant or mixture thereof containing a double bond in the chemical formula and having a relatively low global warming coefficient such as CF 3 CF═CH 2 , or a natural refrigerant such as CO 2 or propane can be used.
 一方、熱媒体としては、たとえば水、不凍液、水と不凍液の混合液、水と防食効果が高い添加剤の混合液等を用いることができる。 On the other hand, as the heat medium, for example, water, antifreeze, a mixture of water and antifreeze, a mixture of water and an additive having a high anticorrosive effect, or the like can be used.
 図1に示すように、本実施の形態に係る空気調和装置においては、室外ユニット1と中継ユニット2とが2本の冷媒配管4を用いて、中継ユニット2と各室内ユニット3とが2本の配管5を用いて、それぞれ接続されている。このように、本実施の形態に係る空気調和装置では、2本の配管(冷媒配管4、配管5)を用いて各ユニット(室外ユニット1、室内ユニット3及び中継ユニット2)を接続することにより、施工が容易となっている。 As shown in FIG. 1, in the air conditioner according to the present embodiment, the outdoor unit 1 and the relay unit 2 use two refrigerant pipes 4, and the relay unit 2 and each indoor unit 3 have two. These pipes 5 are connected to each other. Thus, in the air conditioning apparatus according to the present embodiment, by connecting each unit (outdoor unit 1, indoor unit 3, and relay unit 2) using two pipes (refrigerant pipe 4, pipe 5). Construction is easy.
 なお、図1においては、中継ユニット2が、建物9の内部ではあるが室内空間7とは別の空間である天井裏等の空間(以下、単に空間8と称する)に設置されている状態を例に示している。したがって、中継ユニット2は、天井裏以外でも、居住空間以外であり、屋外と何らかの通気がなされている空間であれば、どんなところに設置してもよく、たとえばエレベーター等がある共用空間で屋外と通気がなされている空間等に設置することも可能である。また、中継ユニット2は、室外ユニット1の近傍に設置することもできる。ただし、中継ユニット2から室内ユニット3までの距離が長すぎると、熱媒体の搬送動力がかなり大きくなるため、省エネルギー化の効果は薄れることに留意が必要である。 In FIG. 1, the relay unit 2 is installed in a space such as the back of the ceiling (hereinafter simply referred to as a space 8) that is inside the building 9 but is different from the indoor space 7. An example is shown. Therefore, the relay unit 2 may be installed anywhere as long as it is outside the ceiling or other than the living space and has some ventilation with the outside. It can also be installed in a space that is ventilated. Further, the relay unit 2 can be installed in the vicinity of the outdoor unit 1. However, it should be noted that if the distance from the relay unit 2 to the indoor unit 3 is too long, the transfer power of the heat medium becomes considerably large, so that the effect of energy saving is reduced.
 図1においては、室外ユニット1が室外空間6に設置されている場合を例に示しているが、これに限定するものではない。たとえば、室外ユニット1は、換気口付の機械室等の囲まれた空間に設置してもよく、排気ダクトで廃熱を建物9の外に排気することができるのであれば建物9の内部に設置してもよく、あるいは、水冷式の室外ユニット1を用いる場合にも建物9の内部に設置するようにしてもよい。このような場所に室外ユニット1を設置するとしても、特段の問題が発生することはない。 FIG. 1 shows an example in which the outdoor unit 1 is installed in the outdoor space 6, but the present invention is not limited to this. For example, the outdoor unit 1 may be installed in an enclosed space such as a machine room with a ventilation opening. If the waste heat can be exhausted outside the building 9 by an exhaust duct, the outdoor unit 1 may be installed inside the building 9. It may be installed, or may be installed inside the building 9 when the water-cooled outdoor unit 1 is used. Even if the outdoor unit 1 is installed in such a place, no particular problem occurs.
 図1においては、室内ユニット3が天井カセット型である場合を例に示してあるが、これに限定するものではなく、天井埋込型や天井吊下式等、室内空間7に直接またはダクト等により、暖房用空気あるいは冷房用空気を吹き出せるようになっていればどんな種類のものでもよい。 In FIG. 1, the case where the indoor unit 3 is a ceiling cassette type is shown as an example. However, the present invention is not limited to this, and the indoor unit 3 is directly or directly connected to the indoor space 7 such as a ceiling embedded type or a ceiling suspended type. As long as the air for heating or the air for cooling can be blown out, any kind may be used.
 さらに、室外ユニット1、室内ユニット3及び中継ユニット2の接続台数を図1に図示してある台数に限定するものではなく、本実施の形態に係る空気調和装置が設置される建物9に応じて台数を決定すればよい。 Furthermore, the number of connected outdoor units 1, indoor units 3, and relay units 2 is not limited to the number shown in FIG. 1, but according to the building 9 in which the air conditioner according to the present embodiment is installed. What is necessary is just to determine the number.
 1台の室外ユニット1に対して複数台の中継ユニット2を接続する場合、その複数台の中継ユニット2をビル等の建物における共用スペースまたは天井裏等のスペースに点在して設置することができる。そうすることにより、各中継ユニット2内の熱媒体間熱交換器で空調負荷を賄うことができる。また、室内ユニット3を、各中継ユニット2内における熱媒体搬送装置の搬送許容範囲内の距離または高さに設置することが可能であり、ビル等の建物全体へ対しての配置が可能となる。 When a plurality of relay units 2 are connected to one outdoor unit 1, the plurality of relay units 2 may be installed in a shared space in a building such as a building or in a space such as a ceiling. it can. By doing so, an air-conditioning load can be covered with the heat exchanger between heat media in each relay unit 2. In addition, the indoor unit 3 can be installed at a distance or height within the allowable transfer range of the heat medium transfer device in each relay unit 2, and can be arranged on the entire building such as a building. .
 図2は、本実施の形態に係る空気調和装置(以下、空気調和装置100と称する)の回路構成の一例を示す概略回路構成図である。図2に基づいて、空気調和装置100の構成、つまり冷媒回路を構成している各アクチュエーターの作用について詳細に説明する。図2に示すように、室外ユニット1と中継ユニット2とが、中継ユニット2に備えられている熱媒体間熱交換器(冷媒-水熱交換器)25a及び熱媒体間熱交換器(冷媒-水熱交換器)25bを介して冷媒配管4で接続されている。また、中継ユニット2と室内ユニット3とが、熱媒体間熱交換器25a及び熱媒体間熱交換器25bを介して配管5で接続されている。 FIG. 2 is a schematic circuit configuration diagram showing an example of a circuit configuration of the air conditioning apparatus according to the present embodiment (hereinafter referred to as the air conditioning apparatus 100). Based on FIG. 2, the structure of the air conditioning apparatus 100, ie, the effect | action of each actuator which comprises the refrigerant circuit, is demonstrated in detail. As shown in FIG. 2, the outdoor unit 1 and the relay unit 2 include a heat exchanger related to heat medium (refrigerant-water heat exchanger) 25 a and a heat exchanger related to heat medium (refrigerant—) provided in the relay unit 2. The refrigerant pipe 4 is connected via a water heat exchanger 25b. Moreover, the relay unit 2 and the indoor unit 3 are connected by the piping 5 through the heat exchanger related to heat medium 25a and the heat exchanger related to heat medium 25b.
[室外ユニット1]
 室外ユニット1には、圧縮機10と、四方弁等の第1冷媒流路切替装置11と、熱源側熱交換器12と、アキュムレーター19とが冷媒配管4で直列に接続されて搭載されている。また、室外ユニット1には、冷媒用接続配管4a、冷媒用接続配管4b、逆止弁13a、逆止弁13b、逆止弁13c、及び、逆止弁13dが設けられている。冷媒用接続配管4a、冷媒用接続配管4b、逆止弁13a、逆止弁13b、逆止弁13c、及び、逆止弁13dを設けることで、室内ユニット3の要求する運転に関わらず、中継ユニット2に流入させる熱源側冷媒の流れを一定方向にすることができる。
[Outdoor unit 1]
In the outdoor unit 1, a compressor 10, a first refrigerant flow switching device 11 such as a four-way valve, a heat source side heat exchanger 12, and an accumulator 19 are connected and connected in series through a refrigerant pipe 4. Yes. The outdoor unit 1 is also provided with a refrigerant connection pipe 4a, a refrigerant connection pipe 4b, a check valve 13a, a check valve 13b, a check valve 13c, and a check valve 13d. Regardless of the operation required by the indoor unit 3, relay connection pipe 4a, refrigerant connection pipe 4b, check valve 13a, check valve 13b, check valve 13c, and check valve 13d are provided. The flow of the heat source side refrigerant flowing into the unit 2 can be in a certain direction.
 圧縮機10は、熱源側冷媒を吸入し、その熱源側冷媒を圧縮して高温・高圧の状態にして冷媒循環回路Aに搬送するものであり、たとえば容量制御可能なインバータ圧縮機等で構成するとよい。第1冷媒流路切替装置11は、暖房運転モード時(全暖房運転モード時及び暖房主体運転モード時)における熱源側冷媒の流れと冷房運転モード時(全冷房運転モード時及び冷房主体運転モード時)における熱源側冷媒の流れとを切り替えるものである。 The compressor 10 sucks the heat source side refrigerant, compresses the heat source side refrigerant, and transfers it to the refrigerant circulation circuit A in a high temperature / high pressure state. Good. The first refrigerant flow switching device 11 has a flow of the heat source side refrigerant in the heating operation mode (in the heating only operation mode and the heating main operation mode) and in the cooling operation mode (in the all cooling operation mode and the cooling main operation mode). ) To switch the flow of the heat source side refrigerant.
 熱源側熱交換器12は、暖房運転時には蒸発器として機能し、冷房運転時には凝縮器(または放熱器)として機能し、図示省略のファン等の送風装置から供給される空気等の流体と熱源側冷媒との間で熱交換を行ない、その熱源側冷媒を蒸発ガス化または凝縮液化するものである。アキュムレーター19は、圧縮機10の吸入側に設けられており、暖房運転時と冷房運転時の違いによる余剰冷媒、または過渡的な運転の変化に対する余剰冷媒を蓄えるものである。 The heat source side heat exchanger 12 functions as an evaporator during heating operation, functions as a condenser (or radiator) during cooling operation, and fluid such as air supplied from a blower such as a fan (not shown) and the heat source side Heat exchange is performed with the refrigerant, and the heat source side refrigerant is vaporized or condensed and liquefied. The accumulator 19 is provided on the suction side of the compressor 10 and stores excess refrigerant due to a difference between the heating operation and the cooling operation, or excess refrigerant with respect to a transient change in operation.
 逆止弁13cは、中継ユニット2と第1冷媒流路切替装置11との間における冷媒配管4に設けられ、所定の方向(中継ユニット2から室外ユニット1への方向)のみに熱源側冷媒の流れを許容するものである。逆止弁13aは、熱源側熱交換器12と中継ユニット2との間における冷媒配管4に設けられ、所定の方向(室外ユニット1から中継ユニット2への方向)のみに熱源側冷媒の流れを許容するものである。逆止弁13dは、冷媒用接続配管4aに設けられ、暖房運転時において圧縮機10から吐出された熱源側冷媒を中継ユニット2に流通させるものである。逆止弁13bは、冷媒用接続配管4bに設けられ、暖房運転時において中継ユニット2から戻ってきた熱源側冷媒を圧縮機10の吸入側に流通させるものである。 The check valve 13c is provided in the refrigerant pipe 4 between the relay unit 2 and the first refrigerant flow switching device 11, and the heat source side refrigerant is only in a predetermined direction (direction from the relay unit 2 to the outdoor unit 1). It allows flow. The check valve 13a is provided in the refrigerant pipe 4 between the heat source side heat exchanger 12 and the relay unit 2, and flows the heat source side refrigerant only in a predetermined direction (direction from the outdoor unit 1 to the relay unit 2). It is acceptable. The check valve 13d is provided in the refrigerant connection pipe 4a and causes the heat source side refrigerant discharged from the compressor 10 to flow through the relay unit 2 during the heating operation. The check valve 13b is provided in the refrigerant connection pipe 4b, and causes the heat source side refrigerant returned from the relay unit 2 during the heating operation to flow to the suction side of the compressor 10.
 冷媒用接続配管4aは、室外ユニット1内において、第1冷媒流路切替装置11と逆止弁13cとの間における冷媒配管4と、逆止弁13aと中継ユニット2との間における冷媒配管4と、を接続するものである。冷媒用接続配管4bは、室外ユニット1内において、逆止弁13cと中継ユニット2との間における冷媒配管4と、熱源側熱交換器12と逆止弁13aとの間における冷媒配管4と、を接続するものである。なお、図2では、冷媒用接続配管4a、冷媒用接続配管4b、逆止弁13a、逆止弁13b、逆止弁13c、及び、逆止弁13dを設けた場合を例に示しているが、これに限定するものではなく、これらを必ずしも設ける必要はない。 In the outdoor unit 1, the refrigerant connection pipe 4 a includes a refrigerant pipe 4 between the first refrigerant flow switching device 11 and the check valve 13 c, and a refrigerant pipe 4 between the check valve 13 a and the relay unit 2. Are connected to each other. In the outdoor unit 1, the refrigerant connection pipe 4b includes a refrigerant pipe 4 between the check valve 13c and the relay unit 2, a refrigerant pipe 4 between the heat source side heat exchanger 12 and the check valve 13a, Are connected. FIG. 2 shows an example in which the refrigerant connection pipe 4a, the refrigerant connection pipe 4b, the check valve 13a, the check valve 13b, the check valve 13c, and the check valve 13d are provided. However, the present invention is not limited to this, and these are not necessarily provided.
[室内ユニット3]
 室内ユニット3には、それぞれ利用側熱交換器35が搭載されている。この利用側熱交換器35は、配管5によって中継ユニット2の熱媒体流量調整装置34と第2熱媒体流路切替装置33に接続するようになっている。この利用側熱交換器35は、図示省略のファン等の送風装置から供給される空気と熱媒体との間で熱交換を行ない、室内空間7に供給するための暖房用空気あるいは冷房用空気を生成するものである
[Indoor unit 3]
Each indoor unit 3 is equipped with a use side heat exchanger 35. The use side heat exchanger 35 is connected to the heat medium flow control device 34 and the second heat medium flow switching device 33 of the relay unit 2 by the pipe 5. The use side heat exchanger 35 exchanges heat between air supplied from a blower such as a fan (not shown) and a heat medium, and supplies heating air or cooling air to be supplied to the indoor space 7. Is to generate
 また、室内ユニット3においては、ダクト43等を利用側熱交換器35へと付属するようにしている。そして、図示省略している送風装置を用いて室内空間7へ対してダクト43を介して外気を取り入れ、換気を行うことも可能としている。 Further, in the indoor unit 3, a duct 43 and the like are attached to the use side heat exchanger 35. And it can also ventilate by taking in outside air via the duct 43 with respect to the indoor space 7 using the air blower which is not illustrated.
 この図2では、4台の室内ユニット3が中継ユニット2に接続されている場合を例に示しており、紙面上側から室内ユニット3a、室内ユニット3b、室内ユニット3c、室内ユニット3dとして図示している。また、室内ユニット3a~室内ユニット3dに応じて、利用側熱交換器35も、紙面上側から利用側熱交換器35a、利用側熱交換器35b、利用側熱交換器35c、利用側熱交換器35dとして図示している。なお、図1と同様に、室内ユニット3の接続台数を図2に示す4台に限定するものではない。さらに、図2では室内ユニット3aにダクト43を接続している状態を例に示しているが、ダクト43が接続可能な室内ユニット3を1台に限定するものではなく、室内ユニット3b~室内ユニット3dのいずれかに接続してもよい。 FIG. 2 shows an example in which four indoor units 3 are connected to the relay unit 2, which are illustrated as an indoor unit 3 a, an indoor unit 3 b, an indoor unit 3 c, and an indoor unit 3 d from the upper side of the drawing. Yes. In accordance with the indoor unit 3a to the indoor unit 3d, the use side heat exchanger 35 also has a use side heat exchanger 35a, a use side heat exchanger 35b, a use side heat exchanger 35c, and a use side heat exchanger from the upper side of the drawing. It is illustrated as 35d. As in FIG. 1, the number of indoor units 3 connected is not limited to the four shown in FIG. Further, FIG. 2 shows an example in which the duct 43 is connected to the indoor unit 3a. However, the indoor unit 3 to which the duct 43 can be connected is not limited to one, and the indoor unit 3b to the indoor unit can be connected. It may be connected to any of 3d.
[中継ユニット2]
 中継ユニット2には、少なくとも2つ以上の熱媒体間熱交換器25と、2つの絞り装置26と、2つの開閉装置(開閉装置27、開閉装置29)と、2つの第2冷媒流路切替装置28と、2つの熱媒体搬送装置(以下、ポンプ31と称する)と、4つの第1熱媒体流路切替装置32と、4つの第2熱媒体流路切替装置33と、4つの熱媒体流量調整装置34と、が搭載されている。
[Relay unit 2]
The relay unit 2 includes at least two or more heat exchangers for heat medium 25, two expansion devices 26, two opening / closing devices (opening / closing device 27, opening / closing device 29), and two second refrigerant flow switching. Device 28, two heat medium transfer devices (hereinafter referred to as pump 31), four first heat medium flow switching devices 32, four second heat medium flow switching devices 33, and four heat media A flow rate adjusting device 34 is mounted.
 2つの熱媒体間熱交換器25(熱媒体間熱交換器25a、熱媒体間熱交換器25b)は、暖房運転をしている室内ユニット3へ対して温熱を供給する際には凝縮器(放熱器)として、冷房運転をしている室内ユニット3へ対して冷熱を供給する際には蒸発器として機能し、熱源側冷媒と熱媒体とで熱交換を行ない、室外ユニット1で生成され熱源側冷媒に貯えられた冷熱または温熱を熱媒体に伝達するものである。熱媒体間熱交換器25aは、冷媒循環回路Aにおける絞り装置26aと第2冷媒流路切替装置28aとの間に設けられており、冷房暖房混在運転モード時において熱媒体の冷却に供するものである。また、熱媒体間熱交換器25bは、冷媒循環回路Aにおける絞り装置26bと第2冷媒流路切替装置28bとの間に設けられており、冷房暖房混在運転モード時において熱媒体の加熱に供するものである。 The two heat exchangers for heat medium 25 (heat exchanger for heat medium 25a, heat exchanger for heat medium 25b) are provided with a condenser (when the heat is supplied to the indoor unit 3 in the heating operation). When supplying cold heat to the indoor unit 3 that is in the cooling operation as a radiator, it functions as an evaporator, performs heat exchange between the heat-source-side refrigerant and the heat medium, and is generated by the outdoor unit 1 The cold heat or warm heat stored in the side refrigerant is transmitted to the heat medium. The heat exchanger related to heat medium 25a is provided between the expansion device 26a and the second refrigerant flow switching device 28a in the refrigerant circuit A, and serves to cool the heat medium in the cooling / heating mixed operation mode. is there. Further, the heat exchanger related to heat medium 25b is provided between the expansion device 26b and the second refrigerant flow switching device 28b in the refrigerant circulation circuit A, and serves to heat the heat medium in the cooling / heating mixed operation mode. Is.
 2つの絞り装置26(絞り装置26a、絞り装置26b)は、減圧弁や膨張弁としての機能を有し、熱源側冷媒を減圧して膨張させるものである。絞り装置26aは、冷房運転時の熱源側冷媒の流れにおいて熱媒体間熱交換器25aの上流側に設けられている。絞り装置26bは、冷房運転時の熱源側冷媒の流れにおいて熱媒体間熱交換器25bの上流側に設けられている。2つの絞り装置26は、開度が可変に制御可能なもの、たとえば電子式膨張弁等で構成するとよい。 The two expansion devices 26 (the expansion device 26a and the expansion device 26b) have functions as pressure reducing valves and expansion valves, and expand the heat source side refrigerant by reducing the pressure. The expansion device 26a is provided on the upstream side of the heat exchanger related to heat medium 25a in the flow of the heat source side refrigerant during the cooling operation. The expansion device 26b is provided on the upstream side of the heat exchanger related to heat medium 25b in the flow of the heat source side refrigerant during the cooling operation. The two expansion devices 26 may be constituted by devices whose opening degree can be variably controlled, for example, electronic expansion valves.
 2つの開閉装置(開閉装置27、開閉装置29)は、通電により開閉動作が可能な電磁弁等で構成されており、冷媒配管4を開閉するものである。つまり、2つの開閉装置は、運転モードに応じて開閉が制御され、熱源側冷媒の流路を切り替えている。開閉装置27は、熱源側冷媒の入口側における冷媒配管4(室外ユニット1と中継ユニット2とを接続している冷媒配管4のうち紙面最下段に位置する冷媒配管4)に設けられている。開閉装置29は、熱源側冷媒の入口側の冷媒配管4と出口側の冷媒配管4とを接続した配管(バイパス配管20)に設けられている。なお、開閉装置27、開閉装置29は、冷媒流路の切り替えが可能なものであればよく、たとえば電子式膨張弁等の開度を可変に制御が可能なものを用いてもよい。 The two opening / closing devices (opening / closing device 27, opening / closing device 29) are configured by electromagnetic valves or the like that can be opened and closed by energization, and open / close the refrigerant pipe 4. That is, the opening and closing of the two opening / closing devices is controlled according to the operation mode, and the flow path of the heat source side refrigerant is switched. The opening / closing device 27 is provided in the refrigerant pipe 4 on the inlet side of the heat-source-side refrigerant (the refrigerant pipe 4 located at the lowest level in the drawing among the refrigerant pipes 4 connecting the outdoor unit 1 and the relay unit 2). The opening / closing device 29 is provided in a pipe (bypass pipe 20) connecting the refrigerant pipe 4 on the inlet side of the heat source side refrigerant and the refrigerant pipe 4 on the outlet side. The opening / closing device 27 and the opening / closing device 29 may be any devices that can switch the refrigerant flow path. For example, an electronic expansion valve or the like that can variably control the opening degree may be used.
 2つの第2冷媒流路切替装置28(第2冷媒流路切替装置28a、第2冷媒流路切替装置28b)は、たとえば四方弁等で構成され、運転モードに応じて熱媒体間熱交換器25が凝縮器または蒸発器として作用するよう、熱源側冷媒の流れを切り替えるものである。第2冷媒流路切替装置28aは、冷房運転時の熱源側冷媒の流れにおいて熱媒体間熱交換器25aの下流側に設けられている。第2冷媒流路切替装置28bは、全冷房運転モード時の熱源側冷媒の流れにおいて熱媒体間熱交換器25bの下流側に設けられている。 The two second refrigerant flow switching devices 28 (second refrigerant flow switching device 28a, second refrigerant flow switching device 28b) are constituted by, for example, a four-way valve or the like, and the heat exchanger related to heat medium according to the operation mode. The flow of the heat source side refrigerant is switched so that 25 acts as a condenser or an evaporator. The second refrigerant flow switching device 28a is provided on the downstream side of the heat exchanger related to heat medium 25a in the flow of the heat source side refrigerant during the cooling operation. The second refrigerant flow switching device 28b is provided on the downstream side of the heat exchanger related to heat medium 25b in the flow of the heat source side refrigerant in the cooling only operation mode.
 2つのポンプ31(ポンプ31a、ポンプ31b)は、配管5を導通する熱媒体を熱媒体循環回路Bに循環させるものである。ポンプ31aは、熱媒体間熱交換器25aと第2熱媒体流路切替装置33との間における配管5に設けられている。ポンプ31bは、熱媒体間熱交換器25bと第2熱媒体流路切替装置33との間における配管5に設けられている。2つのポンプ31は、たとえば容量制御可能なポンプ等で構成し、室内ユニット3における負荷の大きさによってその流量を調整できるようにしておくとよい。 The two pumps 31 (pump 31a and pump 31b) circulate the heat medium that conducts the pipe 5 to the heat medium circuit B. The pump 31 a is provided in the pipe 5 between the heat exchanger related to heat medium 25 a and the second heat medium flow switching device 33. The pump 31 b is provided in the pipe 5 between the heat exchanger related to heat medium 25 b and the second heat medium flow switching device 33. The two pumps 31 may be configured by, for example, capacity-controllable pumps, and the flow rate thereof may be adjusted according to the load in the indoor unit 3.
 4つの第1熱媒体流路切替装置32(第1熱媒体流路切替装置32a~第1熱媒体流路切替装置32d)は、三方弁等で構成されており、熱媒体の流路を熱媒体間熱交換器25aと熱媒体間熱交換器25bとの間で切り替えるものである。第1熱媒体流路切替装置32は、室内ユニット3の設置台数に応じた個数(ここでは4つ)が設けられるようになっている。第1熱媒体流路切替装置32は、三方のうちの一つが熱媒体間熱交換器25aに、三方のうちの一つが熱媒体間熱交換器25bに、三方のうちの一つが熱媒体流量調整装置34に、それぞれ接続され、利用側熱交換器35の熱媒体流路の出口側に設けられている。なお、室内ユニット3に対応させて、紙面上側から第1熱媒体流路切替装置32a、第1熱媒体流路切替装置32b、第1熱媒体流路切替装置32c、第1熱媒体流路切替装置32dとして図示している。また、熱媒体流路の切替には、一方から他方への完全な切替だけでなく、一方から他方への部分的な切替も含んでいるものとする。 The four first heat medium flow switching devices 32 (the first heat medium flow switching device 32a to the first heat medium flow switching device 32d) are configured by three-way valves or the like, and heat the flow of the heat medium. Switching between the heat exchanger for medium 25a and the heat exchanger 25b for heat medium is performed. The number of first heat medium flow switching devices 32 is set according to the number of indoor units 3 installed (here, four). In the first heat medium flow switching device 32, one of the three sides is in the heat exchanger 25a, one of the three is in the heat exchanger 25b, and one of the three is in the heat medium flow rate. Each is connected to the adjustment device 34 and provided on the outlet side of the heat medium flow path of the use side heat exchanger 35. The first heat medium flow switching device 32a, the first heat medium flow switching device 32b, the first heat medium flow switching device 32c, and the first heat medium flow switching corresponding to the indoor unit 3 from the upper side of the drawing. Illustrated as device 32d. The switching of the heat medium flow path includes not only complete switching from one to the other but also partial switching from one to the other.
 4つの第2熱媒体流路切替装置33(第2熱媒体流路切替装置33a~第2熱媒体流路切替装置33d)は、三方弁等で構成されており、熱媒体の流路を熱媒体間熱交換器25aと熱媒体間熱交換器25bとの間で切り替えるものである。第2熱媒体流路切替装置33は、室内ユニット3の設置台数に応じた個数(ここでは4つ)が設けられるようになっている。第2熱媒体流路切替装置33は、三方のうちの一つが熱媒体間熱交換器25aに、三方のうちの一つが熱媒体間熱交換器25bに、三方のうちの一つが利用側熱交換器35に、それぞれ接続され、利用側熱交換器35の熱媒体流路の入口側に設けられている。なお、室内ユニット3に対応させて、紙面上側から第2熱媒体流路切替装置33a、第2熱媒体流路切替装置33b、第2熱媒体流路切替装置33c、第2熱媒体流路切替装置33dとして図示している。また、熱媒体流路の切替には、一方から他方への完全な切替だけでなく、一方から他方への部分的な切替も含んでいるものとする。 The four second heat medium flow switching devices 33 (second heat medium flow switching device 33a to second heat medium flow switching device 33d) are configured by three-way valves or the like, and heat the flow of the heat medium. Switching between the heat exchanger for medium 25a and the heat exchanger 25b for heat medium is performed. The second heat medium flow switching device 33 is provided in a number (four in this case) corresponding to the number of indoor units 3 installed. In the second heat medium flow switching device 33, one of the three heat transfer medium heat exchangers 25a, one of the three heat transfer medium heat exchangers 25b, and one of the three heat transfer side heats. Each is connected to the exchanger 35 and provided on the inlet side of the heat medium flow path of the use side heat exchanger 35. In correspondence with the indoor unit 3, the second heat medium flow switching device 33a, the second heat medium flow switching device 33b, the second heat medium flow switching device 33c, and the second heat medium flow switching are performed from the upper side of the drawing. Illustrated as device 33d. The switching of the heat medium flow path includes not only complete switching from one to the other but also partial switching from one to the other.
 4つの熱媒体流量調整装置34(熱媒体流量調整装置34a~熱媒体流量調整装置34d)は、開口面積を制御できる二方弁等で構成されており、配管5に流れる熱媒体の流量を制御するものである。熱媒体流量調整装置34は、室内ユニット3の設置台数に応じた個数(ここでは4つ)が設けられるようになっている。熱媒体流量調整装置34は、一方が利用側熱交換器35に、他方が第1熱媒体流路切替装置32に、それぞれ接続され、利用側熱交換器35の熱媒体流路の出口側に設けられている。すなわち、熱媒体流量調整装置34は、室内ユニット3へ流入する熱媒体の温度及び流出する熱媒体の温度により室内ユニット3へ流入する熱媒体の量を調整し、室内負荷に応じた最適な熱媒体量を室内ユニット3に提供可能とするものである。 The four heat medium flow control devices 34 (the heat medium flow control device 34a to the heat medium flow control device 34d) are configured by two-way valves or the like that can control the opening area, and control the flow rate of the heat medium flowing through the pipe 5. To do. The number of the heat medium flow control devices 34 is set according to the number of indoor units 3 installed (four in this case). One of the heat medium flow control devices 34 is connected to the use side heat exchanger 35 and the other is connected to the first heat medium flow switching device 32, and is connected to the outlet side of the heat medium flow channel of the use side heat exchanger 35. Is provided. In other words, the heat medium flow control device 34 adjusts the amount of the heat medium flowing into the indoor unit 3 according to the temperature of the heat medium flowing into the indoor unit 3 and the temperature of the heat medium flowing out, so that the optimum heat according to the indoor load is adjusted. The medium amount can be provided to the indoor unit 3.
 なお、室内ユニット3に対応させて、紙面上側から熱媒体流量調整装置34a、熱媒体流量調整装置34b、熱媒体流量調整装置34c、熱媒体流量調整装置34dとして図示している。また、熱媒体流量調整装置34を利用側熱交換器35の熱媒体流路の入口側に設けてもよい。さらに、熱媒体流量調整装置34を利用側熱交換器35の熱媒体流路の入口側であって、第2熱媒体流路切替装置33と利用側熱交換器35との間に設けてもよい。またさらに、室内ユニット3において、停止やサーモOFF等の負荷を必要としていないときは、熱媒体流量調整装置34を全閉にすることにより、室内ユニット3への熱媒体供給を止めることができる。 It should be noted that, corresponding to the indoor unit 3, the heat medium flow rate adjustment device 34a, the heat medium flow rate adjustment device 34b, the heat medium flow rate adjustment device 34c, and the heat medium flow rate adjustment device 34d are illustrated from the upper side of the drawing. Further, the heat medium flow control device 34 may be provided on the inlet side of the heat medium flow path of the use side heat exchanger 35. Further, the heat medium flow control device 34 may be provided on the inlet side of the heat medium flow path of the use side heat exchanger 35 and between the second heat medium flow switching device 33 and the use side heat exchanger 35. Good. Furthermore, when the indoor unit 3 does not require a load such as stop or thermo OFF, the heat medium supply to the indoor unit 3 can be stopped by fully closing the heat medium flow control device 34.
 なお、第1熱媒体流路切替装置32または第2熱媒体流路切替装置33において、熱媒体流量調整装置34の機能を付加したものを用いれば、熱媒体流量調整装置34を省略することも可能である。 If the first heat medium flow switching device 32 or the second heat medium flow switching device 33 is added with the function of the heat medium flow control device 34, the heat medium flow control device 34 may be omitted. Is possible.
 また、中継ユニット2には、熱媒体間熱交換器25の出口側における熱媒体の温度を検出するための温度センサー40(温度センサー40a、温度センサー40b)が設けられている。温度センサー40で検出された情報(温度情報)は、空気調和装置100の動作を統括制御する制御装置50に送られ、圧縮機10の駆動周波数、図示省略の送風装置の回転数、第1冷媒流路切替装置11の切り替え、ポンプ31の駆動周波数、第2冷媒流路切替装置28の切り替え、熱媒体の流路の切替、室内ユニット3の熱媒体流量の調整等の制御に利用されることになる。なお、制御装置50が、各ユニットとは別に搭載されている状態を例に示しているが、これに限定するものではなく、室外ユニット1、室内ユニット3及び中継ユニット2の少なくとも1つ、あるいは、各ユニットに通信可能に搭載するようにしてもよい。 Further, the relay unit 2 is provided with a temperature sensor 40 (temperature sensor 40a, temperature sensor 40b) for detecting the temperature of the heat medium on the outlet side of the heat exchanger 25 between heat mediums. Information (temperature information) detected by the temperature sensor 40 is sent to a control device 50 that performs overall control of the operation of the air conditioner 100, and the driving frequency of the compressor 10, the rotation speed of the blower not shown, and the first refrigerant. It is used for control such as switching of the flow path switching device 11, driving frequency of the pump 31, switching of the second refrigerant flow path switching device 28, switching of the flow path of the heat medium, adjustment of the heat medium flow rate of the indoor unit 3. become. In addition, although the control device 50 is shown as an example in a state where it is mounted separately from each unit, the present invention is not limited to this. At least one of the outdoor unit 1, the indoor unit 3, and the relay unit 2, or Each unit may be mounted so as to be communicable.
 また、制御装置50は、マイコン等で構成されており、各種検出手段での検出情報及びリモコンからの指示に基づいて、圧縮機10の駆動周波数、送風装置の回転数(ON/OFF含む)、第1冷媒流路切替装置11の切り替え、ポンプ31の駆動、絞り装置26の開度、開閉装置(開閉装置27、開閉装置29)の開閉、第2冷媒流路切替装置28の切り替え、第1熱媒体流路切替装置32の切り替え、第2熱媒体流路切替装置33の切り替え、及び、熱媒体流量調整装置34の駆動等、各アクチュエーター(ポンプ31、第1熱媒体流路切替装置32、第2熱媒体流路切替装置33、絞り装置26、第2冷媒流路切替装置28等の駆動部品)を制御し、後述する各運転モードを実行するようになっている。 Moreover, the control apparatus 50 is comprised by the microcomputer etc., Based on the detection information in various detection means, and the instruction | indication from a remote control, the drive frequency of the compressor 10, the rotation speed (including ON / OFF) of an air blower, Switching of the first refrigerant flow switching device 11, driving of the pump 31, opening of the throttle device 26, opening / closing of the opening / closing devices (opening / closing device 27, opening / closing device 29), switching of the second refrigerant flow switching device 28, first Each actuator (pump 31, first heat medium flow switching device 32, switching of the heat medium flow switching device 32, switching of the second heat medium flow switching device 33, driving of the heat medium flow control device 34, etc. The driving parts such as the second heat medium flow switching device 33, the expansion device 26, the second refrigerant flow switching device 28, etc.) are controlled, and each operation mode to be described later is executed.
 熱媒体を導通する配管5は、熱媒体間熱交換器25aに接続されるものと、熱媒体間熱交換器25bに接続されるものと、で構成されている。配管5は、中継ユニット2に接続される室内ユニット3の台数に応じて分岐(ここでは、各4分岐)されている。そして、配管5は、第1熱媒体流路切替装置32、及び、第2熱媒体流路切替装置33で接続されている。第1熱媒体流路切替装置32及び第2熱媒体流路切替装置33を制御することで、熱媒体間熱交換器25aからの熱媒体を利用側熱交換器35に流入させるか、熱媒体間熱交換器25bからの熱媒体を利用側熱交換器35に流入させるかが決定されるようになっている。 The pipe 5 that conducts the heat medium is composed of one that is connected to the heat exchanger related to heat medium 25a and one that is connected to the heat exchanger related to heat medium 25b. The pipe 5 is branched (here, four branches each) according to the number of indoor units 3 connected to the relay unit 2. The pipe 5 is connected by a first heat medium flow switching device 32 and a second heat medium flow switching device 33. By controlling the first heat medium flow switching device 32 and the second heat medium flow switching device 33, the heat medium from the heat exchanger related to heat medium 25a flows into the use-side heat exchanger 35, or the heat medium Whether the heat medium from the intermediate heat exchanger 25b flows into the use side heat exchanger 35 is determined.
 そして、空気調和装置100では、圧縮機10、第1冷媒流路切替装置11、熱源側熱交換器12、開閉装置27、開閉装置29、第2冷媒流路切替装置28、熱媒体間熱交換器25の冷媒流路、絞り装置26、及び、アキュムレーター19を、冷媒配管4で接続して冷媒循環回路Aを構成している。また、熱媒体間熱交換器25の熱媒体流路、ポンプ31、第1熱媒体流路切替装置32、熱媒体流量調整装置34、利用側熱交換器35、及び、第2熱媒体流路切替装置33を、配管5で接続して熱媒体循環回路Bを構成している。つまり、熱媒体間熱交換器25のそれぞれに複数台の利用側熱交換器35が並列に接続され、熱媒体循環回路Bを複数系統としているのである。 In the air conditioner 100, the compressor 10, the first refrigerant flow switching device 11, the heat source side heat exchanger 12, the switching device 27, the switching device 29, the second refrigerant flow switching device 28, and heat exchange between heat media. The refrigerant flow path, the expansion device 26 and the accumulator 19 of the container 25 are connected by the refrigerant pipe 4 to constitute the refrigerant circulation circuit A. Further, the heat medium flow path of the intermediate heat exchanger 25, the pump 31, the first heat medium flow switching device 32, the heat medium flow control device 34, the use side heat exchanger 35, and the second heat medium flow path. The switching device 33 is connected by the pipe 5 to constitute the heat medium circulation circuit B. That is, a plurality of use side heat exchangers 35 are connected in parallel to each of the heat exchangers 25 between heat mediums, and the heat medium circulation circuit B has a plurality of systems.
 よって、空気調和装置100では、室外ユニット1と中継ユニット2とが、中継ユニット2に設けられている熱媒体間熱交換器25a及び熱媒体間熱交換器25bを介して接続され、中継ユニット2と室内ユニット3とも、熱媒体間熱交換器25a及び熱媒体間熱交換器25bを介して接続されている。すなわち、空気調和装置100では、熱媒体間熱交換器25a及び熱媒体間熱交換器25bで冷媒循環回路Aを循環する熱源側冷媒と熱媒体循環回路Bを循環する熱媒体とが熱交換するようになっている。このような構成を用いることで、空気調和装置100は、室内負荷に応じた最適な冷房運転または暖房運転を実現することができる。 Therefore, in the air conditioner 100, the outdoor unit 1 and the relay unit 2 are connected via the heat exchanger related to heat medium 25a and the heat exchanger related to heat medium 25b provided in the relay unit 2, and the relay unit 2 is connected. And the indoor unit 3 are also connected via the heat exchanger related to heat medium 25a and the heat exchanger related to heat medium 25b. That is, in the air conditioner 100, the heat source side refrigerant circulating in the refrigerant circuit A and the heat medium circulating in the heat medium circuit B exchange heat in the intermediate heat exchanger 25a and the intermediate heat exchanger 25b. It is like that. By using such a configuration, the air conditioner 100 can realize an optimal cooling operation or heating operation according to the indoor load.
[運転モード]
 空気調和装置100が実行する各運転モードについて説明する。この空気調和装置100は、各室内ユニット3からの指示に基づいて、その室内ユニット3で冷房運転あるいは暖房運転が可能になっている。つまり、空気調和装置100は、室内ユニット3の全部で同一運転をすることができるとともに、室内ユニット3のそれぞれで異なる運転をすることができるようになっている。
[Operation mode]
Each operation mode which the air conditioning apparatus 100 performs is demonstrated. The air conditioner 100 can perform a cooling operation or a heating operation in the indoor unit 3 based on an instruction from each indoor unit 3. That is, the air conditioning apparatus 100 can perform the same operation for all the indoor units 3 and can perform different operations for each of the indoor units 3.
 空気調和装置100が実行する運転モードには、駆動している室内ユニット3の全てが暖房運転を実行する全暖房運転モード、駆動している室内ユニット3の全てが冷房運転を実行する全冷房運転モード、冷房暖房混在運転モードのうち冷房負荷よりも暖房負荷の方が大きい暖房主体運転モード、及び、冷房暖房混在運転モードのうち暖房負荷よりも冷房負荷の方が大きい冷房主体運転モードがある。また、全暖房運転モード、暖房主体運転モードにおいては、熱源側熱交換器12にて外気との熱交換の結果、熱源側熱交換器12に付着した霜を除去する除霜運転モードがある。以下に、各運転モードについて、熱源側冷媒および熱媒体の流れとともについて説明する。 The operation mode executed by the air conditioner 100 includes a heating only operation mode in which all the driven indoor units 3 execute the heating operation, and a cooling only operation in which all the driven indoor units 3 execute the cooling operation. There are a heating main operation mode in which the heating load is larger than the cooling load in the mode and the mixed cooling and heating operation mode, and a cooling main operation mode in which the cooling load is larger than the heating load in the cooling and heating mixed operation mode. In the heating only operation mode and the heating main operation mode, there is a defrosting operation mode in which frost attached to the heat source side heat exchanger 12 is removed as a result of heat exchange with the outside air in the heat source side heat exchanger 12. Below, each operation mode is demonstrated with the flow of the heat source side refrigerant | coolant and a heat medium.
[全冷房運転モード]
 図3は、空気調和装置100の全冷房運転モード時における冷媒の流れを示す冷媒回路図である。この図3では、利用側熱交換器35a~利用側熱交換器35dの全部で冷熱負荷が発生している場合を例に全冷房運転モードについて説明する。なお、図3では、太線で表された配管が熱源側冷媒の流れる配管を示している。また、図3では、熱源側冷媒の流れ方向を実線矢印で、熱媒体の流れ方向を破線矢印で示している。
[Cooling operation mode]
FIG. 3 is a refrigerant circuit diagram illustrating a refrigerant flow when the air-conditioning apparatus 100 is in the cooling only operation mode. In FIG. 3, the cooling only operation mode will be described by taking as an example a case where a cooling load is generated in all of the use side heat exchangers 35a to 35d. In addition, in FIG. 3, the piping represented by the thick line has shown the piping through which the heat source side refrigerant | coolant flows. In FIG. 3, the flow direction of the heat source side refrigerant is indicated by a solid line arrow, and the flow direction of the heat medium is indicated by a broken line arrow.
 図3に示す全冷房運転モードの場合、室外ユニット1では、第1冷媒流路切替装置11を、圧縮機10から吐出された熱源側冷媒を熱源側熱交換器12へ流入させるように切り替える。 3, in the cooling only operation mode shown in FIG. 3, in the outdoor unit 1, the first refrigerant flow switching device 11 is switched so that the heat source side refrigerant discharged from the compressor 10 flows into the heat source side heat exchanger 12.
 中継ユニット2では、ポンプ31a及びポンプ31bを駆動させ、熱媒体流量調整装置34a~熱媒体流量調整装置34dを開放し、熱媒体間熱交換器25a及び熱媒体間熱交換器25bのそれぞれと利用側熱交換器35a~利用側熱交換器35dとの間を熱媒体が循環するようにしている。また、第2冷媒流路切替装置28aおよび第2冷媒流路切替装置28bは冷房側に切り替えられており、開閉装置27は開、開閉装置29は閉となっている。 In the relay unit 2, the pump 31a and the pump 31b are driven, the heat medium flow control devices 34a to 34d are opened, and the heat medium heat exchanger 25a and the heat medium heat exchanger 25b are used respectively. The heat medium circulates between the side heat exchanger 35a and the use side heat exchanger 35d. The second refrigerant flow switching device 28a and the second refrigerant flow switching device 28b are switched to the cooling side, the opening / closing device 27 is open, and the opening / closing device 29 is closed.
 まず始めに、冷媒循環回路Aにおける熱源側冷媒の流れについて説明する。
 低温・低圧の冷媒が圧縮機10によって圧縮され、高温・高圧のガス冷媒となって吐出される。圧縮機10から吐出された高温・高圧のガス冷媒は、第1冷媒流路切替装置11を介して熱源側熱交換器12を通過し、室外空間6の空気(以下、外気と称する)との熱交換を行い、高温高圧の液または二相冷媒となり、逆止弁13aを通過した後、冷媒用接続配管4aを導通し、室外ユニット1から流出する。室外ユニット1から流出した高温・高圧の液または二相冷媒は、冷媒配管4を通って中継ユニット2に流入する。
First, the flow of the heat source side refrigerant in the refrigerant circuit A will be described.
The low-temperature and low-pressure refrigerant is compressed by the compressor 10 and discharged as a high-temperature and high-pressure gas refrigerant. The high-temperature and high-pressure gas refrigerant discharged from the compressor 10 passes through the heat source side heat exchanger 12 via the first refrigerant flow switching device 11, and is the air in the outdoor space 6 (hereinafter referred to as outside air). Heat exchange is performed to obtain a high-temperature / high-pressure liquid or a two-phase refrigerant, and after passing through the check valve 13a, the refrigerant connection pipe 4a is conducted and flows out of the outdoor unit 1. The high-temperature and high-pressure liquid or two-phase refrigerant that has flowed out of the outdoor unit 1 flows into the relay unit 2 through the refrigerant pipe 4.
 中継ユニット2に流入した高温・高圧の液または二相冷媒は、開閉装置27を通過した後、分岐されて絞り装置26aおよび絞り装置26bで膨張させられて、低温・低圧の二相冷媒となる。これらの二相冷媒は、熱媒体間熱交換器25aおよび熱媒体間熱交換器25bに流入し、熱媒体循環回路Bを循環する熱媒体から吸熱しながら蒸発気化し、低温のガス冷媒となる。熱媒体間熱交換器25aおよび熱媒体間熱交換器25bから流出したガス冷媒は、第2冷媒流路切替装置28aおよび第2冷媒流路切替装置28bを通って中継ユニット2から流出し、冷媒配管4を導通し、逆止弁13cを通過して第1冷媒流路切替装置11およびアキュムレーター19を介して圧縮機10へ再度吸入される。 The high-temperature / high-pressure liquid or two-phase refrigerant that has flowed into the relay unit 2 passes through the opening / closing device 27, and is branched and expanded by the expansion device 26a and the expansion device 26b to become a low-temperature / low-pressure two-phase refrigerant. . These two-phase refrigerant flows into the heat exchanger related to heat medium 25a and the heat exchanger related to heat medium 25b, evaporates while absorbing heat from the heat medium circulating in the heat medium circuit B, and becomes a low-temperature gas refrigerant. . The gas refrigerant flowing out from the heat exchanger related to heat medium 25a and the heat exchanger related to heat medium 25b flows out from the relay unit 2 through the second refrigerant flow switching device 28a and the second refrigerant flow switching device 28b, and the refrigerant The pipe 4 is conducted, passes through the check valve 13 c, and is sucked again into the compressor 10 through the first refrigerant flow switching device 11 and the accumulator 19.
 このとき絞り装置26は、熱媒体間熱交換器25と絞り装置26との間を流れる熱源側冷媒の圧力を飽和温度換算した値と、熱媒体間熱交換器25の出口側の温度との差として得られるスーパーヒート(過熱度)が一定になるように開度が制御される。なお、熱媒体間熱交換器25の中間位置の温度が測定できる場合は、その中間位置での温度を換算した飽和温度を変わりに用いてもよい。この場合、圧力センサーを設置しなくて済み、安価にシステムを構成できる。 At this time, the expansion device 26 calculates a value obtained by converting the pressure of the heat-source-side refrigerant flowing between the heat exchanger 25 between the heat medium 25 and the expansion device 26 into a saturation temperature and the temperature on the outlet side of the heat exchanger 25 between the heat media. The opening degree is controlled so that the superheat (superheat degree) obtained as the difference becomes constant. In addition, when the temperature of the intermediate position of the intermediate heat exchanger 25 can be measured, the saturation temperature obtained by converting the temperature at the intermediate position may be used instead. In this case, it is not necessary to install a pressure sensor, and the system can be configured at low cost.
 次に、熱媒体循環回路Bにおける熱媒体の流れについて説明する。
 全冷房運転モードでは、熱媒体間熱交換器25a及び熱媒体間熱交換器25bの双方で熱源側冷媒の冷熱が熱媒体に伝えられ、冷やされた熱媒体がポンプ31a及びポンプ31bで加圧されて流出し、第2熱媒体流路切替装置33a~第2熱媒体流路切替装置33dを介して、利用側熱交換器35a~利用側熱交換器35dに流入する。そして、熱媒体が利用側熱交換器35a~利用側熱交換器35dで室内空気から吸熱することで、室内空間7の冷房を行う。
Next, the flow of the heat medium in the heat medium circuit B will be described.
In the cooling only operation mode, the cold heat of the heat source side refrigerant is transmitted to the heat medium in both the heat exchangers 25a and 25b, and the cooled heat medium is pressurized by the pump 31a and the pump 31b. It flows out and flows into the use side heat exchanger 35a to the use side heat exchanger 35d via the second heat medium flow switching device 33a to the second heat medium flow switching device 33d. The heat medium absorbs heat from the indoor air in the use side heat exchanger 35a to the use side heat exchanger 35d, thereby cooling the indoor space 7.
 それから、熱媒体は、利用側熱交換器35a~利用側熱交換器35dから流出して熱媒体流量調整装置34a~熱媒体流量調整装置34dに流入する。このとき、熱媒体流量調整装置34a~熱媒体流量調整装置34dの作用によって熱媒体の流量他室内にて必要とされる空調負荷を賄うのに必要な流量に制御されて利用側熱交換器35a~利用側熱交換器35dに流入するようになっている。熱媒体流量調整装置34a~熱媒体流量調整装置34dから流出した熱媒体は、第1熱媒体流路切替装置32a~第1熱媒体流路切替装置32dを通って、熱媒体間熱交換器25aおよび熱媒体間熱交換器25bへ流入し、室内ユニット3を通じて室内空間7から吸熱した分の熱量を冷媒側へ渡し、再びポンプ31aおよびポンプ31bへ吸込まれる。 Then, the heat medium flows out from the use side heat exchanger 35a to the use side heat exchanger 35d and flows into the heat medium flow control device 34a to the heat medium flow control device 34d. At this time, the use side heat exchanger 35a is controlled by the operation of the heat medium flow control device 34a to the heat medium flow control device 34d so that the flow rate of the heat medium is controlled to a flow rate necessary to cover the air conditioning load required in the other room. It flows into the use side heat exchanger 35d. The heat medium flowing out from the heat medium flow control device 34a to the heat medium flow control device 34d passes through the first heat medium flow switching device 32a to the first heat medium flow switching device 32d, and then the heat exchanger related to heat medium 25a. And it flows in into the heat exchanger 25b between heat | fever media, passes the amount of heat | fever for the heat | fever absorbed from the indoor space 7 through the indoor unit 3 to the refrigerant | coolant side, and is sucked into the pump 31a and the pump 31b again.
 なお、利用側熱交換器35の配管5内では、第2熱媒体流路切替装置33から熱媒体流量調整装置34を経由して第1熱媒体流路切替装置32へ至る向きに熱媒体が流れている。また、室内空間7にて必要とされる空調負荷は、温度センサー40で検出された温度、あるいは、温度センサー40で検出された温度と利用側熱交換器35から流出した熱媒体の温度との差を目標値に保つように制御することにより、賄うことができる。熱媒体間熱交換器25の出口温度は、温度センサー40aまたは温度センサー40bのどちらの温度を使用してもよいし、これらの平均温度を使用してもよい。 In the pipe 5 of the use side heat exchanger 35, the heat medium is directed from the second heat medium flow switching device 33 to the first heat medium flow switching device 32 via the heat medium flow control device 34. Flowing. The air conditioning load required in the indoor space 7 is the temperature detected by the temperature sensor 40 or the temperature detected by the temperature sensor 40 and the temperature of the heat medium flowing out from the use side heat exchanger 35. This can be covered by controlling the difference to keep it at the target value. As the outlet temperature of the heat exchanger related to heat medium 25, either the temperature sensor 40a or the temperature sensor 40b may be used, or an average temperature of these may be used.
 このとき、第1熱媒体流路切替装置32及び第2熱媒体流路切替装置33は、熱媒体間熱交換器25a及び熱媒体間熱交換器25bの双方へ流れる流路が確保されるように、中間的な開度、あるいは、熱媒体間熱交換器25a及び熱媒体間熱交換器25bの出口の熱媒体温度に応じた開度に制御されている。また、本来、利用側熱交換器35は、その入口と出口の温度差で制御すべきであるが、利用側熱交換器35の入口側の熱媒体温度は、温度センサー40で検出された温度とほとんど同じ温度であり、温度センサー40を使用することにより温度センサーの数を減らすことができ、安価にシステムを構成できる。 At this time, the first heat medium flow switching device 32 and the second heat medium flow switching device 33 seem to secure a flow path that flows to both the heat medium heat exchanger 25a and the heat medium heat exchanger 25b. In addition, the opening degree is controlled to an intermediate opening degree or an opening degree corresponding to the heat medium temperature at the outlet of the heat exchanger related to heat medium 25a and the heat exchanger related to heat medium 25b. In addition, the usage-side heat exchanger 35 should be controlled by the temperature difference between the inlet and the outlet, but the temperature of the heat medium on the inlet side of the usage-side heat exchanger 35 is the temperature detected by the temperature sensor 40. The number of temperature sensors can be reduced by using the temperature sensor 40, and the system can be configured at low cost.
 全冷房運転モードを実行する際、熱負荷のない利用側熱交換器35(サーモオフを含む)へは熱媒体を流す必要がないため、熱媒体流量調整装置34により流路を閉じて、利用側熱交換器35へ熱媒体が流れないようにする。図3においては、利用側熱交換器35a~利用側熱交換器35dの全部において熱負荷があるため熱媒体を流しているが、熱負荷がなくなった場合には対応する熱媒体流量調整装置34を全閉とすればよい。そして、再度、熱負荷の発生があった場合には、対応する熱媒体流量調整装置34を開放し、熱媒体を循環させればよい。これについては、以下で説明する他の運転モードでも同様である。 When the cooling only operation mode is executed, it is not necessary to flow the heat medium to the use side heat exchanger 35 (including the thermo-off) having no heat load, so the flow path is closed by the heat medium flow control device 34 and the use side The heat medium is prevented from flowing to the heat exchanger 35. In FIG. 3, the heat medium flows because all of the use side heat exchangers 35a to 35d have a heat load. However, when the heat load disappears, the corresponding heat medium flow control device 34 is used. Should be fully closed. Then, when a heat load is generated again, the corresponding heat medium flow control device 34 is opened, and the heat medium is circulated. The same applies to other operation modes described below.
[全暖房運転モード]
 図4は、空気調和装置100の全暖房運転モード時における冷媒の流れを示す冷媒回路図である。この図4では、利用側熱交換器35a~利用側熱交換器35dの全部で温熱負荷が発生している場合を例に全暖房運転モードについて説明する。なお、図4では、太線で表された配管が熱源側冷媒の流れる配管を示している。また、図4では、熱源側冷媒の流れ方向を実線矢印で、熱媒体の流れ方向を破線矢印で示している。
[Heating operation mode]
FIG. 4 is a refrigerant circuit diagram illustrating a refrigerant flow when the air-conditioning apparatus 100 is in the heating only operation mode. In FIG. 4, the heating only operation mode will be described by taking as an example a case where a heating load is generated in all of the use side heat exchanger 35a to the use side heat exchanger 35d. In addition, in FIG. 4, the piping represented by the thick line has shown the piping through which the heat source side refrigerant | coolant flows. In FIG. 4, the flow direction of the heat source side refrigerant is indicated by solid line arrows, and the flow direction of the heat medium is indicated by broken line arrows.
 図4に示す全暖房運転モードの場合、室外ユニット1では、第1冷媒流路切替装置11を、圧縮機10から吐出された熱源側冷媒を熱源側熱交換器12を経由させずに中継ユニット2へ流入させるように切り替える。中継ユニット2では、ポンプ31a及びポンプ31bを駆動させ、熱媒体流量調整装置34a~熱媒体流量調整装置34dを開放し、熱媒体間熱交換器25a及び熱媒体間熱交換器25bのそれぞれと利用側熱交換器35a~利用側熱交換器35dとの間を熱媒体が循環するようにしている。また、第2冷媒流路切替装置28a及び第2冷媒流路切替装置28bは暖房側に切り替えられており、開閉装置27は閉、開閉装置29は開となっている。 In the heating only operation mode shown in FIG. 4, in the outdoor unit 1, the first refrigerant flow switching device 11 is connected to the relay unit without passing the heat source side refrigerant discharged from the compressor 10 through the heat source side heat exchanger 12. Switch to 2 In the relay unit 2, the pump 31a and the pump 31b are driven, the heat medium flow control devices 34a to 34d are opened, and the heat medium heat exchanger 25a and the heat medium heat exchanger 25b are used respectively. The heat medium circulates between the side heat exchanger 35a and the use side heat exchanger 35d. The second refrigerant flow switching device 28a and the second refrigerant flow switching device 28b are switched to the heating side, the opening / closing device 27 is closed, and the opening / closing device 29 is open.
 まず始めに、冷媒循環回路Aにおける熱源側冷媒の流れについて説明する。
 低温・低圧の冷媒が圧縮機10によって圧縮され、高温・高圧のガス冷媒となって吐出される。圧縮機10から吐出された高温・高圧のガス冷媒は、第1冷媒流路切替装置11を通り、冷媒用接続配管4aを導通し、逆止弁13dを通過し、室外ユニット1から流出する。室外ユニット1から流出した高温・高圧のガス冷媒は、冷媒配管4を通って中継ユニット2に流入する。中継ユニット2に流入した高温・高圧のガス冷媒は、分岐されて第2冷媒流路切替装置28a及び第2冷媒流路切替装置28bを通って、熱媒体間熱交換器25a及び熱媒体間熱交換器25bのそれぞれに流入する。
First, the flow of the heat source side refrigerant in the refrigerant circuit A will be described.
The low-temperature and low-pressure refrigerant is compressed by the compressor 10 and discharged as a high-temperature and high-pressure gas refrigerant. The high-temperature and high-pressure gas refrigerant discharged from the compressor 10 passes through the first refrigerant flow switching device 11, conducts through the refrigerant connection pipe 4 a, passes through the check valve 13 d, and flows out of the outdoor unit 1. The high-temperature and high-pressure gas refrigerant that has flowed out of the outdoor unit 1 flows into the relay unit 2 through the refrigerant pipe 4. The high-temperature and high-pressure gas refrigerant that has flowed into the relay unit 2 is branched and passes through the second refrigerant flow switching device 28a and the second refrigerant flow switching device 28b, and the heat exchanger related to heat medium 25a and heat between the heat media. It flows into each of the exchangers 25b.
 熱媒体間熱交換器25a及び熱媒体間熱交換器25bに流入した高温・高圧のガス冷媒は、熱媒体循環回路Bを循環する熱媒体に放熱しながら凝縮液化し、高圧の液冷媒となる。熱媒体間熱交換器25a及び熱媒体間熱交換器25bから流出した液冷媒は、絞り装置26a及び絞り装置26bで膨張させられて、低温・低圧の二相冷媒となる。これらの二相冷媒は、合流した後、開閉装置29を通って、中継ユニット2から流出し、冷媒配管4を通って再び室外ユニット1へ流入する。室外ユニット1に流入した冷媒は、冷媒用接続配管4bを導通し、逆止弁13bを通過して、蒸発器として作用する熱源側熱交換器12に流入する。 The high-temperature and high-pressure gas refrigerant flowing into the heat exchanger related to heat medium 25a and the heat exchanger related to heat medium 25b is condensed and liquefied while dissipating heat to the heat medium circulating in the heat medium circuit B, and becomes a high-pressure liquid refrigerant. . The liquid refrigerant flowing out of the heat exchanger related to heat medium 25a and the heat exchanger related to heat medium 25b is expanded by the expansion device 26a and the expansion device 26b to become a low-temperature, low-pressure two-phase refrigerant. These two-phase refrigerants merge, flow out of the relay unit 2 through the opening / closing device 29, and flow into the outdoor unit 1 again through the refrigerant pipe 4. The refrigerant that has flowed into the outdoor unit 1 is conducted through the refrigerant connection pipe 4b, passes through the check valve 13b, and flows into the heat source side heat exchanger 12 that functions as an evaporator.
 そして、熱源側熱交換器12に流入した熱源側冷媒は、熱源側熱交換器12で外気から吸熱して、低温・低圧のガス冷媒となる。熱源側熱交換器12から流出した低温・低圧のガス冷媒は、第1冷媒流路切替装置11及びアキュムレーター19を介して圧縮機10へ再度吸入される。 The heat source side refrigerant flowing into the heat source side heat exchanger 12 absorbs heat from the outside air in the heat source side heat exchanger 12 and becomes a low-temperature / low-pressure gas refrigerant. The low-temperature and low-pressure gas refrigerant flowing out from the heat source side heat exchanger 12 is again sucked into the compressor 10 via the first refrigerant flow switching device 11 and the accumulator 19.
 このとき、絞り装置26は、熱媒体間熱交換器25と絞り装置26との間を流れる熱源側冷媒の圧力を飽和温度に換算した値と、熱媒体間熱交換器25の出口側の温度との差として得られるサブクール(過冷却度)が一定になるように開度が制御される。なお、熱媒体間熱交換器25の中間位置の温度が測定できる場合は、その中間位置での温度を換算した飽和温度の代わりに用いてもよい。この場合、圧力センサーを設置しなくて済み、安価にシステムを構成できる。 At this time, the expansion device 26 has a value obtained by converting the pressure of the heat-source-side refrigerant flowing between the heat exchanger related to heat medium 25 and the expansion device 26 into a saturation temperature, and the temperature on the outlet side of the heat exchanger related to heat medium 25. The degree of opening is controlled so that the subcool (degree of supercooling) obtained as a difference from the above becomes constant. In addition, when the temperature of the intermediate position of the heat exchanger 25 between heat media can be measured, you may use it instead of the saturation temperature which converted the temperature in the intermediate position. In this case, it is not necessary to install a pressure sensor, and the system can be configured at low cost.
 次に、熱媒体循環回路Bにおける熱媒体の流れについて説明する。
 全暖房運転モードでは、熱媒体間熱交換器25a及び熱媒体間熱交換器25bの双方で熱源側冷媒の温熱が熱媒体に伝えられ、暖められた熱媒体がポンプ31a及びポンプ31bによって配管5内を流動させられることになる。ポンプ31a及びポンプ31bで加圧されて流出した熱媒体は、第2熱媒体流路切替装置33a~第2熱媒体流路切替装置33dを介して、利用側熱交換器35a~利用側熱交換器35dに流入する。そして、熱媒体が利用側熱交換器35a~利用側熱交換器35dで室内空気に放熱することで、室内空間7の暖房を行なう。
Next, the flow of the heat medium in the heat medium circuit B will be described.
In the heating only operation mode, the heat of the heat source side refrigerant is transmitted to the heat medium in both the heat exchanger related to heat medium 25a and the heat exchanger related to heat medium 25b, and the heated heat medium is piped 5 by the pump 31a and the pump 31b. The inside will be allowed to flow. The heat medium pressurized and discharged by the pump 31a and the pump 31b passes through the second heat medium flow switching device 33a to the second heat medium flow switching device 33d, and the use side heat exchanger 35a to the use side heat exchange. Flow into the vessel 35d. The indoor space 7 is heated by the heat medium radiating heat to the indoor air by the use side heat exchanger 35a to the use side heat exchanger 35d.
 それから、熱媒体は、利用側熱交換器35a~利用側熱交換器35dから流出して熱媒体流量調整装置34a~熱媒体流量調整装置34dに流入する。このとき、熱媒体流量調整装置34a~熱媒体流量調整装置34dの作用によって熱媒体の流量が室内にて必要とされる空調負荷を賄うのに必要な流量に制御されて利用側熱交換器35a~利用側熱交換器35dに流入するようになっている。熱媒体流量調整装置34a~熱媒体流量調整装置34dから流出した熱媒体は、第1熱媒体流路切替装置32a~第1熱媒体流路切替装置32dを通って、熱媒体間熱交換器25a及び熱媒体間熱交換器25bへ流入し、室内ユニット3を通じて室内空間7へ供給した分の熱量を冷媒側から受け取り、再びポンプ31a及びポンプ31bへ吸い込まれる。 Then, the heat medium flows out from the use side heat exchanger 35a to the use side heat exchanger 35d and flows into the heat medium flow control device 34a to the heat medium flow control device 34d. At this time, the heat medium flow control device 34a to the heat medium flow control device 34d control the flow rate of the heat medium to a flow rate necessary to cover the air conditioning load required indoors, so that the use-side heat exchanger 35a. It flows into the use side heat exchanger 35d. The heat medium flowing out from the heat medium flow control device 34a to the heat medium flow control device 34d passes through the first heat medium flow switching device 32a to the first heat medium flow switching device 32d, and then the heat exchanger related to heat medium 25a. Then, the heat quantity flowing into the heat exchanger related to heat medium 25b and supplied to the indoor space 7 through the indoor unit 3 is received from the refrigerant side and sucked into the pump 31a and the pump 31b again.
 なお、利用側熱交換器35の配管5内では、第2熱媒体流路切替装置33から熱媒体流量調整装置34を経由して第1熱媒体流路切替装置32へ至る向きに熱媒体が流れている。また、室内空間7にて必要とされる空調負荷は、温度センサー40で検出された温度、あるいは、温度センサー40で検出された温度と利用側熱交換器35から流出した熱媒体の温度との差を目標値に保つように制御することにより、賄うことができる。熱媒体間熱交換器25の出口温度は、温度センサー40aまたは温度センサー40bのどちらの温度を使用してもよいし、これらの平均温度を使用してもよい。 In the pipe 5 of the use side heat exchanger 35, the heat medium is directed from the second heat medium flow switching device 33 to the first heat medium flow switching device 32 via the heat medium flow control device 34. Flowing. The air conditioning load required in the indoor space 7 is the temperature detected by the temperature sensor 40 or the temperature detected by the temperature sensor 40 and the temperature of the heat medium flowing out from the use side heat exchanger 35. This can be covered by controlling the difference to keep it at the target value. As the outlet temperature of the heat exchanger related to heat medium 25, either the temperature sensor 40a or the temperature sensor 40b may be used, or an average temperature of these may be used.
 このとき、第1熱媒体流路切替装置32及び第2熱媒体流路切替装置33は、熱媒体間熱交換器25a及び熱媒体間熱交換器25bの双方へ流れる流路が確保されるように、中間的な開度、あるいは、熱媒体間熱交換器25a及び熱媒体間熱交換器25bの出口の熱媒体温度に応じた開度に制御されている。また、本来、利用側熱交換器35は、その入口と出口の温度差で制御すべきであるが、利用側熱交換器35の入口側の熱媒体温度は、温度センサー40で検出された温度とほとんど同じ温度であり、温度センサー40を使用することにより温度センサーの数を減らすことができ、安価にシステムを構成できる。 At this time, the first heat medium flow switching device 32 and the second heat medium flow switching device 33 seem to secure a flow path that flows to both the heat medium heat exchanger 25a and the heat medium heat exchanger 25b. In addition, the opening degree is controlled to an intermediate opening degree or an opening degree corresponding to the heat medium temperature at the outlet of the heat exchanger related to heat medium 25a and the heat exchanger related to heat medium 25b. In addition, the usage-side heat exchanger 35 should be controlled by the temperature difference between the inlet and the outlet, but the temperature of the heat medium on the inlet side of the usage-side heat exchanger 35 is the temperature detected by the temperature sensor 40. The number of temperature sensors can be reduced by using the temperature sensor 40, and the system can be configured at low cost.
[冷房暖房混在運転モード]
 図5は、空気調和装置100の冷房暖房混在運転モード時における冷媒の流れを示す冷媒回路図である。この図5では、利用側熱交換器35のうちのいずれかで温熱負荷が発生し、利用側熱交換器35のうちの残りで冷熱負荷が発生している場合である冷房暖房混在運転のうち、暖房主体運転モードについて説明する。なお、図5では、太線で表された配管が熱源側冷媒の循環する配管を示している。また、図5では、熱源側冷媒の流れ方向を実線矢印で、熱媒体の流れ方向を破線矢印で示している。
[Cooling and heating mixed operation mode]
FIG. 5 is a refrigerant circuit diagram illustrating a refrigerant flow when the air-conditioning apparatus 100 is in the cooling / heating mixed operation mode. In FIG. 5, among the cooling and heating mixed operation in which the thermal load is generated in any one of the use side heat exchangers 35 and the cooling load is generated in the rest of the use side heat exchangers 35. The heating main operation mode will be described. In addition, in FIG. 5, the pipe | tube represented by the thick line has shown the piping through which the heat source side refrigerant | coolant circulates. Further, in FIG. 5, the flow direction of the heat source side refrigerant is indicated by solid line arrows, and the flow direction of the heat medium is indicated by broken line arrows.
 図5に示す暖房主体運転モードの場合、室外ユニット1では、第1冷媒流路切替装置11を、圧縮機10から吐出された熱源側冷媒を熱源側熱交換器12を経由させずに中継ユニット2へ流入させるように切り替える。中継ユニット2では、ポンプ31a及びポンプ31bを駆動させ、熱媒体流量調整装置34a~熱媒体流量調整装置34dを開放し、熱媒体間熱交換器25aと冷熱負荷が発生している利用側熱交換器35との間を、熱媒体間熱交換器25bと温熱負荷が発生している利用側熱交換器35との間を、それぞれ熱媒体が循環するようにしている。また、第2冷媒流路切替装置28aは冷房側、第2冷媒流路切替装置28bは暖房側に切り替えられており、絞り装置26aは全開、開閉装置27は閉、開閉装置29は閉となっている。 In the heating main operation mode shown in FIG. 5, in the outdoor unit 1, the first refrigerant flow switching device 11 is connected to the relay unit without passing the heat source side refrigerant discharged from the compressor 10 through the heat source side heat exchanger 12. Switch to 2 In the relay unit 2, the pump 31a and the pump 31b are driven to open the heat medium flow rate adjusting device 34a to the heat medium flow rate adjusting device 34d, and the heat exchange between the heat medium heat exchanger 25a and the use side heat exchange in which the heat load is generated. The heat medium circulates between the heat exchanger 35 and the heat exchanger 35b between the heat medium and the use side heat exchanger 35 where the heat load is generated. The second refrigerant flow switching device 28a is switched to the cooling side, the second refrigerant flow switching device 28b is switched to the heating side, the expansion device 26a is fully opened, the opening / closing device 27 is closed, and the opening / closing device 29 is closed. ing.
 まず始めに、冷媒循環回路Aにおける熱源側冷媒の流れについて説明する。
 低温・低圧の冷媒が圧縮機10によって圧縮され、高温・高圧のガス冷媒となって吐出される。圧縮機10から吐出された高温・高圧のガス冷媒は、第1冷媒流路切替装置11を通り、冷媒用接続配管4aを導通し、逆止弁13dを通過し、室外ユニット1から流出する。室外ユニット1から流出した高温・高圧のガス冷媒は、冷媒配管4を通って中継ユニット2に流入する。中継ユニット2に流入した高温・高圧のガス冷媒は、第2冷媒流路切替装置28bを通って凝縮器として作用する熱媒体間熱交換器25bに流入する。
First, the flow of the heat source side refrigerant in the refrigerant circuit A will be described.
The low-temperature and low-pressure refrigerant is compressed by the compressor 10 and discharged as a high-temperature and high-pressure gas refrigerant. The high-temperature and high-pressure gas refrigerant discharged from the compressor 10 passes through the first refrigerant flow switching device 11, conducts through the refrigerant connection pipe 4 a, passes through the check valve 13 d, and flows out of the outdoor unit 1. The high-temperature and high-pressure gas refrigerant that has flowed out of the outdoor unit 1 flows into the relay unit 2 through the refrigerant pipe 4. The high-temperature and high-pressure gas refrigerant that has flowed into the relay unit 2 flows through the second refrigerant flow switching device 28b into the heat exchanger related to heat medium 25b that acts as a condenser.
 熱媒体間熱交換器25bに流入したガス冷媒は、熱媒体循環回路Bを循環する熱媒体に放熱しながら凝縮液化し、液冷媒となる。熱媒体間熱交換器25bから流出した液冷媒は、絞り装置26bで膨張させられて低圧二相冷媒となる。この低圧二相冷媒は、絞り装置26aを介して蒸発器として作用する熱媒体間熱交換器25aに流入する。熱媒体間熱交換器25aに流入した低圧二相冷媒は、熱媒体循環回路Bを循環する熱媒体から吸熱することで蒸発し、熱媒体を冷却する。この低圧二相冷媒は、熱媒体間熱交換器25aから流出し、第2冷媒流路切替装置28aを介して中継ユニット2から流出し、冷媒配管4を通って再び室外ユニット1へ流入する。 The gas refrigerant flowing into the heat exchanger related to heat medium 25b is condensed and liquefied while dissipating heat to the heat medium circulating in the heat medium circuit B, and becomes liquid refrigerant. The liquid refrigerant flowing out of the heat exchanger related to heat medium 25b is expanded by the expansion device 26b and becomes a low-pressure two-phase refrigerant. This low-pressure two-phase refrigerant flows into the heat exchanger related to heat medium 25a acting as an evaporator via the expansion device 26a. The low-pressure two-phase refrigerant that has flowed into the heat exchanger related to heat medium 25a evaporates by absorbing heat from the heat medium circulating in the heat medium circuit B, thereby cooling the heat medium. The low-pressure two-phase refrigerant flows out of the heat exchanger related to heat medium 25a, flows out of the relay unit 2 through the second refrigerant flow switching device 28a, and flows into the outdoor unit 1 again through the refrigerant pipe 4.
 室外ユニット1に流入した低温・低圧の二相冷媒は、逆止弁13bを通って、蒸発器として作用する熱源側熱交換器12に流入する。そして、熱源側熱交換器12に流入した冷媒は、熱源側熱交換器12で外気から吸熱して、低温・低圧のガス冷媒となる。熱源側熱交換器12から流出した低温・低圧のガス冷媒は、第1冷媒流路切替装置11及びアキュムレーター19を介して圧縮機10へ再度吸入される。 The low-temperature and low-pressure two-phase refrigerant that has flowed into the outdoor unit 1 flows into the heat source side heat exchanger 12 that acts as an evaporator through the check valve 13b. And the refrigerant | coolant which flowed into the heat source side heat exchanger 12 absorbs heat from external air in the heat source side heat exchanger 12, and turns into a low temperature and low pressure gas refrigerant. The low-temperature and low-pressure gas refrigerant flowing out from the heat source side heat exchanger 12 is again sucked into the compressor 10 via the first refrigerant flow switching device 11 and the accumulator 19.
 なお、絞り装置26bは、熱媒体間熱交換器25bの出口冷媒のサブクール(過冷却度)が目標値になるように開度が制御される。なお、絞り装置26bを全開とし、絞り装置26aで、サブクールを制御するようにしてもよい。 The opening degree of the expansion device 26b is controlled so that the subcooling (supercooling degree) of the outlet refrigerant of the heat exchanger related to heat medium 25b becomes a target value. Note that the expansion device 26b may be fully opened, and the subcool may be controlled by the expansion device 26a.
 次に、熱媒体循環回路Bにおける熱媒体の流れについて説明する。
 暖房主体運転モードでは、熱媒体間熱交換器25bで熱源側冷媒の温熱が熱媒体に伝えられ、暖められた熱媒体がポンプ31bによって配管5内を流動させられることになる。また、暖房主体運転モードでは、熱媒体間熱交換器25aで熱源側冷媒の冷熱が熱媒体に伝えられ、冷やされた熱媒体がポンプ31aによって配管5内を流動させられることになる。ポンプ31aで加圧されて流出した冷やされた熱媒体は、冷熱負荷が発生している利用側熱交換器35に第2熱媒体流路切替装置33を介して流入し、ポンプ31bで加圧されて流出した熱媒体は、温熱負荷が発生している利用側熱交換器35に第2熱媒体流路切替装置33を介して流入する。
Next, the flow of the heat medium in the heat medium circuit B will be described.
In the heating main operation mode, the heat of the heat source side refrigerant is transmitted to the heat medium in the heat exchanger related to heat medium 25b, and the heated heat medium is caused to flow in the pipe 5 by the pump 31b. Further, in the heating main operation mode, the cold heat of the heat source side refrigerant is transmitted to the heat medium by the heat exchanger related to heat medium 25a, and the cooled heat medium is caused to flow in the pipe 5 by the pump 31a. The cooled heat medium that has been pressurized and flowed out by the pump 31a flows into the use-side heat exchanger 35 where the cold load is generated via the second heat medium flow switching device 33, and is pressurized by the pump 31b. The heat medium that has flowed out then flows through the second heat medium flow switching device 33 into the use side heat exchanger 35 where the heat load is generated.
 このとき、第2熱媒体流路切替装置33は、接続されている室内ユニット3が暖房運転モードであるときは、熱媒体間熱交換器25b及びポンプ31bが接続されている方向に切り替えられ、接続されている室内ユニット3が冷房運転モードであるときは、熱媒体間熱交換器25a及びポンプ31aが接続されている方向に切り替えられる。すなわち、第2熱媒体流路切替装置33によって、室内ユニット3へ供給する熱媒体を暖房用又は冷房用に切り替えることを可能としている。 At this time, when the connected indoor unit 3 is in the heating operation mode, the second heat medium flow switching device 33 is switched to the direction in which the heat exchanger related to heat medium 25b and the pump 31b are connected, When the connected indoor unit 3 is in the cooling operation mode, the indoor unit 3 is switched to the direction in which the heat exchanger related to heat medium 25a and the pump 31a are connected. That is, the second heat medium flow switching device 33 can switch the heat medium supplied to the indoor unit 3 between heating and cooling.
 利用側熱交換器35では、熱媒体が室内空気から吸熱することによる室内空間7の冷房運転、または、熱媒体が室内空気に放熱することによる室内空間7の暖房運転を行なう。このとき、熱媒体流量調整装置34の作用によって熱媒体の流量が室内にて必要とされる空調負荷を賄うのに必要な流量に制御されて利用側熱交換器35に流入するようになっている。 In the use side heat exchanger 35, the cooling operation of the indoor space 7 by the heat medium absorbing heat from the room air or the heating operation of the indoor space 7 by the heat medium radiating heat to the room air is performed. At this time, the flow rate of the heat medium is controlled to a flow rate necessary to cover the air conditioning load required indoors by the action of the heat medium flow control device 34 and flows into the use side heat exchanger 35. Yes.
 冷房運転に利用され、利用側熱交換器35を通過し若干温度が上昇した熱媒体は、熱媒体流量調整装置34及び第1熱媒体流路切替装置32を通って、熱媒体間熱交換器25aに流入し、再びポンプ31aへ吸い込まれる。暖房運転に利用され、利用側熱交換器35を通過し若干温度が低下した熱媒体は、熱媒体流量調整装置34及び第1熱媒体流路切替装置32を通って、熱媒体間熱交換器25bへ流入し、再びポンプ31aへ吸い込まれる。このとき、第1熱媒体流路切替装置32は、接続されている室内ユニット3が暖房運転モードであるときは、熱媒体間熱交換器25b及びポンプ31bが接続されている方向に切り替えられ、接続されている室内ユニット3が冷房運転モードであるときは、熱媒体間熱交換器25a及びポンプ31aが接続されている方向に切り替えられる。 The heat medium that has been used for cooling operation and that has passed through the use-side heat exchanger 35 and has slightly increased in temperature passes through the heat medium flow control device 34 and the first heat medium flow switching device 32, and then the heat exchanger between heat media. It flows into 25a and is sucked into the pump 31a again. The heat medium that has been used for heating operation and has passed through the use-side heat exchanger 35 and has slightly decreased in temperature passes through the heat medium flow control device 34 and the first heat medium flow switching device 32, and then the heat exchanger between heat media. It flows into 25b and is sucked into the pump 31a again. At this time, the first heat medium flow switching device 32 is switched to the direction in which the heat exchanger related to heat medium 25b and the pump 31b are connected when the connected indoor unit 3 is in the heating operation mode, When the connected indoor unit 3 is in the cooling operation mode, the indoor unit 3 is switched to the direction in which the heat exchanger related to heat medium 25a and the pump 31a are connected.
 この間、暖かい熱媒体と冷たい熱媒体とは、第1熱媒体流路切替装置32及び第2熱媒体流路切替装置33の作用により、混合することなく、それぞれ温熱負荷、冷熱負荷がある利用側熱交換器35へ導入される。これにより、暖房運転モードで利用された熱媒体を暖房用途として冷媒から熱を与えている熱媒体間熱交換器25bへ、冷房運転モードで利用された熱媒体を冷房用途として冷媒が熱を受け取っている熱媒体間熱交換器25aへと流入させ、再度それぞれが冷媒と熱交換を行なった後、ポンプ31a及びポンプ31bへと搬送される。 During this time, the warm heat medium and the cold heat medium are not mixed by the action of the first heat medium flow switching device 32 and the second heat medium flow switching device 33, and the use side has a heat load and a heat load, respectively. It is introduced into the heat exchanger 35. As a result, the heat medium used in the heating operation mode receives heat from the refrigerant as a heating application, and the heat medium used in the cooling operation mode receives heat from the heat medium heat exchanger 25b. The heat exchangers 25a, 25a, 25a, 25a, 25c, 25c, 25c, 25c, and 25b are exchanged with the refrigerant, and then are transferred to the pump 31a and the pump 31b.
 なお、利用側熱交換器35の配管5内では、暖房側、冷房側ともに、第2熱媒体流路切替装置33から熱媒体流量調整装置34を経由して第1熱媒体流路切替装置32へ至る向きに熱媒体が流れている。また、室内空間7にて必要とされる空調負荷は、暖房側においては温度センサー40bで検出された温度と利用側熱交換器35から流出した熱媒体の温度との差を、冷房側においては利用側熱交換器35から流出した熱媒体の温度と温度センサー40aで検出された温度との差を目標値として保つように制御することにより、賄うことができる。 In the pipe 5 of the use side heat exchanger 35, the first heat medium flow switching device 32 via the heat medium flow control device 34 from the second heat medium flow switching device 33 on both the heating side and the cooling side. The heat medium is flowing in the direction to The air conditioning load required in the indoor space 7 is the difference between the temperature detected by the temperature sensor 40b on the heating side and the temperature of the heat medium flowing out from the use side heat exchanger 35 on the cooling side. This can be covered by controlling the difference between the temperature of the heat medium flowing out from the use side heat exchanger 35 and the temperature detected by the temperature sensor 40a as a target value.
 また、図5の空気調和装置100における冷房暖房混在運転モード時において、利用側熱交換器35のうちのいずれかで冷熱負荷が発生し、利用側熱交換器35のうちの残りで温熱負荷が発生している場合である混在運転のうち、冷房主体運転モードにおいても、冷媒循環回路Aにおける熱源側冷媒の流れおよび熱媒体循環回路Bにおける熱媒体の流れは暖房主体運転モードと同様となる。 Further, in the air-conditioning apparatus 100 in FIG. 5, in the cooling / heating mixed operation mode, a cooling load is generated in one of the use side heat exchangers 35, and the remaining heat of the use side heat exchanger 35 is a heating load. Among the mixed operations that are occurring, even in the cooling main operation mode, the flow of the heat source side refrigerant in the refrigerant circuit A and the flow of the heat medium in the heat medium circuit B are the same as in the heating main operation mode.
[除霜運転モード]
 以上のように、空気調和装置100では、全暖房運転モードまたは暖房主体運転モードを行った場合、室外ユニット1内の熱源側熱交換器12は蒸発器となり、外気との熱交換を行う。そのため、外気が低い場合、熱源側熱交換器12の蒸発温度はより低くなり、熱源側熱交換器12の表面へ対して、外気の水分が着霜してしまい、熱交換性能の低下が考えられる。そこで、空気調和装置100では、室外ユニット1が、例えば蒸発温度を検知して、検知した蒸発温度が低くなり過ぎたら、熱源側熱交換器12の表面の霜を除去する除霜運転モードを実施するようにしている。なお、全暖房運転モード、暖房主体運転モードが、本発明の「暖房運転モード」に相当する。
[Defrost operation mode]
As described above, in the air conditioner 100, when the heating only operation mode or the heating main operation mode is performed, the heat source side heat exchanger 12 in the outdoor unit 1 serves as an evaporator and performs heat exchange with the outside air. Therefore, when the outside air is low, the evaporation temperature of the heat source side heat exchanger 12 becomes lower, and the moisture of the outside air is frosted on the surface of the heat source side heat exchanger 12, which may reduce the heat exchange performance. It is done. Therefore, in the air conditioner 100, the outdoor unit 1 detects the evaporating temperature, for example, and when the detected evaporating temperature becomes too low, the defrosting operation mode for removing the frost on the surface of the heat source side heat exchanger 12 is performed. Like to do. The heating only operation mode and the heating main operation mode correspond to the “heating operation mode” of the present invention.
 空気調和装置100においては、除霜運転モードを実施する際に、熱媒体がそれまでの暖房運転にて保有していた熱容量を利用できるようにしている。つまり、空気調和装置100は、暖房運転モード中に、第1冷媒流路切替装置11を冷房側に切り替え、ポンプ31の少なくとも1つを動作させ、熱媒体間熱交換器25の少なくとも1つにおいて冷媒に熱媒体が保有している熱を吸熱させ、熱源側熱交換器12の周囲に着霜した霜を溶かすことを可能にしている(熱回収除霜運転モード)。こうすることで、空気調和装置100では、熱源側熱交換器12の表面の霜を、従来よりも速やかに除去することが可能となっている。その一方で、空気調和装置100では、利用側熱交換器35においての暖房運転モードを継続することができるようになっている。 In the air conditioner 100, when the defrosting operation mode is carried out, the heat capacity that the heat medium had in the previous heating operation can be used. That is, the air conditioner 100 switches the first refrigerant flow switching device 11 to the cooling side during the heating operation mode, operates at least one of the pumps 31, and operates in at least one of the heat exchangers related to heat medium 25. The refrigerant absorbs the heat held by the heat medium and melts the frost formed around the heat source side heat exchanger 12 (heat recovery defrosting operation mode). By carrying out like this, in the air conditioning apparatus 100, it is possible to remove the frost of the surface of the heat source side heat exchanger 12 more rapidly than before. On the other hand, in the air conditioning apparatus 100, the heating operation mode in the use side heat exchanger 35 can be continued.
 また、空気調和装置100では、暖房運転モード中に、第1冷媒流路切替装置11を冷房側に切り替え、冷媒の一部またはすべてをバイパス配管20に流すことにより熱源側熱交換器12の周囲に着霜した霜を溶かすバイパス除霜運転モードを有している。 Further, in the air conditioner 100, during the heating operation mode, the first refrigerant flow switching device 11 is switched to the cooling side, and a part or all of the refrigerant flows through the bypass pipe 20 to surround the heat source side heat exchanger 12. It has a bypass defrosting operation mode that melts frost that has formed on the surface.
 上記のような運転を実施するために、空気調和装置100では、除霜運転モードを実施する直前に、暖房運転モード中に熱媒体間熱交換器25を通じて熱媒体の温度を上昇させる。そして、空気調和装置100では、温度センサー40により検知される上昇させた熱媒体の温度が設定温度(例えば43℃)よりも高いことを検知した後に、除霜運転モードを実施するようにしている。こうすることで、空気調和装置100は、除霜運転モードに利用するための熱容量、及び、暖房運転モードを継続するための熱量を確保可能にしている。 In order to perform the operation as described above, in the air conditioning apparatus 100, the temperature of the heat medium is raised through the heat exchanger related to heat medium 25 during the heating operation mode immediately before the defrosting operation mode is performed. And in the air conditioning apparatus 100, after detecting that the temperature of the raised heat medium detected by the temperature sensor 40 is higher than a set temperature (for example, 43 ° C.), the defrosting operation mode is performed. . By carrying out like this, the air conditioning apparatus 100 can ensure the heat capacity | capacitance for utilizing for a defrost operation mode, and the calorie | heat amount for continuing heating operation mode.
 具体的には、空気調和装置100は、温度センサー40で検出した熱媒体の温度が設定温度(例えば43℃)よりも高い場合には、熱媒体の保有熱容量を利用する「熱回収除霜運転モード」を行う。一方、空気調和装置100は、温度センサー40で検出した熱媒体の温度が設定温度(例えば43℃)よりも低い場合には、熱媒体の保有熱容量を利用しない「バイパス除霜運転モード」を行う。なお、設定温度は、任意の温度に変更可能になっている。ただし、設定温度は、利用側熱交換器35に通風される空気の温度を検出する利用側空気温度検出装置を備え、この利用側空気温度検出装置で検出された温度以上の値とすることが好ましい。このような温度に設定しておけば、快適性を維持しつつ、「熱回収除霜運転モード」、「バイパス除霜運転モード」のいずれかを実行することができる。 Specifically, when the temperature of the heat medium detected by the temperature sensor 40 is higher than a set temperature (for example, 43 ° C.), the air conditioner 100 uses the heat capacity possessed by the heat medium to perform “heat recovery defrosting operation”. Mode ". On the other hand, when the temperature of the heat medium detected by the temperature sensor 40 is lower than a set temperature (for example, 43 ° C.), the air conditioner 100 performs the “bypass defrosting operation mode” that does not use the heat capacity of the heat medium. . The set temperature can be changed to an arbitrary temperature. However, the set temperature may include a usage-side air temperature detection device that detects the temperature of the air that is ventilated to the usage-side heat exchanger 35, and may be a value that is equal to or higher than the temperature detected by the usage-side air temperature detection device. preferable. If the temperature is set to such a temperature, either the “heat recovery defrosting operation mode” or the “bypass defrosting operation mode” can be executed while maintaining comfort.
 上述したように、空気調和装置100が実施する除霜運転モードには、熱源側冷媒の流れに応じた2種類の除霜運転モード(「熱回収除霜運転モード」、「バイパス除霜運転モード」)がある。
 全暖房運転モード中に実施する「熱回収除霜運転モード」を「第1の熱回収除霜運転モード」と称することにする。
 暖房主体運転モード中に実施する「熱回収除霜運転モード」を「第2の熱回収除霜運転モード」と称することにする。
 全暖房運転モード中に実施する「バイパス除霜運転モード」を「第1のバイパス除霜運転モード」と称することにする。
 暖房主体運転モード中に実施する「バイパス除霜運転モード」を「第2のバイパス除霜運転モード」と称することにする。
As described above, the defrosting operation mode performed by the air conditioner 100 includes two types of defrosting operation modes (“heat recovery defrosting operation mode” and “bypass defrosting operation mode” corresponding to the flow of the heat source side refrigerant. ]).
The “heat recovery defrosting operation mode” performed during the heating only operation mode will be referred to as a “first heat recovery defrosting operation mode”.
The “heat recovery defrosting operation mode” performed during the heating main operation mode is referred to as a “second heat recovery defrosting operation mode”.
The “bypass defrosting operation mode” performed during the heating only operation mode will be referred to as a “first bypass defrosting operation mode”.
The “bypass defrosting operation mode” performed during the heating main operation mode is referred to as “second bypass defrosting operation mode”.
[第1の熱回収除霜運転モード]
 空気調和装置100の全暖房運転モード中に実施する「第1の熱回収除霜運転モード」には、熱源側冷媒の流れに応じて更に2種類の除霜運転モード(「第1の熱回収除霜運転モード(1)」、「第1の熱回収除霜運転モード(2)」)がある。
[First heat recovery defrosting operation mode]
The “first heat recovery defrosting operation mode” performed during the heating only operation mode of the air-conditioning apparatus 100 further includes two types of defrosting operation modes (“first heat recovery operation” depending on the flow of the heat source side refrigerant. Defrosting operation mode (1) "," first heat recovery defrosting operation mode (2) ").
(第1の熱回収除霜運転モード(1))
 図6は、空気調和装置100の「第1の熱回収除霜運転モード(1)」時における冷媒の流れおよび熱媒体の流れを示す冷媒回路図である。この図6では、「第1の熱回収除霜運転モード(1)」について説明する。なお、図6では、太線で表された配管が熱源側冷媒の循環する配管を示している。また、図6では熱源側冷房の流れ方向を実線矢印で、熱媒体の流れ方向を破線矢印で示している。
(First heat recovery defrosting operation mode (1))
FIG. 6 is a refrigerant circuit diagram illustrating a refrigerant flow and a heat medium flow when the air-conditioning apparatus 100 is in the “first heat recovery defrosting operation mode (1)”. In FIG. 6, the “first heat recovery defrosting operation mode (1)” will be described. In addition, in FIG. 6, the piping represented by the thick line has shown the piping through which the heat source side refrigerant | coolant circulates. In FIG. 6, the flow direction of the heat source side cooling is indicated by solid line arrows, and the flow direction of the heat medium is indicated by broken line arrows.
 「第1の熱回収除霜運転モード(1)」は、空気調和装置100の全暖房運転モード中に、室外ユニット1内の熱源側熱交換器12に対して外気の水分が着霜し、蒸発温度が低下した際に実施する除霜運転モードである。 In the “first heat recovery defrosting operation mode (1)”, during the heating only operation mode of the air conditioner 100, moisture in the outside air is frosted on the heat source side heat exchanger 12 in the outdoor unit 1, This is a defrosting operation mode performed when the evaporation temperature is lowered.
 図6に示す「第1の熱回収除霜運転モード(1)」の場合、室外ユニット1では、第1冷媒流路切替装置11を圧縮機10から吐出された熱源側冷媒を熱源側熱交換器12へ流入させるように切り替える。 In the case of the “first heat recovery defrosting operation mode (1)” shown in FIG. 6, in the outdoor unit 1, heat source side refrigerant discharged from the compressor 10 through the first refrigerant flow switching device 11 is heat exchanged on the heat source side. Switch to flow into vessel 12.
 中継ユニット2では、ポンプ31a及びポンプ31bを駆動させ、熱媒体流量調整装置34a~熱媒体流量調整装置34dを開放し、熱媒体間熱交換器25a及び熱媒体間熱交換器25bのそれぞれと利用側熱交換器35a~利用側熱交換器35dとの間を熱媒体が循環するようにしている。また、第2冷媒流路切替装置28aおよび第2冷媒流路切替装置28bは冷房側に切り替えられており、開閉装置27は開、開閉装置29は閉となっている。さらに、絞り装置26aおよび絞り装置26bは全開となっている。なお、絞り装置26aおよび絞り装置26bは厳密な全開でなくてもよい。 In the relay unit 2, the pump 31a and the pump 31b are driven, the heat medium flow control devices 34a to 34d are opened, and the heat medium heat exchanger 25a and the heat medium heat exchanger 25b are used respectively. The heat medium circulates between the side heat exchanger 35a and the use side heat exchanger 35d. The second refrigerant flow switching device 28a and the second refrigerant flow switching device 28b are switched to the cooling side, the opening / closing device 27 is open, and the opening / closing device 29 is closed. Further, the expansion device 26a and the expansion device 26b are fully opened. The diaphragm device 26a and the diaphragm device 26b do not have to be fully opened.
 まず始めに、冷媒循環回路Aにおける熱源側冷媒の流れについて説明する。
 低温・低圧の冷媒が圧縮機10によって圧縮され、高温・高圧のガス冷媒となって吐出される。圧縮機10から吐出された高温・高圧のガス冷媒は、第1冷媒流路切替装置11を通り、熱源側熱交換器12に流入する。熱源側熱交換器12に流入した冷媒は、熱源側熱交換器12上の着霜部と熱交換を行う。熱源側熱交換器12上の着霜部は、高温・高圧の冷媒により融解される。熱源側熱交換器12上の着霜部との熱交換を行った低温・高圧の冷媒は、逆止弁13aを通過した後、室外ユニット1から流出する。室外ユニット1から流出した低温・高圧の冷媒は、冷媒配管4を通って中継ユニット2に流入する。
First, the flow of the heat source side refrigerant in the refrigerant circuit A will be described.
The low-temperature and low-pressure refrigerant is compressed by the compressor 10 and discharged as a high-temperature and high-pressure gas refrigerant. The high-temperature and high-pressure gas refrigerant discharged from the compressor 10 passes through the first refrigerant flow switching device 11 and flows into the heat source side heat exchanger 12. The refrigerant flowing into the heat source side heat exchanger 12 exchanges heat with the frosting part on the heat source side heat exchanger 12. The frosting part on the heat source side heat exchanger 12 is melted by the high-temperature and high-pressure refrigerant. The low-temperature and high-pressure refrigerant that has exchanged heat with the frosting section on the heat source side heat exchanger 12 flows out of the outdoor unit 1 after passing through the check valve 13a. The low-temperature and high-pressure refrigerant that has flowed out of the outdoor unit 1 flows into the relay unit 2 through the refrigerant pipe 4.
 中継ユニット2に流入した冷媒は、開閉装置27を通過した後、分岐されて絞り装置26aおよび絞り装置26bを通過し、熱媒体間熱交換器25aおよび熱媒体間熱交換器25bに流入する。熱媒体間熱交換器25aおよび熱媒体間熱交換器25bに流入した低温・高圧の冷媒は、それまで暖房によって利用されていた熱媒体との熱交換を行って高温・高圧の冷媒となる。熱媒体間熱交換器25aおよび熱媒体間熱交換器25bから流出した冷媒は、第2冷媒流路切替装置28aおよび第2冷媒流路切替装置28bを通って中継ユニット2から流出し、冷媒配管4を導通し、逆止弁13cを通過して第1冷媒流路切替装置11およびアキュムレーター19を介して圧縮機10へ再度吸入される。 The refrigerant that has flowed into the relay unit 2 passes through the opening / closing device 27, is branched, passes through the expansion device 26a and the expansion device 26b, and flows into the intermediate heat exchanger 25a and the intermediate heat exchanger 25b. The low-temperature and high-pressure refrigerant that has flowed into the heat exchanger related to heat medium 25a and the heat exchanger related to heat medium 25b exchanges heat with the heat medium that has been used until now to become a high-temperature and high-pressure refrigerant. The refrigerant flowing out of the heat exchanger related to heat medium 25a and the heat exchanger related to heat medium 25b flows out of the relay unit 2 through the second refrigerant flow switching device 28a and the second refrigerant flow switching device 28b, and is connected to the refrigerant piping. 4, passes through the check valve 13 c, and is sucked again into the compressor 10 through the first refrigerant flow switching device 11 and the accumulator 19.
(第1の熱回収除霜運転モード(2))
 図7は、空気調和装置100の「第1の熱回収除霜運転モード(2)」時における冷媒の流れおよび熱媒体の流れを示す冷媒回路図である。この図7では、「第1の熱回収除霜運転モード(2)」について説明する。なお、図7では、太線で表された配管が熱源側冷媒の循環する配管を示している。また、図7では熱源側冷房の流れ方向を実線矢印で、熱媒体の流れ方向を破線矢印で示している。
(First heat recovery defrosting operation mode (2))
FIG. 7 is a refrigerant circuit diagram illustrating a refrigerant flow and a heat medium flow when the air-conditioning apparatus 100 is in the “first heat recovery defrosting operation mode (2)”. In FIG. 7, the “first heat recovery defrosting operation mode (2)” will be described. In addition, in FIG. 7, the piping represented by the thick line has shown the piping through which the heat source side refrigerant | coolant circulates. In FIG. 7, the flow direction of the heat source side cooling is indicated by solid line arrows, and the flow direction of the heat medium is indicated by broken line arrows.
 「第1の熱回収除霜運転モード(2)」は、「第1の熱回収除霜運転モード(1)」と同様に、空気調和装置100の全暖房運転モード中に、室外ユニット1内の熱源側熱交換器12に対して外気の水分が着霜し、蒸発温度が低下した際に実施する除霜運転モードである。ただし、「第1の熱回収除霜運転モード(2)」では、熱源側冷媒の流れが、「第1の熱回収除霜運転モード(1)」と相違している。なお、空気調和装置100では、「第1の熱回収除霜運転モード(1)」、「第1の熱回収除霜運転モード(2)」のどちらか一方を選択することができる。 The “first heat recovery defrosting operation mode (2)” is the same as the “first heat recovery defrosting operation mode (1)”. This is a defrosting operation mode that is performed when moisture in the outside air is frosted on the heat source side heat exchanger 12 and the evaporation temperature is lowered. However, in the “first heat recovery defrosting operation mode (2)”, the flow of the heat source side refrigerant is different from that in the “first heat recovery defrosting operation mode (1)”. In the air conditioner 100, either the “first heat recovery defrosting operation mode (1)” or the “first heat recovery defrosting operation mode (2)” can be selected.
 図7に示す「第1の熱回収除霜運転モード(2)」の場合、室外ユニット1では、第1冷媒流路切替装置11を圧縮機10から吐出された熱源側冷媒を熱源側熱交換器12へ流入させるように切り替える。 In the “first heat recovery defrosting operation mode (2)” shown in FIG. 7, in the outdoor unit 1, the heat source side refrigerant discharged from the compressor 10 is used as the heat source side heat exchange in the first refrigerant flow switching device 11. Switch to flow into vessel 12.
 中継ユニット2では、ポンプ31a及びポンプ31bを駆動させ、熱媒体流量調整装置34a~熱媒体流量調整装置34dを開放し、熱媒体間熱交換器25a及び熱媒体間熱交換器25bのそれぞれと利用側熱交換器35a~利用側熱交換器35dとの間を熱媒体が循環するようにしている。また、第2冷媒流路切替装置28aおよび第2冷媒流路切替装置28bはともに暖房側の開度方向を保持しており、開閉装置27は閉、開閉装置29は開となっている。さらに、絞り装置26aおよび26bは全開となっている。なお、絞り装置26aおよび絞り装置26bは厳密な全開でなくてもよい。 In the relay unit 2, the pump 31a and the pump 31b are driven, the heat medium flow control devices 34a to 34d are opened, and the heat medium heat exchanger 25a and the heat medium heat exchanger 25b are used respectively. The heat medium circulates between the side heat exchanger 35a and the use side heat exchanger 35d. The second refrigerant flow switching device 28a and the second refrigerant flow switching device 28b both maintain the opening direction on the heating side, the opening / closing device 27 is closed, and the opening / closing device 29 is open. Further, the expansion devices 26a and 26b are fully opened. The diaphragm device 26a and the diaphragm device 26b do not have to be fully opened.
 まず始めに、冷媒循環回路Aにおける熱源側冷媒の流れについて説明する。
 低温・低圧の冷媒が圧縮機10によって圧縮され、高温・高圧のガス冷媒となって吐出される。圧縮機10から吐出された高温・高圧のガス冷媒は、第1冷媒流路切替装置11を通り、熱源側熱交換器12に流入する。熱源側熱交換器12に流入した冷媒は、熱源側熱交換器12上の着霜部と熱交換を行う。熱源側熱交換器12上の着霜部は、高温・高圧の冷媒により融解される。熱源側熱交換器12上の着霜部との熱交換を行った低温・高圧の冷媒は、逆止弁13aを通過した後、室外ユニット1から流出する。室外ユニット1から流出した低温・高圧の冷媒は、冷媒配管4を通って中継ユニット2に流入する。
First, the flow of the heat source side refrigerant in the refrigerant circuit A will be described.
The low-temperature and low-pressure refrigerant is compressed by the compressor 10 and discharged as a high-temperature and high-pressure gas refrigerant. The high-temperature and high-pressure gas refrigerant discharged from the compressor 10 passes through the first refrigerant flow switching device 11 and flows into the heat source side heat exchanger 12. The refrigerant flowing into the heat source side heat exchanger 12 exchanges heat with the frosting part on the heat source side heat exchanger 12. The frosting part on the heat source side heat exchanger 12 is melted by the high-temperature and high-pressure refrigerant. The low-temperature and high-pressure refrigerant that has exchanged heat with the frosting section on the heat source side heat exchanger 12 flows out of the outdoor unit 1 after passing through the check valve 13a. The low-temperature and high-pressure refrigerant that has flowed out of the outdoor unit 1 flows into the relay unit 2 through the refrigerant pipe 4.
 中継ユニット2に流入した低温・高圧のガス冷媒は、分岐されて第2冷媒流路切替装置28a及び第2冷媒流路切替装置28bを通って、熱媒体間熱交換器25a及び熱媒体間熱交換器25bのそれぞれに流入する。熱媒体間熱交換器25aおよび熱媒体間熱交換器25bに流入した低温・高圧の冷媒は、それまで暖房によって利用されていた熱媒体との熱交換を行って高温・高圧の冷媒となる。熱媒体間熱交換器25aおよび熱媒体間熱交換器25bから流出した冷媒は、絞り装置26aおよび絞り装置26bを通り、開閉装置29を介して中継ユニット2から流出し、冷媒配管4を導通し、逆止弁13cを通過して第1冷媒流路切替装置11およびアキュムレーター19を介して圧縮機10へ再度吸入される。 The low-temperature and high-pressure gas refrigerant that has flowed into the relay unit 2 is branched and passes through the second refrigerant flow switching device 28a and the second refrigerant flow switching device 28b, and the heat exchanger related to heat medium 25a and heat between the heat media. It flows into each of the exchangers 25b. The low-temperature and high-pressure refrigerant that has flowed into the heat exchanger related to heat medium 25a and the heat exchanger related to heat medium 25b exchanges heat with the heat medium that has been used until now to become a high-temperature and high-pressure refrigerant. The refrigerant that has flowed out of the heat exchanger related to heat medium 25a and the heat exchanger related to heat medium 25b passes through the expansion device 26a and the expansion device 26b, flows out of the relay unit 2 via the opening / closing device 29, and is conducted through the refrigerant pipe 4. Then, it passes through the check valve 13 c and is sucked again into the compressor 10 through the first refrigerant flow switching device 11 and the accumulator 19.
 次に「第1の熱回収除霜運転モード」時における熱媒体循環回路Bにおける熱媒体の流れについて説明する。なお、熱媒体循環回路Bにおける熱媒体の流れは、図6に示す「第1の熱回収除霜運転モード(1)」、及び、図7に示す「第1の熱回収除霜運転モード(2)」において共通となっている。そのため、以下では、「第1の熱回収除霜運転モード(2)」を例に熱媒体の流れを説明する。 Next, the flow of the heat medium in the heat medium circuit B in the “first heat recovery defrosting operation mode” will be described. In addition, the flow of the heat medium in the heat medium circuit B includes “first heat recovery defrosting operation mode (1)” shown in FIG. 6 and “first heat recovery defrosting operation mode ( 2) ". Therefore, hereinafter, the flow of the heat medium will be described by taking the “first heat recovery defrosting operation mode (2)” as an example.
 「第1の熱回収除霜運転モード(2)」では、熱媒体は、熱媒体間熱交換器25a及び熱媒体間熱交換器25bの双方で低温・高圧のガス冷媒と熱交換を行い、低温の熱媒体となる。熱媒体間熱交換器25a及び熱媒体間熱交換器25bで低温にされた熱媒体は、ポンプ31a及びポンプ31bで加圧され、第2熱媒体流路切替装置33a~第2熱媒体流路切替装置33dを介して、利用側熱交換器35a~利用側熱交換器35dに流入する。なお、このとき、第2熱媒体流路切替装置33は、熱媒体間熱交換器25a、熱媒体間熱交換器25bの両方から搬送される熱媒体を室内ユニット3に供給できるよう中間開度又は熱媒体間熱交換器25a、熱媒体間熱交換器25bの出口の熱媒体温度に応じた開度に調整される。 In the “first heat recovery defrosting operation mode (2)”, the heat medium exchanges heat with the low-temperature and high-pressure gas refrigerant in both the heat exchangers between heat exchangers 25a and 25b, It becomes a low-temperature heat medium. The heat medium that has been cooled to a low temperature by the heat exchanger related to heat medium 25a and the heat exchanger related to heat medium 25b is pressurized by the pump 31a and the pump 31b, and the second heat medium flow switching device 33a to the second heat medium flow path. It flows into the use side heat exchanger 35a to the use side heat exchanger 35d via the switching device 33d. At this time, the second heat medium flow switching device 33 has an intermediate opening degree so that the heat medium conveyed from both the heat exchangers between heat exchangers 25a and 25b can be supplied to the indoor unit 3. Or it adjusts to the opening degree according to the heat medium temperature of the exit of the heat exchanger 25a between heat media, and the heat exchanger 25b between heat media.
 それから、熱媒体は、利用側熱交換器35a~利用側熱交換器35dから流出して熱媒体流量調整装置34a~熱媒体流量調整装置34dに流入する。熱媒体流量調整装置34a~熱媒体流量調整装置34dから流出した熱媒体は、第1熱媒体流路切替装置32a~第1熱媒体流路切替装置32dを通過する。なお、このとき、第1熱媒体流路切替装置32は、第2熱媒体流路切替装置33と同じ開度調整が行われており、熱媒体流量調整装置34は全開となっている。 Then, the heat medium flows out from the use side heat exchanger 35a to the use side heat exchanger 35d and flows into the heat medium flow control device 34a to the heat medium flow control device 34d. The heat medium flowing out from the heat medium flow control device 34a to the heat medium flow control device 34d passes through the first heat medium flow switching device 32a to the first heat medium flow switching device 32d. At this time, the opening degree of the first heat medium flow switching device 32 is adjusted in the same manner as the second heat medium flow switching device 33, and the heat medium flow control device 34 is fully opened.
 第1熱媒体流路切替装置32a~第1熱媒体流路切替装置32dを通過した熱媒体は、熱媒体間熱交換器25aおよび熱媒体間熱交換器25bへ流入し、再度熱媒体間熱交換器25aおよび熱媒体間熱交換器25bを流れる冷媒と熱交換され、冷媒側へ熱量を供給した後、再びポンプ31aおよびポンプ31bへ吸込まれる。 The heat medium that has passed through the first heat medium flow switching device 32a to the first heat medium flow switching device 32d flows into the heat exchanger related to heat medium 25a and the heat exchanger related to heat medium 25b, and again heat between the heat medium. Heat exchange is performed with the refrigerant flowing through the exchanger 25a and the heat exchanger related to heat medium 25b, and after supplying heat to the refrigerant side, the refrigerant is sucked into the pump 31a and the pump 31b again.
 なお、「第1の熱回収除霜運転モード」におけるこれまで暖房運転を実施していた室内ユニット3は、室外ユニット1が除霜運転モード中であるという情報を受信し、利用側熱交換器35に送風する送風装置(以下単にファンと称する)を停止させる。ただし、室内空気温度および室内ユニット吹出し空気温度を検知できる場合には、室内空気温度よりも室内ユニット吹出し空気温度が低くならないときまでファンの運転を継続しても問題はない。また、温度センサー40によって検出される熱媒体間熱交換器25の出口の熱媒体温度が室内空気温度よりも低くならない限り、ファンの運転を継続させるようにしてもよい。 In addition, the indoor unit 3 that has been performing the heating operation so far in the “first heat recovery defrosting operation mode” receives information that the outdoor unit 1 is in the defrosting operation mode, and uses the heat exchanger on the use side. A blower (hereinafter simply referred to as a fan) for blowing air to 35 is stopped. However, if the indoor air temperature and the indoor unit blown air temperature can be detected, there is no problem even if the fan operation is continued until the indoor unit blown air temperature does not become lower than the indoor air temperature. Further, as long as the heat medium temperature at the outlet of the heat exchanger related to heat medium 25 detected by the temperature sensor 40 does not become lower than the indoor air temperature, the fan operation may be continued.
 これにより、室外ユニット1の「第1の熱回収除霜運転モード」実施中に、中継ユニット2内の熱媒体間熱交換器25aおよび熱媒体間熱交換器25bにおける熱媒体との熱交換を行うことにより、熱媒体から冷媒側へ与えられた熱量を、室外ユニット1の熱源側熱交換器12へ供給することができ、着霜の融解時間を短縮することが可能である。 Thus, during the “first heat recovery defrosting operation mode” of the outdoor unit 1, heat exchange with the heat medium in the heat exchanger related to heat medium 25a and the heat exchanger related to heat medium 25b in the relay unit 2 is performed. By performing, the amount of heat given from the heat medium to the refrigerant side can be supplied to the heat source side heat exchanger 12 of the outdoor unit 1, and the frost melting time can be shortened.
[第2の熱回収除霜運転モード]
 図8は、空気調和装置100の「第2の熱回収除霜運転モード」時における冷媒の流れおよび熱媒体の流れを示す冷媒回路図である。この図8では、「第2の熱回収除霜運転モード」について説明する。なお、図8では、太線で表された配管が熱源側冷媒の循環する配管を示している。また、図8では熱源側冷房の流れ方向を実線矢印で、熱媒体の流れ方向を破線矢印で示している。
[Second heat recovery defrosting operation mode]
FIG. 8 is a refrigerant circuit diagram illustrating the refrigerant flow and the heat medium flow when the air-conditioning apparatus 100 is in the “second heat recovery defrosting operation mode”. In FIG. 8, the “second heat recovery defrosting operation mode” will be described. In addition, in FIG. 8, the pipe | tube represented by the thick line has shown the piping through which the heat source side refrigerant | coolant circulates. In FIG. 8, the flow direction of the heat source side cooling is indicated by a solid line arrow, and the flow direction of the heat medium is indicated by a broken line arrow.
 図8に示す「第2の熱回収除霜運転モード」の場合、室外ユニット1では、第1冷媒流路切替装置11を圧縮機10から吐出された熱源側冷媒を熱源側熱交換器12へ流入させるように切り替える。 In the “second heat recovery defrosting operation mode” shown in FIG. 8, in the outdoor unit 1, the heat source side refrigerant discharged from the compressor 10 in the first refrigerant flow switching device 11 is transferred to the heat source side heat exchanger 12. Switch to allow inflow.
 中継ユニット2では、ポンプ31a及びポンプ31bを駆動し、冷房運転を実施している室内ユニット3に対する熱媒体流量調整装置34を開放し、熱媒体間熱交換器25aと冷房運転を実施している室内ユニット3の利用側熱交換器35との間を熱媒体が循環するようにし、暖房運転を実施している室内ユニット3に対する熱媒体流量調整装置34を全開とし、熱媒体間熱交換器25bと暖房運転を実施している室内ユニット3の利用側熱交換器35との間を熱媒体が循環するようにている。また、第2冷媒流路切替装置28a及び第2冷媒流路切替装置28bはともに冷房側の開度方向を保持しており、開閉装置27は開、開閉装置29は閉となっている。さらに、絞り装置26aは熱媒体間熱交換器25aの出口の冷媒状態が気体となるように制御されており、絞り装置26bは全開となっている。なお、絞り装置26bは厳密な全開でなくてもよい。 In the relay unit 2, the pump 31 a and the pump 31 b are driven, the heat medium flow control device 34 for the indoor unit 3 that is performing the cooling operation is opened, and the cooling operation is performed with the inter-heat medium heat exchanger 25 a. The heat medium circulates between the indoor unit 3 and the use side heat exchanger 35, the heat medium flow control device 34 for the indoor unit 3 that is performing the heating operation is fully opened, and the heat exchanger 25b between heat mediums. The heat medium circulates between the heat exchanger 35 and the use side heat exchanger 35 of the indoor unit 3 performing the heating operation. Further, both the second refrigerant flow switching device 28a and the second refrigerant flow switching device 28b maintain the opening direction on the cooling side, the opening / closing device 27 is open, and the opening / closing device 29 is closed. Further, the expansion device 26a is controlled so that the refrigerant state at the outlet of the heat exchanger related to heat medium 25a becomes gas, and the expansion device 26b is fully opened. The diaphragm device 26b does not have to be fully open.
 まず始めに、冷媒循環回路Aにおける熱源側冷媒の流れについて説明する。
 低温・低圧の冷媒が圧縮機10によって圧縮され、高温・高圧のガス冷媒となって吐出される。圧縮機10から吐出された高温・高圧のガス冷媒は、第1冷媒流路切替装置11を通り、熱源側熱交換器12に流入する。熱源側熱交換器12に流入した冷媒は、熱源側熱交換器12上の着霜部と熱交換を行う。熱源側熱交換器12上の着霜部は、高温・高圧の冷媒により融解される。熱源側熱交換器12上の着霜部との熱交換を行った低温・高圧の冷媒は、逆止弁13aを通過した後、室外ユニット1から流出する。室外ユニット1から流出した低温・高圧の冷媒は、冷媒配管4を通って中継ユニット2に流入する。
First, the flow of the heat source side refrigerant in the refrigerant circuit A will be described.
The low-temperature and low-pressure refrigerant is compressed by the compressor 10 and discharged as a high-temperature and high-pressure gas refrigerant. The high-temperature and high-pressure gas refrigerant discharged from the compressor 10 passes through the first refrigerant flow switching device 11 and flows into the heat source side heat exchanger 12. The refrigerant flowing into the heat source side heat exchanger 12 exchanges heat with the frosting part on the heat source side heat exchanger 12. The frosting part on the heat source side heat exchanger 12 is melted by the high-temperature and high-pressure refrigerant. The low-temperature and high-pressure refrigerant that has exchanged heat with the frosting section on the heat source side heat exchanger 12 flows out of the outdoor unit 1 after passing through the check valve 13a. The low-temperature and high-pressure refrigerant that has flowed out of the outdoor unit 1 flows into the relay unit 2 through the refrigerant pipe 4.
 中継ユニット2に流入した冷媒は、開閉装置27を通過した後、分岐されて絞り装置26aおよび絞り装置26bを通過し、熱媒体間熱交換器25aおよび熱媒体間熱交換器25bに流入する。熱媒体間熱交換器25aにおいては、絞り装置26aの作用により、熱媒体との熱交換を継続し、冷房用低温熱媒体を作り出し、室内ユニット3に供給する。一方、熱媒体間熱交換器25bへ対しては熱源側熱交換器12の除霜によって熱容量を失った熱源側冷媒が搬送され、それまで暖房運転を実施してきた高温の熱媒体との熱交換を行うことで、熱容量を確保することが可能となっている。 The refrigerant that has flowed into the relay unit 2 passes through the opening / closing device 27, is branched, passes through the expansion device 26a and the expansion device 26b, and flows into the intermediate heat exchanger 25a and the intermediate heat exchanger 25b. In the heat exchanger related to heat medium 25a, heat exchange with the heat medium is continued by the action of the expansion device 26a, and a low-temperature heat medium for cooling is generated and supplied to the indoor unit 3. On the other hand, the heat source side refrigerant that has lost its heat capacity due to the defrosting of the heat source side heat exchanger 12 is conveyed to the heat exchanger related to heat medium 25b, and heat exchange with the high temperature heat medium that has been in the heating operation until then. By carrying out, it is possible to ensure the heat capacity.
 熱媒体間熱交換器25aおよび熱媒体間熱交換器25bから流出した冷媒は、第2冷媒流路切替装置28aおよび第2冷媒流路切替装置28bを通って中継ユニット2から流出し、冷媒配管4を導通し、逆止弁13cを通過して第1冷媒流路切替装置11およびアキュムレーター19を介して圧縮機10へ再度吸入される。 The refrigerant flowing out of the heat exchanger related to heat medium 25a and the heat exchanger related to heat medium 25b flows out of the relay unit 2 through the second refrigerant flow switching device 28a and the second refrigerant flow switching device 28b, and is connected to the refrigerant piping. 4, passes through the check valve 13 c, and is sucked again into the compressor 10 through the first refrigerant flow switching device 11 and the accumulator 19.
 次に「第2の熱回収除霜運転モード」時における熱媒体循環回路Bにおける熱媒体の流れについて説明する。 Next, the flow of the heat medium in the heat medium circuit B in the “second heat recovery defrosting operation mode” will be described.
 「第2の熱回収除霜運転モード」では、熱媒体間熱交換器25aで低温とされた熱媒体、及び熱媒体間熱交換器25bで低温とされた熱媒体は、ポンプ31a及びポンプ31bで加圧され、第2熱媒体流路切替装置33a~第2熱媒体流路切替装置33dを介して、利用側熱交換器35a~利用側熱交換器35dに流入する。なお、このとき、第2熱媒体流路切替装置33は、接続されている室内ユニット3が暖房運転モードであるときは、熱媒体間熱交換器25b及びポンプ31bが接続されている方向に切り替えられ、接続されている室内ユニット3が冷房運転モードであるときは、熱媒体間熱交換器25a及びポンプ31aが接続されている方向に切り替えられる。 In the “second heat recovery defrosting operation mode”, the heat medium lowered in temperature by the intermediate heat exchanger 25a and the heat medium lowered in the intermediate heat exchanger 25b are the pump 31a and the pump 31b. And flows into the use side heat exchanger 35a to the use side heat exchanger 35d via the second heat medium flow switching device 33a to the second heat medium flow switching device 33d. At this time, the second heat medium flow switching device 33 switches to the direction in which the heat exchanger related to heat medium 25b and the pump 31b are connected when the connected indoor unit 3 is in the heating operation mode. When the connected indoor unit 3 is in the cooling operation mode, it is switched to the direction in which the heat exchanger related to heat medium 25a and the pump 31a are connected.
 ポンプ31aにより室内ユニット3へ流入した熱媒体は、それまで冷房運転を実施してきた室内ユニット3へ対して、利用側熱交換器35にて室内空間7の室内空気と熱交換を行うことで冷房運転を継続する。そして、利用側熱交換器35にて熱交換された熱媒体は、熱媒体配管5、熱媒体流量調整装置34を通過して中継ユニット2内へ搬送される。各室内ユニット3に搬送された熱媒体は、各熱媒体流量調整装置34にて流量が調整される。熱媒体流量調整装置34から流出した熱媒体は、第1熱媒体流路切替装置32を通過する。 The heat medium flowing into the indoor unit 3 by the pump 31a is cooled by exchanging heat with the indoor air in the indoor space 7 by the use side heat exchanger 35 with respect to the indoor unit 3 that has been performing the cooling operation until then. Continue driving. Then, the heat medium exchanged by the use side heat exchanger 35 passes through the heat medium pipe 5 and the heat medium flow control device 34 and is conveyed into the relay unit 2. The flow rate of the heat medium transported to each indoor unit 3 is adjusted by each heat medium flow control device 34. The heat medium flowing out from the heat medium flow control device 34 passes through the first heat medium flow switching device 32.
 なお、このとき、熱媒体流量調整装置34は、ポンプ31a直前の温度と、接続されている室内ユニット3の出口温度との差を検知して流量調整される。また、第1熱媒体流路切替装置32は、熱媒体間熱交換器25a及びポンプ31aが接続されている方向に切り替えられる。 At this time, the heat medium flow control device 34 detects the difference between the temperature immediately before the pump 31a and the outlet temperature of the connected indoor unit 3 to adjust the flow rate. The first heat medium flow switching device 32 is switched in the direction in which the heat exchanger related to heat medium 25a and the pump 31a are connected.
 一方、ポンプ31bは駆動しているが、暖房運転モードを実施していた室内ユニット3のファンを停止させ、暖房運転モードを停止する。また、それまで暖房運転モードを実施していた室内ユニット3に接続されている第2熱媒体流路切替装置33においてはポンプ31bが接続されている開度方向を向いている。さらに、利用側熱交換器35を通過後の熱媒体流量調整装置34は全開、第1熱媒体流路切替装置32は第2熱媒体流路切替装置33と同じ開度となっている。 On the other hand, the pump 31b is driven, but the fan of the indoor unit 3 that has been in the heating operation mode is stopped, and the heating operation mode is stopped. Moreover, in the 2nd heat-medium flow-path switching apparatus 33 connected to the indoor unit 3 which has been implementing heating operation mode until then, it has faced the opening degree direction to which the pump 31b is connected. Further, the heat medium flow control device 34 after passing through the use side heat exchanger 35 is fully opened, and the first heat medium flow switching device 32 has the same opening as the second heat medium flow switching device 33.
 暖房運転モードを実施していた室内ユニット3に搬送された熱媒体は、利用側熱交換器35で熱交換を行わず、第1熱媒体流路切替装置32を通じて熱媒体間熱交換器25bへと搬送される。熱媒体間熱交換器25bに流入した熱媒体は、再度、熱媒体間熱交換器25bに流入している熱源側冷媒と熱交換され、冷媒側へ熱量を供給する。その後、熱媒体は、再度、ポンプ31bへ吸込まれる。 The heat medium transported to the indoor unit 3 that has been in the heating operation mode is not subjected to heat exchange in the use side heat exchanger 35, and is transferred to the heat exchanger related to heat medium 25b through the first heat medium flow switching device 32. It is conveyed. The heat medium flowing into the heat exchanger related to heat medium 25b is again heat-exchanged with the heat source side refrigerant flowing into the heat exchanger related to heat medium 25b, and supplies heat to the refrigerant. Thereafter, the heat medium is again sucked into the pump 31b.
 なお、「第2の熱回収除霜運転モード」におけるこれまで暖房運転を実施していた室内ユニット3は、室外ユニット1が除霜運転モード中であるという情報を受信し、ファンを停止させる。ただし、室内空気温度および室内ユニット吹出し空気温度を検知できる場合には、室内空気温度よりも室内ユニット吹出し空気温度が低くならないときまでファンの運転を継続しても問題はない。また、温度センサー40によって検出される熱媒体間熱交換器25の出口の熱媒体温度が室内空気温度よりも低くならない限り、ファンの運転を継続させるようにしてもよい。 In addition, the indoor unit 3 that has been performing the heating operation so far in the “second heat recovery defrosting operation mode” receives information that the outdoor unit 1 is in the defrosting operation mode, and stops the fan. However, if the indoor air temperature and the indoor unit blown air temperature can be detected, there is no problem even if the fan operation is continued until the indoor unit blown air temperature does not become lower than the indoor air temperature. Further, as long as the heat medium temperature at the outlet of the heat exchanger related to heat medium 25 detected by the temperature sensor 40 does not become lower than the indoor air temperature, the fan operation may be continued.
[第1のバイパス除霜運転モード]
 図9は、空気調和装置100の「第1のバイパス除霜運転モード」時における冷媒の流れおよび熱媒体の流れを示す冷媒回路図である。この図9では、「第1のバイパス除霜運転モード」について説明する。なお、図9では、太線で表された配管が熱源側冷媒の循環する配管を示している。また、図9では熱源側冷房の流れ方向を実線矢印で、熱媒体の流れ方向を破線矢印で示している。
[First bypass defrosting operation mode]
FIG. 9 is a refrigerant circuit diagram illustrating a refrigerant flow and a heat medium flow when the air-conditioning apparatus 100 is in the “first bypass defrosting operation mode”. In FIG. 9, the “first bypass defrosting operation mode” will be described. In addition, in FIG. 9, the pipe | tube represented by the thick line has shown the piping through which the heat source side refrigerant | coolant circulates. In FIG. 9, the flow direction of the heat source side cooling is indicated by solid line arrows, and the flow direction of the heat medium is indicated by broken line arrows.
 「第1のバイパス除霜運転モード」は、「第1の熱回収除霜運転モード」と同様に、空気調和装置100の全暖房運転モード中に、室外ユニット1内の熱源側熱交換器12に対して外気の水分が着霜し、蒸発温度が低下した際に実施する除霜運転モードであるが、「第1の熱回収除霜運転モード」とは異なり、熱媒体からの熱容量を冷媒が受け取らないようにしている。なお、「第1のバイパス除霜運転モード」は、「第1の熱回収除霜運転モード」の実行中、設定温度の変化に応じて切り替えられて実行される。 The “first bypass defrosting operation mode” is the same as the “first heat recovery defrosting operation mode”, during the heating only operation mode of the air conditioner 100, the heat source side heat exchanger 12 in the outdoor unit 1. However, unlike the “first heat recovery defrosting operation mode”, the heat capacity from the heat medium is reduced to the refrigerant. Is not allowed to receive. The “first bypass defrosting operation mode” is switched and executed in accordance with a change in the set temperature during the execution of the “first heat recovery defrosting operation mode”.
 図9に示す「第1のバイパス除霜運転モード」の場合、室外ユニット1では、第1冷媒流路切替装置11を圧縮機10から吐出された熱源側冷媒を熱源側熱交換器12へ流入させるように切り替える。 In the “first bypass defrosting operation mode” shown in FIG. 9, in the outdoor unit 1, the heat source side refrigerant discharged from the compressor 10 flows into the heat source side heat exchanger 12 through the first refrigerant flow switching device 11. Switch to let
 中継ユニット2では、ポンプ31a及びポンプ31bを駆動させ、熱媒体流量調整装置34a~熱媒体流量調整装置34dを開放し、熱媒体間熱交換器25a及び熱媒体間熱交換器25bのそれぞれと利用側熱交換器35a~利用側熱交換器35dとの間を熱媒体が循環するようにしている。また、第2冷媒流路切替装置28aおよび第2冷媒流路切替装置28bは冷房側に切り替えられた状態を保持しており、開閉装置27は開、開閉装置29は開となっている。さらに、絞り装置26aおよび絞り装置26bは全閉となっている。 In the relay unit 2, the pump 31a and the pump 31b are driven, the heat medium flow control devices 34a to 34d are opened, and the heat medium heat exchanger 25a and the heat medium heat exchanger 25b are used respectively. The heat medium circulates between the side heat exchanger 35a and the use side heat exchanger 35d. Further, the second refrigerant flow switching device 28a and the second refrigerant flow switching device 28b maintain the state switched to the cooling side, the opening / closing device 27 is open, and the opening / closing device 29 is open. Further, the expansion device 26a and the expansion device 26b are fully closed.
 まず始めに、冷媒循環回路Aにおける熱源側冷媒の流れについて説明する。
 低温・低圧の冷媒が圧縮機10によって圧縮され、高温・高圧のガス冷媒となって吐出される。圧縮機10から吐出された高温・高圧のガス冷媒は、第1冷媒流路切替装置11を通り、熱源側熱交換器12に流入する。熱源側熱交換器12に流入した冷媒は、熱源側熱交換器12上の着霜部と熱交換を行う。熱源側熱交換器12上の着霜部は、高温・高圧の冷媒により融解される。熱源側熱交換器12上の着霜部との熱交換を行った低温・高圧の冷媒は、逆止弁13aを通過した後、室外ユニット1から流出する。室外ユニット1から流出した低温・高圧の冷媒は、冷媒配管4を通って中継ユニット2に流入する。
First, the flow of the heat source side refrigerant in the refrigerant circuit A will be described.
The low-temperature and low-pressure refrigerant is compressed by the compressor 10 and discharged as a high-temperature and high-pressure gas refrigerant. The high-temperature and high-pressure gas refrigerant discharged from the compressor 10 passes through the first refrigerant flow switching device 11 and flows into the heat source side heat exchanger 12. The refrigerant flowing into the heat source side heat exchanger 12 exchanges heat with the frosting part on the heat source side heat exchanger 12. The frosting part on the heat source side heat exchanger 12 is melted by the high-temperature and high-pressure refrigerant. The low-temperature and high-pressure refrigerant that has exchanged heat with the frosting section on the heat source side heat exchanger 12 flows out of the outdoor unit 1 after passing through the check valve 13a. The low-temperature and high-pressure refrigerant that has flowed out of the outdoor unit 1 flows into the relay unit 2 through the refrigerant pipe 4.
 中継ユニット2に流入した冷媒は、開閉装置27を通過した後、開閉装置29を通過する。絞り装置26aおよび絞り装置26bは全閉であるので、熱媒体間熱交換器25aおよび熱媒体間熱交換器25bへ対しては冷媒の搬送を行わない。開閉装置29を通過した冷媒は、そのまま中継ユニット2から流出し、冷媒配管4を通じて室外ユニット1へ流入する。室外ユニット1へ流入した冷媒は、逆止弁13cを通過して第1冷媒流路切替装置11およびアキュムレーター19を介して圧縮機10へ再度吸入される。 The refrigerant flowing into the relay unit 2 passes through the switchgear 29 after passing through the switchgear 27. Since the expansion device 26a and the expansion device 26b are fully closed, no refrigerant is conveyed to the intermediate heat exchanger 25a and the intermediate heat exchanger 25b. The refrigerant that has passed through the opening / closing device 29 flows out of the relay unit 2 as it is, and flows into the outdoor unit 1 through the refrigerant pipe 4. The refrigerant flowing into the outdoor unit 1 passes through the check valve 13 c and is sucked into the compressor 10 again through the first refrigerant flow switching device 11 and the accumulator 19.
 次に「第1のバイパス除霜運転モード」時における熱媒体循環回路Bにおける熱媒体の流れについて説明する。 Next, the flow of the heat medium in the heat medium circuit B in the “first bypass defrosting operation mode” will be described.
 熱媒体は、それまで暖房運転を行っていた上に、先に述べたとおり、除霜運転モードを行う前に熱媒体間熱交換器25にて熱媒体を一時的に昇温させることで熱容量を確保しているため、高温を維持した状態となっている。そのため、除霜運転モード中であっても、利用側熱交換器35へ対して高温の熱媒体の搬送が可能であり、すなわち室内ユニット3において暖房運転が継続可能となっている。 The heat medium has been in a heating operation until then, and as described above, the heat medium is temporarily heated in the heat medium heat exchanger 25 before performing the defrosting operation mode. Therefore, the high temperature is maintained. Therefore, even during the defrosting operation mode, a high-temperature heat medium can be conveyed to the use-side heat exchanger 35, that is, the heating operation can be continued in the indoor unit 3.
 具体的には、熱媒体間熱交換器25a、熱媒体間熱交換器25bに接続されているポンプ31a、ポンプ31bの運転により、熱媒体の搬送を行う。また、各室内ユニット3に接続されている第2熱媒体流路切替装置33においては中間開度となっている。さらに、熱媒体流量調整装置34は、熱媒体間熱交換器25の出口温度と利用側熱交換器35の出口温度が一定になるように制御されている。そして、第1熱媒体流路切替装置32は、第2熱媒体流路切替装置33と同じ開度となっており、熱媒体搬送による暖房運転の継続が可能となっている。 Specifically, the heat medium is conveyed by the operation of the pump 31a and the pump 31b connected to the heat exchanger related to heat medium 25a and the heat exchanger related to heat medium 25b. Further, the second heat medium flow switching device 33 connected to each indoor unit 3 has an intermediate opening degree. Further, the heat medium flow control device 34 is controlled so that the outlet temperature of the intermediate heat exchanger 25 and the outlet temperature of the use side heat exchanger 35 are constant. The first heat medium flow switching device 32 has the same opening degree as that of the second heat medium flow switching device 33, and the heating operation by the heat medium conveyance can be continued.
 加えて、図9に示す通り、室内ユニット3が換気を行うこともできるようになっていても、除霜運転中に高温である熱媒体の利用側熱交換器35へ対しての流入が可能であり、ファンの運転による外気との熱交換が可能となり、温風吹き出しによる暖房運転の継続が可能である。 In addition, as shown in FIG. 9, even when the indoor unit 3 can be ventilated, a high-temperature heat medium can flow into the use-side heat exchanger 35 during the defrosting operation. Thus, heat exchange with the outside air by the operation of the fan is possible, and the heating operation by hot air blowing can be continued.
 なお、ファンの運転により、暖房運転を継続させる場合、ファンの風量を従来の暖房運転時におけるファンの風量(設定風量)と比べて低下させることで、利用側熱交換器35にて室内空間へ放出する熱容量を制限させることができ、熱媒体の熱容量の保持時間を延長させることができる。なお、従来の暖房運転時におけるファンの風量である設定風量は、変更可能になっている。 When the heating operation is continued by the operation of the fan, the air volume of the fan is reduced as compared with the fan air volume (the set air volume) at the time of the conventional heating operation, so that the use side heat exchanger 35 enters the indoor space. The heat capacity to be released can be limited, and the holding time of the heat capacity of the heat medium can be extended. In addition, the setting air volume which is the air volume of the fan at the time of the conventional heating operation can be changed.
 図10は、熱媒体の低下可能な温度の違いごとのファンの風量とその風量で暖房運転を継続した場合における熱媒体温度保持可能時間についての関係の一例を示すグラフである。図10に示すように、熱媒体が保有可能としている熱容量に対して、ファンからの送風による室内空間への熱の放出量、時間を見積もることができる。こうすることにより、適切な風量割合および風量保持時間を決定し、除霜運転モードにおける適切な時間、温度での暖房運転モードを継続することが可能となる。 FIG. 10 is a graph showing an example of the relationship between the fan air volume for each temperature difference at which the heat medium can be lowered and the heat medium temperature holdable time when the heating operation is continued with the air volume. As shown in FIG. 10, it is possible to estimate the amount of heat released to the indoor space by the air blown from the fan and the time with respect to the heat capacity that the heat medium can hold. By doing so, it is possible to determine an appropriate air volume ratio and air volume holding time, and to continue the heating operation mode at an appropriate time and temperature in the defrosting operation mode.
[第2のバイパス除霜運転モード]
 図11は、空気調和装置100の「第2のバイパス除霜運転モード」時における冷媒の流れおよび熱媒体の流れを示す冷媒回路図である。この図11では、「第2のバイパス除霜運転モード」について説明する。なお、図11では、太線で表された配管が熱源側冷媒の循環する配管を示している。また、図11では熱源側冷房の流れ方向を実線矢印で、熱媒体の流れ方向を破線矢印で示している。なお、「第2のバイパス除霜運転モード」は、「第2の熱回収除霜運転モード」の実行中、設定温度の変化に応じて切り替えられて実行される。
[Second bypass defrosting operation mode]
FIG. 11 is a refrigerant circuit diagram illustrating a refrigerant flow and a heat medium flow when the air-conditioning apparatus 100 is in the “second bypass defrosting operation mode”. In FIG. 11, “second bypass defrosting operation mode” will be described. In addition, in FIG. 11, the piping represented by the thick line has shown the piping through which the heat source side refrigerant | coolant circulates. In FIG. 11, the flow direction of the heat source side cooling is indicated by solid line arrows, and the flow direction of the heat medium is indicated by broken line arrows. The “second bypass defrosting operation mode” is switched and executed in accordance with a change in the set temperature during the execution of the “second heat recovery defrosting operation mode”.
 図11に示す「第2のバイパス除霜運転モード」の場合、室外ユニット1では、第1冷媒流路切替装置11を圧縮機10から吐出された熱源側冷媒を熱源側熱交換器12へ流入させるように切り替える。 In the “second bypass defrosting operation mode” shown in FIG. 11, in the outdoor unit 1, the heat source side refrigerant discharged from the compressor 10 flows into the heat source side heat exchanger 12 through the first refrigerant flow switching device 11. Switch to let
 中継ユニット2では、ポンプ31a及びポンプ31bを駆動させ、熱媒体流量調整装置34a~熱媒体流量調整装置34dを開放し、熱媒体間熱交換器25a及び熱媒体間熱交換器25bのそれぞれと利用側熱交換器35a~利用側熱交換器35dとの間を熱媒体が循環するようにしている。また、第2冷媒流路切替装置28aおよび第2冷媒流路切替装置28bは冷房側に切り替えられた状態を保持しており、開閉装置27は開、開閉装置29は開となっている。さらに、絞り装置26aは熱媒体間熱交換器25a出口の冷媒状態が気体となるように制御されており、絞り装置26bは全閉となっている。 In the relay unit 2, the pump 31a and the pump 31b are driven, the heat medium flow control devices 34a to 34d are opened, and the heat medium heat exchanger 25a and the heat medium heat exchanger 25b are used respectively. The heat medium circulates between the side heat exchanger 35a and the use side heat exchanger 35d. Further, the second refrigerant flow switching device 28a and the second refrigerant flow switching device 28b maintain the state switched to the cooling side, the opening / closing device 27 is open, and the opening / closing device 29 is open. Further, the expansion device 26a is controlled such that the refrigerant state at the outlet of the heat exchanger related to heat medium 25a is gas, and the expansion device 26b is fully closed.
 まず始めに、冷媒循環回路Aにおける熱源側冷媒の流れについて説明する。
 低温・低圧の冷媒が圧縮機10によって圧縮され、高温・高圧のガス冷媒となって吐出される。圧縮機10から吐出された高温・高圧のガス冷媒は、第1冷媒流路切替装置11を通り、熱源側熱交換器12に流入する。熱源側熱交換器12に流入した冷媒は、熱源側熱交換器12上の着霜部と熱交換を行う。熱源側熱交換器12上の着霜部は、高温・高圧の冷媒により融解される。熱源側熱交換器12上の着霜部との熱交換を行った低温・高圧の冷媒は、逆止弁13aを通過した後、室外ユニット1から流出する。室外ユニット1から流出した低温・高圧の冷媒は、冷媒配管4を通って中継ユニット2に流入する。
First, the flow of the heat source side refrigerant in the refrigerant circuit A will be described.
The low-temperature and low-pressure refrigerant is compressed by the compressor 10 and discharged as a high-temperature and high-pressure gas refrigerant. The high-temperature and high-pressure gas refrigerant discharged from the compressor 10 passes through the first refrigerant flow switching device 11 and flows into the heat source side heat exchanger 12. The refrigerant flowing into the heat source side heat exchanger 12 exchanges heat with the frosting part on the heat source side heat exchanger 12. The frosting part on the heat source side heat exchanger 12 is melted by the high-temperature and high-pressure refrigerant. The low-temperature and high-pressure refrigerant that has exchanged heat with the frosting section on the heat source side heat exchanger 12 flows out of the outdoor unit 1 after passing through the check valve 13a. The low-temperature and high-pressure refrigerant that has flowed out of the outdoor unit 1 flows into the relay unit 2 through the refrigerant pipe 4.
 中継ユニット2に流入した冷媒は、開閉装置27を通過した後、分岐されて開閉装置29および絞り装置26aを通過する。絞り装置26aを通過した冷媒は、熱媒体間熱交換器25aに流入する。熱媒体間熱交換器25aにおいては、絞り装置26aの作用により、熱媒体との熱交換を継続し、冷房用低温熱媒体を作り出し、室内ユニット3に供給する。一方、熱媒体間熱交換器25bへ対しては冷媒が搬送されることがなく、それまで暖房運転を実施してきた高温の熱媒体との熱交換を行うことがない。 The refrigerant that has flowed into the relay unit 2 passes through the opening / closing device 27 and then branches to pass through the opening / closing device 29 and the expansion device 26a. The refrigerant that has passed through the expansion device 26a flows into the heat exchanger related to heat medium 25a. In the heat exchanger related to heat medium 25a, heat exchange with the heat medium is continued by the action of the expansion device 26a, and a low-temperature heat medium for cooling is generated and supplied to the indoor unit 3. On the other hand, the refrigerant is not conveyed to the heat exchanger related to heat medium 25b, and heat exchange with the high-temperature heat medium that has been performed until then is not performed.
 熱媒体間熱交換器25aおよび開閉装置29を通過した冷媒は、合流した後、中継ユニット2から流出する。中継ユニット2から流出した冷媒は、冷媒配管4を通じて室外ユニットへ流入する。室外ユニット1へ流入した冷媒は、逆止弁13cを通過して第1冷媒流路切替装置11およびアキュムレーター19を介して圧縮機10へ再度吸入される。 The refrigerant that has passed through the heat exchanger related to heat medium 25a and the switching device 29 flows out of the relay unit 2 after joining. The refrigerant flowing out from the relay unit 2 flows into the outdoor unit through the refrigerant pipe 4. The refrigerant flowing into the outdoor unit 1 passes through the check valve 13 c and is sucked into the compressor 10 again through the first refrigerant flow switching device 11 and the accumulator 19.
 次に「第2のバイパス除霜運転モード」時における熱媒体循環回路Bにおける熱媒体の流れについて説明する。 Next, the flow of the heat medium in the heat medium circuit B in the “second bypass defrosting operation mode” will be described.
 「第2のバイパス除霜運転モード」では、熱媒体間熱交換器25aで低温とされた熱媒体は、ポンプ31aで加圧され、冷房運転モードである室内ユニット3に対応する第2熱媒体流路切替装置33a~第2熱媒体流路切替装置33dを介して、利用側熱交換器35a~利用側熱交換器35dに流入する。ポンプ31aにより室内ユニット3へ流入した熱媒体は、それまで冷房運転を実施してきた室内ユニット3へ対して、利用側熱交換器35にて室内空間7の室内空気と熱交換を行うことで冷房運転を継続する。 In the “second bypass defrosting operation mode”, the heat medium having a low temperature in the intermediate heat exchanger 25a is pressurized by the pump 31a and corresponds to the indoor unit 3 in the cooling operation mode. It flows into the use side heat exchanger 35a to the use side heat exchanger 35d via the flow path switching device 33a to the second heat medium flow switching device 33d. The heat medium flowing into the indoor unit 3 by the pump 31a is cooled by exchanging heat with the indoor air in the indoor space 7 by the use side heat exchanger 35 with respect to the indoor unit 3 that has been performing the cooling operation until then. Continue driving.
 そして、利用側熱交換器35にて熱交換された熱媒体は、熱媒体配管5、熱媒体流量調整装置34を通過して中継ユニット2内へ搬送される。各室内ユニット3に搬送された熱媒体は、各熱媒体流量調整装置34にて流量が調整される。熱媒体流量調整装置34から流出した熱媒体は、第1熱媒体流路切替装置32を通過する。第1熱媒体流路切替装置32を通過した熱媒体は、再度、熱媒体間熱交換器25aに流入している熱源側冷媒と熱交換され、冷媒側へ熱量を供給する。その後、熱媒体は、再度、ポンプ31aへ吸込まれる。 Then, the heat medium exchanged by the use side heat exchanger 35 passes through the heat medium pipe 5 and the heat medium flow control device 34 and is conveyed into the relay unit 2. The flow rate of the heat medium transported to each indoor unit 3 is adjusted by each heat medium flow control device 34. The heat medium flowing out from the heat medium flow control device 34 passes through the first heat medium flow switching device 32. The heat medium that has passed through the first heat medium flow switching device 32 is again heat-exchanged with the heat source side refrigerant flowing into the heat exchanger related to heat medium 25a, and supplies heat to the refrigerant side. Thereafter, the heat medium is again sucked into the pump 31a.
 一方、熱媒体間熱交換器25bに流入する熱媒体は、それまで暖房運転を行っていた上に、先に述べたとおり、除霜運転モードを行う前に熱媒体間熱交換器にて熱媒体を一時的に昇温させることで熱容量を確保しているため、高温を維持した状態となっている。そのため、除霜運転モードであっても、熱媒体の搬送による利用側熱交換器35へ対して高温の熱媒体の搬送が可能であり、すなわち室内ユニット3において暖房運転が継続可能となっている。 On the other hand, the heat medium flowing into the heat exchanger related to heat medium 25b is heated in the heating operation until then, and as described above, the heat medium is heated in the heat exchanger related to heat medium before performing the defrosting operation mode. Since the heat capacity is secured by temporarily raising the temperature of the medium, the medium is kept at a high temperature. Therefore, even in the defrosting operation mode, the high-temperature heat medium can be conveyed to the use-side heat exchanger 35 by the conveyance of the heat medium, that is, the heating operation can be continued in the indoor unit 3. .
 具体的には、熱媒体間熱交換器25bに接続されているポンプ31bの運転により、熱媒体の搬送を行う。また、各室内ユニット3に接続されている第2熱媒体流路切替装置33においては熱媒体間熱交換器25bの方向を向いている。さらに、利用側熱交換器35を通過後の熱媒体流量調整装置34は熱媒体間熱交換器25bの出口温度と利用側熱交換器出口温度が一定になるように制御されている。また、第1熱媒体流路切替装置32は第2熱媒体流路切替装置33と同じ開度となっており、熱媒体搬送による暖房運転の継続が可能となっている。 Specifically, the heat medium is conveyed by the operation of the pump 31b connected to the heat exchanger related to heat medium 25b. Further, the second heat medium flow switching device 33 connected to each indoor unit 3 faces the heat exchanger related to heat medium 25b. Furthermore, the heat medium flow control device 34 after passing through the use side heat exchanger 35 is controlled so that the outlet temperature of the heat exchanger related to heat medium 25b and the outlet temperature of the use side heat exchanger are constant. Further, the first heat medium flow switching device 32 has the same opening as the second heat medium flow switching device 33, and the heating operation by heat medium conveyance can be continued.
 加えて、図11に示す通り、室内ユニット3が換気を行うこともできるようになっていても、除霜運転中に高温である熱媒体の利用側熱交換器35へ対しての流入が可能であり、ファンの運転による外気との熱交換が可能となり、温風吹き出しによる暖房運転の継続が可能である。 In addition, as shown in FIG. 11, even when the indoor unit 3 can be ventilated, a high-temperature heat medium can flow into the use-side heat exchanger 35 during the defrosting operation. Thus, heat exchange with the outside air by the operation of the fan is possible, and the heating operation by hot air blowing can be continued.
 なお、図10に基づいて説明したように、ファンの運転により、暖房運転を継続させる場合、ファンの風量を従来の暖房運転と比べて低下させることで、利用側熱交換器35にて室内空間へ放出する熱容量を制限させることができ、熱媒体の熱容量の保持時間を延長させることができる。 In addition, as explained based on FIG. 10, when the heating operation is continued by the operation of the fan, the air volume of the fan is reduced as compared with the conventional heating operation, so that the indoor space is used in the use side heat exchanger 35. It is possible to limit the heat capacity to be released to the heat source, and to extend the heat capacity retention time of the heat medium.
 以上のように、空気調和装置100は、室内ユニット3が設置されている室内において、直接冷媒を循環させることなく、中継ユニット2を介して冷媒と熱媒体とを熱交換し、その熱媒体を室内ユニット3へ搬送することにより冷房運転、暖房運転を実現している。これにより、空気調和装置100は、室内への冷媒漏洩を回避することが可能となっている。また、空気調和装置100は、室外ユニット1から中継ユニット2へ冷媒を搬送することで、中継ユニット2を適宜の位置に設置できることになり、熱媒体の搬送距離を短くすることができ、ポンプ31a、ポンプ31bの動力を減らし、省エネを図ることができる。 As described above, the air-conditioning apparatus 100 exchanges heat between the refrigerant and the heat medium via the relay unit 2 without directly circulating the refrigerant in the room where the indoor unit 3 is installed. Cooling operation and heating operation are realized by conveying to the indoor unit 3. Thereby, the air conditioning apparatus 100 can avoid refrigerant leakage into the room. In addition, the air conditioner 100 can transfer the refrigerant from the outdoor unit 1 to the relay unit 2 so that the relay unit 2 can be installed at an appropriate position, so that the transfer distance of the heat medium can be shortened, and the pump 31a. The power of the pump 31b can be reduced to save energy.
 さらに、空気調和装置100は、低外気温度での暖房運転を実施する際に、室外ユニット1において着霜が発生し、蒸発温度等による検知にて室外ユニット1における熱源側熱交換器12の霜を除去する除霜運転モードを有している。この除霜運転モードにおいて、除霜により熱交換され、低温となった冷媒を、暖房運転時に室内ユニット3へ搬送され、かつ除霜運転直前に昇温されて高温となっている熱媒体と熱交換させ室外ユニット1へ搬送するようにしている。こうすることにより、空気調和装置100によれば、熱媒体が持っている熱容量を除霜に利用することができ、除霜運転時間を短縮することができる。 Furthermore, when the air conditioner 100 performs the heating operation at a low outside air temperature, frost formation occurs in the outdoor unit 1, and the frost of the heat source side heat exchanger 12 in the outdoor unit 1 is detected by detection based on the evaporation temperature or the like. It has a defrosting operation mode for removing water. In this defrosting operation mode, the heat exchanged by defrosting and the refrigerant having a low temperature are conveyed to the indoor unit 3 during the heating operation, and heated to a high temperature immediately before the defrosting operation and the heat medium It is exchanged and transported to the outdoor unit 1. By carrying out like this, according to the air conditioning apparatus 100, the heat capacity which a heat carrier has can be utilized for defrosting, and defrosting operation time can be shortened.
 また、空気調和装置100は、除霜運転モードにおいて、それまで暖房運転を実施していた室内ユニット3へ対して、ファンの風量を低下させ、風量に応じたファン運転保持時間を設定することで、適切な暖房運転を継続することができる。さらに、空気調和装置100は、室内ユニット3が外気を取り込むことが可能である場合においても、除霜運転モードにおいて、熱媒体との熱交換が可能であり、上記同様に暖房運転を継続することができる。 Further, the air conditioner 100 reduces the fan air volume and sets the fan operation holding time according to the air volume for the indoor unit 3 that has been performing the heating operation until then in the defrosting operation mode. Appropriate heating operation can be continued. Furthermore, even when the indoor unit 3 can take in the outside air, the air conditioner 100 can exchange heat with the heat medium in the defrosting operation mode and continue the heating operation in the same manner as described above. Can do.
 本実施の形態で説明した第1熱媒体流路切替装置32及び第2熱媒体流路切替装置33は、三方弁等の三方流路を切り替えられるもの、開閉弁等の二方流路の開閉を行なうものを2つ組み合わせる等、流路を切り替えられるものであればよい。また、ステッピングモーター駆動式の混合弁等の三方流路の流量を変化させられるもの、電子式膨張弁等の二方流路の流量を変化させられるものを2つ組み合わせる等して第1熱媒体流路切替装置32及び第2熱媒体流路切替装置33として用いてもよい。この場合は、流路の突然の開閉によるウォーターハンマーを防ぐこともできる。さらに、本実施の形態では、熱媒体流量調整装置34が二方弁である場合を例に説明を行なったが、三方流路を持つ制御弁とし利用側熱交換器35をバイパスするバイパス配管と共に設置するようにしてもよい。 The first heat medium flow switching device 32 and the second heat medium flow switching device 33 described in the present embodiment can switch a three-way flow such as a three-way valve, and can open and close a two-way flow such as an on-off valve. What is necessary is just to be able to switch a flow path, such as combining two things to perform. In addition, the first heat medium can be obtained by combining two things such as a stepping motor drive type mixing valve that can change the flow rate of the three-way flow path and two things that can change the flow rate of the two-way flow path such as an electronic expansion valve. The flow path switching device 32 and the second heat medium flow path switching device 33 may be used. In this case, it is possible to prevent water hammer due to sudden opening and closing of the flow path. Further, in the present embodiment, the case where the heat medium flow control device 34 is a two-way valve has been described as an example, but it is a control valve having a three-way flow path and a bypass pipe that bypasses the use-side heat exchanger 35. You may make it install.
 また、熱媒体流量調整装置34は、ステッピングモーター駆動式で流路を流れる流量を制御できるものを使用するとよく、二方弁でも三方弁の一端を閉止したものでもよい。また、熱媒体流量調整装置34として、開閉弁等の二法流路の開閉を行うものを用い、ON/OFFを繰り返して平均的な流量を制御するようにしてもよい。 Also, the heat medium flow control device 34 may be a stepping motor driven type that can control the flow rate flowing through the flow path, and may be a two-way valve or a one-way valve with one end closed. Further, as the heat medium flow control device 34, a device that opens and closes a two-way flow path such as an open / close valve may be used, and the average flow rate may be controlled by repeating ON / OFF.
 また、第2冷媒流路切替装置28が四方弁であるかのように示したが、これに限るものではなく、二方流路切替弁や三方流路切替弁を複数個用い、同じように冷媒が流れるように構成してもよい。 Although the second refrigerant flow switching device 28 is shown as a four-way valve, the present invention is not limited to this, and a plurality of two-way flow switching valves and three-way flow switching valves are used in the same manner. You may comprise so that a refrigerant | coolant may flow.
 また、利用側熱交換器35と熱媒体流量調整装置34とが1つしか接続されていない場合でも同様のことが成り立つのは言うまでもなく、更に熱媒体間熱交換器25及び絞り装置26として、同じ動きをするものが複数個設置されていても、当然問題ない。さらに、熱媒体流量調整装置34は、中継ユニット2に内蔵されている場合を例に説明したが、これに限るものではなく、室内ユニット3に内蔵されていてもよく、中継ユニット2と室内ユニット3とは別体に構成されていてもよい。 Moreover, it goes without saying that the same holds true even when only one use-side heat exchanger 35 and one heat medium flow control device 34 are connected. As the heat exchanger 25 between heat mediums and the expansion device 26, Of course, there is no problem even if there are multiple things that move in the same way. Further, the case where the heat medium flow control device 34 is built in the relay unit 2 has been described as an example. However, the heat medium flow control device 34 is not limited to this, and may be built in the indoor unit 3. 3 may be configured separately.
 熱媒体としては、たとえばブライン(不凍液)や水、ブラインと水の混合液、水と防食効果が高い添加剤の混合液等を用いることができる。したがって、空気調和装置100においては、熱媒体が室内ユニット3を介して室内空間7に漏洩したとしても、熱媒体に安全性の高いものを使用しているため安全性の向上に寄与することになる。 As the heat medium, for example, brine (antifreeze), water, a mixture of brine and water, a mixture of water and an additive having a high anticorrosive effect, or the like can be used. Therefore, in the air conditioning apparatus 100, even if the heat medium leaks into the indoor space 7 through the indoor unit 3, it contributes to the improvement of safety because a highly safe heat medium is used. Become.
 本実施の形態では、空気調和装置100にアキュムレーター19を含めている場合を例に説明したが、アキュムレーター19を設けなくてもよい。また、一般的に、熱源側熱交換器12及び利用側熱交換器35には、送風装置が取り付けられており、送風により凝縮あるいは蒸発を促進させる場合が多いが、これに限るものではない。たとえば、利用側熱交換器35としては放射を利用したパネルヒーターのようなものを用いることもできるし、熱源側熱交換器12としては、水や不凍液により熱を移動させる水冷式のタイプのものを用いることもできる。つまり、熱源側熱交換器12及び利用側熱交換器35としては、放熱あるいは吸熱をできる構造のものであれば種類を問わず、用いることができる。 In the present embodiment, the case where the air conditioner 100 includes the accumulator 19 has been described as an example, but the accumulator 19 may not be provided. In general, the heat source side heat exchanger 12 and the use side heat exchanger 35 are provided with a blower, and in many cases, condensation or evaporation is promoted by blowing air, but this is not a limitation. For example, the use side heat exchanger 35 can be a panel heater using radiation, and the heat source side heat exchanger 12 is a water-cooled type that moves heat by water or antifreeze. Can also be used. That is, the heat source side heat exchanger 12 and the use side heat exchanger 35 can be used regardless of the type as long as they have a structure capable of radiating heat or absorbing heat.
 本実施の形態では、利用側熱交換器35が4つである場合を例に説明したが、個数を特に限定するものではない。また、熱媒体間熱交換器25a、熱媒体間熱交換器25bが2つである場合を例に説明したが、当然、これに限るものではなく、熱媒体を冷却または/及び加熱できるように構成すれば、幾つ設置してもよい。さらに、ポンプ31a、ポンプ31bはそれぞれ一つとは限らず、複数の小容量のポンプを並列に並べて接続してもよい。 In the present embodiment, the case where there are four usage-side heat exchangers 35 has been described as an example, but the number is not particularly limited. Moreover, although the case where the number of heat exchangers between heat mediums 25a and the heat exchangers between heat mediums 25b is two has been described as an example, naturally the present invention is not limited to this, so that the heat medium can be cooled or / and heated. If it comprises, you may install how many. Furthermore, the number of pumps 31a and 31b is not limited to one, and a plurality of small-capacity pumps may be connected in parallel.
 1 室外ユニット、2 中継ユニット、3 室内ユニット、3a 室内ユニット、3b 室内ユニット、3c 室内ユニット、3d 室内ユニット、4 冷媒配管、4a 冷媒用接続配管、4b 冷媒用接続配管、5 熱媒体配管、6 室外空間、7 室内空間、8 空間、9 建物、10 圧縮機、11 第1冷媒流路切替装置、12 熱源側熱交換器、13a 逆止弁、13b 逆止弁、13c 逆止弁、13d 逆止弁、19 アキュムレーター、20 バイパス配管、25 熱媒体間熱交換器、25a 熱媒体間熱交換器、25b 熱媒体間熱交換器、26 絞り装置、26a 絞り装置、26b 絞り装置、27 開閉装置、28 第2冷媒流路切替装置(冷媒流路切替装置)、28a 第2冷媒流路切替装置(冷媒流路切替装置)、28b 第2冷媒流路切替装置(冷媒流路切替装置)、29 開閉装置、31 ポンプ、31a ポンプ、31b ポンプ、32 第1熱媒体流路切替装置、32a 第1熱媒体流路切替装置、32b 第1熱媒体流路切替装置、32c 第1熱媒体流路切替装置、32d 第1熱媒体流路切替装置、33 第2熱媒体流路切替装置、33a 第2熱媒体流路切替装置、33b 第2熱媒体流路切替装置、33c 第2熱媒体流路切替装置、33d 第2熱媒体流路切替装置、34 熱媒体流量調整装置、34a 熱媒体流量調整装置、34b 熱媒体流量調整装置、34c 熱媒体流量調整装置、34d 熱媒体流量調整装置、35 利用側熱交換器、35a 利用側熱交換器、35b 利用側熱交換器、35c 利用側熱交換器、35d 利用側熱交換器、40 温度センサー(熱媒体温度検出装置)、40a 温度センサー(熱媒体温度検出装置)、40b 温度センサー(熱媒体温度検出装置)、43 ダクト、50 制御装置、100 空気調和装置、A 冷媒循環回路、B 熱媒体循環回路。 1 outdoor unit, 2 relay unit, 3 indoor unit, 3a indoor unit, 3b indoor unit, 3c indoor unit, 3d indoor unit, 4 refrigerant pipe, 4a refrigerant connection pipe, 4b refrigerant connection pipe, 5 heat medium pipe, 6 Outdoor space, 7 indoor space, 8 space, 9 building, 10 compressor, 11 first refrigerant flow switching device, 12 heat source side heat exchanger, 13a check valve, 13b check valve, 13c check valve, 13d check Stop valve, 19 accumulator, 20 bypass pipe, 25 heat exchanger between heat medium, 25a heat exchanger between heat medium, 25b heat exchanger between heat medium, 26 throttle device, 26a throttle device, 26b throttle device, 27 switchgear 28 second refrigerant flow switching device (refrigerant flow switching device), 28a second refrigerant flow switching device (refrigerant flow switching device) ), 28b Second refrigerant flow switching device (refrigerant flow switching device), 29 Opening / closing device, 31 pump, 31a pump, 31b pump, 32 1st heat medium flow switching device, 32a 1st heat medium flow switching device 32b, first heat medium flow switching device, 32c, first heat medium flow switching device, 32d, first heat medium flow switching device, 33, second heat medium flow switching device, 33a, second heat medium flow switching device. 33b, second heat medium flow switching device, 33c, second heat medium flow switching device, 33d, second heat medium flow switching device, 34, heat medium flow control device, 34a, heat medium flow control device, 34b, heat medium flow control. Apparatus, 34c heat medium flow control device, 34d heat medium flow control device, 35 use side heat exchanger, 35a use side heat exchanger, 35b use side heat exchanger, 35c use side heat exchanger, 5d use side heat exchanger, 40 temperature sensor (heat medium temperature detection device), 40a temperature sensor (heat medium temperature detection device), 40b temperature sensor (heat medium temperature detection device), 43 duct, 50 control device, 100 air conditioning Equipment, A refrigerant circulation circuit, B heat medium circulation circuit.

Claims (13)

  1.  圧縮機、熱源側熱交換器、複数の絞り装置、複数の熱媒体間熱交換器の冷媒側流路、冷媒循環経路を切り替える複数の冷媒流路切替装置を冷媒配管で接続して熱源側冷媒を循環させる冷媒循環回路と、
     前記複数の熱媒体間熱交換器のそれぞれに対応して設けられている複数の熱媒体搬送装置、複数の利用側熱交換器、前記複数の熱媒体間熱交換器の熱媒体側流路を熱媒体搬送配管で接続して熱媒体を循環させる熱媒体循環回路と、を有し、
     少なくとも前記熱媒体間熱交換器をバイパスし前記熱源側冷媒を前記圧縮機に戻すことができるように設置されたバイパス配管を備え、
     前記熱媒体間熱交換器において前記熱源側冷媒と前記熱媒体とが熱交換する空気調和装置であって、
     前記冷媒流路切替装置を暖房側に切り替えて、前記熱媒体間熱交換器の少なくとも1つで前記熱媒体の加熱を行い、前記熱媒体搬送装置の少なくとも1つを動作させ、前記利用側熱交換器の少なくとも1つに加熱した前記熱媒体を供給する暖房運転モードと、
     前記暖房運転モード中に、前記冷媒流路切替装置を冷房側に切り替えて、前記熱媒体搬送装置の少なくとも1つを動作させ、前記熱媒体間熱交換器の少なくとも1つで前記熱源側冷媒に前記熱媒体の熱を吸熱させ、前記熱源側熱交換器の周囲に着霜した霜を溶かす熱回収除霜運転モードと、
     前記暖房運転モード中に、前記冷媒流路切替装置を冷房側に切り替えて、前記熱源側冷媒の一部またはすべてを前記バイパス配管に流すことにより前記熱源側熱交換器の周囲に着霜した霜を溶かすバイパス除霜運転モードと、を有する
     空気調和装置。
    Heat source side refrigerant by connecting a compressor, a heat source side heat exchanger, a plurality of expansion devices, a refrigerant side flow path of a plurality of heat exchangers between heat mediums, and a plurality of refrigerant flow switching devices for switching a refrigerant circulation path through a refrigerant pipe A refrigerant circulation circuit for circulating
    A plurality of heat medium conveying devices provided corresponding to each of the plurality of heat exchangers between heat media, a plurality of use side heat exchangers, and a heat medium side flow path of the plurality of heat exchangers between heat media. A heat medium circulation circuit that circulates the heat medium by connecting with a heat medium conveyance pipe,
    A bypass pipe installed so as to bypass at least the heat exchanger between heat media and return the heat source side refrigerant to the compressor;
    An air conditioner in which heat is exchanged between the heat source side refrigerant and the heat medium in the intermediate heat exchanger.
    The refrigerant flow switching device is switched to a heating side, the heat medium is heated by at least one of the heat exchangers between the heat media, and at least one of the heat medium transport devices is operated, and the use side heat A heating operation mode for supplying the heated heat medium to at least one of the exchangers;
    During the heating operation mode, the refrigerant flow switching device is switched to the cooling side to operate at least one of the heat medium transport devices, and at least one of the heat exchangers related to heat medium is changed to the heat source side refrigerant. A heat recovery defrosting operation mode for absorbing heat of the heat medium and melting frost formed around the heat source side heat exchanger;
    During the heating operation mode, the refrigerant flow switching device is switched to the cooling side, and frost is formed around the heat source side heat exchanger by flowing a part or all of the heat source side refrigerant to the bypass pipe. A bypass defrosting operation mode for melting the air conditioning apparatus.
  2.  前記熱回収除霜運転モードにおいて、
     前記熱源側冷媒に前記熱媒体の熱を吸熱させる前記熱媒体間熱交換器は、
     前記熱回収除霜運転モードを行う前に前記熱媒体の加熱を行っていた前記熱媒体間熱交換器と同じものである
     請求項1に記載の空気調和装置。
    In the heat recovery defrosting operation mode,
    The heat exchanger related to heat medium that causes the heat source side refrigerant to absorb heat of the heat medium is,
    The air conditioner according to claim 1, wherein the heat exchanger is the same as the heat exchanger related to heat medium that heats the heat medium before performing the heat recovery defrosting operation mode.
  3.  前記熱媒体間熱交換器の前記熱媒体の出口側の流路の何れかの位置に熱媒体温度検出装置を備え、
     前記熱媒体温度検出装置で検出した前記熱媒体の温度が設定温度よりも高い場合には前記熱回収除霜運転モードを行い、
     前記熱媒体温度検出装置で検出した前記熱媒体の温度が前記設定温度よりも低い場合には前記バイパス除霜運転モードを行う
     請求項1又は2に記載の空気調和装置。
    A heat medium temperature detection device is provided at any position of the flow path on the outlet side of the heat medium of the heat exchanger between heat mediums,
    When the temperature of the heat medium detected by the heat medium temperature detection device is higher than a set temperature, the heat recovery defrosting operation mode is performed,
    The air conditioner according to claim 1 or 2, wherein the bypass defrosting operation mode is performed when the temperature of the heat medium detected by the heat medium temperature detection device is lower than the set temperature.
  4.  前記利用側熱交換器に通風される空気の温度を検出する利用側空気温度検出装置を備え、
     前記設定温度は、
     前記利用側空気温度検出装置で検出された温度以上の値である
     請求項3に記載の空気調和装置。
    A use-side air temperature detection device for detecting the temperature of air ventilated in the use-side heat exchanger;
    The set temperature is
    The air conditioning apparatus according to claim 3, wherein the air conditioning apparatus has a value equal to or higher than a temperature detected by the use-side air temperature detection apparatus.
  5.  前記暖房運転モードは、
     前記冷媒流路切替装置を暖房側に切り替えて、前記熱媒体間熱交換器のすべてで前記熱媒体の加熱を行い、前記熱媒体搬送装置のすべてを動作させ、前記利用側熱交換器のすべてに暖かい前記熱媒体を送出する全暖房運転モードを有し、
     前記熱回収除霜運転モードは、
     前記全暖房運転モード中に、前記冷媒流路切替装置を冷房側に切り替えて、前記熱媒体間熱交換器のすべてに冷たい前記熱媒体を流し、すべての前記熱媒体間熱交換器において前記熱源側冷媒に前記熱媒体が保有している熱を吸熱させ、前記熱源側熱交換器の周囲に着霜した霜を溶かす第1の熱回収除霜運転モードを有しており、
     前記全暖房運転モードから前記第1の熱回収除霜運転モードに切り替えて除霜を行う際に、前記第1の熱回収除霜運転モードにおいては前記複数の絞り装置を全開に設定する
     請求項1~4のいずれか一項に記載の空気調和装置。
    The heating operation mode is:
    The refrigerant flow switching device is switched to the heating side, the heat medium is heated by all the heat exchangers between the heat mediums, all the heat medium transport devices are operated, and all the use side heat exchangers are operated. A heating-only operation mode for sending out the warm heat medium,
    The heat recovery defrosting operation mode is
    During the heating only operation mode, the refrigerant flow switching device is switched to a cooling side so that the cold heat medium flows through all of the heat exchangers between heat mediums, and the heat source in all the heat exchangers between heat mediums Having a first heat recovery defrosting operation mode that absorbs heat held by the heat medium in the side refrigerant and melts frost formed around the heat source side heat exchanger;
    When the defrosting is performed by switching from the heating only operation mode to the first heat recovery defrosting operation mode, the plurality of expansion devices are set to fully open in the first heat recovery defrosting operation mode. The air conditioning apparatus according to any one of 1 to 4.
  6.  前記バイパス除霜運転モードは、
     前記冷媒流路切替装置を冷房側に切り替えて、すべての前記熱媒体を前記バイパス配管に流して前記熱源側熱交換器の周囲に着霜した霜を溶かす第1のバイパス除霜運転モードを有しており、
     前記第1の熱回収除霜運転モードから前記第1のバイパス除霜に切り替えて除霜を行う
     請求項5に記載の空気調和装置。
    The bypass defrosting operation mode is
    There is a first bypass defrosting operation mode in which the refrigerant flow switching device is switched to the cooling side, and all the heat medium flows through the bypass pipe to melt frost formed around the heat source side heat exchanger. And
    The air conditioner according to claim 5, wherein the defrosting is performed by switching from the first heat recovery defrosting operation mode to the first bypass defrosting.
  7.  前記暖房運転モードは、
     前記冷媒流路切替装置を暖房側に切り替えて、前記熱媒体間熱交換器の一部で前記熱媒体の加熱を行い、前記熱媒体間熱交換器の残りで前記熱媒体の冷却を行う暖房主体運転モードを有し、
     前記熱回収除霜運転モードは、
     前記冷媒流路切替装置を冷房側に切り替えて、前記熱媒体間熱交換器のすべてに冷たい前記熱媒体を流し、前記暖房主体運転モード時に冷却を行っていた前記熱媒体間熱交換器に対しては冷却を継続させながら、前記暖房主体運転モード時に加熱を行っていた前記熱媒体間熱交換器に対しては前記熱源側冷媒に前記熱媒体が保有している熱を吸熱させ、前記熱源側熱交換器の周囲に着霜した霜を溶かす第2の熱回収除霜運転モードを有しており、
     前記暖房主体運転モードから前記第2の熱回収除霜運転モードに切り替えて除霜を行う際に、前記第2の熱回収除霜運転モードにおいては前記暖房主体運転モード時に加熱を行っていた前記熱媒体間熱交換器に対応する前記絞り装置を全開に設定する
     請求項1~4のいずれか一項に記載の空気調和装置。
    The heating operation mode is:
    Heating by switching the refrigerant flow switching device to the heating side, heating the heat medium in a part of the heat exchanger related to heat medium, and cooling the heat medium using the rest of the heat exchanger related to heat medium It has a main operation mode,
    The heat recovery defrosting operation mode is
    The refrigerant flow switching device is switched to the cooling side, the cold heat medium is caused to flow through all the heat exchangers between heat mediums, and the heat exchangers between heat mediums that are performing cooling in the heating main operation mode. For the heat exchanger related to heat medium that has been heated in the heating main operation mode while continuing cooling, the heat source side refrigerant absorbs heat held by the heat medium, and the heat source A second heat recovery defrosting operation mode for melting frost formed around the side heat exchanger;
    When the defrosting is performed by switching from the heating main operation mode to the second heat recovery defrosting operation mode, the heating was performed in the heating main operation mode in the second heat recovery defrosting operation mode. The air conditioner according to any one of claims 1 to 4, wherein the expansion device corresponding to the heat exchanger related to heat medium is set to be fully open.
  8.  前記バイパス除霜運転モードは、
     前記冷媒流路切替装置を冷房側に切り替えて、前記熱媒体間熱交換器の一部に冷たい前記熱媒体を流し、前記暖房主体運転時に冷却を行っていた前記熱媒体間熱交換器に対しては冷却を継続させながら、前記熱媒体の一部を前記バイパス配管に流して前記熱源側熱交換器の周囲に着霜した霜を溶かす第2のバイパス除霜運転モードを有しており、
     前記第2の熱回収除霜運転モードから前記第2のバイパス除霜運転モードに切り替えて除霜を行う
     請求項7に記載の空気調和装置。
    The bypass defrosting operation mode is
    The refrigerant flow switching device is switched to the cooling side, the cold heat medium is caused to flow through a part of the heat exchanger related to heat medium, and the heat exchanger related to heat medium that has been cooled during the heating main operation The second bypass defrosting operation mode in which a part of the heat medium is allowed to flow through the bypass pipe and the frost formed around the heat source side heat exchanger is melted while continuing cooling.
    The air conditioning apparatus according to claim 7, wherein the defrosting is performed by switching from the second heat recovery defrosting operation mode to the second bypass defrosting operation mode.
  9.  前記熱回収除霜運転モードにおいては、
     除霜運転に入る前に暖房運転を行っていた前記利用側熱交換器に送風する送風装置を停止させ、
     除霜運転に入る前に冷房運転を行っている前記利用側熱交換器に送風する送風装置を動作させる
     請求項1~8のいずれか一項に記載の空気調和装置。
    In the heat recovery defrosting operation mode,
    Stop the blower that blows air to the use-side heat exchanger that had been performing the heating operation before entering the defrosting operation,
    The air conditioner according to any one of claims 1 to 8, wherein a blower that blows air is operated to the use-side heat exchanger that is performing a cooling operation before entering a defrosting operation.
  10.  前記複数の利用側熱交換器のそれぞれを収容する複数の室内ユニットと、
     前記圧縮機および前記熱源側熱交換器を収容する少なくとも1台の室外ユニットと、
     前記複数の熱媒体間熱交換器、前記複数の絞り装置、前記複数の熱媒体搬送装置および前記複数の冷媒流路切替装置を収容する少なくとも1台の中継ユニットと、を備え、
     前記室内ユニット、前記室外ユニット、及び、前記中継ユニットは、
     それぞれ別体に形成されて互いに離れた場所に設置できるように構成されている
     請求項1~9のいずれか一項に記載の空気調和装置。
    A plurality of indoor units for accommodating each of the plurality of use side heat exchangers;
    At least one outdoor unit that houses the compressor and the heat source side heat exchanger;
    And at least one relay unit that houses the plurality of heat exchangers between heat media, the plurality of expansion devices, the plurality of heat medium transfer devices, and the plurality of refrigerant flow switching devices,
    The indoor unit, the outdoor unit, and the relay unit are:
    The air conditioner according to any one of claims 1 to 9, wherein the air conditioner is configured to be formed separately from each other so that they can be installed at locations apart from each other.
  11.  前記バイパス除霜運転モード中において、
     それまで暖房運転にて利用していた前記熱媒体の熱容量を用いて暖房運転を継続させる
     請求項1に記載の空気調和装置
    During the bypass defrosting operation mode,
    The air conditioning apparatus according to claim 1, wherein the heating operation is continued using the heat capacity of the heat medium that has been used in the heating operation until then.
  12.  暖房運転を継続させる際、
     暖房運転を継続させる前記利用側熱交換器への送風量を、設定風量よりも低下させる
     請求項11に記載の空気調和装置。
    When continuing the heating operation,
    The air conditioner according to claim 11, wherein an air flow rate to the use-side heat exchanger that continues the heating operation is lower than a set air flow rate.
  13.  換気のために取り入れられる外気を利用した送風を行う場合においても、前記熱媒体を利用した暖房運転により温風を供給可能にしている
     請求項12に記載の空気調和装置。
    The air conditioning apparatus according to claim 12, wherein warm air can be supplied by a heating operation using the heat medium even when blowing air using outside air taken in for ventilation.
PCT/JP2013/054788 2013-02-25 2013-02-25 Air conditioner WO2014128970A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2015501232A JP6095764B2 (en) 2013-02-25 2013-02-25 Air conditioner
EP13875678.8A EP2960602B1 (en) 2013-02-25 2013-02-25 Air conditioner
US14/765,864 US20150369498A1 (en) 2013-02-25 2013-02-25 Air-conditioning apparatus
CN201380073760.9A CN105074359A (en) 2013-02-25 2013-02-25 Air conditioner
PCT/JP2013/054788 WO2014128970A1 (en) 2013-02-25 2013-02-25 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/054788 WO2014128970A1 (en) 2013-02-25 2013-02-25 Air conditioner

Publications (1)

Publication Number Publication Date
WO2014128970A1 true WO2014128970A1 (en) 2014-08-28

Family

ID=51390793

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/054788 WO2014128970A1 (en) 2013-02-25 2013-02-25 Air conditioner

Country Status (5)

Country Link
US (1) US20150369498A1 (en)
EP (1) EP2960602B1 (en)
JP (1) JP6095764B2 (en)
CN (1) CN105074359A (en)
WO (1) WO2014128970A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018124046A (en) * 2017-02-03 2018-08-09 三星電子株式会社Samsung Electronics Co.,Ltd. Air conditioner
JPWO2020213130A1 (en) * 2019-04-18 2020-10-22
JP7305081B1 (en) 2022-10-14 2023-07-07 三菱電機株式会社 air conditioner

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6609417B2 (en) * 2015-04-03 2019-11-20 日立ジョンソンコントロールズ空調株式会社 Air conditioner
WO2019146070A1 (en) * 2018-01-26 2019-08-01 三菱電機株式会社 Refrigeration cycle device
EP3825629A4 (en) * 2018-07-20 2021-08-04 Mitsubishi Electric Corporation Control device for air conditioning device, outdoor unit, relay unit, heat source unit, and air conditioning device
EP3922918A4 (en) * 2019-02-05 2022-02-23 Mitsubishi Electric Corporation Air conditioner control device, outdoor unit, relay unit, heat source unit, and air conditioner
KR20200114123A (en) * 2019-03-27 2020-10-07 엘지전자 주식회사 An air conditioning apparatus
KR20200121200A (en) * 2019-04-15 2020-10-23 엘지전자 주식회사 An air conditioning apparatus
CN112443934B (en) * 2019-09-05 2021-11-02 青岛海尔空调电子有限公司 Total heat recovery defrosting control method, control system and air conditioning device
KR20210096520A (en) * 2020-01-28 2021-08-05 엘지전자 주식회사 An air conditioning apparatus
CN112594871B (en) * 2020-12-31 2022-02-08 广东积微科技有限公司 Defrosting control method of multifunctional multi-split system with double four-way valves
CN113685969B (en) * 2021-07-26 2023-03-21 重庆海尔空调器有限公司 Method and device for controlling defrosting of air conditioner and air conditioner
CN113685970B (en) * 2021-07-26 2023-02-17 重庆海尔空调器有限公司 Method and device for controlling defrosting of air conditioner and air conditioner

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05280818A (en) 1992-04-01 1993-10-29 Matsushita Refrig Co Ltd Multi-chamber type cooling or heating device
JP2001289465A (en) 2000-04-11 2001-10-19 Daikin Ind Ltd Air conditioner
JP2003343936A (en) 2002-05-28 2003-12-03 Mitsubishi Electric Corp Refrigeration cycle system
JP2005140444A (en) 2003-11-07 2005-06-02 Matsushita Electric Ind Co Ltd Air conditioner and its control method
JP2007232303A (en) * 2006-03-02 2007-09-13 Toyox Co Ltd Indoor air conditioning ventilation system
WO2010050002A1 (en) 2008-10-29 2010-05-06 三菱電機株式会社 Air conditioner
JP2011047607A (en) * 2009-08-28 2011-03-10 Panasonic Corp Heat pump type hot water heating device
WO2013008365A1 (en) * 2011-07-14 2013-01-17 三菱電機株式会社 Air-conditioning device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL144148A0 (en) * 1999-01-12 2002-05-23 Xdx Llc Vapor compression system and method
US7340910B2 (en) * 2004-06-02 2008-03-11 Thompson Thomas W System and method of increasing efficiency of heat pumps
JP2008224189A (en) * 2007-03-15 2008-09-25 Aisin Seiki Co Ltd Refrigerating cycle device
EP2495511B1 (en) * 2009-10-27 2019-01-09 Mitsubishi Electric Corporation Air conditioning device
US9353958B2 (en) * 2010-02-10 2016-05-31 Mitsubishi Electric Corporation Air-conditioning apparatus
ES2752729T3 (en) * 2010-12-09 2020-04-06 Mitsubishi Electric Corp Air conditioner
EP2672201B1 (en) * 2011-01-31 2019-03-27 Mitsubishi Electric Corporation Air-conditioning device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05280818A (en) 1992-04-01 1993-10-29 Matsushita Refrig Co Ltd Multi-chamber type cooling or heating device
JP2001289465A (en) 2000-04-11 2001-10-19 Daikin Ind Ltd Air conditioner
JP2003343936A (en) 2002-05-28 2003-12-03 Mitsubishi Electric Corp Refrigeration cycle system
JP2005140444A (en) 2003-11-07 2005-06-02 Matsushita Electric Ind Co Ltd Air conditioner and its control method
JP2007232303A (en) * 2006-03-02 2007-09-13 Toyox Co Ltd Indoor air conditioning ventilation system
WO2010050002A1 (en) 2008-10-29 2010-05-06 三菱電機株式会社 Air conditioner
JP2011047607A (en) * 2009-08-28 2011-03-10 Panasonic Corp Heat pump type hot water heating device
WO2013008365A1 (en) * 2011-07-14 2013-01-17 三菱電機株式会社 Air-conditioning device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018124046A (en) * 2017-02-03 2018-08-09 三星電子株式会社Samsung Electronics Co.,Ltd. Air conditioner
KR20190105219A (en) * 2017-02-03 2019-09-16 삼성전자주식회사 Heat pump system
KR102487265B1 (en) 2017-02-03 2023-01-13 삼성전자주식회사 heat pump system
US11629891B2 (en) 2017-02-03 2023-04-18 Samsung Electronics Co., Ltd. Heat pump system
JPWO2020213130A1 (en) * 2019-04-18 2020-10-22
WO2020213130A1 (en) * 2019-04-18 2020-10-22 三菱電機株式会社 Air conditioner control device, outdoor unit, relay device, heat source unit, and air conditioner
JP7209816B2 (en) 2019-04-18 2023-01-20 三菱電機株式会社 Control devices for air conditioners, outdoor units, repeaters, heat source units, and air conditioners
JP7305081B1 (en) 2022-10-14 2023-07-07 三菱電機株式会社 air conditioner

Also Published As

Publication number Publication date
EP2960602A1 (en) 2015-12-30
JP6095764B2 (en) 2017-03-15
CN105074359A (en) 2015-11-18
JPWO2014128970A1 (en) 2017-02-02
EP2960602B1 (en) 2020-10-07
EP2960602A4 (en) 2016-09-28
US20150369498A1 (en) 2015-12-24

Similar Documents

Publication Publication Date Title
JP6095764B2 (en) Air conditioner
JP5752148B2 (en) Air conditioner
JP5452628B2 (en) Air conditioner
JP5784117B2 (en) Air conditioner
JP5855279B2 (en) Air conditioner
JP5595521B2 (en) Heat pump equipment
WO2012070083A1 (en) Air conditioner
WO2011030430A1 (en) Air conditioning device
WO2015092896A1 (en) Air conditioner and method for controlling air conditioner
JP5490245B2 (en) Air conditioner
JP6000373B2 (en) Air conditioner
WO2011030407A1 (en) Air conditioning device
WO2013008278A1 (en) Air-conditioning device
WO2012172605A1 (en) Air conditioner
JP5955409B2 (en) Air conditioner
JP5972397B2 (en) Air conditioner and design method thereof
WO2011052049A1 (en) Air conditioning device
WO2012035573A1 (en) Air-conditioning device
WO2011117922A1 (en) Air conditioning device
WO2015087421A1 (en) Air conditioner
JP6062030B2 (en) Air conditioner
WO2011030420A1 (en) Air conditioning device
WO2015079531A1 (en) Air conditioning apparatus
JPWO2013008365A1 (en) Air conditioner

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201380073760.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13875678

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015501232

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14765864

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2013875678

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE