JPH0325106Y2 - - Google Patents

Info

Publication number
JPH0325106Y2
JPH0325106Y2 JP1054183U JP1054183U JPH0325106Y2 JP H0325106 Y2 JPH0325106 Y2 JP H0325106Y2 JP 1054183 U JP1054183 U JP 1054183U JP 1054183 U JP1054183 U JP 1054183U JP H0325106 Y2 JPH0325106 Y2 JP H0325106Y2
Authority
JP
Japan
Prior art keywords
hot water
water supply
heat exchanger
heating
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1054183U
Other languages
Japanese (ja)
Other versions
JPS59116778U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1054183U priority Critical patent/JPS59116778U/en
Publication of JPS59116778U publication Critical patent/JPS59116778U/en
Application granted granted Critical
Publication of JPH0325106Y2 publication Critical patent/JPH0325106Y2/ja
Granted legal-status Critical Current

Links

Description

【考案の詳細な説明】[Detailed explanation of the idea]

(産業上の利用分野) 本考案はヒートポンプ式暖房給湯機に関し、詳
しくは、デフロスト運転に起因する圧縮機への液
戻り防止対策に関する。 (従来の技術) 従来より、ヒートポンプ式暖房給湯機は、空調
負荷側熱交換器と、熱源側熱交換器と、給湯負荷
側熱交換器とを備え、暖房運転時には冷媒循環系
統を暖房サイクルに切換えて圧縮機からの冷媒を
空調負荷側熱交換器から熱源側熱交換器に圧送循
環して室内を暖房するとともに、給湯運転時には
冷媒循環系統を給湯サイクルに切換えて圧縮機か
らの冷媒を給湯負荷側熱交換器から熱源側熱交換
器に圧送循環して貯湯槽の水を加熱するようにな
されている。 ところで、このようなヒートポンプ式暖房給湯
機を使用しての暖房運転時又は給湯運転時に熱源
側熱交換器にフロスト(着霜)が生じると、圧縮
機と熱源側熱交換器との間で冷媒を循環させてデ
フロスト(融解)することが行われている(例え
ば実開昭55−89963号公報等参照)。しかしなが
ら、上記従来のものではデフロスト熱量が少なく
デフロストに長時間を要するという欠点があつ
た。このため、通常、冷媒循環系統を暖房サイク
ルとは逆サイクル又は給湯サイクルとは逆サイク
ルのデフロストサイクルに切換えて圧縮機からの
冷媒を熱源側熱交換器から空調負荷側熱交換器又
は給湯負荷側熱交換器に圧送循環することによ
り、空調負荷側熱交換器又は給湯負荷側熱交換器
で得た熱量を熱源用熱交換器に与えてデフロスト
(融解)することが行われている。 (考案が解決しようとする課題) しかるに、上記の場合には、暖房運転時におけ
るデフロスト運転の開始時には空調負荷側熱交換
器に溜つた高圧液冷媒が圧縮機の低圧の吸入ポー
トに戻る一方、再び暖房運転に復帰したときには
熱源側熱交換器に溜つた高圧液冷媒が上記圧縮機
の吸入ポートに戻る。また、同様に給湯運転時に
おけるデフロスト運転の開始時には給湯負荷側熱
交換器に溜つた高圧液冷媒が、また給湯運転への
復帰時には熱源側熱交換器に溜つた高圧液冷媒が
それぞれ圧縮機の吸入ポートに戻ることになる。
このため、圧縮機が液圧縮して破損することがあ
り、圧縮機の信頼性の低下を招くという欠点があ
つた。特に、給湯運転は、暖房運転を行わない冬
の夜間運転が多いのでデフロスト運転される機会
が多く、上記圧縮機の信頼性低下を改善すること
が強く要望される。 本考案は斯かる点に鑑みてなされたものであ
り、その目的は、上記のように暖房運転や給湯運
転時にデフロスト運転に切換え、そのデフロスト
が終了すると元の暖房又は給湯運転に復帰する場
合にも、圧縮機への液戻りを確実に防止すること
にある。 (課題を解決するための手段) 上記の目的を達成するため、本考案では、暖房
運転や給湯運転からデフロスト運転に切換わる直
前の暖房運転又は給湯運転時と、デフロスト運転
から暖房運転や給湯運転に復帰する直前のデフロ
スト運転時には、利用している2台の熱交換器間
において溜る高圧液冷媒を、利用していない熱交
換器側に流すこととする。 つまり、本考案の具体的な解決手段は、第1図
に示すように、圧縮機1と、空調負荷側熱交換器
2と、熱源側熱交換器3と、給湯負荷側熱交換器
5とを備え、暖房運転時には上記圧縮機1からの
冷媒を空調負荷側熱交換器2から高圧液冷媒側冷
媒通路20を経て熱源側熱交換器3に循環させる
暖房サイクルとし、給湯運転時には圧縮機1から
の冷媒を給湯負荷側熱交換器5から高圧液冷媒側
冷媒通路21を経て熱源側熱交換器3に循環させ
る給湯サイクルとし、暖房運転及び給湯運転での
デフロスト運転時には各々上記暖房サイクル及び
給湯サイクルとは逆サイクルのデフロストサイク
ルとするヒートポンプ式暖房給湯機を前提とす
る。そして、上記暖房サイクルの高圧液冷媒側冷
媒通路20を給湯サイクルの高圧液冷媒側冷媒通
路21に接続し、途中に暖房時用の開閉手段SV9
を配置した暖房時バイパス通路15aと、上記給
湯サイクルの高圧液冷媒側冷媒通路21を暖房サ
イクルの高圧液冷媒側冷媒通路20に接続し、途
中に給湯時用の開閉手段SV10を配置した給湯時
バイパス通路15bとの少なくとも一方のバイパ
ス通路と、上記暖房運転及び給湯運転の少なくと
も一方の運転からデフロスト運転に切換わる直前
の暖房運転時又は給湯運転時およびデフロスト運
転から暖房運転及び給湯運転の少なくとも一方の
運転に復帰する直前のデフロスト運転時には、対
応する暖房時用又は給湯時用の開閉手段SV9
SV10を開作動させ、それ以外の時には対応する
開閉手段SV9,SV10を閉作動させるように制御
する制御回路13とを設ける構成として、デフロ
スト運転への切換直前およびデフロスト運転から
の復帰直前には、運転中の暖房又は給湯サイクル
及びデフロストサイクル中に溜る液冷媒を運転し
ていない熱交換器側に流すようにしたことを特徴
としている。 (作用) 以上の構成により、本考案では、例えば暖房運
転時を例にとると、暖房運転中では空調負荷側熱
交換器2で放熱して液化した冷媒が暖房サイクル
の高圧液冷媒側冷媒通路20を経て熱源側熱交換
器3に流れるが、この暖房運転からデフロスト運
転に切換わる直前の暖房運転時には、暖房時用の
開閉手段SV9が制御回路13により開制御されて
暖房時バイパス通路15aが開き、このことによ
り上記空調負荷側熱交換器2に溜つた液冷媒は、
高圧液冷媒側冷媒通路20を経て給湯サイクルの
高圧液冷媒側冷媒通路21に流れ込むので、空調
負荷側熱交換器2には液冷媒の溜り込みがなくな
る。その結果、次にデフロスト運転が開始される
と、冷媒の流れは空調負荷側熱交換器2から圧縮
機1への方向となるが、上記のように液冷媒の溜
み込みがないので、圧縮機1への液戻りが防止さ
れる。 また、上記のデフロスト運転時には、熱源側熱
交換器3で放熱してデフロストし液化した冷媒が
逆に暖房サイクルの高圧液冷媒側冷媒通路20を
経て空調負荷側熱交換器2に流れることになる
が、このデフロスト運転から暖房運転に復帰する
直前のデフロスト運転時には、上記と同様に暖房
時用の開閉手段SV9の開動作により暖房時バイパ
ス通路15aが開いて、熱源側熱交換器3に溜つ
た液冷媒が高圧液冷媒側冷媒通路20を経て給湯
サイクルの高圧液冷媒側冷媒通路21に流れ込
み、熱源側熱交換器3での液冷媒の溜み込みがな
くなるので、次に暖房運転に復帰しても、液冷媒
が熱源側熱交換器3から圧縮機1に戻ることが確
実に防止されることになる。 (実施例) 以下、本考案の実施例を図面に基づいて詳細に
説明する。 第1図はヒートポンプ式冷暖房給湯機の冷媒配
管系統を示し、1は圧縮機、2は空調負荷側熱交
換器、3は熱源側熱交換器、4は内部に水を貯溜
する貯湯槽、5は該貯湯槽4内の貯溜水を加熱す
るための給湯負荷側熱交換器5から熱源側熱交換
器3への冷媒が流通する膨張弁、7は熱源側熱交
換器3および給湯負荷側熱交換器5から空調負荷
側熱交換器2への冷媒が流通する膨張弁、8は受
液器、9はアキユムレータ、10は給湯負荷側熱
交換器5から受液器8への冷媒流れを許容する逆
止弁である。また、SV1は圧縮機1から空調負荷
側熱交換器2への冷媒通路を開閉する電磁弁、
SV2は圧縮機1から熱源側熱交換器3への冷媒通
路を開閉する電磁弁、SV3は圧縮機1から給湯負
荷側熱交換器5への冷媒通路を開閉する電磁弁、
SV4は空調負荷側熱交換器2からアキユムレータ
9への冷媒通路を開閉する電磁弁、SV5は膨張弁
6への冷媒通路開閉する電磁弁、SV6は熱源側熱
交換器3からアキユムレータ9への冷媒通路を開
閉する電磁弁、SV7は給湯負荷側熱交換器5から
アキユムレータ9への冷媒通路を開閉する電磁
弁、SV8は膨張弁7への冷媒通路を開閉する電磁
弁、11は上記膨張弁6と電磁弁SV5との直列回
路に並設され熱源側熱交換器3から受液器8への
冷媒流れを許容する逆止弁、12は膨張弁7と電
磁弁SV8との直列回路は並設され空調負荷側熱交
換器2から受液器8への冷媒流れを許容する逆止
弁である。 そして、上記給湯負荷側熱交換器5から受液器
8への冷媒流れを許容する逆止弁10には該逆止
弁10をバイパスする暖房時バイパス通路15a
が並設され、該暖房時バイパス通路15aの途中
には、該暖房時バイパス通路15aを開閉する暖
房時用の開閉手段としての電磁弁SV9が介設配置
されており、該暖房時用の電磁弁SV9の開作動に
より暖房時バイパス通路15aを開くことによ
り、空調負荷側熱交換器2から受液器8を経て熱
源側熱交換器3に至る高圧液冷媒側冷媒通路20
を、受液器8から該暖房時バイパス通路15aを
介して、給湯負荷側熱交換器5から受液器8を経
て熱源側熱交換器3に至る高圧液冷媒側冷媒通路
21に連通させるように構成されている。 また、上記空調負荷側熱交換器2から受液器8
への冷媒流れを許容する逆止弁12には、該逆止
弁12をバイパスする給湯時バイパス通路15b
が並設され、該給湯時バイパス通路15bの途中
には、該給湯時バイパス通路15bを開閉する給
湯時用の開閉手段としての電磁弁SV10が介設さ
れており、該給湯時用の電磁弁SV10の開作動に
より給湯時バイパス通路15bを開くことによ
り、給湯負荷側熱交換器5から受液器8を経て熱
源側熱交換器3に至る高圧液冷媒側冷媒通路21
を、受液器8から該給湯時バイパス通路15bを
介して、上記空調負荷側熱交換器2から受液器8
を経て熱源側熱交換器3に至る高圧液冷媒側冷媒
通路20に連通させるように構成されている。 また、上記10個の電磁弁SV1〜SV10は制御回
路13によつて開閉制御されるものである。即
ち、該制御回路13は第1表および第2表に示す
ように、冷房運転時には第1表第1列目の如く切
換えて圧縮機1からの冷媒を熱源側熱交換器3か
ら高圧液冷媒側冷媒通路20を経て空調負荷側熱
交換器2に循環させる冷房サイクルとして室内を
冷房し、冷房給湯運転時には同表第2列目の如く
切換えて圧縮機1からの冷媒を給湯負荷側熱交換
器5から空調負荷側熱交換器2に循環させる冷房
給湯サイクルとして、室内を冷房すると同時に室
内から得た熱量により貯湯槽4の貯溜水を加熱
し、また給湯運転時には同表第3列目の如く切換
えて圧縮機1からの冷媒を給湯負荷側熱交換器5
から高圧液冷媒側冷媒通路21を経て熱源側熱交
換器3に循環させる給湯サイクルとして、貯湯槽
4の貯溜水を加熱し、さらに暖房運転時には同表
第4列目の如く切換えて圧縮機1からの冷媒を空
調負荷側熱交換器2から高圧液冷媒側冷媒通路2
0を経て熱源側熱交換器3に循環させる暖房サイ
クルとして、室内を暖房し、加えて暖房運転時に
おけるデフロスト運転時には同表第5列目の如く
切換えて圧縮機1からの冷媒を熱源側熱交換器3
から高圧液冷媒側冷媒通路20を経て空調負荷側
熱交換器2に循環させる上記暖房サイクルとは逆
サイクルのデフロストサイクルとして、室内から
得た熱量を熱源として熱源側熱交換器3でのデフ
ロストを行い、また暖房運転時におけるデフロス
ト運転時には第2表第2列目の如く切換えて圧縮
機1からの冷媒を熱源側熱交換器3から高圧液冷
媒側冷媒通路21を経て給湯負荷側熱交換器5に
循環させる上記給湯サイクルとは逆サイクルのデ
フロストサイクルとして、貯湯槽4内の湯を熱源
として熱源側熱交換器3でのデフロストを行うよ
うに構成されている。 そして、上記制御回路13は、さらに、暖房運
転からデフロスト運転に切換わる直前の暖房運転
時における所定時間(T1)(例えば10秒間)のあ
いだは、第2表第2列目の如く暖房運転時におけ
る開閉制御を続行するとともに暖房時用の電磁弁
SV9を開作動させ、且つ電磁弁SV7を閉作動させ
る一方、この切換わつたデフロスト運転から暖房
運転に復帰する直前のデフロスト運転時における
所定時間(T2)(例えば10秒間)のあいだは同表
第3列目に示す如く暖房運転時におけるデフロス
ト運転の開閉制御を続行するとともに暖房時用の
電磁弁SV9を開作動させ、さらに給湯運転からデ
フロスト運転に切換わる直前の給湯運転時におけ
る所定時間(T3)(例えば10秒間)のあいだは給
湯運転時における開閉制御を続行するとともに給
湯時用の電磁弁SV10を開作動させ、加えてデフ
ロスト運転から給湯運転に復帰する直前のデフロ
スト運転時のおける所定時間(T4)(例えば10秒
間)のあいだは給湯運転時におけるデフロスト運
転の開閉制御を続行するとともに電磁弁SV10
開作動させるように構成されている。
(Industrial Application Field) The present invention relates to a heat pump type heating and water heater, and more specifically, to measures to prevent liquid from returning to the compressor due to defrost operation. (Conventional technology) Conventionally, heat pump type heating and water heaters have been equipped with an air conditioning load side heat exchanger, a heat source side heat exchanger, and a hot water supply side heat exchanger, and during heating operation, the refrigerant circulation system is connected to the heating cycle. The refrigerant from the compressor is circulated under pressure from the air conditioning load side heat exchanger to the heat source side heat exchanger to heat the room, and during hot water supply operation, the refrigerant circulation system is switched to the hot water supply cycle and the refrigerant from the compressor is used to supply hot water. The water in the hot water storage tank is heated by being circulated under pressure from the load side heat exchanger to the heat source side heat exchanger. By the way, if frost forms on the heat exchanger on the heat source side during heating operation or hot water supply operation using such a heat pump heating and water heater, refrigerant Defrosting (melting) is carried out by circulating (for example, see Japanese Utility Model Application Publication No. 55-89963, etc.). However, the above-mentioned conventional device has a disadvantage in that the amount of defrosting heat is small and defrosting takes a long time. For this reason, the refrigerant circulation system is usually switched to a defrost cycle that is the opposite cycle to the heating cycle or the hot water supply cycle, and the refrigerant from the compressor is transferred from the heat source side heat exchanger to the air conditioning load side heat exchanger or the hot water supply load side. By circulating the heat through the heat exchanger under pressure, the amount of heat obtained from the air conditioning load side heat exchanger or the hot water supply load side heat exchanger is given to the heat source heat exchanger for defrosting (melting). (Problem to be solved by the invention) However, in the above case, at the start of defrost operation during heating operation, while the high-pressure liquid refrigerant accumulated in the air conditioning load-side heat exchanger returns to the low-pressure suction port of the compressor, When the heating operation returns again, the high-pressure liquid refrigerant accumulated in the heat source side heat exchanger returns to the suction port of the compressor. Similarly, at the start of defrost operation during hot water supply operation, the high pressure liquid refrigerant accumulated in the heat exchanger on the hot water supply load side is used, and when returning to hot water supply operation, the high pressure liquid refrigerant accumulated in the heat exchanger on the heat source side is transferred to the compressor. It will return to the intake port.
For this reason, the compressor may be damaged due to liquid compression, resulting in a disadvantage that the reliability of the compressor is lowered. In particular, hot water supply operation is often performed at night in winter when heating operation is not performed, so there are many opportunities for defrost operation, and there is a strong demand for improving the reliability reduction of the compressor. The present invention was developed in view of the above, and its purpose is to switch to defrost operation during heating or hot water supply operation as described above, and return to the original heating or hot water supply operation after defrosting is completed. Another objective is to reliably prevent liquid from returning to the compressor. (Means for Solving the Problems) In order to achieve the above object, in the present invention, during heating operation or hot water supply operation immediately before switching from heating operation or hot water supply operation to defrost operation, and during heating operation or hot water supply operation from defrost operation During the defrost operation immediately before returning to normal operation, the high-pressure liquid refrigerant that accumulates between the two heat exchangers that are in use will flow to the heat exchanger that is not in use. In other words, the specific solution of the present invention, as shown in FIG. During heating operation, the refrigerant from the compressor 1 is circulated from the air conditioning load side heat exchanger 2 through the high pressure liquid refrigerant side refrigerant passage 20 to the heat source side heat exchanger 3, and during hot water supply operation, the compressor 1 The hot water supply cycle is such that the refrigerant from the hot water supply load side heat exchanger 5 is circulated through the high pressure liquid refrigerant side refrigerant passage 21 to the heat source side heat exchanger 3, and during the defrost operation in heating operation and hot water supply operation, the heating cycle and hot water supply are performed respectively. This assumes a heat pump heating and water heater that uses a defrost cycle, which is the opposite cycle. Then, the high-pressure liquid refrigerant side refrigerant passage 20 of the heating cycle is connected to the high-pressure liquid refrigerant side refrigerant passage 21 of the hot water supply cycle, and an opening/closing means SV 9 for heating is provided in the middle.
A hot water supply system in which a heating bypass passage 15a is arranged, and a high pressure liquid refrigerant side refrigerant passage 21 of the hot water supply cycle is connected to a high pressure liquid refrigerant side refrigerant passage 20 of the heating cycle, and an opening/closing means SV 10 for hot water supply is arranged in the middle. At least one of the bypass passages 15b and the heating operation or hot water supply operation immediately before switching from at least one of the heating operation and the hot water supply operation to the defrost operation, and at least one of the heating operation and the hot water supply operation from the defrost operation. During defrost operation immediately before returning to one operation, the corresponding opening/closing means SV 9 for heating or hot water supply is activated.
The configuration includes a control circuit 13 that operates SV 10 to open, and closes the corresponding opening/closing means SV 9 and SV 10 at other times, immediately before switching to defrost operation and immediately before returning from defrost operation. This is characterized in that the liquid refrigerant that accumulates during the heating or hot water supply cycle and defrost cycle during operation is made to flow to the side of the heat exchanger that is not operating. (Function) With the above configuration, in the present invention, taking heating operation as an example, during heating operation, the refrigerant that has radiated heat and liquefied in the air conditioning load side heat exchanger 2 is transferred to the high-pressure liquid refrigerant side refrigerant passage of the heating cycle. 20 to the heat source side heat exchanger 3, but during the heating operation immediately before switching from heating operation to defrost operation, the opening/closing means SV 9 for heating is controlled to open by the control circuit 13, and the heating bypass passage 15a is opened. opens, and as a result, the liquid refrigerant accumulated in the air conditioning load side heat exchanger 2 is
Since the high-pressure liquid refrigerant flows through the high-pressure liquid refrigerant-side refrigerant passage 20 into the high-pressure liquid refrigerant-side refrigerant passage 21 of the hot water supply cycle, there is no accumulation of liquid refrigerant in the air conditioning load-side heat exchanger 2. As a result, when defrost operation is started next, the refrigerant flow will be from the air conditioning load side heat exchanger 2 to the compressor 1, but as there is no accumulation of liquid refrigerant as described above, the refrigerant will be compressed. Liquid return to machine 1 is prevented. In addition, during the defrosting operation described above, the refrigerant that has been radiated, defrosted and liquefied in the heat source side heat exchanger 3 flows into the air conditioning load side heat exchanger 2 via the high pressure liquid refrigerant side refrigerant passage 20 of the heating cycle. However, during the defrost operation immediately before returning from the defrost operation to the heating operation, the heating bypass passage 15a is opened by the opening operation of the opening/closing means SV 9 for heating in the same manner as described above, and the heat source-side heat exchanger 3 is filled with water. The liquid refrigerant flows through the high-pressure liquid refrigerant side refrigerant passage 20 into the high-pressure liquid refrigerant side refrigerant passage 21 of the hot water supply cycle, and the accumulation of liquid refrigerant in the heat source side heat exchanger 3 is eliminated, so the heating operation is then resumed. Even if the liquid refrigerant does not return to the compressor 1 from the heat source side heat exchanger 3, it is reliably prevented. (Example) Hereinafter, an example of the present invention will be described in detail based on the drawings. Fig. 1 shows the refrigerant piping system of a heat pump type air conditioning/heating water heater, where 1 is a compressor, 2 is an air conditioning load side heat exchanger, 3 is a heat source side heat exchanger, 4 is a hot water storage tank that stores water inside, and 5 7 is an expansion valve through which refrigerant flows from the hot water supply load side heat exchanger 5 to the heat source side heat exchanger 3 for heating the water stored in the hot water storage tank 4; An expansion valve through which refrigerant flows from the exchanger 5 to the air conditioning load side heat exchanger 2; 8 is a liquid receiver; 9 is an accumulator; 10 is an expansion valve that allows refrigerant to flow from the hot water supply load side heat exchanger 5 to the liquid receiver 8; It is a check valve that In addition, SV 1 is a solenoid valve that opens and closes the refrigerant passage from the compressor 1 to the air conditioning load side heat exchanger 2;
SV 2 is a solenoid valve that opens and closes the refrigerant passage from the compressor 1 to the heat source side heat exchanger 3; SV 3 is a solenoid valve that opens and closes the refrigerant passage from the compressor 1 to the hot water supply load side heat exchanger 5;
SV 4 is a solenoid valve that opens and closes the refrigerant passage from the air conditioning load side heat exchanger 2 to the accumulator 9, SV 5 is a solenoid valve that opens and closes the refrigerant passage to the expansion valve 6, and SV 6 is the solenoid valve that opens and closes the refrigerant passage from the heat exchanger 3 on the heat source side to the accumulator 9. SV 7 is a solenoid valve that opens and closes the refrigerant passage from the hot water supply load side heat exchanger 5 to the accumulator 9, SV 8 is a solenoid valve that opens and closes the refrigerant passage to the expansion valve 7, 11 12 is a check valve that is installed in the series circuit of the expansion valve 6 and the solenoid valve SV 5 and allows the refrigerant to flow from the heat source side heat exchanger 3 to the receiver 8; 12 is the expansion valve 7 and the solenoid valve SV 8 The series circuit is a check valve that is installed in parallel and allows refrigerant to flow from the air conditioning load side heat exchanger 2 to the liquid receiver 8. The check valve 10 that allows the refrigerant to flow from the hot water supply load side heat exchanger 5 to the receiver 8 includes a heating bypass passage 15a that bypasses the check valve 10.
are arranged in parallel, and a solenoid valve SV 9 as a heating opening/closing means for opening and closing the heating bypass passage 15a is interposed in the middle of the heating bypass passage 15a. By opening the heating bypass passage 15a by opening the solenoid valve SV 9 , the high-pressure liquid refrigerant side refrigerant passage 20 from the air conditioning load side heat exchanger 2 to the heat source side heat exchanger 3 via the liquid receiver 8 is opened.
is communicated from the liquid receiver 8 to the high-pressure liquid refrigerant side refrigerant passage 21 from the hot water supply load side heat exchanger 5 to the heat source side heat exchanger 3 via the liquid receiver 8 via the heating bypass passage 15a. It is composed of Also, from the air conditioning load side heat exchanger 2 to the liquid receiver 8
The check valve 12 that allows the refrigerant to flow to the hot water supply bypass passage 15b that bypasses the check valve 12.
are arranged in parallel, and a solenoid valve SV 10 is interposed in the middle of the hot water supply bypass passage 15b as an opening/closing means for hot water supply to open and close the hot water supply bypass passage 15b. By opening the hot water supply bypass passage 15b by opening the valve SV 10 , the high-pressure liquid refrigerant side refrigerant passage 21 runs from the hot water supply load side heat exchanger 5 to the heat source side heat exchanger 3 via the liquid receiver 8.
from the liquid receiver 8 through the hot water supply bypass passage 15b, and from the air conditioning load side heat exchanger 2 to the liquid receiver 8.
It is configured to communicate with a high-pressure liquid refrigerant side refrigerant passage 20 that reaches the heat source side heat exchanger 3 through the . Further, the opening and closing of the ten electromagnetic valves SV 1 to SV 10 are controlled by the control circuit 13 . That is, as shown in Tables 1 and 2, during cooling operation, the control circuit 13 switches the refrigerant from the compressor 1 to the high-pressure liquid refrigerant from the heat source side heat exchanger 3 as shown in the first column of Table 1. The room is cooled as a cooling cycle in which the refrigerant is circulated to the air conditioning load side heat exchanger 2 through the side refrigerant passage 20, and during cooling hot water supply operation, the refrigerant from the compressor 1 is switched as shown in the second column of the same table to exchange heat on the hot water supply load side. As a cooling hot water supply cycle that circulates from the heat exchanger 5 to the air conditioning load side heat exchanger 2, it cools the room and at the same time heats the water stored in the hot water storage tank 4 using the heat obtained from the room. The refrigerant from the compressor 1 is transferred to the hot water supply load side heat exchanger 5.
As a hot water supply cycle, the hot water is circulated from the high-pressure liquid refrigerant side to the heat source side heat exchanger 3 via the refrigerant passage 21 on the heat source side, and the water stored in the hot water storage tank 4 is heated. The refrigerant is transferred from the air conditioning load side heat exchanger 2 to the high pressure liquid refrigerant side refrigerant passage 2.
As a heating cycle, the refrigerant from the compressor 1 is circulated through the heat exchanger 3 on the heat source side to heat the room, and in addition, during defrost operation during heating operation, the refrigerant from the compressor 1 is switched to the heat source side heat exchanger 3 as shown in the fifth column of the same table. exchanger 3
As a defrost cycle, which is a reverse cycle of the above-mentioned heating cycle in which the high-pressure liquid refrigerant is circulated from the high-pressure liquid refrigerant to the air conditioning load side heat exchanger 2 through the refrigerant passage 20, the heat source side heat exchanger 3 uses the heat obtained from the room as a heat source. In addition, during defrost operation during heating operation, the refrigerant from the compressor 1 is transferred from the heat source side heat exchanger 3 through the high-pressure liquid refrigerant side refrigerant passage 21 to the hot water supply load side heat exchanger by switching as shown in the second column of Table 2. As a defrost cycle which is a reverse cycle to the above hot water supply cycle in which the hot water is circulated to the hot water tank 5, the hot water in the hot water storage tank 4 is used as a heat source to perform defrosting in the heat source side heat exchanger 3. Then, the control circuit 13 further controls the heating operation as shown in the second column of Table 2 for a predetermined time (T 1 ) (for example, 10 seconds) during the heating operation immediately before switching from the heating operation to the defrost operation. Solenoid valve for heating and continues opening/closing control during heating.
While opening SV 9 and closing solenoid valve SV 7 , for a predetermined time (T 2 ) (for example, 10 seconds) during defrost operation immediately before returning from the switched defrost operation to heating operation, As shown in the third column of the same table, the opening/closing control of defrost operation during heating operation is continued, and solenoid valve SV 9 for heating is opened, and furthermore, during hot water heating operation immediately before switching from hot water heating operation to defrost operation. During a predetermined time (T 3 ) (for example, 10 seconds), the opening/closing control during hot water supply operation is continued, and the solenoid valve SV 10 for hot water supply is opened, and in addition, the defrost operation is performed immediately before returning from defrost operation to hot water supply operation. During a predetermined time (T 4 ) (for example, 10 seconds) during operation, the opening/closing control of the defrost operation during hot water supply operation is continued, and the solenoid valve SV 10 is opened.

【表】【table】

【表】 尚、第1表および第2表中○印は開作動を、×
印は閉作動を示す。 よつて、暖房運転時及びこの運転から切換つた
デフロスト運転時での暖房時用の電磁弁SV9の開
作動時には、暖房サイクルの高圧液冷媒側冷媒通
路20を暖房時バイパス通路15aによつて給湯
サイクルの高圧液冷媒側冷媒通路21に連通して
接続する一方、給湯運転時及びこの運転から切換
つたデフロスト運転時での給湯時用の電磁弁
SV10の開作動時には、給湯サイクルの高圧液冷
媒側冷媒通路21を給湯時バイパス通路15bに
よつて暖房サイクルの高圧液冷媒側冷媒通路20
に連通して接続するように構成している。 尚、図中14は暖房時バイパス通路15aに介
設された抵抗体、16は給湯時バイパス通路15
bに介設された抵抗体、17は給湯時バイパス通
路15bに介設され空調負荷側熱交換器2方向へ
の冷媒流れに許容する逆止弁、18,18は据付
時には閉じられ据付後は開かれる閉鎖弁である。 次に、上記実施例の作動について説明するに、
暖房運転時には、電磁弁SV1,SV5〜SV7の開作
動により暖房サイクルに切換られるので、圧縮機
1からの冷媒は空調負荷側熱交換器2に圧送され
該空調負荷側熱交換器2で室内空気に熱量を与え
て液化したのち、高圧液冷媒側冷媒通路20から
受液器8および膨張弁6を経て熱源側熱交換器3
に流入し該熱源側熱交換器3で室外空気から熱量
を奪つて気化してアキユムレータ9から再び圧縮
機1に戻ることを繰返して室内が暖房されてい
る。尚、この際、上記電磁弁SV7の開作動により
給湯負荷側熱交換器5はアキユムレータ9に連通
して低圧に保持されているとともに暖房時用の電
磁弁SV9の閉作動および逆止弁10により冷媒供
給が阻止されているので、給湯負荷側熱交換器5
に液冷媒が溜まることはない。 今、この状態でデフロスト運転に切換わる直前
に相当する暖房運転時における所定時間(T1
になると、制御回路13の制御により暖房時用の
電磁弁SV9が開作動するとともに電磁弁SV7が閉
作動する。このため、空調負荷側熱交換器2から
受液器8に流通する高圧液冷媒は暖房時バイパス
通路15aを経て給湯サイクルの高圧液冷媒側冷
媒通路21に流れた後、利用していない低圧の給
湯負荷側熱交換器5側に流れ込むことになり、こ
のことにより空調負荷側熱交換器2での液冷媒の
溜り込みがなくなる。 そして、所定時間(T1)が経過すると、各電
磁弁SV1〜SV10は制御回路13によりその開閉
状態を第2表第2列目から第1表第5列目へと切
換えられて、上記暖房サイクルとは逆サイクルの
デフロストサイクルとなり、暖房時用の電磁弁
SV9は閉作動する。このため、圧縮機1からの冷
媒は熱源側熱交換器3に圧送され該熱源側熱交換
器3に熱量を与えてデフロストし液化した後、高
圧液冷媒側冷媒通路21から受液器8に流通し、
その全量が膨張弁7を経て空調負荷側熱交換器2
に流入し該空調負荷側熱交換器2で室内から熱量
を奪つて気化してアキユムレータ9から圧縮機1
に戻ることを繰返し始める。その際、上記液冷媒
の給湯負荷側熱交換器5側への流れ込みにより空
調負荷側熱交換器2での液冷媒の溜り込みがない
ので、空調負荷側熱交換器2から圧縮機1に液冷
媒が戻るのが確実に防止される。 その後、デフロストが進行し、デフロスト運転
から暖房運転に復帰する直前に相当するデフロス
ト運転終了前の所定時間(T2)になると、暖房
時用の電磁弁SV9が制御回路13により制御され
て再び開作動し、熱源側熱交換器3から高圧液冷
媒側冷媒通路20を経て受液器8に流通した液冷
媒の一部は暖房時バイパス通路15aを経て、給
湯サイクルの高圧液冷媒側冷媒通路20に流れ
て、利用していない給湯負荷側熱交換器5側に流
れ込むので、熱源側熱交換器3での液冷媒の溜り
込みがなくなる。 そして、この状態で所定時間(T2)が経過し
てデフロスト運転から暖房運転に復帰すると、電
磁弁SV1〜SV10の開閉状態は第2表第3列目か
ら第1表第4列目に切換わつて暖房サイクルに復
帰し、暖房時用の電磁弁SV9は閉作動する。この
ため圧縮機1からの冷媒は再び空調負荷側熱交換
器2に圧送されたのち高圧液冷媒側冷媒通路20
の受液器3および膨張弁6を経て熱源側熱交換器
3に流入してアキユムレータ9から圧縮機1に戻
ることを繰返し始める。その際、上記液冷媒の給
湯負荷側熱交換器5側への流れ込みにより熱源側
熱交換器3での液冷媒の溜り込みがないので、熱
源側熱交換器3から液冷媒が圧縮機1に戻ること
はない。 以上、暖房運転時の場合について説明したが、
給湯運転時の場合についても同様である。 すなわち、給湯運転時には給湯サイクルとなつ
て、圧縮機1からの冷媒は給湯負荷側熱交換器5
に圧送され該給湯負荷側熱交換器5で貯湯槽4内
の貯溜水に熱量を与えて液化したのち、高圧液冷
媒側冷媒通路21から受液器8を経て熱源側熱交
換器3に循環しているが、デフロスト運転に切換
わる直前の給湯運転時での所定時間(T3)にな
ると、給湯時用の電磁弁SV10が開作動して給湯
負荷側熱交換器5からの液冷媒が受液器8から給
湯時バイパス通路15bを経て、暖房サイクルの
高圧液冷媒側冷媒通路20に流れて、利用してい
ない空調負荷側熱交換器2側に流れ込むので、給
湯負荷側熱交換器5での液冷媒の溜り込みがなく
なる。このため、所定時間(T3)の経過後、給
湯時用の電磁弁SV10が閉作動すると共に給湯サ
イクルとは逆サイクルのデフロストサイクルに切
換わつてデフロスト運転が開始されても、給湯負
荷側熱交換器5から圧縮機1への液冷媒の戻りは
防止される。また、このデフロスト運転から給湯
運転に復帰する直前の所定時間(T2)のあいだ
は、デフロストにより熱源側熱交換器3で液化し
た冷媒は給湯時用の電磁弁SV10の開作動により
受液器8から給湯時バイパス通路15bを経て、
暖房サイクルの高圧液冷媒側冷媒通路20に流れ
て、利用していない空調負荷側熱交換器2に流れ
込み、熱源側熱交換器3への液冷媒の溜り込みが
なくなるので、給湯運転に復帰したときには、こ
の熱源側熱交換器3から圧縮機1への液冷媒の戻
りが防止されることになる。 よつて、暖房運転及び給湯運転の各々からデフ
ロスト運転に切換わる直前の暖房運転時及び給湯
運転時、並びにデフロスト運転から暖房運転及び
給湯運転に復帰する直前のデフロスト運転時に
は、圧縮機1へ液冷媒の戻りを確実に防止し、そ
の液圧縮を防止することができるので、圧縮機1
の信頼性を向上させることができる。 尚、上記実施例では、暖房時バイパス通路15
aと、給湯時バイパス通路15bと、該各バイパ
ス通路15a,15bをそれぞれ開閉する暖房時
用の電磁弁SV9、給湯時用の電磁弁SV10とを設
けて、デフロスト運転に起因する圧縮機1への液
戻り防止を、暖房運転時と給湯運転時の双方にお
いて可能としたが、本考案はこのうち何れか一方
のみにおいて圧縮機1への液戻り防止を行うよう
にしてもよいのは勿論である。 また、上記実施例では、冷媒循環系統の切換え
を8個の電磁弁SV1〜SV8の開閉作動により行つ
たが、その他、第2図に示すように、2個の四路
切換弁SV11,SV12を用いても同様に切換えるこ
とができるのは言うまでもない。 (考案の効果) 以上説明したように、本考案のヒートポンプ式
暖房給湯機によれば、暖房運転及び給湯運転の少
なくとも一方の運転からデフロスト運転に切換わ
る直前の暖房運転時又は給湯運転時、並びにデフ
ロスト運転から暖房運転及び給湯運転の少なくと
も一方の運転に復帰する直前のデフロスト運転時
には、制御回路により開閉手段を開作動させて、
利用している2台の熱交換器間の高圧液冷媒をバ
イパス通路を介して利用していない熱交換器側に
流すようにしたので、デフロスト運転に起因する
圧縮機への液冷媒の戻りを防止することができ、
圧縮機の信頼性の向上を図ることができるもので
ある。
[Table] In addition, in Tables 1 and 2, ○ indicates opening operation, ×
The mark indicates closed operation. Therefore, when the heating solenoid valve SV 9 is opened during the heating operation and when the defrost operation is switched from this operation, the high-pressure liquid refrigerant side refrigerant passage 20 of the heating cycle is used to supply hot water via the heating bypass passage 15a. A solenoid valve is connected to the refrigerant passage 21 on the high-pressure liquid refrigerant side of the cycle, and is used during hot water supply operation and during defrost operation after switching from this operation.
When the SV 10 is opened, the high pressure liquid refrigerant side refrigerant passage 21 of the hot water supply cycle is connected to the high pressure liquid refrigerant side refrigerant passage 20 of the heating cycle by the hot water supply bypass passage 15b.
It is configured to communicate and connect to. In addition, in the figure, 14 is a resistor interposed in the heating bypass passage 15a, and 16 is a hot water supply bypass passage 15.
A resistor 17 is installed in the bypass passage 15b during hot water supply and allows the refrigerant to flow in two directions in the air conditioning load side heat exchanger. 18 is a check valve that is closed during installation and is closed after installation. It is a shutoff valve that is opened. Next, to explain the operation of the above embodiment,
During heating operation, the cycle is switched to the heating cycle by opening the solenoid valves SV 1 , SV 5 to SV 7 , so the refrigerant from the compressor 1 is force-fed to the air conditioning load side heat exchanger 2 . After giving heat to the indoor air and liquefying it, the high-pressure liquid refrigerant passes from the refrigerant passage 20 on the liquid receiver 8 and the expansion valve 6 to the heat source side heat exchanger 3.
The indoor air is heated by repeatedly flowing into the heat source side heat exchanger 3 to remove heat from the outdoor air, vaporizing it, and returning from the accumulator 9 to the compressor 1 again. At this time, due to the opening operation of the solenoid valve SV 7 , the hot water supply load side heat exchanger 5 is communicated with the accumulator 9 and maintained at a low pressure, and at the same time, the solenoid valve SV 9 for heating is closed and the check valve is closed. Since the refrigerant supply is blocked by 10, the hot water supply load side heat exchanger 5
Liquid refrigerant will not accumulate in the tank. Now, in this state, the predetermined time (T 1 ) during heating operation corresponds to immediately before switching to defrost operation.
Then, under the control of the control circuit 13, the heating solenoid valve SV 9 is opened and the solenoid valve SV 7 is closed. For this reason, the high-pressure liquid refrigerant flowing from the air conditioning load-side heat exchanger 2 to the liquid receiver 8 passes through the heating bypass passage 15a and flows into the high-pressure liquid refrigerant side refrigerant passage 21 of the hot water supply cycle, after which it flows into the high-pressure liquid refrigerant side refrigerant passage 21 of the hot water supply cycle. The liquid refrigerant flows into the hot water supply load side heat exchanger 5 side, thereby eliminating the accumulation of liquid refrigerant in the air conditioning load side heat exchanger 2. When a predetermined time (T 1 ) has elapsed, the control circuit 13 switches the open/close state of each solenoid valve SV 1 to SV 10 from the second column of Table 2 to the fifth column of Table 1. The defrost cycle is the opposite cycle to the above heating cycle, and the solenoid valve for heating is
SV 9 operates closed. Therefore, the refrigerant from the compressor 1 is pumped to the heat source side heat exchanger 3, gives heat to the heat source side heat exchanger 3, defrosts and liquefies it, and then flows from the high pressure liquid refrigerant side refrigerant passage 21 to the liquid receiver 8. distributed,
The entire amount passes through the expansion valve 7 to the air conditioning load side heat exchanger 2.
It flows into the air conditioner load side heat exchanger 2, takes heat from the room, vaporizes it, and transfers it from the accumulator 9 to the compressor 1.
Start repeating the process. At this time, since the liquid refrigerant flows into the hot water supply load side heat exchanger 5 side and there is no accumulation of liquid refrigerant in the air conditioning load side heat exchanger 2, the liquid refrigerant flows from the air conditioning load side heat exchanger 2 to the compressor 1. Refrigerant is reliably prevented from returning. Thereafter, as the defrost progresses, at a predetermined time (T 2 ) before the end of the defrost operation, which corresponds to immediately before returning from the defrost operation to the heating operation, the solenoid valve SV 9 for heating is controlled by the control circuit 13 and restarts. A part of the liquid refrigerant that is opened and circulated from the heat source side heat exchanger 3 to the liquid receiver 8 via the high pressure liquid refrigerant side refrigerant passage 20 passes through the heating bypass passage 15a and enters the high pressure liquid refrigerant side refrigerant passage of the hot water supply cycle. 20 and flows into the unused hot water supply load side heat exchanger 5 side, so that the liquid refrigerant does not accumulate in the heat source side heat exchanger 3. When the predetermined time (T 2 ) passes in this state and the defrost operation returns to the heating operation, the open/close states of the solenoid valves SV 1 to SV 10 change from the third column of Table 2 to the fourth column of Table 1. , the heating cycle returns, and the heating solenoid valve SV 9 closes. Therefore, the refrigerant from the compressor 1 is again sent under pressure to the air conditioning load side heat exchanger 2 and then to the high pressure liquid refrigerant side refrigerant passage 20.
The process of flowing into the heat source side heat exchanger 3 through the liquid receiver 3 and expansion valve 6, and returning from the accumulator 9 to the compressor 1 begins to be repeated. At this time, since the liquid refrigerant flows into the hot water supply load side heat exchanger 5 side and there is no accumulation of liquid refrigerant in the heat source side heat exchanger 3, the liquid refrigerant flows from the heat source side heat exchanger 3 to the compressor 1. There's no going back. The above explained the case during heating operation, but
The same applies to the case of hot water supply operation. That is, during hot water supply operation, the refrigerant from the compressor 1 is transferred to the hot water supply load side heat exchanger 5 during the hot water supply cycle.
The hot water supply load side heat exchanger 5 applies heat to the stored water in the hot water storage tank 4 to liquefy it, and then it is circulated from the high pressure liquid refrigerant side refrigerant passage 21 to the heat source side heat exchanger 3 via the liquid receiver 8. However, at a predetermined time (T 3 ) during the hot water supply operation immediately before switching to the defrost operation, the solenoid valve SV 10 for hot water supply opens and the liquid refrigerant from the hot water supply load side heat exchanger 5 is activated. flows from the liquid receiver 8 through the hot water supply bypass passage 15b, into the high-pressure liquid refrigerant side refrigerant passage 20 of the heating cycle, and flows into the unused air conditioning load side heat exchanger 2 side, so that the hot water supply load side heat exchanger The accumulation of liquid refrigerant in step 5 is eliminated. Therefore, even if the solenoid valve SV 10 for hot water supply is closed after a predetermined time (T 3 ) and the defrost cycle is switched to the defrost cycle, which is the opposite cycle to the hot water supply cycle, and the defrost operation is started, the hot water supply load side Return of liquid refrigerant from heat exchanger 5 to compressor 1 is prevented. Also, for a predetermined time (T 2 ) immediately before returning from the defrost operation to the hot water supply operation, the refrigerant liquefied in the heat source side heat exchanger 3 due to the defrost is received by opening the solenoid valve SV 10 for hot water supply. From the container 8 through the hot water supply bypass passage 15b,
The high-pressure liquid refrigerant flows into the refrigerant passage 20 on the heating cycle side, flows into the unused air conditioning load side heat exchanger 2, and the accumulation of liquid refrigerant in the heat source side heat exchanger 3 disappears, so hot water supply operation is resumed. In some cases, the liquid refrigerant is prevented from returning from the heat source side heat exchanger 3 to the compressor 1. Therefore, during heating operation and hot water supply operation immediately before switching from heating operation and hot water supply operation to defrost operation, and during defrost operation immediately before returning from defrost operation to heating operation and hot water supply operation, liquid refrigerant is supplied to the compressor 1. Compressor 1
reliability can be improved. In addition, in the above embodiment, the heating bypass passage 15
a, a hot water supply bypass passage 15b, a heating solenoid valve SV 9 for opening and closing the hot water supply bypass passages 15a and 15b, and a hot water supply solenoid valve SV 10 . Although liquid return to the compressor 1 can be prevented both during heating operation and hot water supply operation, the present invention may be configured to prevent liquid return to the compressor 1 only in either one of them. Of course. Further, in the above embodiment, the refrigerant circulation system was switched by opening and closing eight electromagnetic valves SV 1 to SV 8 , but in addition, as shown in FIG. 2, two four-way switching valves SV 11 , SV 12 can also be used for similar switching. (Effects of the Invention) As explained above, according to the heat pump type heating and water heater of the present invention, during heating operation or hot water supply operation immediately before switching from at least one of heating operation and hot water supply operation to defrost operation, and During the defrost operation immediately before returning from the defrost operation to at least one of the heating operation and hot water supply operation, the control circuit operates the opening/closing means to open the opening/closing means.
The high-pressure liquid refrigerant between the two heat exchangers in use is made to flow through the bypass passage to the heat exchanger that is not in use, which prevents liquid refrigerant from returning to the compressor due to defrost operation. can be prevented,
This makes it possible to improve the reliability of the compressor.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は本考案の実施例を示し、
第1図はヒートポンプ式冷暖房給湯機の冷媒回路
図、第2図は第1図の冷媒回路の変形例を示す図
である。 2……空調負荷側熱交換器、3……熱源側熱交
換器、5……給湯負荷側熱交換器、13……制御
回路、SV9……暖房時用の電磁弁(開閉手段)、
SV10……給湯時用の電磁弁(開閉手段)、15a
……暖房時バイパス通路、15b……給湯時バイ
パス通路、20……暖房サイクルの高圧液冷媒側
冷媒通路、21……給湯サイクルの高圧液冷媒側
冷媒通路。
1 and 2 show an embodiment of the present invention,
FIG. 1 is a refrigerant circuit diagram of a heat pump type air-conditioning/heating water heater, and FIG. 2 is a diagram showing a modification of the refrigerant circuit of FIG. 1. 2... Air conditioning load side heat exchanger, 3... Heat source side heat exchanger, 5... Hot water supply load side heat exchanger, 13... Control circuit, SV 9 ... Solenoid valve for heating (opening/closing means),
SV 10 ... Solenoid valve for hot water supply (opening/closing means), 15a
...Bypass passage during heating, 15b...Bypass passage during hot water supply, 20...Refrigerant passage on the high pressure liquid refrigerant side of the heating cycle, 21...Refrigerant passage on the high pressure liquid refrigerant side of the hot water supply cycle.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 圧縮機1と、空調負荷側熱交換器2と、熱源側
熱交換器3と、給湯負荷側熱交換器5とを備え、
暖房運転時には上記圧縮機1からの冷媒を空調負
荷側熱交換器2から高圧液冷媒側冷媒通路20を
経て熱源側熱交換器3に循環させる暖房サイクル
とし、給湯運転時には圧縮機1からの冷媒を給湯
負荷側熱交換器5から高圧液冷媒側冷媒通路21
を経て熱源側熱交換器3に循環させる給湯サイク
ルとし、暖房運転及び給湯運転でのデフロスト運
転時には各々上記暖房サイクル及び給湯サイクル
とは逆サイクルのデフロストサイクルとするヒー
トポンプ式暖房給湯機において、上記暖房サイク
ルの高圧液冷媒側冷媒通路20を給湯サイクルの
高圧液冷媒側冷媒通路21に接続し、途中に暖房
時用の開閉手段SV9を配置した暖房時バイパス通
路15aと、上記給湯サイクルの高圧液冷媒側冷
媒通路21を暖房サイクルの高圧液冷媒側冷媒通
路20に接続し、途中に給湯時用の開閉手段
SV10を配置した給湯時バイパス通路15bとの
少なくとも一方のバイパス通路と、上記暖房運転
及び給湯運転の少なくとも一方の運転からデフロ
スト運転に切換わる直前の暖房運転時又は給湯運
転時およびデフロスト運転から暖房運転及び給湯
運転の少なくとも一方の運転に復帰する直前のデ
フロスト運転時には、対応する暖房時用又は給湯
時用の開閉手段SV9,SV10を開作動させ、それ
以外の時には対応する開閉手段SV9,SV10を閉
作動させるように制御する制御回路13とを備
え、デフロスト運転への切換直前およびデフロス
ト運転からの復帰直前には、運転中の暖房又は給
湯サイクル及びデフロストサイクル中に溜る液冷
媒を運転していない熱交換器側に流すようにした
ことを特徴とするヒートポンプ式暖房給湯機。
Comprising a compressor 1, an air conditioning load side heat exchanger 2, a heat source side heat exchanger 3, and a hot water supply load side heat exchanger 5,
During heating operation, the refrigerant from the compressor 1 is circulated from the air conditioning load side heat exchanger 2 to the heat source side heat exchanger 3 via the high pressure liquid refrigerant side refrigerant passage 20, and during hot water supply operation, the refrigerant from the compressor 1 is circulated. from the hot water supply load side heat exchanger 5 to the high pressure liquid refrigerant side refrigerant passage 21
In the heat pump type heating water heater, the hot water is circulated to the heat source side heat exchanger 3 through the heat exchanger 3, and during the defrost operation in the heating operation and the hot water supply operation, the defrost cycle is the opposite cycle to the heating cycle and the hot water supply cycle, respectively. The high-pressure liquid refrigerant side refrigerant passage 20 of the cycle is connected to the high-pressure liquid refrigerant side refrigerant passage 21 of the hot water supply cycle, and there is a heating bypass passage 15a in which opening/closing means SV 9 for heating is arranged in the middle, and a high-pressure liquid refrigerant passage 21 of the hot water supply cycle. The refrigerant side refrigerant passage 21 is connected to the high pressure liquid refrigerant side refrigerant passage 20 of the heating cycle, and there is an opening/closing means for hot water supply in the middle.
At least one bypass passage with the hot water supply bypass passage 15b in which the SV 10 is arranged, and the heating operation or hot water supply operation immediately before switching from at least one of the heating operation and hot water supply operation to the defrost operation, and from the defrost operation to the heating operation. During the defrost operation immediately before returning to at least one of operation and hot water supply operation, the corresponding opening/closing means SV 9 and SV 10 for heating or hot water supply are opened, and at other times, the corresponding opening/closing means SV 9 is opened. , and a control circuit 13 that controls the SV 10 to close. Immediately before switching to defrost operation and immediately before returning from defrost operation, the liquid refrigerant that accumulates during the heating or hot water supply cycle and the defrost cycle is removed. A heat pump type heating/water heater characterized by flowing water to the side of a heat exchanger that is not in operation.
JP1054183U 1983-01-26 1983-01-26 Heat pump type heating water heater Granted JPS59116778U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1054183U JPS59116778U (en) 1983-01-26 1983-01-26 Heat pump type heating water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1054183U JPS59116778U (en) 1983-01-26 1983-01-26 Heat pump type heating water heater

Publications (2)

Publication Number Publication Date
JPS59116778U JPS59116778U (en) 1984-08-07
JPH0325106Y2 true JPH0325106Y2 (en) 1991-05-31

Family

ID=30141980

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1054183U Granted JPS59116778U (en) 1983-01-26 1983-01-26 Heat pump type heating water heater

Country Status (1)

Country Link
JP (1) JPS59116778U (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100123601A (en) * 2009-05-15 2010-11-24 가부시키가이샤 시마노 Dual-bearing reel spool-braking device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100123601A (en) * 2009-05-15 2010-11-24 가부시키가이샤 시마노 Dual-bearing reel spool-braking device

Also Published As

Publication number Publication date
JPS59116778U (en) 1984-08-07

Similar Documents

Publication Publication Date Title
JPS6325471A (en) Air conditioner
JPH116665A (en) Heat-storing-type air-conditioner
JPH0325106Y2 (en)
JP2001263848A (en) Air conditioner
JP2000304397A (en) Cold and warm storage cabinet
JP3511161B2 (en) Air conditioner
JP2504416B2 (en) Refrigeration cycle
JP2569796B2 (en) Thermal storage type air conditioner
JPH07160937A (en) Automatic vending machine
JPH0233108Y2 (en)
JPH11189035A (en) Heat pump type air conditioner for automobile
JPH0429345Y2 (en)
JPH0771844A (en) Refrigeration cycle device for vehicle
JPS6360305B2 (en)
JPS59112161A (en) Refrigerator
JPS6017639Y2 (en) Heat pump air conditioner
JPS6036844Y2 (en) Heat pump refrigeration equipment
JPH03164668A (en) Heat pump device
JPS6015084Y2 (en) Refrigeration equipment
JPS59217463A (en) Refrigeration cycle of air conditioner
JPS5856528Y2 (en) Refrigeration equipment
JP3307532B2 (en) Cold / hot water supply device
JPS6243249Y2 (en)
JPH0510191Y2 (en)
JPH081339B2 (en) Refrigeration cycle