JPS6116896B2 - - Google Patents

Info

Publication number
JPS6116896B2
JPS6116896B2 JP56190005A JP19000581A JPS6116896B2 JP S6116896 B2 JPS6116896 B2 JP S6116896B2 JP 56190005 A JP56190005 A JP 56190005A JP 19000581 A JP19000581 A JP 19000581A JP S6116896 B2 JPS6116896 B2 JP S6116896B2
Authority
JP
Japan
Prior art keywords
cold storage
heat
storage heat
tank
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56190005A
Other languages
Japanese (ja)
Other versions
JPS5892740A (en
Inventor
Kunitake Sakai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP56190005A priority Critical patent/JPS5892740A/en
Publication of JPS5892740A publication Critical patent/JPS5892740A/en
Publication of JPS6116896B2 publication Critical patent/JPS6116896B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D11/00Central heating systems using heat accumulated in storage masses
    • F24D11/02Central heating systems using heat accumulated in storage masses using heat pumps

Description

【発明の詳細な説明】 本発明は、冷凍サイクル中に蓄冷熱槽を有し、
冷房通常運転,冷房蓄冷熱運転,冷房蓄冷熱回収
運転,暖房通常運転,暖房蓄熱運転,暖房蓄熱回
収運転,除霜運転を可能とした蓄冷熱式空気調和
機の除霜運転時における補助熱源の運転制御方法
に関するもので、特に蓄冷熱槽内の蓄冷熱材の温
度と室外側熱交換器への着霜量,冷凍サイクル内
の温度,圧力を検知して蓄冷熱材を加熱する補助
熱源を運転あるいは停止する制御を行ない、除霜
運転に必要な熱量および除霜運転中の室内側の暖
房に必要な熱量を常に確保し、安定した運転を得
ることを目的とするものである。
Detailed Description of the Invention The present invention has a cold storage heat tank in the refrigeration cycle,
An auxiliary heat source during defrosting operation of a cold storage heat air conditioner capable of normal cooling operation, cooling cold storage heat operation, cooling cold storage heat recovery operation, normal heating operation, heating heat storage operation, heating heat storage recovery operation, and defrosting operation. This is related to the operation control method, and in particular detects the temperature of the cold storage material in the cold storage tank, the amount of frost on the outdoor heat exchanger, and the temperature and pressure in the refrigeration cycle to detect the auxiliary heat source that heats the cold storage material. The purpose of this is to perform control to start or stop the system, to always ensure the amount of heat necessary for defrosting operation and for heating the indoor area during defrosting operation, and to obtain stable operation.

従来のこの種蓄冷熱式空気調和機は、除霜運転
時、室内側の負荷あるいは室外側の負荷が大きい
場合、冷凍サイクル中の熱を蓄冷熱槽に蓄熱する
余裕がないため、蓄冷熱槽に蓄えられた熱を除霜
のために使うことができず、安定した暖房運転を
継続することができないという欠点を有してい
た。
Conventional cold storage heat type air conditioners of this kind do not have enough room to store the heat from the refrigeration cycle in the cold storage heat tank when the indoor load or outdoor load is large during defrosting operation. The disadvantage was that the heat stored in the heating system could not be used for defrosting, and stable heating operation could not be continued.

本発明は、上記従来の欠点を解消するものであ
る。
The present invention eliminates the above-mentioned conventional drawbacks.

以下、本発明をその一実施例を示す添付図面を
参考に説明する。
Hereinafter, the present invention will be described with reference to the accompanying drawings showing one embodiment thereof.

まず第1図により冷凍サイクルについて説明す
る。
First, the refrigeration cycle will be explained with reference to FIG.

同図において、1は圧縮機、2は四方切換弁、
3は室内側熱交換器、4は冷媒の流れを制御する
第1の制御電磁弁、5は主減圧機構、6は室外側
熱交換器、7は冷媒の流れを制御する第2の制御
電磁弁、8は前記第1の制御電磁弁4および主減
圧機構5を側路するための第1のバイパス回路
で、第1、第2の2つのバイパス電磁弁9,12
と第1、第2の2つのバイパス減圧機構10,1
3を具備している。11は冷凍サイクル中の冷熱
を蓄えるための蓄冷熱槽で、冷媒配管が配設さ
れ、周囲は油などの蓄冷熱材11aが満たされ、
補助熱源11bが具備されている。14は前記主
減圧機構5を側路するための第2のバイパス回
路、15は冷媒の流れを制御するための第3のバ
イパス電磁弁、16は前記第2の制御電磁弁7を
側路する第3のバイパス回路、17は前記第3の
バイパス回路16に設けられた第3の減圧機構、
18は逆止弁である。なお、図中19は電磁式の
燃料制御バルブ、Aは室内側ユニツト、Bは室外
側ユニツトを示している。
In the figure, 1 is a compressor, 2 is a four-way switching valve,
3 is an indoor heat exchanger, 4 is a first control solenoid valve that controls the flow of refrigerant, 5 is a main pressure reducing mechanism, 6 is an outdoor heat exchanger, and 7 is a second control solenoid that controls the flow of refrigerant. Valve 8 is a first bypass circuit for bypassing the first control solenoid valve 4 and the main pressure reducing mechanism 5, and includes two bypass solenoid valves 9, 12, the first and second.
and the first and second two bypass pressure reducing mechanisms 10, 1
It is equipped with 3. Reference numeral 11 denotes a cold storage heat tank for storing cold heat during the refrigeration cycle, in which refrigerant piping is arranged, and the surrounding area is filled with a cold storage heat material 11a such as oil.
An auxiliary heat source 11b is provided. 14 is a second bypass circuit for bypassing the main pressure reducing mechanism 5; 15 is a third bypass solenoid valve for controlling the flow of refrigerant; and 16 is a bypass circuit for bypassing the second control solenoid valve 7. a third bypass circuit, 17 a third pressure reducing mechanism provided in the third bypass circuit 16;
18 is a check valve. In the figure, reference numeral 19 indicates an electromagnetic fuel control valve, A indicates an indoor unit, and B indicates an outdoor unit.

第2図は、冷凍サイクル中の冷媒の流れを制御
する第1、第2の制御電磁弁4,7および第1〜
第3のバイパス電磁弁9,12,15の動作を各
運転ごとに対応して示したモード図である。
FIG. 2 shows the first and second control solenoid valves 4, 7 and the first to
FIG. 7 is a mode diagram showing the operations of the third bypass solenoid valves 9, 12, and 15 corresponding to each operation.

上記構成において、冷房通常運転時、各電磁弁
4,7,9,12,15の制御は、第2図のNo.1
に示すごとく行う。したがつて圧縮機1から吐出
された冷媒は、四方切換弁2、第2の制御電磁弁
7、室外側熱交換器6、主減圧機構5、第1の制
御電磁弁4、室内側熱交換器3、四方切換弁2を
通り圧縮機1へ戻る冷凍サイクルを構成する。
In the above configuration, during normal cooling operation, each solenoid valve 4, 7, 9, 12, 15 is controlled by No. 1 in FIG.
Proceed as shown. Therefore, the refrigerant discharged from the compressor 1 is transferred to the four-way switching valve 2, the second control solenoid valve 7, the outdoor heat exchanger 6, the main pressure reducing mechanism 5, the first control solenoid valve 4, and the indoor heat exchanger. A refrigeration cycle is constructed in which the compressor 1 returns to the compressor 1 through a four-way switching valve 2 and a four-way switching valve 2.

また、冷房蓄冷熱運転時、各電磁弁4,7,
9,12,15の制御は、第2図のNo.2に示すご
とく行う。したがつて蓄冷熱槽11を蒸発器とし
て作動させる。つまり、圧縮機1から吐出された
冷媒は、四方切換弁2、第2の制御電磁弁7、室
外側熱交換器6、バイパス回路8を通り第2のバ
イパス減圧機構13で減圧し、蓄冷熱槽11と室
内側熱交換器3で蒸発し、室内側を冷房すると同
時に蓄冷熱槽11内の蓄冷熱材11aを冷却し、
余剰蓄冷熱を蓄える。蓄冷熱槽11を出た冷媒
は、第1のバイパス電磁弁9、室内側熱交換器
3、四方切換弁2を通り、圧縮機1へ戻る冷凍サ
イクルを構成する。
Also, during cooling cold storage heat operation, each solenoid valve 4, 7,
Controls 9, 12, and 15 are performed as shown in No. 2 of FIG. Therefore, the cold storage heat tank 11 is operated as an evaporator. In other words, the refrigerant discharged from the compressor 1 passes through the four-way switching valve 2, the second control solenoid valve 7, the outdoor heat exchanger 6, and the bypass circuit 8, and is depressurized by the second bypass decompression mechanism 13, storing cold heat. It evaporates in the tank 11 and the indoor heat exchanger 3, cools the indoor side and at the same time cools the cold storage heat material 11a in the cold storage heat tank 11,
Stores excess cold storage heat. The refrigerant leaving the cold storage heat tank 11 passes through the first bypass electromagnetic valve 9, the indoor heat exchanger 3, and the four-way switching valve 2, and returns to the compressor 1, forming a refrigeration cycle.

さらに、冷房蓄冷熱回収運転時、各電磁弁4,
7,9,12,15の制御は、第2図のNo.3に示
すごとく行い、蓄冷熱槽11を凝縮器として作動
させる。つまり、圧縮機1から吐出された冷媒は
四方切換弁2、第2の制御電磁弁7、室外側熱交
換器6、バイパス回路8、第2のバイパス電磁弁
12、蓄冷熱槽11を通り、室外側熱交換器6と
蓄冷熱槽11で凝縮し、室外側の空気および蓄冷
熱槽11内の蓄冷熱材11aに蓄えられた蓄冷熱
によつて冷却される。蓄冷熱槽11を出た冷媒は
第1のバイパス減圧機構10、室内側熱交換器
3、四方切換弁2を通つて圧縮機1へ戻る冷凍サ
イクルを構成する。
Furthermore, during cooling storage cold heat recovery operation, each solenoid valve 4,
7, 9, 12, and 15 are controlled as shown in No. 3 in FIG. 2, and the cold storage heat tank 11 is operated as a condenser. That is, the refrigerant discharged from the compressor 1 passes through the four-way switching valve 2, the second control solenoid valve 7, the outdoor heat exchanger 6, the bypass circuit 8, the second bypass solenoid valve 12, the cold storage heat tank 11, It is condensed in the outdoor heat exchanger 6 and the cold storage heat tank 11, and is cooled by the outdoor air and the cold storage heat stored in the cold storage heat material 11a in the cold storage heat tank 11. The refrigerant leaving the cold storage heat tank 11 returns to the compressor 1 through the first bypass decompression mechanism 10, the indoor heat exchanger 3, and the four-way switching valve 2, forming a refrigeration cycle.

また暖房通常運転時、各電磁弁4,7,9,1
2,15の制御は、第2図のNo.4に示すごとく行
う。したがつて圧縮機1から吐出された冷媒は四
方切換弁2、室内側熱交換器3、第1の制御電磁
弁4、減圧機構5、室外側熱交換器6、第2の制
御電磁弁7、四方切換弁2を通り、圧縮機1へ房
る冷凍サイクルを構成する。
Also, during normal heating operation, each solenoid valve 4, 7, 9, 1
Controls 2 and 15 are performed as shown in No. 4 in FIG. Therefore, the refrigerant discharged from the compressor 1 passes through the four-way switching valve 2, the indoor heat exchanger 3, the first control solenoid valve 4, the pressure reducing mechanism 5, the outdoor heat exchanger 6, and the second control solenoid valve 7. , passes through the four-way switching valve 2, and connects to the compressor 1, forming a refrigeration cycle.

さらに暖房蓄熱運転時、各電磁弁4,7,9,
12,15の制御は、第2図のNo.5に示すごとく
行い、蓄冷熱槽11を凝縮器として作動させる。
つまり、圧縮機1から吐出された冷媒は、四方切
換弁2、室内側熱交換器3、第1のバイパス回路
8、第1のバイパス電磁弁9を通り蓄冷熱槽11
へ入り、室内側熱交換器3と蓄冷熱槽11で凝縮
し、室内側を暖房すると同時に蓄冷熱槽11内の
蓄冷熱材11aと熱交換を行い、熱を蓄冷熱材1
1aに蓄える。蓄冷熱槽11を出た冷媒は、第2
のバイパス減圧機構13、室外側熱交換器6、第
2の制御電磁弁7、四方切換弁2を通り、圧縮機
1へ房る冷凍サイクルを構成する。
Furthermore, during heating heat storage operation, each solenoid valve 4, 7, 9,
12 and 15 are controlled as shown in No. 5 in FIG. 2, and the cold storage heat tank 11 is operated as a condenser.
That is, the refrigerant discharged from the compressor 1 passes through the four-way switching valve 2, the indoor heat exchanger 3, the first bypass circuit 8, and the first bypass solenoid valve 9, and then passes through the cold storage heat tank 11.
The heat is condensed in the indoor heat exchanger 3 and the cold storage heat tank 11, heats the indoor area, and at the same time exchanges heat with the cold storage heat material 11a in the cold storage heat tank 11, and transfers the heat to the cold storage heat material 1.
Store in 1a. The refrigerant leaving the cold storage heat tank 11 is transferred to the second
A refrigeration cycle is configured that passes through the bypass pressure reducing mechanism 13, the outdoor heat exchanger 6, the second control solenoid valve 7, and the four-way switching valve 2 to the compressor 1.

さらに、暖房蓄熱回収運転時、各電磁弁4,
7,9,12,15の制御は、第2図のNo.6に示
すごとく行い、蓄冷熱槽11を蒸発器として作動
させる。つまり、圧縮機1から吐出された冷媒
は、四方切換弁2、室内側熱交換器3、第1のバ
イパス回路8を通り、第1のバイパス減圧機構1
0で減圧し、蓄冷熱槽11および室外側熱交換器
6において蒸発し、蓄冷熱槽11内に蓄えられて
いる蓄熱と室外側空気から熱を奪い冷凍サイクル
中に回収する。蓄冷熱槽11を出た冷媒は、第2
のバイパス電磁弁12、室外側熱交換器6、第2
の制御電磁弁7、四方切換弁2を通り、圧縮機1
へ房る冷凍サイクルを構成する。
Furthermore, during heating heat storage recovery operation, each solenoid valve 4,
7, 9, 12, and 15 are controlled as shown in No. 6 of FIG. 2, and the cold storage heat tank 11 is operated as an evaporator. That is, the refrigerant discharged from the compressor 1 passes through the four-way switching valve 2, the indoor heat exchanger 3, the first bypass circuit 8, and the first bypass pressure reducing mechanism 1.
It is depressurized at 0, evaporates in the cold storage heat tank 11 and the outdoor heat exchanger 6, removes heat from the heat stored in the cold storage heat tank 11 and the outdoor air, and recovers it in the refrigeration cycle. The refrigerant leaving the cold storage heat tank 11 is transferred to the second
bypass solenoid valve 12, outdoor heat exchanger 6, second
The compressor 1 passes through the control solenoid valve 7 and the four-way switching valve 2.
It constitutes a refrigerating cycle.

また除霜運転時、各電磁弁4,7,9,12,
15の制御は、第2図のNo.7に示すごとく行い、
蓄冷熱槽11を蒸発器として作動させる。つま
り、圧縮機1から吐出された冷媒は四方切換弁
2、室内側熱交換器3、第1の制御電磁弁4、第
2のバイパス回路14、第3のバイパス電磁弁1
5、室外側熱交換器6を通り、室内側熱交換器3
および室外側熱交換器6で凝縮し、室内側を暖房
し、室外側熱交換器6上に生じた霜を溶かす。室
外側熱交換器6を出た冷媒は、第3のバイパス回
路16を通つて第3のバイパス減圧機構17で減
圧し、蓄冷熱槽11に蓄えられている熱を冷凍サ
イクル中に吸熱し、蒸発して逆止弁18、四方切
換弁2を通り圧縮機1へ房る冷凍サイクルを構成
する。ただし蓄冷熱槽11に蓄えられている熱量
によつて除霜運転を行う場合、室内側の暖房と室
外側熱交換器6上の着霜の除霜に必要な熱量が十
分確保できない時は、蓄冷熱槽11内の蓄冷熱材
11aの温度あるいは冷凍サイクル中の温度、圧
力を検知し、除霜運転を開始するある設定時間前
に蓄冷熱槽11に具備された補助熱源11bを運
転し、十分な熱量を蓄冷熱材11a内に蓄えるこ
とによつて、安定した暖房運転を確保することが
できる。かかる温度検出手段および圧力検出手段
については、従来公知の技術でよいため説明を省
略し、また電気回路は、例えば既存の冷凍サイク
ル内の温度あるいは圧力、または室外側熱交換器
上の着霜量等を検出して除霜運転の要否を検出す
る着霜検出手段、蓄冷熱槽内の温度を検出する槽
内温度検出手段、前記着霜検出手段が除霜要信号
を出力し、槽内温度検出手段が設定温度以下信号
を出力したとき作動するタイマ、このタイマの作
動により設定時間補助熱源を運転する加熱出力手
段、前記タイマの設定時間経過後に除霜運転信号
を出力する除霜出力手段を適宜組合わせて構成す
ればよい。
Also, during defrosting operation, each solenoid valve 4, 7, 9, 12,
The control of No. 15 is performed as shown in No. 7 of Fig. 2,
The cold storage heat tank 11 is operated as an evaporator. That is, the refrigerant discharged from the compressor 1 is transferred to the four-way switching valve 2, the indoor heat exchanger 3, the first control solenoid valve 4, the second bypass circuit 14, and the third bypass solenoid valve 1.
5, passes through the outdoor heat exchanger 6 and passes through the indoor heat exchanger 3
It is condensed in the outdoor heat exchanger 6, heats the indoor area, and melts the frost formed on the outdoor heat exchanger 6. The refrigerant that has exited the outdoor heat exchanger 6 passes through the third bypass circuit 16 and is depressurized by the third bypass decompression mechanism 17, and absorbs the heat stored in the cold storage heat tank 11 during the refrigeration cycle. It evaporates and passes through the check valve 18 and the four-way switching valve 2 to the compressor 1, forming a refrigeration cycle. However, when defrosting operation is performed using the amount of heat stored in the cold storage heat tank 11, if the amount of heat required for indoor heating and defrosting of the frost on the outdoor heat exchanger 6 cannot be secured, Detecting the temperature of the cold storage heat material 11a in the cold storage heat tank 11 or the temperature and pressure during the refrigeration cycle, and operating the auxiliary heat source 11b provided in the cold storage heat tank 11 a certain set time before starting the defrosting operation, By storing a sufficient amount of heat in the cold storage heat material 11a, stable heating operation can be ensured. The temperature detection means and the pressure detection means will not be explained as they may be conventionally known techniques, and the electric circuit can detect, for example, the temperature or pressure in the existing refrigeration cycle, or the amount of frost on the outdoor heat exchanger. A frost formation detection means detects the necessity of defrosting operation by detecting the temperature inside the cold storage heat storage tank, an internal temperature detection means detects the temperature inside the cold storage heat storage tank, and the frost formation detection means outputs a defrosting required signal to detect the need for defrosting operation inside the tank. A timer that operates when the temperature detection means outputs a signal below a set temperature, a heating output means that operates an auxiliary heat source for a set time based on the operation of the timer, and a defrosting output means that outputs a defrosting operation signal after the set time of the timer has elapsed. may be configured by appropriately combining them.

したがつて、暖房運転時に室内側の負荷あるい
は室外側の負荷が大きい場合蓄熱運転だけでは十
分な熱量を蓄冷熱槽に蓄えることができないが、
その場合は、補助熱源11bを運転することによ
つて蓄冷熱材中に暖房のための熱量を確保し、安
定した暖房運転を行うことができる。
Therefore, if the load on the indoor side or the load on the outdoor side is large during heating operation, sufficient heat cannot be stored in the cold storage tank by thermal storage operation alone.
In that case, by operating the auxiliary heat source 11b, the amount of heat for heating can be secured in the cold heat storage material, and stable heating operation can be performed.

上記実施例より明らかなように、本発明におけ
る蓄冷熱式空気調和機の運転制御方法は、圧縮
機,四方切換弁,室内側熱交換器,主減圧機構,
室外側熱交換器をそれぞれ具備し、蓄冷熱運転,
蓄冷熱回収運転,除霜運転を行うためのバイパス
回路、補助熱源11bを有する蓄冷熱槽,減圧機
構,電磁弁をそれぞれ連結して冷凍サイクルを構
成し、前記冷凍サイクルを用いた暖房運転時、除
霜運転を行う場合、前記蓄冷熱槽内の蓄冷熱材の
温度と前記室外側熱交換器上の着霜量あるいは冷
凍サイクル内の温度、圧力を検知し、蓄冷熱材の
温度がある設定値以下であれば、除霜運転開始の
一定時間前に、蓄冷熱槽内の蓄冷熱材を加熱する
補助熱源を運転し、除霜運転のための熱量を蓄熱
材内に確保することを可能としたもので、ヒート
ポンプによる冷房および暖房はもちろんのこと、
暖房運転時における室内側負荷あるいは室外側負
荷の大きい場合において、蓄熱運転だけでは十分
な熱量を蓄冷熱槽に蓄えることができないとき
に、補助熱源を運転することによつて蓄冷熱材中
に暖房のための熱量を確保することができ、より
一層安定した暖房運転が継続して行えるなどの利
点を有する。
As is clear from the above embodiments, the method for controlling the operation of a cold storage heat type air conditioner according to the present invention includes a compressor, a four-way switching valve, an indoor heat exchanger, a main pressure reducing mechanism,
Equipped with an outdoor heat exchanger, cold storage heat operation,
A refrigeration cycle is constructed by connecting a bypass circuit for cold storage heat recovery operation and defrosting operation, a cold storage heat tank having an auxiliary heat source 11b, a pressure reduction mechanism, and a solenoid valve, and during heating operation using the refrigeration cycle, When performing defrosting operation, the temperature of the cold heat storage material in the cold storage heat tank and the amount of frost on the outdoor heat exchanger or the temperature and pressure in the refrigeration cycle are detected, and the temperature of the cold heat storage material is set to a certain value. If it is below this value, it is possible to operate the auxiliary heat source that heats the cold storage material in the cold storage tank a certain amount of time before the start of defrosting operation, and to secure the amount of heat in the heat storage material for defrosting operation. In addition to cooling and heating using heat pumps,
When the indoor load or outdoor load is large during heating operation, when sufficient heat cannot be stored in the cold storage tank by thermal storage operation alone, heating can be performed in the cold storage material by operating an auxiliary heat source. It has the advantage of being able to secure a sufficient amount of heat for the heating operation, and allowing for more stable heating operation to continue.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例における蓄冷熱式空
気調和機の冷凍サイクル図、第2図は同蓄冷熱式
空気調和機の運転制御方法を行う電磁弁の動作を
示した説明図である。 1……圧縮機、2……四方切換弁、3……室内
側熱交換器、4……第1の制御電磁弁、5……主
減圧機構、6……室外側熱交換器、7……第2の
制御電磁弁、8……第1のバイパス回路、9……
第1のバイパス電磁弁、10……第1のバイパス
減圧機構、11……蓄冷熱槽、11a……蓄冷熱
材、11b……補助熱源、12……第2のバイパ
ス電磁弁、13……第2のバイパス減圧機構、1
4……第2のバイパス回路、15……第3のバイ
パス電磁弁、16……第3のバイパス回路、17
……第3の減圧機構。
FIG. 1 is a refrigeration cycle diagram of a cold storage heat type air conditioner according to an embodiment of the present invention, and FIG. 2 is an explanatory diagram showing the operation of a solenoid valve that performs the operation control method of the cold storage heat type air conditioner. . DESCRIPTION OF SYMBOLS 1... Compressor, 2... Four-way switching valve, 3... Indoor heat exchanger, 4... First control solenoid valve, 5... Main pressure reducing mechanism, 6... Outdoor heat exchanger, 7... ...Second control solenoid valve, 8...First bypass circuit, 9...
First bypass solenoid valve, 10... First bypass pressure reduction mechanism, 11... Cold storage heat storage tank, 11a... Cold storage heat material, 11b... Auxiliary heat source, 12... Second bypass solenoid valve, 13... Second bypass pressure reduction mechanism, 1
4... Second bypass circuit, 15... Third bypass solenoid valve, 16... Third bypass circuit, 17
...Third pressure reduction mechanism.

Claims (1)

【特許請求の範囲】[Claims] 1 圧縮機,四方切換弁,室内側熱交換器,主減
圧機構,室外側熱交換器をそれぞれ具備し、蓄冷
熱運転,蓄冷熱回収運転,除霜運転を行うための
バイパス回路,補助熱源を有する蓄冷熱槽,減圧
機構,電磁弁をそれぞれ連結して冷凍サイクルを
構成し、さらにこの冷凍サイクル内の温度あるい
は圧力、または前記室外側熱交換器上の着霜量等
を検出して除霜運転の要否を検出する着霜検出手
段と、前記蓄冷熱槽内の温度を検出する槽内温度
検出手段と、前記着霜検出手段が除霜要信号を出
力し、槽内温度検出手段が設定温度以下信号を出
力したとき作動するタイマと、このタイマの作動
により設定時間補助熱源を運転する加熱出力手段
と、前記タイマの設定時間経過後に除霜運転信号
を出力する除霜出力手段を設け、前記冷凍サイク
ルを用いた暖房運転時、除霜運転を行う場合、前
記蓄冷熱槽内の蓄冷熱材の温度と前記室外側熱交
換器上の着霜量あるいは冷凍サイクル内の温度、
圧力を検知し、蓄冷熱材の温度がある設定値以下
であれば、除霜運転開始の設定時間前に、蓄冷熱
槽内の蓄冷熱材を加熱する補助熱源を運転し、除
霜運転のための熱量を蓄冷熱材内に確保すること
を可能とした蓄冷熱式空気調和機の運転制御方
法。
1 Equipped with a compressor, four-way switching valve, indoor heat exchanger, main pressure reducing mechanism, outdoor heat exchanger, bypass circuit and auxiliary heat source for cold storage heat operation, cold storage heat recovery operation, and defrosting operation. A refrigerating cycle is constructed by connecting a cold storage heat tank, a pressure reducing mechanism, and a solenoid valve, and defrosting is performed by detecting the temperature or pressure within this refrigerating cycle, or the amount of frost on the outdoor heat exchanger. A frost formation detection means detects whether or not operation is necessary, a tank temperature detection means detects the temperature in the cold storage heat tank, the frost formation detection means outputs a defrosting required signal, and the tank temperature detection means A timer that operates when a signal equal to or lower than a set temperature is output, a heating output means that operates an auxiliary heat source for a set time based on the operation of the timer, and a defrosting output means that outputs a defrosting operation signal after the time set by the timer has elapsed. , when performing a defrosting operation during heating operation using the refrigeration cycle, the temperature of the cold storage heat material in the cold storage heat exchanger and the amount of frost on the outdoor heat exchanger or the temperature inside the refrigeration cycle;
The pressure is detected, and if the temperature of the cold storage heat material is below a certain set value, the auxiliary heat source that heats the cold storage heat material in the cold storage heat tank is operated before the set time to start defrosting operation, and the defrosting operation is started. A method for controlling the operation of a cold storage type air conditioner that makes it possible to secure the amount of heat for the cold storage heat in the cold storage heat material.
JP56190005A 1981-11-26 1981-11-26 Operation control of heat accumulating type air conditioner Granted JPS5892740A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56190005A JPS5892740A (en) 1981-11-26 1981-11-26 Operation control of heat accumulating type air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56190005A JPS5892740A (en) 1981-11-26 1981-11-26 Operation control of heat accumulating type air conditioner

Publications (2)

Publication Number Publication Date
JPS5892740A JPS5892740A (en) 1983-06-02
JPS6116896B2 true JPS6116896B2 (en) 1986-05-02

Family

ID=16250789

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56190005A Granted JPS5892740A (en) 1981-11-26 1981-11-26 Operation control of heat accumulating type air conditioner

Country Status (1)

Country Link
JP (1) JPS5892740A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69109532T2 (en) * 1990-03-30 1996-01-18 Mitsubishi Electric Corp Air conditioner.

Also Published As

Publication number Publication date
JPS5892740A (en) 1983-06-02

Similar Documents

Publication Publication Date Title
JPS6325471A (en) Air conditioner
JP3882056B2 (en) Refrigeration air conditioner
JPS6220459B2 (en)
JPH07190534A (en) Heat storage type air conditioning equipment
JPS6116896B2 (en)
JPS637289B2 (en)
JPH0233108Y2 (en)
JPH048704B2 (en)
JP2569796B2 (en) Thermal storage type air conditioner
JP2859981B2 (en) Air conditioner
JPH0522761Y2 (en)
JPS5856528Y2 (en) Refrigeration equipment
JPH065572Y2 (en) Refrigeration equipment
JPS6220460B2 (en)
JPH0325106Y2 (en)
JP2540740B2 (en) Freezing / heating device
JPS5922440Y2 (en) air conditioner
JPH0285660A (en) Heat pump type air conditioner
JPS59217463A (en) Refrigeration cycle of air conditioner
JPH03164668A (en) Heat pump device
JPS6224197Y2 (en)
JPS6032534Y2 (en) Heat recovery air conditioner
JPS6144103Y2 (en)
JPS6325266B2 (en)
JPH06300318A (en) Radiation type cooling device