JP2906508B2 - Heat pump water heater - Google Patents

Heat pump water heater

Info

Publication number
JP2906508B2
JP2906508B2 JP502990A JP502990A JP2906508B2 JP 2906508 B2 JP2906508 B2 JP 2906508B2 JP 502990 A JP502990 A JP 502990A JP 502990 A JP502990 A JP 502990A JP 2906508 B2 JP2906508 B2 JP 2906508B2
Authority
JP
Japan
Prior art keywords
hot water
heat exchanger
temperature
electric heater
temperature detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP502990A
Other languages
Japanese (ja)
Other versions
JPH03211359A (en
Inventor
竹司 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP502990A priority Critical patent/JP2906508B2/en
Publication of JPH03211359A publication Critical patent/JPH03211359A/en
Application granted granted Critical
Publication of JP2906508B2 publication Critical patent/JP2906508B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Domestic Hot-Water Supply Systems And Details Of Heating Systems (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明はヒートポンプ利用の給湯装置に関する。Description: TECHNICAL FIELD The present invention relates to a water heater using a heat pump.

従来の技術 近年、電気温水器にヒートポンプを利用して省エネル
ギーおよび、小型化をねらいにした給湯装置が主流とな
ってきている。
2. Description of the Related Art In recent years, hot water supply apparatuses that use heat pumps for electric water heaters to save energy and reduce size have become mainstream.

従来、この種のヒートポンプ利用の給湯装置は第2図
に示す回路構成のものが一般的であった。図に示すよう
に、圧縮機21、四方弁22、凝縮器23、減圧装置24、前記
減圧装置24と並列に設けた逆止弁25および空気熱交換器
26を順次連結した冷媒密閉回路と、内部に電気ヒータ28
を有する貯湯槽29、貯湯槽29の水を循環する水循環ポン
プ30、前記凝縮器23と熱交換関係を有するヒートポンプ
加熱熱交換器31、そして前記貯湯槽29上部に順次連結し
た給湯回路とで構成し、前記冷媒回路によるヒートポン
プの凝縮熱で前記凝縮器23とヒートポンプ加熱熱交換器
31を介して水を加熱して前記貯湯槽29の上部から徐々に
貯えるシステムである。
Conventionally, this type of hot water supply device using a heat pump generally has a circuit configuration shown in FIG. As shown in the figure, a compressor 21, a four-way valve 22, a condenser 23, a pressure reducing device 24, a check valve 25 provided in parallel with the pressure reducing device 24, and an air heat exchanger.
26 are connected sequentially, and an electric heater 28
A hot water storage tank 29, a water circulation pump 30 for circulating water in the hot water tank 29, a heat pump heating heat exchanger 31 having a heat exchange relationship with the condenser 23, and a hot water supply circuit sequentially connected to the upper part of the hot water tank 29. Then, the condenser 23 and the heat pump heating heat exchanger are condensed by the heat of condensation of the heat pump by the refrigerant circuit.
This is a system in which water is heated through the hot water storage tank 31 and gradually stored from above the hot water storage tank 29.

発明が解決しようとする課題 しかしながら、このような従来のヒートポンプ給湯装
置では、冬季の外気温が低下した場合には、空気熱交換
器26に着霜が生じ加熱能力が低下することがある。これ
を防止するため、四方弁22で冷媒回路の冷媒循環方向を
逆にして、前記ヒートポンプ加熱熱交換器31で温水から
熱を奪い、圧縮機21を介して空気熱交換器26の放出熱に
より回路に付着した霜を融解する。したがって、このと
き前記ヒートポンプ加熱熱交換器31で熱を奪われて低温
となった水が前記貯湯槽29の上部の高温部に流入するた
め、出湯可能な温度より低下するという課題があった。
また、給湯負荷に対し、前記貯湯槽29内の湯温、湯量不
足が生じた場合でも、前記ヒータ28で貯湯槽29内の容量
全体を加熱しなければならないため、時間を要するとと
もに出湯に必要以上の容量を加熱するため、経済的では
ない。
Problems to be Solved by the Invention However, in such a conventional heat pump water heater, when the outside air temperature in winter decreases, frost may form on the air heat exchanger 26, and the heating capacity may decrease. In order to prevent this, the refrigerant circulation direction of the refrigerant circuit is reversed by the four-way valve 22, the heat is removed from the hot water by the heat pump heating heat exchanger 31, and the heat is released by the air heat exchanger 26 through the compressor 21. Thaws frost on the circuit. Therefore, at this time, there has been a problem that the water which has been deprived of heat by the heat pump heating heat exchanger 31 and has a low temperature flows into the high temperature portion above the hot water storage tank 29, so that the temperature becomes lower than a temperature at which hot water can be discharged.
Further, even if the hot water temperature and the amount of hot water in the hot water storage tank 29 are insufficient with respect to the hot water supply load, the entire capacity of the hot water storage tank 29 must be heated by the heater 28, which takes time and is necessary for hot water supply. Heating the above volume is not economical.

本発明はこのような上記課題を解決するもので、貯湯
槽上部に高温水を常に冷却させることなく流入させ、ま
た給湯負荷に対応した給湯熱量が供給できるヒートポン
プ給湯装置を提供することを目的としている。
The present invention has been made to solve the above-described problems, and has as its object to provide a heat pump water heater capable of supplying hot water to an upper part of a hot water tank without always cooling the same, and supplying a hot water heat quantity corresponding to a hot water supply load. I have.

課題を解決するための手段 本発明は、上記目的を達成するために、圧縮機と、四
方弁と、凝縮器と、減圧装置と、前記減圧装置と並列に
配設した逆止弁と、空気熱交換器とを順次連結した冷媒
密閉回路を有し、前記空気熱交換器の冷媒入口部に設け
た第1の温度検知器と、第2の温度検知器を上部に有す
る貯湯槽と、前記貯湯槽下部と接続する水循環ポンプ
と、前記凝縮器と熱交換関係を有するヒートポンプ加熱
熱交換器と、一端を前記ヒートポンプ加熱熱交換器に接
続し、他端を前記貯湯槽上部と接続する電気ヒータ加熱
熱交換器を順次連結した給湯回路と、前記ヒートポンプ
加熱熱交換器と前記電気ヒータ加熱熱交換器の中間に設
けた第3の温度検知器とで構成し、前記第1の温度検知
器の信号によって前記四方弁の冷媒の流れ方向を切換え
るとともに、前記電気ヒータ加熱熱交換器に設けた電気
ヒータに通電する。そして、前記ヒートポンプ加熱熱交
換器から流出した水温を検知する前記第3の温度検知器
と前記第2の温度検知器で検出した水温の温度の差か
ら、前記電気ヒータ加熱熱交換器通過後の湯温が前記第
2の温度検知器で検知した温度と略等しくなるように前
記電気ヒータの入力を制御するようにした。
Means for Solving the Problems In order to achieve the above object, the present invention provides a compressor, a four-way valve, a condenser, a decompression device, a check valve arranged in parallel with the decompression device, and air. A first temperature detector provided at a refrigerant inlet of the air heat exchanger, a hot water storage tank having a second temperature detector at an upper portion, the refrigerant closed circuit having a heat exchanger sequentially connected thereto, A water circulation pump connected to the lower part of the hot water tank, a heat pump heating heat exchanger having a heat exchange relationship with the condenser, and an electric heater having one end connected to the heat pump heating heat exchanger and the other end connected to the upper part of the hot water tank. A hot water supply circuit in which heating heat exchangers are sequentially connected, and a third temperature detector provided between the heat pump heating heat exchanger and the electric heater heating heat exchanger; The direction of the refrigerant flow in the four-way valve is turned off by a signal. At the same time, power is supplied to the electric heater provided in the electric heater heating heat exchanger. Then, from the difference between the temperature of the water temperature detected by the third temperature detector and the temperature of the water temperature detected by the second temperature detector that detects the temperature of the water flowing out of the heat pump heating heat exchanger, The input of the electric heater is controlled so that the hot water temperature becomes substantially equal to the temperature detected by the second temperature detector.

作用 本発明は上記した構成によって、貯湯槽下部の低温水
は水循環ポンプの駆動により、ヒートポンプ加熱熱交換
器に流入し、ここでこの循環水は冷媒回路に設けた凝縮
器の凝縮熱を受熱して昇温し、次に設けられた電気ヒー
タ加熱熱交換器を通って、前記貯湯槽の上部より再び貯
湯槽内に流入する。この循環の繰り返しにより貯湯槽内
の水温は上昇する。このとき、冬季の外気温が低下して
空気熱交換器に着霜が生じ冷媒回路の加熱能力が低下し
た場合、第1の温度検知器によって着霜状態を検知し
て、この検知信号により四方弁の冷媒の流れ方向を切換
えると同時に、電気ヒータ加熱熱交換器の電気ヒータに
通電を制御する。その際に、冷媒回路の本来凝縮作用を
行なう前記凝縮器は蒸発作用を行なう蒸発器に変わり、
この中の冷媒は前記ヒートポンプ加熱熱交換器を介して
前記貯湯槽から水循環ポンプによって送られてきた温水
より熱を奪って蒸発ガス化し、前記四方弁を通って前記
圧縮機に流入する。そして、このガス状の冷媒はその中
で圧縮されて前記空気熱交換器に流入し、ここで、この
空気熱交換器の凝縮作用による熱と前記の温水から奪っ
た熱と圧縮機の圧縮熱を放熱して前記の霜を融解し、同
時に凝縮液化して前記逆止弁を通り、前記ヒートポンプ
加熱熱交換器内に内設した凝縮器に戻る。一方、給湯回
路では、前記ヒートポンプ加熱熱交換器で熱を奪われ温
度低下した水を前記第3の温度検知器で検知して、検知
した温度と前記貯湯槽上部に設けた第2の温度検知器の
検知温度との差から、前記電気ヒータ加熱熱交換器通過
後の湯温が前記第2の温度検知器で検知した温度と略等
しくなるように前記電気ヒータの入力を制御する。した
がって、前記貯湯槽上部に存在する高温水に冷却された
水が流入することがないようになる。また、給湯負荷に
対して蓄熱量が不足した場合、つまり湯温が低い場合に
は、前記ヒートポンプ加熱熱交換器で加熱された温水を
さらに前記電気ヒータ加熱熱交換器で加熱することによ
って、より高い温水が得られ、そのまま端末への出湯も
可能となる。
According to the present invention, the low-temperature water in the lower portion of the hot water tank flows into the heat pump heating heat exchanger by driving the water circulation pump, and the circulating water receives heat of condensation of the condenser provided in the refrigerant circuit. The temperature rises, and then flows into the hot water storage tank again from the upper part of the hot water storage tank through an electric heater heating heat exchanger provided next. By repeating this circulation, the water temperature in the hot water storage tank rises. At this time, if the outside air temperature in winter decreases and frost forms on the air heat exchanger to reduce the heating capacity of the refrigerant circuit, the first temperature detector detects the frost formation state, and the detection signal indicates the frost formation state. At the same time as the flow direction of the refrigerant in the valve is switched, energization of the electric heater of the electric heater heating heat exchanger is controlled. At that time, the condenser that originally performs a condensing operation of the refrigerant circuit is changed to an evaporator that performs an evaporating operation,
The refrigerant therein takes heat from the hot water sent from the hot water storage tank by the water circulation pump through the heat pump heating heat exchanger, evaporates and evaporates, and flows into the compressor through the four-way valve. The gaseous refrigerant is compressed therein and flows into the air heat exchanger, where the heat generated by the condensation of the air heat exchanger, the heat taken from the hot water, and the compression heat of the compressor are obtained. To dissolve the frost and condense and liquefy at the same time, pass through the check valve, and return to the condenser provided inside the heat pump heating heat exchanger. On the other hand, in the hot water supply circuit, water whose temperature has been reduced due to heat deprived by the heat pump heating heat exchanger is detected by the third temperature detector, and the detected temperature and the second temperature detection provided in the upper part of the hot water storage tank are detected. The input of the electric heater is controlled so that the hot water temperature after passing through the electric heater heating heat exchanger becomes substantially equal to the temperature detected by the second temperature detector from the difference from the detected temperature of the heater. Therefore, the cooled water does not flow into the high-temperature water existing above the hot water storage tank. Further, when the heat storage amount is insufficient for the hot water supply load, that is, when the hot water temperature is low, the hot water heated by the heat pump heating heat exchanger is further heated by the electric heater heating heat exchanger, so that Hot water can be obtained, and hot water can be directly discharged to the terminal.

実施例 以下、本発明の一実施例について第1図を参照しなが
ら説明する。
Embodiment An embodiment of the present invention will be described below with reference to FIG.

図において、実線矢印はヒートポンプ加熱運転時の冷
媒の流れ方向を、一点鎖線矢印は除霜運転時の冷媒の流
れ方向を示す。冷媒回路1A(ヒートポンプ)は圧縮機1
と、ヒートポンプ加熱運転除霜運転の冷媒の流れ方向を
図に示す両矢印方向に切換える四方弁2と、そしてヒー
トポンプ加熱運転時は凝縮作用をして、ヒートポンプ除
霜運転時は蒸発作用を行なう凝縮器3とを連結し、さら
に、この凝縮器3に減圧装置4とともにこの減圧装置4
と並列に設け、かつ、ヒートポンプ除霜運転時には図に
示す一点鎖線矢印方向に冷媒を流す逆止弁5とを連結
し、これら減圧装置4と逆止弁5とを冷媒の吸熱と放熱
の両作用を有する空気熱交換器6を順次連結して密閉回
路にし、冷媒を封入している。そして、前記空気熱交換
器6の冷媒入口部、つまり前記冷媒回路1Aのヒートポン
プ加熱運転時の前記空気熱交換器6の冷媒入口部に第1
の温度検知器7を設けて、この第1の温度検知器7の検
知信号により、前記四方弁2の切換え動作と後述給湯回
路9Aの電気ヒータ8の入力を制御している。
In the drawing, solid arrows indicate the flow direction of the refrigerant during the heat pump heating operation, and dashed-dotted arrows indicate the flow direction of the refrigerant during the defrost operation. Refrigerant circuit 1A (heat pump) is compressor 1
And a four-way valve 2 for switching the flow direction of the refrigerant in the heat pump heating operation and the defrosting operation in the direction of the double arrow shown in the figure. The condenser 3 is connected to the condenser 3, and the condenser 3 and the
And a check valve 5 that allows the refrigerant to flow in the direction of an alternate long and short dash line shown in the drawing during the heat pump defrosting operation, and connects the pressure reducing device 4 and the check valve 5 to both heat absorption and heat release of the refrigerant. The air heat exchangers 6 having functions are sequentially connected to form a closed circuit, and a refrigerant is sealed. The first refrigerant inlet portion of the air heat exchanger 6, that is, the first refrigerant inlet portion of the air heat exchanger 6 during the heat pump heating operation of the refrigerant circuit 1A.
The switching operation of the four-way valve 2 and the input of the electric heater 8 of the hot water supply circuit 9A described later are controlled by the detection signal of the first temperature detector 7.

一方、給湯回路9Aは、温水を貯蔵する貯湯槽9の下部
に貯湯槽9内の水を循環する水循環ポンプ10を接続し、
この水循環ポンプ10の出口部は、前記冷媒回路1Aに設け
た凝縮器3を内設して凝縮器3と熱交換関係を有するヒ
ートポンプ加熱熱交換器11を接続している。そして、こ
のヒートポンプ加熱熱交換器11の他端に、電気ヒータ8
などを内蔵した電気ヒータ加熱熱交換器12を連結し、さ
らに、この電気ヒータ加熱熱交換器12の他端を前記貯湯
槽9上部に接続して、水の循環回路とともに出湯できる
構成にしている。そして、前記貯湯槽9の上部に第2の
温度検知器を設けるとともに、前記ヒートポンプ加熱熱
交換器11と電気ヒータ加熱熱交換器12の間に第3の温度
検知器を設け、前記第2の温度検知器13と前記第3の温
度検知器14の検出温度差の信号によって前記電気ヒータ
8の入力を制御している。
On the other hand, the hot water supply circuit 9A connects a water circulation pump 10 for circulating water in the hot water tank 9 to a lower portion of the hot water tank 9 for storing hot water,
The outlet of the water circulation pump 10 is connected to a heat pump heating heat exchanger 11 having a heat exchange relationship with the condenser 3 provided inside the condenser 3 provided in the refrigerant circuit 1A. An electric heater 8 is connected to the other end of the heat pump heating heat exchanger 11.
And the other end of the electric heater heating heat exchanger 12 is connected to the upper part of the hot water storage tank 9 so that hot water can be discharged together with the water circulation circuit. . A second temperature detector is provided above the hot water storage tank 9, and a third temperature detector is provided between the heat pump heating heat exchanger 11 and the electric heater heating heat exchanger 12, and the second temperature detector is provided. The input of the electric heater 8 is controlled by the signal of the detected temperature difference between the temperature detector 13 and the third temperature detector 14.

次に上記構成における動作を説明する。 Next, the operation in the above configuration will be described.

まずヒートポンプ加熱運転時については、冷媒回路1A
の圧縮機1が駆動すると冷媒が圧縮されて高温高圧の冷
媒ガスが発生する。この冷媒ガスは四方弁2を通って、
凝縮器3に流入し、ここで凝縮による液化作用を受けて
熱を発生する。そして、この液化した冷媒は減圧装置4
に流入して低圧となり、空気熱交換器6に流入して、空
気熱を吸熱し、蒸発ガス化して、前記四方弁2を介して
前記圧縮機1にもどり、冷媒回路1Aのヒートポンプ運転
の1サイクルを完了する。一方、給湯回路9Aでは、水循
環ポンプ10の駆動によって送られてきた貯湯槽9下部の
低温水はヒートポンプ加熱熱交換器11に流入し、この中
で凝縮器3から発生する凝縮熱を受けて昇温し、次に設
けた電気ヒータ加熱熱交換器12を通って、前記貯湯槽9
の上部に流入および外部に出湯する。そして、これらの
運転の継続によって前記貯湯槽9の水を沸き上げていく
ようにしている。
First, during the heat pump heating operation, the refrigerant circuit 1A
When the compressor 1 is driven, the refrigerant is compressed and a high-temperature and high-pressure refrigerant gas is generated. This refrigerant gas passes through the four-way valve 2,
It flows into the condenser 3, where it undergoes liquefaction by condensation to generate heat. The liquefied refrigerant is supplied to the pressure reducing device 4
Into the air heat exchanger 6, absorbs the heat of the air, evaporates and gasifies, returns to the compressor 1 through the four-way valve 2, and performs the heat pump operation of the refrigerant circuit 1A. Complete the cycle. On the other hand, in the hot water supply circuit 9A, the low-temperature water in the lower part of the hot water storage tank 9 sent by the driving of the water circulation pump 10 flows into the heat pump heating heat exchanger 11, and receives the condensing heat generated from the condenser 3 and rises. The hot water storage tank 9 is heated and then passed through an electric heater heating heat exchanger 12 provided next.
The water flows into the upper part and flows out to the outside. Then, by continuing these operations, the water in the hot water storage tank 9 is boiled.

次に、除霜運転時の動作については、上記のヒートポ
ンプ加熱運転時において、冬季など外気温度が低い場合
には、前記空気熱交換器6を流れる冷媒の温度が低いた
め、前記空気熱交換器6に霜が付き、熱交換特性が低下
する。この着霜の状態でさらに運転を継続すると、冷媒
温度が徐々に低下してこの冷媒の吸熱が少なくなり運転
効率が低下する。したがって、この現象を防止するた
め、着霜によって変化した空気熱交換器6の冷媒温度を
その冷媒入口側に設けた第1の温度検知器7で検知し、
この検知信号によって前記四方弁2の冷媒の流れ方向を
図の一点鎖線方向に切換え制御し、同時に前記電気ヒー
タ8の入力を制御して通電を開始する。この際、ガス状
の冷媒は前記圧縮機1で圧縮されて前記四方弁2を通
り、前記空気熱交換器6に流入する。そして、ここで空
気熱交換器6の凝縮作用を受けて凝縮熱を放熱し、前記
空気熱交換器6に付着した霜を融解(除霜)して同時に
前記ガス状の冷媒は凝縮作用によって液化し、前記逆止
弁5を通って前記凝縮器3に流入する。ここで、この冷
媒は前記ヒートポンプ加熱熱交換器11を介して、前記貯
湯槽9から送られてきた温水より熱を奪い、蒸発ガス化
した冷媒となって前記四方弁2を通り前記圧縮機1にも
どる。一方、給湯回路9Aでは、前記ヒートポンプ加熱熱
交換器11で熱を奪われ低温となった水が前記電気ヒータ
加熱熱交換器12に流入する。ここで、前記電気ヒータ8
は前述の第1の温度検知器7の信号により通電されてい
るためにこの流入水を加熱することになる。その際に、
前記第3の温度検知器14はヒートポンプ加熱熱交換器11
の出口の低い水温を検知すると同時に前記第2の温度検
知器13による貯湯槽9上部の湯温の検知結果と比較し
て、前記第3の温度検知器14の検知温度と前記第2図の
温度検知器13の検知温度の温度差から、電気ヒータ加熱
熱交換器通過後の湯温が前記第2の温度検知器13で検知
した温度と略等しくなるように前記電気ヒータ8の入力
を制御するため、前記電気ヒータ加熱熱交換器12で加熱
された温水は、前記貯湯槽9上部の高温水を冷却させる
ことなく、その中に流入させることができる。
Next, regarding the operation at the time of the defrosting operation, the temperature of the refrigerant flowing through the air heat exchanger 6 is low when the outside air temperature is low, such as in winter, during the heat pump heating operation, so that the air heat exchanger 6 is frosted and the heat exchange characteristics are reduced. If the operation is further continued in this frosted state, the temperature of the refrigerant gradually decreases, the heat absorption of the refrigerant decreases, and the operation efficiency decreases. Therefore, in order to prevent this phenomenon, the first temperature detector 7 provided on the refrigerant inlet side detects the refrigerant temperature of the air heat exchanger 6 changed by frosting,
Based on this detection signal, the flow direction of the refrigerant in the four-way valve 2 is controlled to be switched in the direction of the dashed line in FIG. At this time, the gaseous refrigerant is compressed by the compressor 1, passes through the four-way valve 2, and flows into the air heat exchanger 6. Then, here, the condensing action of the air heat exchanger 6 is performed to radiate the heat of condensation, and the frost attached to the air heat exchanger 6 is melted (defrosted), and at the same time, the gaseous refrigerant is liquefied by the condensing action. Then, it flows into the condenser 3 through the check valve 5. Here, the refrigerant takes heat from the hot water sent from the hot water storage tank 9 through the heat pump heating heat exchanger 11 and turns into a vaporized gaseous refrigerant, passes through the four-way valve 2 and passes through the compressor 1. Go back. On the other hand, in the hot water supply circuit 9A, water which has been deprived of heat by the heat pump heating heat exchanger 11 and has become low temperature flows into the electric heater heating heat exchanger 12. Here, the electric heater 8
Is heated by the above-mentioned signal of the first temperature detector 7, so that the inflow water is heated. At that time,
The third temperature detector 14 is a heat pump heating heat exchanger 11
At the same time as detecting the low water temperature at the outlet of the tank, and comparing the result of detection of the temperature of the hot water above the hot water storage tank 9 by the second temperature detector 13 with the temperature detected by the third temperature detector 14 as shown in FIG. The input of the electric heater 8 is controlled such that the temperature of the hot water after passing through the electric heater heating heat exchanger is substantially equal to the temperature detected by the second temperature detector 13 from the temperature difference between the detected temperatures of the temperature detectors 13. Therefore, the hot water heated by the electric heater heating heat exchanger 12 can flow into the hot water storage tank 9 without cooling the high temperature water.

また、前記貯湯槽9内の湯温をさらに高温化する場合
とか、前記貯湯槽9内の湯が出湯されて不足し、湯温が
低くなった場合には、前記ヒートポンプ加熱熱交換器11
で加熱した温水をさらに前記電気ヒータ加熱熱交換器12
で加熱して高温度にし、前記貯湯槽9に貯えたり、ある
いは、そのまま端末に出湯することもできる。したがっ
て、出湯などの必要な湯量だけヒータ通電をするように
しているため、経済的であるとともに前記貯湯槽9を小
型化することができる。
Further, when the temperature of the hot water in the hot water storage tank 9 is further increased, or when the hot water in the hot water storage tank 9 is insufficient due to the hot water being supplied and the hot water temperature is low, the heat pump heating heat exchanger 11 is used.
The hot water heated in
And heated to a high temperature and stored in the hot water storage tank 9 or the hot water can be directly discharged to the terminal. Therefore, the heater is energized only for the required amount of hot water such as hot water, so that it is economical and the size of the hot water storage tank 9 can be reduced.

発明の効果 以上の実施例の説明から明らかなように本発明のヒー
トポンプ給湯装置によれば、圧縮機と、四方弁と、凝縮
器と、減圧装置と、前記減圧装置と並列に配設した逆止
弁と、空気熱交換器とを順次連結した冷媒密閉回路を有
し、前記空気熱交換器の冷媒入口部に設けた第1の温度
検知器と、第2の温度検知器を上部に有する貯湯槽と、
前記貯湯槽下部と接続する水循環ポンプと、前記凝縮器
と熱交換関係を有するヒートポンプ加熱熱交換器と、一
端を前記ヒートポンプ加熱熱交換器に接続し、他端を前
記貯湯槽上部と接続する電気ヒータ加熱熱交換器を順次
連結した給湯回路と、前記ヒートポンプ加熱熱交換器と
前記電気ヒータ加熱熱交換器の中間に設けた第3の温度
検知器とで構成し、前記第1の温度検知器の信号によっ
て前記四方弁の冷媒の流れ方向を切換えるとともに、前
記電気ヒータ加熱熱交換器に設けた電気ヒータに通電
し、さらに、第2の温度検知器と前記第3の温度検知器
によって各々検知した温度の差から、前記電気ヒータ加
熱熱交換器通過後の湯温が前記第2の温度検知器で検知
した温度と略等しくなるように前記電気ヒータの入力を
制御する構成とすることにより、冬季など外気温が低下
して空気熱交換器が着霜しても、第1の温度検知器の信
号によって除霜運転が行われるとともに、除霜運転中も
ヒートポンプ加熱熱交換器内で温度低下した湯がそのま
ま貯湯槽上部に流されずに常に貯湯槽上部の湯温と同じ
になるように貯湯槽前に設けた電気ヒータ加熱熱交換器
の電気ヒータと第2,第3の温度検知器の信号により昇温
制御されるため、冬季などの外気温の低下に関係なく一
定の湯温を得ることができる。
According to the heat pump water heater of the present invention, as apparent from the above description of the embodiment, the compressor, the four-way valve, the condenser, the pressure reducing device, and the reverse device arranged in parallel with the pressure reducing device. It has a refrigerant closed circuit in which a stop valve and an air heat exchanger are sequentially connected, and has a first temperature detector provided at a refrigerant inlet of the air heat exchanger and a second temperature detector at an upper portion. A hot water tank,
A water circulation pump connected to the lower part of the hot water tank, a heat pump heating heat exchanger having a heat exchange relationship with the condenser, and an electric power having one end connected to the heat pump heating heat exchanger and the other end connected to the upper part of the hot water tank. A hot water supply circuit in which heater heating heat exchangers are sequentially connected, and a third temperature detector provided between the heat pump heating heat exchanger and the electric heater heating heat exchanger, wherein the first temperature detector The flow direction of the refrigerant of the four-way valve is switched by the signal of the above, the electric heater provided in the electric heater heating heat exchanger is energized, and further detected by the second temperature detector and the third temperature detector. The input of the electric heater is controlled such that the temperature of the hot water after passing through the electric heater heating heat exchanger is substantially equal to the temperature detected by the second temperature detector from the difference between the temperatures thus obtained. Thus, even if the outside air temperature decreases in winter or the like and the air heat exchanger is frosted, the defrosting operation is performed by the signal of the first temperature detector, and the inside of the heat pump heating heat exchanger is also operated during the defrosting operation. The second and third electric heaters of the electric heater heating heat exchanger provided in front of the hot water tank so that the hot water whose temperature has dropped in Since the temperature is controlled by a signal from the temperature detector, a constant hot water temperature can be obtained irrespective of a decrease in outside air temperature in winter or the like.

またより高い給湯温度を得たい場合とか、出湯によっ
て水が供給され貯湯槽内の湯温が低下した場合には、ヒ
ートポンプ加熱熱交換器で加熱された温水をさらに電気
ヒータ加熱熱交換器で加熱することができるとともに、
出湯に必要な温度や量に応じて加熱ができるため、経済
的であり、貯湯槽の小型化を図ることができる。
If you want to obtain a higher hot water supply temperature, or if water is supplied by tapping and the temperature of the hot water in the hot water storage tank decreases, the hot water heated by the heat pump heating heat exchanger is further heated by an electric heater heating heat exchanger. Be able to
Since heating can be performed according to the temperature and amount required for tapping, it is economical and the size of the hot water storage tank can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の一実施例のヒートポンプ給湯装置の回
路構成図、第2図は従来のヒートポンプ給湯装置の回路
構成図である。 1……圧縮機、2……四方弁、3……凝縮器、4……減
圧装置、5……逆止弁、6…空気熱交換器、7……第1
の温度検知器、8……電気ヒータ、9……貯湯槽、10…
…水循環ポンプ、11……ヒートポンプ加熱熱交換器、12
……電気ヒータ加熱熱交換器、13……第2の温度検知
器、14……第3の温度検知器。
FIG. 1 is a circuit diagram of a heat pump water heater according to one embodiment of the present invention, and FIG. 2 is a circuit diagram of a conventional heat pump water heater. DESCRIPTION OF SYMBOLS 1 ... Compressor, 2 ... Four-way valve, 3 ... Condenser, 4 ... Decompression device, 5 ... Check valve, 6 ... Air heat exchanger, 7 ... First
Temperature detector, 8 ... electric heater, 9 ... hot water tank, 10 ...
… Water circulation pump, 11 …… Heat pump heating heat exchanger, 12
... electric heater heating heat exchanger, 13 ... second temperature detector, 14 ... third temperature detector.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) F24D 17/00 F24H 1/00 F25B 1/00 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int. Cl. 6 , DB name) F24D 17/00 F24H 1/00 F25B 1/00

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】圧縮機と、四方弁と、凝縮器と、減圧装置
と、前記減圧装置と並列に配設した逆止弁と、空気熱交
換器とを順次連結した冷媒密閉回路を備え、前記空気熱
交換器の冷媒入口部に設けた第1の温度検知器と、第2
の温度検知器を上部に有する貯湯槽と、前記貯湯槽下部
と接続する水循環ポンプと、前記凝縮器と熱交換関係を
有するヒートポンプ加熱熱交換器と、一端を前記ヒート
ポンプ加熱熱交換器に接続し、他端を前記貯湯槽上部と
接続する電気ヒータ加熱熱交換器を順次連結した給湯回
路を備え、前記ヒートポンプ加熱熱交換器と前記電気ヒ
ータ加熱熱交換器の間に第3の温度検知器を設け、前記
第1の温度検知器の信号によって前記四方弁の冷媒の流
れ方向を切換えるとともに、前記電気ヒータ加熱熱交換
器に設けた電気ヒータに通電し、さらに第2の温度検知
器と前記第3の温度検知器によって各々検知した温度の
差から、前記電気ヒータ加熱熱交換器通過後の湯温が前
記第2の温度検知器で検知した温度と略等しくなるよう
に前記電気ヒータの入力を制御するヒートポンプ給湯装
置。
1. A refrigerant closed circuit in which a compressor, a four-way valve, a condenser, a pressure reducing device, a check valve disposed in parallel with the pressure reducing device, and an air heat exchanger are sequentially connected. A first temperature detector provided at a refrigerant inlet of the air heat exchanger;
A hot water storage tank having an upper temperature detector, a water circulation pump connected to the lower part of the hot water tank, a heat pump heating heat exchanger having a heat exchange relationship with the condenser, and one end connected to the heat pump heating heat exchanger. A hot water supply circuit in which an electric heater heating heat exchanger having the other end connected to the upper part of the hot water storage tank is sequentially connected, and a third temperature detector is provided between the heat pump heating heat exchanger and the electric heater heating heat exchanger. And switching the flow direction of the refrigerant in the four-way valve according to the signal of the first temperature detector, energizing the electric heater provided in the electric heater heating heat exchanger, and further connecting the second temperature detector and the second The electric heater so that the temperature of the hot water after passing through the electric heater heating heat exchanger becomes substantially equal to the temperature detected by the second temperature detector based on the difference between the temperatures detected by the respective temperature detectors. Heat pump hot water supply device for controlling the input.
JP502990A 1990-01-12 1990-01-12 Heat pump water heater Expired - Fee Related JP2906508B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP502990A JP2906508B2 (en) 1990-01-12 1990-01-12 Heat pump water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP502990A JP2906508B2 (en) 1990-01-12 1990-01-12 Heat pump water heater

Publications (2)

Publication Number Publication Date
JPH03211359A JPH03211359A (en) 1991-09-17
JP2906508B2 true JP2906508B2 (en) 1999-06-21

Family

ID=11600059

Family Applications (1)

Application Number Title Priority Date Filing Date
JP502990A Expired - Fee Related JP2906508B2 (en) 1990-01-12 1990-01-12 Heat pump water heater

Country Status (1)

Country Link
JP (1) JP2906508B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2505940B1 (en) * 2009-11-25 2018-07-25 Mitsubishi Electric Corporation Auxiliary heater control device and heated fluid using system and auxiliary heater control method
DK179964B1 (en) * 2018-05-17 2019-11-07 Danfoss A/S Domestic water re-heating
CN112240599A (en) * 2019-07-17 2021-01-19 青岛经济技术开发区海尔热水器有限公司 Zero-cold-water gas heating equipment and heating and hot water supplying system

Also Published As

Publication number Publication date
JPH03211359A (en) 1991-09-17

Similar Documents

Publication Publication Date Title
US5467812A (en) Air conditioning system with thermal energy storage and load leveling capacity
KR930002429B1 (en) Refrigerating cycle apparatus
JP5094942B2 (en) Heat pump equipment
JP2003075009A (en) Heat pump system
JP2002243276A (en) Heat pump water heater
KR20120125857A (en) Heat storaging apparatus having cascade cycle and Control process of the same
JP2015068564A (en) Heat pump system and heat pump type water heater
WO2006114983A1 (en) Refrigeration cycle device
JP2906508B2 (en) Heat pump water heater
CN212511905U (en) Refrigeration system
JPH01208674A (en) Heat pump type hot water, heating and cooling machine
JP3289373B2 (en) Heat pump water heater
JP2504416B2 (en) Refrigeration cycle
JPH03125856A (en) Heat pump hot water feeder
JPH0686958B2 (en) Solar water heater
JP2976431B2 (en) Heat pump type air conditioner
JP2842471B2 (en) Thermal storage type air conditioner
JP3019732B2 (en) Heat pump water heater
JPS5856528Y2 (en) Refrigeration equipment
JPH10141798A (en) Heat pump apparatus
JPS63148063A (en) Defrostation controller for heat pump type air conditioner
JP2743704B2 (en) Heat pump water heater
JPS6360305B2 (en)
JP2000356428A (en) Heat storage air conditioner
JPS6018895B2 (en) Solar heat pump air conditioner

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees