JPS5856528Y2 - Refrigeration equipment - Google Patents

Refrigeration equipment

Info

Publication number
JPS5856528Y2
JPS5856528Y2 JP858778U JP858778U JPS5856528Y2 JP S5856528 Y2 JPS5856528 Y2 JP S5856528Y2 JP 858778 U JP858778 U JP 858778U JP 858778 U JP858778 U JP 858778U JP S5856528 Y2 JPS5856528 Y2 JP S5856528Y2
Authority
JP
Japan
Prior art keywords
water
heat exchanger
air
coil
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP858778U
Other languages
Japanese (ja)
Other versions
JPS54111850U (en
Inventor
彬博 藤原
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to JP858778U priority Critical patent/JPS5856528Y2/en
Publication of JPS54111850U publication Critical patent/JPS54111850U/ja
Application granted granted Critical
Publication of JPS5856528Y2 publication Critical patent/JPS5856528Y2/en
Expired legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Description

【考案の詳細な説明】 本考案は熱源側となる対水用の熱交換器と対空気用の熱
交換器とを並列的に接続せしめ、切換機構により切換可
能とした熱回収方式空調装置として好適な冷凍装置に係
り、詳しくは冬期の暖房運転時に休止中の対空気用の熱
交換器が冷媒貯溜器として作用することにより、冷媒系
統内のガス欠を招来して不安定な冷凍運転が起るのを確
実に防止することができる冷凍装置の構造に関する。
[Detailed description of the invention] This invention is a heat recovery type air conditioner in which a water-to-air heat exchanger and an air-to-air heat exchanger, which serve as the heat source, are connected in parallel and can be switched using a switching mechanism. Regarding a suitable refrigeration system, in detail, during heating operation in winter, the air-to-air heat exchanger that is inactive acts as a refrigerant reservoir, causing a gas shortage in the refrigerant system and causing unstable refrigeration operation. The present invention relates to a structure of a refrigeration system that can reliably prevent this from occurring.

対空気用の熱交換器と対水用の熱交換器とを冷媒回路に
並列的に接続せしめて、冬期の暖房運転時に太陽熱など
の補助熱源により加熱された温水を熱源水とした前記対
水用の熱交換器を吸熱用の熱交換器とし、て利用する一
方、対空気用の熱交換器は休止しておく運転方式の冷凍
装置は、冷温水回路を使用した熱回収方式空気調和装置
に多く採用されている。
A heat exchanger for air and a heat exchanger for water are connected in parallel to a refrigerant circuit, and hot water heated by an auxiliary heat source such as solar heat is used as heat source water during heating operation in winter. A refrigeration system that uses a heat exchanger for heat absorption as a heat exchanger while keeping the heat exchanger for air inactive is a heat recovery type air conditioner that uses a cold/hot water circuit. It is widely adopted.

ところが、か・る暖房運転に際して、太陽熱によるふく
射熱で熱源水は約20℃に加熱されるが、外気温度は0
℃と低い場合には電磁弁のリーク現象により休止中の対
空気用の熱交換器に冷媒が徐々に流れ込み、この流入冷
媒が外気により冷却される。
However, during heating operation, the heat source water is heated to about 20°C by the radiant heat from the sun, but the outside temperature is 0°C.
When the temperature is as low as 0.degree. C., the refrigerant gradually flows into the air-to-air heat exchanger that is inactive due to the leakage phenomenon of the solenoid valve, and this inflowing refrigerant is cooled by the outside air.

この場合、対空気側の熱交換器内の圧力は対水用の熱交
換器内の蒸発圧力よりも低くなるため、前記冷媒が停溜
する結果、対空気用の熱交換器が液溜め器として機能す
るので、系統内の冷媒循環量が減少してガス欠運転とな
る好ましくない事態を招来していた。
In this case, the pressure inside the air-side heat exchanger is lower than the evaporation pressure inside the water-side heat exchanger, so the refrigerant accumulates and the air-side heat exchanger becomes a liquid reservoir. As a result, the amount of refrigerant circulated within the system decreases, resulting in an undesirable situation where the system runs out of gas.

か・る事態が生じると冷凍能力が磁端に低下するし、油
戻りも悪くなって圧縮機が焼損するなどの問題を生じる
ことは言う迄もない。
Needless to say, if such a situation occurs, the refrigerating capacity will drop to the magnetic limit, and the oil return will also become poor, causing problems such as burnout of the compressor.

そこで従来は冷媒回路中に大型受液器を介設して、設計
時点で前記不足分を見込んで冷媒充填量を予め条目にし
ておくことか行われていたが、か・る手段によってはガ
ス欠運転は防げるものの冷媒充填量が多いために装置費
を高騰化するばかりでなく、圧縮機への液戻りを饗すな
どの他面での不都合が生じる問題があった。
Therefore, in the past, a large receiver was inserted in the refrigerant circuit, and the amount of refrigerant charged was set in advance in anticipation of the shortage at the time of design. Although the lack of operation can be prevented, the large amount of refrigerant charged not only increases equipment costs, but also causes other problems such as liquid returning to the compressor.

本考案は上述せる従来の諸問題に対処してそれ等欠陥を
根本的に排除し得る新規な冷凍装置を提供すべく威され
たものであり、特に、熱源側となる対空用の熱交換器と
対水用の熱交換器とを並列的に接続せしめ、切換機構に
より切換可能に構成して、対水用の熱交換器に流札る熱
源水の温度が高温のとき対水用の熱交換器を、低温のと
き対空気用の熱交換器を作動させる如く切換運転する−
方、アキュムレータ等の液戻り防止装置を吸入ガス管路
中に配設して、対水用の熱交換器が蒸発器として作動す
る暖房運転中に低圧々力あるいは温度が所定値以下に低
下したとき、前記低圧々力あるいは温度を検知する検知
器により所定時間のみ対空気用の熱交換器を運転せしめ
て、該熱交換器中に停溜した液冷媒を液戻り防止装置に
吸引せしめる如くしたことを特徴とする。
The present invention was developed in order to provide a new refrigeration system that can deal with the conventional problems mentioned above and fundamentally eliminate these defects. and a heat exchanger for water are connected in parallel and configured to be switchable by a switching mechanism, so that when the temperature of the heat source water flowing to the heat exchanger for water is high, the heat exchanger for water is connected in parallel. Switching the exchanger so that the air heat exchanger is activated when the temperature is low.
On the other hand, a liquid return prevention device such as an accumulator is installed in the suction gas pipe to prevent low pressure or pressure from falling below a specified value during heating operation when the water heat exchanger operates as an evaporator. At this time, the low pressure or temperature detector is used to operate the air-to-air heat exchanger for a predetermined period of time, and the liquid refrigerant accumulated in the heat exchanger is sucked into the liquid return prevention device. It is characterized by

かかる本考案の特徴について添付図面の各側を参照しな
がら以下詳細に説明する。
The features of the present invention will be described in detail below with reference to the accompanying drawings.

第1図および第2図は本考案装置の各実施例に係る熱回
収方式空調装置の回路図であって、先ず第1図々示装置
について説明すれば、冷凍回路は、圧縮機1.テ゛フロ
スト切換用の四路切換弁2.対水用の熱交換器3(以下
水用コイル3と称する)、受液器4.往復逆止弁(シャ
トル弁)5.減圧膨張弁6゜7、熱源側となる対空気用
の熱交換器8(以下空気コイル8と称する)、対水用の
熱交換器9(以下水コイル9と称する)、デフロスト用
膨張弁10.液戻り防止装置としてのアキュムレータ1
1および4つの電磁弁12,13,14.15からなる
切換機構Aを構成機器として夫々有しており、一方、冷
温水回路は、空調対象域に設置した水用ファンコイル1
7.クーノングタワー18.温蓄熱槽19.冷蓄熱槽2
0.太陽集熱器21.ポンプ22〜25を構成機器とし
て夫々有している。
1 and 2 are circuit diagrams of heat recovery type air conditioners according to embodiments of the device of the present invention. First, the device shown in FIG. 1 will be explained. The refrigeration circuit includes a compressor 1. Four-way switching valve for frost switching 2. Water heat exchanger 3 (hereinafter referred to as water coil 3), liquid receiver 4. Reciprocating check valve (shuttle valve)5. A pressure reducing expansion valve 6° 7, an air heat exchanger 8 (hereinafter referred to as air coil 8) serving as a heat source, a water heat exchanger 9 (hereinafter referred to as water coil 9), and a defrost expansion valve 10. .. Accumulator 1 as liquid return prevention device
1 and four electromagnetic valves 12, 13, 14.15 as component devices, and the cold/hot water circuit has a water fan coil 1 installed in the area to be air-conditioned.
7. Koonong Tower 18. Heat storage tank 19. Cold heat storage tank 2
0. Solar collector 21. Each of the pumps 22 to 25 has pumps 22 to 25 as component devices.

前記冷凍回路の回路構成は次の通りである。The circuit configuration of the refrigeration circuit is as follows.

即ち、圧縮機1吐出口を四路切換弁2の切換操作によっ
て水用コイル3の入口或は空気コイル8の出口に選択し
て接続し得る如くなすと共に、圧縮機1吸入口を、アキ
ュムレータ11を介して空気コイル8の出口或は水用コ
イル3の入口に選択して接続し得る如くなしており、さ
らに水用コイル3の出口および空気コイル8の入口には
シャトル弁5の両流穴ポートを夫々連絡させている。
That is, the discharge port of the compressor 1 can be selectively connected to the inlet of the water coil 3 or the outlet of the air coil 8 by switching the four-way switching valve 2, and the inlet of the compressor 1 can be connected to the inlet of the water coil 3 or the outlet of the air coil 8. It can be selectively connected to the outlet of the air coil 8 or the inlet of the water coil 3 through the outlet of the water coil 3 and the inlet of the air coil 8. The ports are connected to each other.

また、水用コイル3の出口と空気コイル8の入口とを、
テ゛フロスト用の膨張弁10.受液器4.電磁弁12.
膨張弁6を介した配管で連絡する一方、受液器4とアキ
ュムレータ11とを、電磁弁13.膨張弁7.水コイル
9および電磁弁15を介した配管で連絡して空気コイル
8と、水コイル9とが前記切換機構Aにより切換可能な
ごとく並列接続せしめた配管構成となっている。
In addition, the outlet of the water coil 3 and the inlet of the air coil 8 are
Expansion valve for frosting 10. Receiver 4. Solenoid valve 12.
The liquid receiver 4 and the accumulator 11 are connected to each other by a piping via an expansion valve 6, and a solenoid valve 13. Expansion valve7. The air coil 8 and the water coil 9 are connected in parallel via a water coil 9 and a solenoid valve 15 so as to be switchable by the switching mechanism A.

なお、受液器4とシャトル弁5の流出ポートとを配管に
より直結させている。
Note that the liquid receiver 4 and the outflow port of the shuttle valve 5 are directly connected by piping.

上記回路構成になる冷凍回路は通常の熱回収運転の場合
には第1図の実線矢示の冷媒流通を繰り返させて凝縮器
として作用する水用コイル3では温水を、蒸発器として
作用する水コイル9では冷水を夫々得ることができ、そ
して必要に応じ前記切換機構Aとしての電磁弁12〜1
5の開閉操作の組合わせによって、水コイル9に代えて
空気コイル8に切換し得るようになっている。
In the case of normal heat recovery operation, the refrigeration circuit having the circuit configuration described above repeats the flow of refrigerant as shown by the solid line arrow in Fig. 1, and hot water is supplied to the water coil 3, which acts as a condenser, and water, which acts as an evaporator. Each of the coils 9 can obtain cold water, and if necessary, the solenoid valves 12 to 1 as the switching mechanism A can be used.
By combining the opening and closing operations of 5, it is possible to switch to the air coil 8 instead of the water coil 9.

一方、冷温水回路は開閉弁26〜31の開閉操作の組合
せによって、水用コイル3で得た温水を水用ファンコイ
ル17に送る暖房運転と、水コイル9で得た冷水を両蓄
熱槽19.20を介して水用ファンコイル17に送り、
かつ水用コイル3で得た温水をクーリングタワー18に
送る冷房運転とを切換えて行わせることが可能な回路に
なっており、さらに太陽集熱器21で得た温水を温蓄熱
槽19に貯溜させる蓄熱運転が可能な回路に形成してい
る。
On the other hand, the cold/hot water circuit performs a heating operation in which hot water obtained from the water coil 3 is sent to the water fan coil 17 and cold water obtained from the water coil 9 is transferred to both heat storage tanks 19 by a combination of opening and closing operations of the on-off valves 26 to 31. .20 to the water fan coil 17,
In addition, the circuit is capable of switching between cooling operation and sending the hot water obtained by the water coil 3 to the cooling tower 18, and further stores the hot water obtained by the solar collector 21 in the thermal storage tank 19. The circuit is designed to enable heat storage operation.

この冷凍装置は圧縮機1吸入口に接続した吸入ガス管に
低圧々力を検知する検知器16を設けると共に、水コイ
ル9の冷水側入口に冷水サーモ32を夫々設けていて、
水コイル9による暖房運転中に低圧々力が所定値(2,
6kg/cm2G)以下になると、前記検知器16の出
力により水コイル9の運転から空気コイル8の運転に自
動切換え、また冷水温度が凍結のおそれがある程度(入
口水温12℃)に低下すると冷水サーモ32の出力によ
り同様に自動切換えさせるようにしているが、この自動
切換えのための制御回路を第3図によって説明する。
This refrigeration system is equipped with a detector 16 for detecting low pressure in the suction gas pipe connected to the suction port of the compressor 1, and a cold water thermostat 32 is installed at the cold water side inlet of the water coil 9.
During the heating operation by the water coil 9, the low pressure is set to a predetermined value (2,
6kg/cm2G) or less, the output of the detector 16 automatically switches from water coil 9 operation to air coil 8 operation, and when the chilled water temperature drops to a level where there is a risk of freezing (inlet water temperature 12 degrees Celsius), the chilled water thermostat is activated. Similarly, automatic switching is performed by the output of 32, and the control circuit for this automatic switching will be explained with reference to FIG.

R8は運転スイッチであって冷房、暖房側ノツチで圧縮
機モータ1を付勢、四路切換弁2のソレノイドを励磁さ
せる一方、冷房ノツチで電磁弁13゜15のソレノイド
を励磁して開閉し、また暖房ノツチで電磁弁12.14
からなる組と電磁弁13.15からなる組とを切換えて
励磁開弁じ得る。
R8 is an operation switch, and the cooling and heating side notches energize the compressor motor 1 and energize the solenoid of the four-way switching valve 2, while the cooling notch energizes the solenoids of the solenoid valves 13 and 15 to open and close them. Also, the heating notch has a solenoid valve 12.14.
The excitation can be opened by switching between the set consisting of the solenoid valves 13 and 15 and the set consisting of the solenoid valves 13 and 15.

圧縮機モータ1には着霜時に閉成作動するデフロストサ
ーモ(DT)と補助リレーXの直列になる回路が並列接
続されており、四路切換弁2のソレノイドには補助リレ
ーXの常閉接点を直列に接続している。
The compressor motor 1 is connected in parallel with a circuit in which a defrost thermometer (DT), which closes when frost forms, and an auxiliary relay X are connected in series, and a normally closed contact of the auxiliary relay are connected in series.

電磁開閉弁12.14のソレノイドは、補助リレーXの
常閉接点からなる回路と、タイマー(TM)の常閉接点
と補助リレーXの常閉接点との直列になる回路との何れ
かが閉成することによって暖房時に励磁されるようにな
っており、一方電極開閉弁13.15のソレノイドは、
冷房時に励磁し、また暖房時に補助リレーXの常閉接点
とタイマ (TM)の常閉接点が共に閉成することによって励磁さ
れるようになっている。
The solenoid of electromagnetic on-off valve 12.14 closes either the circuit consisting of the normally closed contact of auxiliary relay X or the circuit consisting of the normally closed contact of the timer (TM) and the normally closed contact of auxiliary relay X in series. The solenoids of the electrode on-off valves 13 and 15 are energized during heating by
It is energized during cooling, and is energized when the normally closed contact of the auxiliary relay X and the normally closed contact of the timer (TM) are both closed during heating.

前記タイマー(TM)は空気コイル8の運転時間を所定
時間に設定するためのものであって、前記検知器16が
閉成したとき、即ち低圧々力が所定値(2、6kg/c
m2G )に比して低くなった異常時から所定時間中例
えば5〜10分間指令信号を発した後復帰する限時継電
器であり、前述する如く電磁開閉弁12.14を前記設
定時間に限らせて励磁開弁するよう作動する回路に形成
している。
The timer (TM) is for setting the operating time of the air coil 8 to a predetermined time, and is used when the detector 16 is closed, that is, when the low pressure force reaches a predetermined value (2.6 kg/c
This is a time-limited relay that returns after issuing a command signal for a predetermined period of time, for example, 5 to 10 minutes, after an abnormality occurs when the voltage has become low compared to m2G). It is formed into a circuit that operates to open the valve by excitation.

なお、このタイマー(TM)には前記冷水サーモ32の
低温時閉成接点を関連させて設けている。
Note that this timer (TM) is provided in association with a low temperature closing contact of the cold water thermostat 32.

次に上記構成になる冷凍装置の運転態様について説明す
れば、冷房運転時は運転スイッチ(R5)を冷房ノツチ
に設定し、同時に開閉弁26,27,30.31を開放
、開閉弁28.29を閉成すると共に、ポンプ22.2
3.25を付勢することによって、圧縮機1が付勢、四
路切換弁2が冷房操作側に励磁、電磁開閉弁13.15
が励磁開弁するので、冷媒は第1図の実線矢示方向に流
れて水用コイル3は凝縮器に水コイル9は蒸発器に夫々
なって、水用コイル3で得られた温水をクーリングタワ
ー18で戸外に放熱する一方、水コイル9で得られた冷
水は温蓄熱槽19、冷蓄熱槽20を中間補償器として利
用しながら水用ファンコイル17に循環流通するので、
冷水利用による冷房運転が行われる。
Next, to explain the operating mode of the refrigeration system having the above configuration, during cooling operation, the operation switch (R5) is set to the cooling notch, and at the same time, the on-off valves 26, 27, 30.31 are opened, and the on-off valves 28, 29 are opened. and pump 22.2.
By energizing 3.25, the compressor 1 is energized, the four-way switching valve 2 is energized to the cooling operation side, and the electromagnetic on-off valve 13.15 is energized.
is energized to open the valve, the refrigerant flows in the direction indicated by the solid line arrow in Figure 1, and the water coil 3 becomes a condenser and the water coil 9 becomes an evaporator, and the hot water obtained in the water coil 3 is sent to the cooling tower. 18 radiates the heat outdoors, while the cold water obtained from the water coil 9 circulates to the water fan coil 17 while using the hot heat storage tank 19 and the cold heat storage tank 20 as intermediate compensators.
Cooling operation is performed using chilled water.

一方、暖房運転の場合は、運転スイッチ(R3)を暖房
ノツチに設定し、同時に開閉弁28 、29を開放。
On the other hand, in the case of heating operation, the operation switch (R3) is set to the heating notch, and the on-off valves 28 and 29 are opened at the same time.

開閉弁26,27,30.31を閉成すると共に、ポン
プ22.23.24を付勢することによって、冷凍回路
は圧縮機1が付勢、四路切換弁2が暖房操作側(冷房と
同様)に励磁する。
By closing the on-off valves 26, 27, 30.31 and energizing the pumps 22, 23, 24, the refrigeration circuit is operated so that the compressor 1 is energized and the four-way switching valve 2 is switched to the heating operation side (cooling and cooling). similar).

この状態で低圧々力が所定値以上であり、かつ水コイル
9の冷水温度がサーモ32を作動させない程度に高いと
、電磁開閉弁13.15が励磁開弁するので、冷媒は冷
房時と同様に第1図の実線矢示方向に流れて、水用コイ
ル3で得られた温水は水用ファンコイル17に循環流通
する一方、温蓄熱槽19から水コイル9に至り、こ・で
冷却された冷水は冷蓄熱槽20に送られる。
In this state, if the low pressure is above a predetermined value and the temperature of the cold water in the water coil 9 is high enough not to activate the thermostat 32, the electromagnetic on-off valves 13.15 are energized to open, so the refrigerant flows in the same way as during cooling. The hot water flowing in the direction indicated by the solid line arrow in FIG. The cold water is sent to the cold heat storage tank 20.

かくして温水利用による暖房運転が戊されるが、冷蓄熱
槽20内の低温冷水は太陽集熱器21で太陽熱を吸収し
て温度上昇した後、温蓄熱槽19に戻るので太陽熱利用
による熱回収運転が可能である。
In this way, the heating operation using hot water is stopped, but the low-temperature cold water in the cold storage tank 20 absorbs solar heat in the solar collector 21 and rises in temperature, and then returns to the hot storage tank 19, so a heat recovery operation using solar heat is started. is possible.

このような暖房運転を続けている際に、水コイル9の冷
却能力の方が太陽集熱器21の熱交換能力よりも大きい
と、熱源側水用コイル9に送る水の温度が低下してきて
、遂には凍結に至るおそれがあるが、前記冷水サーモ3
2が閉成するためにタイマー(TM)の接点が切り換っ
て、電磁開閉弁13.15を消磁閉弁する一方、電磁開
閉弁12.14が励磁開弁じ、この状態はタイマー(T
M)の設定時限には関係なく冷水サーモ32の接点が閉
成している間続行する。
While such heating operation continues, if the cooling capacity of the water coil 9 is greater than the heat exchange capacity of the solar collector 21, the temperature of the water sent to the heat source side water coil 9 will decrease. , there is a risk that it will eventually freeze, but the cold water thermometer 3
2 is closed, the contacts of the timer (TM) are switched to demagnetize and close the electromagnetic on-off valve 13.15, while the electromagnetic on-off valve 12.14 is energized and opened.
M) continues as long as the contact of the cold water thermostat 32 is closed regardless of the set time limit.

かくして水コイル9は冷凍回路から切り離され、代って
空気コイル8が蒸発器として作用するので、外気を熱源
とした能力の存する暖房運転が行われ、しかも冷水が凍
結することは未然に防止される。
In this way, the water coil 9 is separated from the refrigeration circuit, and the air coil 8 acts as an evaporator in its place, so that efficient heating operation using outside air as a heat source is performed, and furthermore, freezing of the cold water is prevented. Ru.

この空気熱源による暖房運転を行っている間に、空気コ
イル8に霜付きが生じてくると、デフロスI・サーモ(
DT)の接点閉成により、四路切換弁2はテ゛フロスト
操作側に切り換り、かつ電磁開閉弁12.14を強制的
に励磁開弁するので、高圧冷媒は空気コイル8に流れて
除霜を行った後、凝縮液化して受液器4を経て膨張弁1
0に至り、こ・で減圧した後、水用コイル3で蒸発し、
アキュムレータ11を経、圧縮器1に戻って、デフロス
トサイクルが行われる。
During heating operation using this air heat source, if frost forms on the air coil 8, defrost I/thermo (
When the contact of DT) is closed, the four-way switching valve 2 is switched to the frost operation side, and the electromagnetic on-off valves 12 and 14 are forcibly energized and opened, so the high-pressure refrigerant flows to the air coil 8 and defrosts. After that, it is condensed and liquefied and passed through the liquid receiver 4 to the expansion valve 1.
After reaching 0, the pressure is reduced by this, and then evaporated by the water coil 3
It passes through the accumulator 11 and returns to the compressor 1, where a defrost cycle is performed.

テ゛フロストが完了すると、テ゛フロストサーモ(DT
)の復帰に伴って、冷凍サイクルは暖房サイクルに切り
換り、かつ熱源水温度が高いと水コイル9が、低いと空
気コイル8が夫々蒸発器として作用する暖房運転に自動
切換えられる。
When the tea frost is completed, the tea frost thermo (DT)
), the refrigeration cycle is switched to a heating cycle, and when the heat source water temperature is high, the water coil 9 is automatically switched to the heating operation, and when it is low, the air coil 8 is automatically switched to the heating operation, which acts as an evaporator.

以上のように作動する本考案冷凍装置において、熱源水
が高域側温度状態に存することにより、水コイル9が作
動し、かつ空気コイル8が不作動となる運転を続けてい
る際に、冒頭において述べたように、閉成している電磁
弁12.14に僅かな冷媒の洩れがあって、停止中の空
気コイル8に漸次冷媒が流入してきて外気により冷却さ
れ貯溜する現象が生じてくる。
In the refrigeration system of the present invention that operates as described above, when the water coil 9 is in operation and the air coil 8 is inactive due to the heat source water being in a high temperature state, at the beginning As mentioned in , there is a slight refrigerant leak from the closed solenoid valves 12 and 14, and the refrigerant gradually flows into the stopped air coil 8, where it is cooled by the outside air and stored. .

その結果、冷媒循環系統内の冷媒循環量が減少して力゛
ス欠運転が生じ種々の悪影響を冷凍装置に壷す、二とと
なる。
As a result, the amount of refrigerant circulated within the refrigerant circulation system decreases, resulting in power-out operation, which causes various adverse effects on the refrigeration system.

か・る事態が生じると、前記冷凍装置はガス欠状態を低
圧々力の低下(2,6kg/cm2G)として、前記検
知器16により検知し、該検知器16の接点の閉放によ
り前記タイマー(TM)が作動して、電磁弁12.14
が消磁閉弁し、かつ電磁弁13.15が励磁開弁するの
で、水コイル9の運転が停止し、空気コイル8の運転に
切り換わる。
When such a situation occurs, the refrigeration system detects the lack of gas as a low pressure drop (2.6 kg/cm2G) using the detector 16, and by closing the contact of the detector 16, the timer is activated. (TM) is activated, solenoid valve 12.14
is demagnetized and closed, and the solenoid valves 13 and 15 are energized and opened, so that the operation of the water coil 9 is stopped and the operation of the air coil 8 is switched.

従って、空気コイル8中に停溜していた液冷凍は圧縮機
1に誘引されて流出し、アキュムレータ11に送られる
一方、空気コイル8の冷媒流通路は液が少ないガス充満
状態となる。
Therefore, the liquid refrigerant accumulated in the air coil 8 is drawn out by the compressor 1 and sent to the accumulator 11, while the refrigerant flow path of the air coil 8 is filled with gas with less liquid.

このようにして液冷媒が空気コイル8外に完全に追い出
される時間は精々5〜10分程度であるから、前記タイ
マー(TM)の作動時限をこれに適合した時限に設定し
ておけば、該設定時限経過後、タイマー(TM)の作動
が復帰するので、電磁弁12゜14が消磁閉弁し、かつ
、電磁弁13.15が励磁開弁じて、再び水コイル9の
運転に切り換り、熱源水利用による暖房運転の状態に復
する。
The time required for the liquid refrigerant to be completely expelled outside the air coil 8 in this way is approximately 5 to 10 minutes at most, so if the operating time of the timer (TM) is set to a time that suits this, it is possible to After the set time has elapsed, the timer (TM) operation is restored, so the solenoid valves 12 and 14 are demagnetized and closed, and the solenoid valves 13 and 15 are energized and opened, and the operation of the water coil 9 is switched again. , return to heating operation using heat source water.

従って、ガス欠運転は未然に防止されて、能力のある暖
房運転が継続して行われる。
Therefore, running out of gas is prevented, and efficient heating operation continues.

さらに空気コイル8を流出した液冷媒は、一旦アキュム
レータ11内に流れ込むので、液冷媒のよ・で圧縮機1
に吸入されることはなく、従って液戻り現象も確実に防
止され、圧縮機1損傷の問題も全く無い。
Furthermore, the liquid refrigerant that has flowed out of the air coil 8 once flows into the accumulator 11, so that the liquid refrigerant is transferred to the compressor 1.
Therefore, the phenomenon of liquid return is reliably prevented, and there is no problem of damage to the compressor 1.

なお前記検知器16は低圧々力ではなく温度を検知する
ものであってもよく、また取付位置も吸入管ではなく水
コイル9の蒸発圧力あるいは温度を検知し得るごとく水
コイル9に取付けてもよいものである。
The detector 16 may be one that detects temperature rather than low pressure, and the sensor 16 may be mounted on the water coil 9 so that it can detect the evaporation pressure or temperature of the water coil 9 instead of the suction pipe. It's good.

また切換機構Aとして4つの電磁弁12〜15に代えて
、2つの三方弁を用いてもよい。
Further, as the switching mechanism A, two three-way valves may be used instead of the four electromagnetic valves 12 to 15.

次に第2図は本考案装置の今一つの例に係る熱回収方式
空調装置であり、第1国々示装置における各構成機器と
同構造、同機能を具備する構成機器については第1図々
示の対応機器と同一番号を付しているので、各部の構造
説明は省略するが、第1図々示装置が冷房・暖房側運転
について同じ冷凍サイクルで行わせるものであるのに対
して、本実施例装置は冷凍系については冷房と暖房とで
可逆サイクルを形成する一方、水用コイル3と水用ファ
ンコイル17とは往・復側木管で接続可能な単純系統に
威し得るものである。
Next, Fig. 2 shows a heat recovery type air conditioner according to another example of the device of the present invention. The structural explanation of each part will be omitted since they are numbered the same as the corresponding equipment, but while the device shown in Figure 1 uses the same refrigeration cycle for cooling and heating operations, this The embodiment device forms a reversible cycle with cooling and heating for the refrigeration system, while the water coil 3 and water fan coil 17 can be connected to a simple system with wood pipes on the forward and backward sides. .

また、四路切換弁2は冷房および除霜の運転と暖房運転
との間の切換えを行わせるものであり、さらに膨張弁1
0は暖房時に機能するためのものであって、機構上にお
いてこれ等の点が第1図々示装置と異っている。
Further, the four-way switching valve 2 switches between cooling and defrosting operation and heating operation, and the expansion valve 1
0 is for functioning during heating, and is mechanically different from the device shown in FIG. 1 in these points.

なお、第2図々示装置に係る電気回路は図示しないが、
第3図々示回路に若干の変更を加えるのみで、水コイル
9に流れる熱源水の温度の高低に応じて、水コイル9と
空気コイル8との自動切換運転制御と、ガス欠運転防止
制御とを第1図々示装置と同様に行わせることができる
Although the electric circuit related to the device shown in the second figure is not shown,
By only making slight changes to the circuit shown in Figure 3, automatic switching operation control between the water coil 9 and air coil 8 and gas-starvation operation prevention control can be performed depending on the temperature of the heat source water flowing through the water coil 9. This can be done in the same way as the device shown in the first figure.

本考案は以上説明したことから明らかなように、熱源側
となる対空気用の熱交換器8と対水用の熱交換器9とを
並列的に接続せしめ、切換機構Aにより切換可能に構威
し、対水用の熱交換器9に流れる熱源水の温度が高温の
ときは対水用の熱交換器9を、低温のときは対空気用の
熱交換器8を作動させる如く切換運転させる一方、アキ
ュムレータ等の液戻り防止装置11を吸入ガス管路中に
配設して、対水用の熱交換器9が蒸発器として作動する
暖房運転中に低圧々力あるいは温度が所定値以下に低下
したとき前記低圧々力あるいは温度を検知する検知器1
6により所定時間のみ対空気用の熱交換器8を運転せし
めて、対空気用の熱交換器8中に貯溜した液冷媒を液溜
装置11に吸引させてなる構成であるから、熱源水温度
の利用中を拡大して冷凍装置の運転限界が拡張され、安
全性が高くかつ利用効率の高い装置を得ることが可能で
ある。
As is clear from the above explanation, the present invention has a structure in which the heat exchanger 8 for air and the heat exchanger 9 for water, which are the heat source side, are connected in parallel and can be switched by the switching mechanism A. When the temperature of the heat source water flowing into the water heat exchanger 9 is high, the water heat exchanger 9 is operated, and when the temperature is low, the air heat exchanger 8 is operated. On the other hand, a liquid return prevention device 11 such as an accumulator is installed in the suction gas pipe to prevent low pressure or temperature from falling below a predetermined value during heating operation when the water heat exchanger 9 operates as an evaporator. Detector 1 that detects the low pressure or temperature when the temperature drops to
6, the heat exchanger 8 for air is operated only for a predetermined time, and the liquid refrigerant stored in the heat exchanger 8 for air is sucked into the liquid storage device 11. It is possible to extend the operating limits of the refrigeration system by expanding the usage period of the refrigeration system, and to obtain a system with high safety and high utilization efficiency.

さらに、検知器16によって熱源水利用運転方式から所
定時間のみ外気利用運転方式に自動切換えさせ、冷媒系
統内の冷媒循環量が極端に低下するのを防止した冷凍運
転が威されるので、ガス欠運転状態となることは全く無
く、安定した運転が可能である。
Furthermore, the detector 16 automatically switches from the heat source water operation mode to the outside air operation mode for a predetermined period of time, and refrigeration operation that prevents the amount of refrigerant circulating in the refrigerant system from drastically decreasing is enforced. There is no operational state at all, and stable operation is possible.

また、冷媒充填量も可及的に少量で済むので液戻りが生
じにくいし、圧縮機1の吸入側ラインに液戻り防止装置
を設けたことによって、液バツクがなく圧縮機1の完全
な保護がはかれる特長をも有しており、本考案は実用価
値に富むところ大なる冷凍装置であって、特に熱回収方
式空調装置に実施して好適な装置である。
In addition, since the amount of refrigerant charged is as small as possible, liquid return is less likely to occur, and by providing a liquid return prevention device on the suction side line of the compressor 1, there is no liquid back and the compressor 1 is completely protected. The present invention is a refrigeration system with great practical value, and is particularly suitable for implementation in a heat recovery type air conditioner.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は本考案装置の各実施例に係る熱回
収方式冷凍装置の冷媒・冷温水配管系統図、第3図は第
1図々示の要部電気回路展開図である。 8・・・・・・対空気用の熱交換器、9・・・・・・対
水用の熱交換器、11・・・・・・液K +’)防止装
置、16・・・・・・検知器、A・・・・・・切換機構
1 and 2 are refrigerant/cold/hot water piping system diagrams of a heat recovery type refrigeration system according to each embodiment of the device of the present invention, and FIG. 3 is a developed diagram of the main part electric circuit shown in FIG. 1. 8...Air heat exchanger, 9...Water heat exchanger, 11...Liquid K+') prevention device, 16... ...Detector, A...Switching mechanism.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 熱源側となる対空気用の熱交換器8と対水用の熱交換器
9とを並列的に接続せしめ、切換機構Aにより切換可能
に構成し、対水用の熱交換器9に流れる熱源水の温度が
高温のとき対水用の熱交換器9を、低温のとき対空気用
の熱交換器8を作動させる如く切換運転する一方、アキ
ュムレータ等の液戻り防止装置11を吸入ガス管路中に
配設して、対水用の熱交換器9が蒸発器として作動する
暖房運転中に低圧々力あるいは温度が所定値以下に低下
したとき、前記低圧々力あるいは温度を検知する検知器
16により所定時間のみ対空気用の熱交換器8を運転せ
しめて、該熱交換器8中に停溜した液冷媒を液戻り防止
装置11に吸引せしめる如くしたことを特徴とする冷凍
装置。
The heat exchanger 8 for air and the heat exchanger 9 for water, which are the heat source side, are connected in parallel and are configured to be switchable by a switching mechanism A, so that the heat source flows to the heat exchanger 9 for water. The heat exchanger 9 for water is activated when the water temperature is high, and the heat exchanger 8 for air is activated when the water temperature is low. A detector is disposed inside the interior and detects the low pressure or temperature when the low pressure or temperature drops below a predetermined value during heating operation in which the water-to-water heat exchanger 9 operates as an evaporator. 16, the air heat exchanger 8 is operated only for a predetermined period of time to cause the liquid refrigerant accumulated in the heat exchanger 8 to be sucked into the liquid return prevention device 11.
JP858778U 1978-01-26 1978-01-26 Refrigeration equipment Expired JPS5856528Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP858778U JPS5856528Y2 (en) 1978-01-26 1978-01-26 Refrigeration equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP858778U JPS5856528Y2 (en) 1978-01-26 1978-01-26 Refrigeration equipment

Publications (2)

Publication Number Publication Date
JPS54111850U JPS54111850U (en) 1979-08-06
JPS5856528Y2 true JPS5856528Y2 (en) 1983-12-27

Family

ID=28817889

Family Applications (1)

Application Number Title Priority Date Filing Date
JP858778U Expired JPS5856528Y2 (en) 1978-01-26 1978-01-26 Refrigeration equipment

Country Status (1)

Country Link
JP (1) JPS5856528Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58108372A (en) * 1981-12-22 1983-06-28 松下電器産業株式会社 Air-conditioning hot-water supply device

Also Published As

Publication number Publication date
JPS54111850U (en) 1979-08-06

Similar Documents

Publication Publication Date Title
US4179894A (en) Dual source heat pump
KR880001148B1 (en) System for air-conditionung and hot water supplying
US5467812A (en) Air conditioning system with thermal energy storage and load leveling capacity
USRE29966E (en) Heat pump with frost-free outdoor coil
AU719697B2 (en) Thermal energy storage air conditioning system
US9217574B2 (en) Hot water supply apparatus associated with heat pump
JP3404133B2 (en) Thermal storage type air conditioner
CN216384419U (en) Four-pipe air-cooled cold and hot water unit
JPS5856528Y2 (en) Refrigeration equipment
CN117940706A (en) Air source heat pump system
CN212511905U (en) Refrigeration system
JPH01208674A (en) Heat pump type hot water, heating and cooling machine
JP2504416B2 (en) Refrigeration cycle
JP2002243215A (en) Regenerative air conditioning device
JP2906508B2 (en) Heat pump water heater
JP2705492B2 (en) Water storage, hot water storage type hot water supply device
JPS59217460A (en) Refrigeration cycle of air conditioner
JPS58124138A (en) Controlling method of driving auxiliary heat source in regenerative air conditioner
KR101488903B1 (en) Heat storaging apparatus and Control process of the same
JPH07160937A (en) Automatic vending machine
JPS6018895B2 (en) Solar heat pump air conditioner
JPS6036844Y2 (en) Heat pump refrigeration equipment
JP2737543B2 (en) Heat pump water heater
JPH0233108Y2 (en)
JPH0743025A (en) Freezing cycle