JP2003075009A - Heat pump system - Google Patents

Heat pump system

Info

Publication number
JP2003075009A
JP2003075009A JP2002219687A JP2002219687A JP2003075009A JP 2003075009 A JP2003075009 A JP 2003075009A JP 2002219687 A JP2002219687 A JP 2002219687A JP 2002219687 A JP2002219687 A JP 2002219687A JP 2003075009 A JP2003075009 A JP 2003075009A
Authority
JP
Japan
Prior art keywords
heat exchanger
heat
heating
storage tank
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002219687A
Other languages
Japanese (ja)
Other versions
JP3662557B2 (en
Inventor
Kumushu Chin
▲クム▼ 洙 陳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of JP2003075009A publication Critical patent/JP2003075009A/en
Application granted granted Critical
Publication of JP3662557B2 publication Critical patent/JP3662557B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/02Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/021Indoor unit or outdoor unit with auxiliary heat exchanger not forming part of the indoor or outdoor unit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/031Sensor arrangements
    • F25B2313/0315Temperature sensors near the outdoor heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/24Storage receiver heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/006Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass for preventing frost
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a heat pump system that is constituted to improve the evaporation of a refrigerant liquid by means of an outdoor heat exchanger even when the outdoor air temperature is low when the system is operated for heating, to increase the coefficient of performance by improving the condensation of refrigerant vapor by means of the outdoor heat exchanger even when the outdoor air temperature is high when the system is operated for cooling, and to additionally increase the coefficient of performance by making wet refrigerant vapor sucked into a compressor to become dry saturated vapor or superheated vapor. SOLUTION: A heat storage tank 10 is set up between the expansion valve 5 for cooling and expansion valve 6 for heating of a fundamental refrigerating circuit and a heating medium is heated by means of the refrigerant liquid discharged from an indoor or outdoor heat exchanger (4 or 7) which works as a condenser. The outdoor air sucked into the outdoor heat exchanger 7 is heated or cooled by supplying the heated heating medium to a heat exchanger 20 installed to the inlet section of the outdoor heat exchanger 7.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明はヒートポンプシステ
ムに関し、より詳細には空気を熱源として用いるヒート
ポンプシステムに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat pump system, and more particularly to a heat pump system using air as a heat source.

【0002】[0002]

【従来の技術】周知の如く、ヒートポンプシステムは、
圧縮機、四方弁、室内熱交換器、膨張弁、室外熱交換器
及び前記四方弁を導管で順次連結し、前記四方弁と圧縮
機を吸入導管で連結する。これにより、加熱運転の際に
は、四方弁を、圧縮機で圧縮された高温・高圧の冷媒蒸
気が室内熱交換器側へ流れるように操作し、高温・高圧
の冷媒蒸気を凝縮器として作用する室内熱交換器で凝縮
して、その凝縮熱を流体と熱交換させることにより、温
水を生成し或いは室内空気を加熱して暖房または乾燥機
能を行い、室内熱交換器で凝縮された高温・高圧の冷媒
液を膨張弁で膨張させた後、蒸発器として作用する室外
熱交換器で空気(外気)を熱源として蒸発させて低温・
低圧の冷媒蒸気にした後、圧縮機で吸入して再圧縮する
サイクルを繰り返す。
As is well known, heat pump systems include
The compressor, the four-way valve, the indoor heat exchanger, the expansion valve, the outdoor heat exchanger and the four-way valve are sequentially connected by a conduit, and the four-way valve and the compressor are connected by an intake conduit. As a result, during heating operation, the four-way valve is operated so that the high temperature / high pressure refrigerant vapor compressed by the compressor flows to the indoor heat exchanger side, and the high temperature / high pressure refrigerant vapor acts as a condenser. By condensing in the indoor heat exchanger and exchanging the heat of condensation with the fluid, hot water is generated or indoor air is heated to perform a heating or drying function, and the high temperature After the high-pressure refrigerant liquid is expanded by the expansion valve, the outdoor heat exchanger that acts as an evaporator evaporates air (outside air) as a heat source to lower the temperature.
After the low-pressure refrigerant vapor is drawn, the cycle of sucking in the compressor and re-compressing is repeated.

【0003】一方、冷却運転の際には、四方弁を、圧縮
機で圧縮された高温・高圧の冷媒蒸気が室外熱交換器側
へ流れるように操作し、高温・高圧の冷媒蒸気を、凝縮
器として作用する室外熱交換器で空気を熱源として凝縮
させ、室外熱交換器で凝縮された高温・高圧の冷媒液を
膨張弁で膨張させた後、蒸発器として作用する室内熱交
換器で冷媒液が蒸発されるときにその蒸発熱を流体に吸
収させることにより、冷水を生成し或いは室内空気を冷
却して冷房などを行い、室内熱交換器で蒸発された低温
・低圧の冷媒蒸気を圧縮機で吸入して再圧縮するサイク
ルを繰り返す。
On the other hand, during the cooling operation, the four-way valve is operated so that the high-temperature / high-pressure refrigerant vapor compressed by the compressor flows to the outdoor heat exchanger side to condense the high-temperature / high-pressure refrigerant vapor. Air is condensed as a heat source in the outdoor heat exchanger that acts as a heat exchanger, the high-temperature, high-pressure refrigerant liquid condensed in the outdoor heat exchanger is expanded by the expansion valve, and then the refrigerant in the indoor heat exchanger that acts as an evaporator. When the liquid is evaporated, the heat of evaporation is absorbed by the fluid to generate cold water or cool the indoor air to perform cooling, etc., and compress the low-temperature low-pressure refrigerant vapor evaporated in the indoor heat exchanger. Repeat the cycle of inhaling with a machine and recompressing.

【0004】前記ヒートポンプシステムは、加熱運転の
場合、室外熱交換器で外気を熱源として冷媒液を蒸発さ
せるときに外気温が低ければ、室外熱交換器の表面に霜
が付くことにより、冷媒液の蒸発が良好でなくて加熱能
力が著しく低下するため、蒸発器における冷媒液の蒸発
を助長するか或いは圧縮機に吸入される冷媒蒸気の蒸発
促進に多くの能力を注いでいる。
In the heat pump system, in the heating operation, when the outside air temperature is low when the outdoor heat exchanger uses the outdoor air as a heat source to evaporate the refrigerant liquid, frost is formed on the surface of the outdoor heat exchanger to cause the refrigerant liquid to flow. However, since the evaporation efficiency of the refrigerant is not good and the heating capacity is significantly reduced, a large amount of capacity is put into promoting the evaporation of the refrigerant liquid in the evaporator or promoting the evaporation of the refrigerant vapor sucked into the compressor.

【0005】その一例として、日本国特開昭54−45
949号公報には、暖房回路中に冷媒加熱器を設置して
暖房運転時に蒸発器として兼用できるようにし、圧縮機
で圧縮された高温・高圧の冷媒蒸気を室内熱交換器で凝
縮して室内を暖房した後、暖房用減圧機構で減圧された
冷媒液を冷媒加熱器で蒸発させることにより、外気温が
低い場合でも暖房能力が低下しないようにした冷・暖房
装置が開示されている。
As an example, Japanese Patent Laid-Open No. 54-45
According to Japanese Patent Publication No. 949, a refrigerant heater is installed in a heating circuit so that it can be used also as an evaporator during heating operation, and high-temperature and high-pressure refrigerant vapor compressed by a compressor is condensed by an indoor heat exchanger to make it indoors. There is disclosed a cooling / heating device in which the heating capacity is not lowered even when the outside air temperature is low by heating the room and then evaporating the refrigerant liquid depressurized by the heating depressurization mechanism by the refrigerant heater.

【0006】また、日本国特公昭55−5017号公報
には、室外側熱交換器を複数個設置し、冷房時には前記
複数個の室外側熱交換器を同時に凝縮器として、暖房時
には蒸発器として作用させる第1サイクルと、圧縮機か
ら室内側熱交換器に流れる高温・高圧の冷媒蒸気の一部
を分流させて前記複数個の室外熱交換器に直接導入し、
前記室外熱交換器の一方を凝縮器、他方を蒸発器として
交互に作用させる第2サイクルを切り換える流路切換装
置を備えたヒートポンプ式冷・暖房装置が開示されてい
る。
In Japanese Patent Publication No. 55-5017, a plurality of outdoor heat exchangers are installed, the plurality of outdoor heat exchangers are simultaneously used as condensers during cooling, and are used as evaporators during heating. The first cycle to be operated, and a part of the high-temperature and high-pressure refrigerant vapor flowing from the compressor to the indoor heat exchanger is diverted and directly introduced into the plurality of outdoor heat exchangers,
There is disclosed a heat pump type cooling / heating device including a flow path switching device that switches a second cycle in which one of the outdoor heat exchangers acts as a condenser and the other acts as an evaporator alternately.

【0007】また、本発明者は、圧縮機、変換バルブ、
室内熱交換器、冷房用減圧機構、暖房用減圧機構及び室
外熱交換器を第1導管と冷媒ガス戻り管で連結した冷媒
回路において、前記第1導管の前記室内熱交換器と暖房
用減圧機構との間に設置した第1熱交換器と、前記第1
導管の前記室外熱交換器と変換バルブとの間に、前記第
1熱交換器より上方に位置するように設置され、前記第
1熱交換器とバルブ付き連結管で連結されて閉回路を形
成するた第2熱交換器とを備えると共に、前記第1及び
第2熱交換器に作動流体を充填し、前記室内熱交換器で
凝縮される冷媒液からの熱を熱源として圧縮機に吸入さ
れる冷媒液及び冷媒蒸気の蒸発を促進するようにしたヒ
ートポンプ式空気調和機を日本特許第3,120,234
号で提案したことがある。
Further, the inventor of the present invention has found that the compressor, the conversion valve,
In a refrigerant circuit in which an indoor heat exchanger, a cooling decompression mechanism, a heating decompression mechanism, and an outdoor heat exchanger are connected to a first conduit by a refrigerant gas return pipe, the indoor heat exchanger of the first conduit and the heating decompression mechanism A first heat exchanger installed between the first heat exchanger and the first heat exchanger;
The conduit is installed between the outdoor heat exchanger and the conversion valve so as to be located above the first heat exchanger, and is connected to the first heat exchanger by a connecting pipe with a valve to form a closed circuit. A second heat exchanger, the first and second heat exchangers are filled with a working fluid, and the heat from the refrigerant liquid condensed in the indoor heat exchanger is taken as a heat source into the compressor. A heat pump type air conditioner for promoting evaporation of a refrigerant liquid and a refrigerant vapor is
I made a proposal in the issue.

【0008】一方、上述したヒートポンプシステムは、
室外熱交換器で外気を熱源として冷媒液を蒸発させるか
或いは冷媒蒸気を凝縮させるものなので、その容量は室
外熱交換器から伝達される熱量によって決定され、室外
熱交換器の熱伝達面積は室内熱交換器の熱伝達面積の
1.2〜1.4倍に設計することが当業界で知られている
事実である。
On the other hand, the heat pump system described above is
Since the outdoor heat exchanger evaporates the refrigerant liquid or condenses the refrigerant vapor by using the outside air as the heat source, its capacity is determined by the amount of heat transferred from the outdoor heat exchanger, and the heat transfer area of the outdoor heat exchanger is the indoor It is a fact known in the art to design the heat exchanger to have a heat transfer area of 1.2 to 1.4 times.

【0009】[0009]

【発明が解決しようとする課題】ところで、前記日本国
特開昭54−45949号公報に記載のものは、暖房運
転時に冷媒加熱器を蒸発器として兼用できるようになっ
ているが、その冷媒加熱器の具体的な技術手段が記載さ
れていないところ、蒸発器の構造上、体積が小さく且つ
設置が容易な電熱構造を用いるほかはないので、維持費
が高くなり、日本国特公昭55−5017号公報に記載
のものは、暖房時に外気温が低下して室外側熱交換器に
霜が付いた場合、圧縮機で圧縮された高温・高圧の冷媒
蒸気の一部を分流して使用するため、圧縮機を大容量に
しなければならないため、設備費及び維持費が高くなる
という問題点がある。さらに、本発明者の先特許も、外
気温が低い場合、室外熱交換器で冷媒液の蒸発が充分で
なく、酷寒期には補助加熱手段を用いるべきなので、そ
の構造が複雑で且つ維持費が高くかかるという問題点が
ある。それだけでなく、上述した特許らは、酷寒期に室
外熱交換器における冷媒液の蒸発が低調であるから、成
積係数(COP;coefficient of performance)が低下し
て加熱効率が劣るという問題点がある。
By the way, the above-mentioned Japanese Patent Laid-Open Publication No. 54-45949 of Japan is designed such that the refrigerant heater can also be used as the evaporator during the heating operation. Where no specific technical means of the vessel is described, the structure of the evaporator has no other choice but to use an electric heating structure which has a small volume and is easy to install. Therefore, the maintenance cost becomes high and the Japanese Patent Publication No. 55-5017. The one described in the gazette uses a part of the high-temperature and high-pressure refrigerant vapor compressed by the compressor when the outside air temperature drops during heating and frost is formed on the outdoor heat exchanger. However, since the compressor has to have a large capacity, there is a problem that the equipment cost and the maintenance cost increase. Further, the prior patent of the present inventor also shows that when the outdoor temperature is low, the evaporation of the refrigerant liquid is not sufficient in the outdoor heat exchanger, and the auxiliary heating means should be used during the severe cold season, so that the structure is complicated and the maintenance cost is low. There is a problem that the cost is high. Not only that, but the above-mentioned patents have a problem that the evaporation coefficient of the refrigerant liquid in the outdoor heat exchanger is low during the severe cold season, resulting in a decrease in the coefficient of performance (COP) and inferior heating efficiency. is there.

【0010】そして、冷却運転時に外気温が高いときに
は、室外熱交換器で凝縮される冷媒蒸気と外気との温度
差が小さくなることにより、冷媒蒸気の凝縮が不完全に
なって冷却負荷が減少する場合などには、室内熱交換器
で冷媒液の蒸発が不完全なので、湿り蒸気状態で圧縮機
に吸入されることにより、リキッドバック(liquid bac
k)が発生して圧縮機のバルブを損傷させる原因になり、
液圧縮によるリキッドハンマー(liquid hammer)が発生
して圧縮機が損傷することがあり、成積係数も低下す
る。
When the outside air temperature is high during the cooling operation, the temperature difference between the refrigerant vapor condensed in the outdoor heat exchanger and the outside air becomes small, so that the condensation of the refrigerant vapor becomes incomplete and the cooling load decreases. In this case, the evaporation of the refrigerant liquid in the indoor heat exchanger is incomplete, so the liquid in the liquid back
k) may occur and damage the valve of the compressor,
A liquid hammer may be generated due to liquid compression, which may damage the compressor, and the product coefficient may be reduced.

【0011】このような問題点を解消する一環として、
室外熱交換器を大容量とすることが考えられるが、この
場合は材料費が高く、設置面積を大きく占めるなどの他
の問題点が発生する。
As a part of solving these problems,
Although it may be considered that the outdoor heat exchanger has a large capacity, in this case, other problems such as a high material cost and a large installation area occur.

【0012】本発明は、かかる問題点を解決するための
もので、その目的は、加熱運転時に外気温が低い場合に
も室外熱交換器で冷媒液の蒸発を良好にし、冷却運転時
に外気温が高い場合にも室外熱交換器で冷媒蒸気の凝縮
を良好にして、成積係数を増大できるようにしたヒート
ポンプシステムを提供することにある。
The present invention is intended to solve such a problem, and its object is to improve the evaporation of the refrigerant liquid in the outdoor heat exchanger even when the outside air temperature is low during the heating operation and to allow the outside air temperature during the cooling operation. It is an object of the present invention to provide a heat pump system capable of increasing the productive coefficient by improving the condensation of the refrigerant vapor in the outdoor heat exchanger even when the temperature is high.

【0013】本発明の他の目的は、圧縮機に吸入される
湿り冷媒蒸気を乾き飽和または過熱蒸気化して成積係数
をさらに増大できるようにしたヒートポンプシステムを
提供することにある。
Another object of the present invention is to provide a heat pump system in which the wet refrigerant vapor sucked into the compressor is dried and saturated or superheated to further increase the product coefficient.

【0014】[0014]

【課題を解決するための手段】前記目的を達成するため
に、本発明は、圧縮機、四方弁、室内熱交換器、冷却用
膨張弁、加熱用膨張弁、室外熱交換器及び前記四方弁を
導管で順次連結し、前記四方弁と圧縮機を吸入導管で連
結した基本冷凍回路と、前記導管の冷却用膨張弁と加熱
用膨張弁との間に設置して熱媒体を充填し、潜熱蓄熱材
を内蔵した蓄熱槽と、前記蓄熱槽を貫通する前記導管に
設置した加熱熱交換器と、前記蓄熱槽に供給管及び循環
ポンプ付き帰還管で連結し、前記室外熱交換器の吸入側
に設置した熱交換器と、前記加熱熱交換器の外周に蒸発
部を設置し、前記蒸発部に連結管で連結された放熱部を
蓄熱槽の外部に位置させたヒートパイプと、前記吸入導
管に並設し、前記放熱部及び蓄熱槽に内蔵して、圧縮機
に吸入される冷媒蒸気の温度によって選択的に作用する
第1及び第2吸熱熱交換器とを含むヒートポンプシステ
ムを提供する。
To achieve the above object, the present invention provides a compressor, a four-way valve, an indoor heat exchanger, a cooling expansion valve, a heating expansion valve, an outdoor heat exchanger and the four-way valve. Are sequentially connected by a conduit, the four-way valve and the compressor are connected by a suction conduit to a basic refrigeration circuit, and the conduit is installed between a cooling expansion valve and a heating expansion valve to fill a heat medium with a latent heat. A heat storage tank containing a heat storage material, a heating heat exchanger installed in the conduit penetrating the heat storage tank, and a suction pipe of the outdoor heat exchanger that is connected to the heat storage tank by a supply pipe and a return pipe with a circulation pump. The heat exchanger installed in the heat exchanger, a heat pipe in which an evaporation unit is installed on the outer periphery of the heating heat exchanger, and a heat dissipation unit connected to the evaporation unit by a connecting pipe is located outside the heat storage tank; and the suction pipe. Refrigerant that is drawn into the compressor by being installed in parallel in the heat radiation section and the heat storage tank. Providing a heat pump system including a first and a second endothermic heat exchanger which acts selectively by the temperature of the air.

【0015】[0015]

【発明の実施の形態】図1は本発明の実施例を示す構成
図である。図1において、1は基本冷凍回路である。前
記基本冷凍回路1は、圧縮機2の吐出口、四方弁3、室
内熱交換器4、冷却用膨張弁5、加熱用膨張弁6、室外
熱交換器7及び前記四方弁3を導管8で順次連結し、前
記四方弁3と圧縮機2の吸入口を吸入導管9で連結し
て、加熱運転時には室内連結交換器4を凝縮器として、
室外熱交換器7を蒸発器として作用させ、冷却運転時に
は室外熱交換器7を凝縮器として、室内熱交換器4を蒸
発器として作用させるものである。
1 is a block diagram showing an embodiment of the present invention. In FIG. 1, reference numeral 1 is a basic refrigeration circuit. The basic refrigeration circuit 1 includes a discharge port of the compressor 2, a four-way valve 3, an indoor heat exchanger 4, a cooling expansion valve 5, a heating expansion valve 6, an outdoor heat exchanger 7 and the four-way valve 3 via a conduit 8. In this case, the four-way valve 3 and the suction port of the compressor 2 are connected by a suction conduit 9, and the indoor connection exchanger 4 is used as a condenser during heating operation.
The outdoor heat exchanger 7 acts as an evaporator, the outdoor heat exchanger 7 acts as a condenser, and the indoor heat exchanger 4 acts as an evaporator during a cooling operation.

【0016】10は蓄熱槽である。前記蓄熱槽10は前
記導管8の前記冷却用膨張弁5と加熱用膨張弁6との間
に設置し、前記蓄熱槽10内には前記導管8を貫通させ
て、前記導管8に設置した加熱交換器11を内蔵すると
共に、熱媒体12を充填してなるものである。そして、
前記蓄熱槽10には潜熱蓄熱材13を内蔵して熱媒体1
2の縮熱時間を延長し、その温度を一定に維持し、蓄熱
槽10の側壁にはヒータ14を設置して熱媒体12をさ
らに加熱する。
Reference numeral 10 is a heat storage tank. The heat storage tank 10 is installed between the cooling expansion valve 5 and the heating expansion valve 6 of the conduit 8, and the conduit 8 is penetrated into the heat storage tank 10 to heat the conduit 8. The exchanger 11 is built in and the heating medium 12 is filled. And
A latent heat storage material 13 is built in the heat storage tank 10 to form a heat medium 1
The heat reduction time of 2 is extended, the temperature is maintained constant, and the heater 14 is installed on the side wall of the heat storage tank 10 to further heat the heat medium 12.

【0017】前記潜熱蓄熱材13は硫酸塩、硝酸塩、リ
ン酸塩、炭酸塩、パラフィンなど公知のものを使用し、
27〜30°で相変化を起こすようにするものである。
As the latent heat storage material 13, known materials such as sulfate, nitrate, phosphate, carbonate and paraffin are used.
It is intended to cause a phase change at 27 to 30 °.

【0018】20は熱交換器である。前記熱交換器20
は、前記蓄熱槽10と供給管21及び帰還管22で連結
して前記室外熱交換器7の吸入側に一体に形成し或いは
近接設置し、帰還管22には循環ポンプ23を設置した
ものである。前記熱交換器20は、加熱運転時には、外
気温が5℃以下の場合、加熱熱交換器11の放熱によっ
て熱媒体12を加熱すると同時に潜熱蓄熱材13に縮熱
しながら加熱された熱媒体12を循環させて、室外熱交
換器7に吸入される外気を予熱して室外熱交換器7に供
給することにより、室外熱交換器7の霜付を防止し或い
は付いた霜を除去し、これに対し、冷却運転時には、外
気温が設定温度(例えば30℃内外)以上の場合、前記
熱媒体12を循環させて室外熱交換器7への外気を冷却
して冷却空気を室外熱交換器7に供給することにより、
冷媒蒸気の凝縮を良好にするものである。
Reference numeral 20 is a heat exchanger. The heat exchanger 20
Is connected to the heat storage tank 10 through the supply pipe 21 and the return pipe 22 and is integrally formed on the suction side of the outdoor heat exchanger 7 or is installed in the vicinity thereof, and the return pipe 22 is provided with a circulation pump 23. is there. When the outside air temperature is 5 ° C. or less during the heating operation, the heat exchanger 20 heats the heat medium 12 by radiating heat from the heating heat exchanger 11 and simultaneously heats the heat medium 12 while reducing the heat to the latent heat storage material 13. By circulating and preheating the outside air drawn into the outdoor heat exchanger 7 and supplying it to the outdoor heat exchanger 7, it is possible to prevent frosting of the outdoor heat exchanger 7 or to remove frost attached to it. On the other hand, during the cooling operation, when the outside air temperature is equal to or higher than the set temperature (for example, inside and outside of 30 ° C.), the heat medium 12 is circulated to cool the outside air to the outdoor heat exchanger 7 and the cooling air to the outdoor heat exchanger 7. By supplying
It improves the condensation of the refrigerant vapor.

【0019】前記循環ポンプ23の制御回路は、例え
ば、図2に示すように、室外熱交換器7の吸入側に設置
して信号を出力する高温センサ123及び低温センサ1
24と、高温(例えば30℃)基準電圧を「−」端子
に、前記高温センサ123の出力信号を「+」端子に受
けて、その両端子に入力される電圧の大きさを比較し、
その比較値を論理信号として出力する第1比較器125
と、低温(5℃)基準電圧を「+」端子に、前記低温セ
ンサ124の出力信号を「−」端子に受けて、その両端
子に入力される電圧の大きさを比較し、その比較値を論
理信号として出力する第2比較器126と、前記第2比
較器126の出力信号を受け、論理状態を反転させて出
力するインバータ127と、前記第1比較器125また
はインバータ127の出力信号を受けて論理和演算を行
い、その演算結果を出力するORゲート128と、前記
ORゲート128の演算結果が論理ハイレベルであれ
ば、ターンオン動作を行って循環ポンプ23に電源を供
給するスイッチ129とからなる。
The control circuit of the circulation pump 23 is installed on the suction side of the outdoor heat exchanger 7 and outputs a signal, for example, as shown in FIG.
24, a high temperature (for example, 30 ° C.) reference voltage is received at the “−” terminal, an output signal of the high temperature sensor 123 is received at the “+” terminal, and the magnitudes of the voltages input to both terminals are compared.
A first comparator 125 that outputs the comparison value as a logic signal
And a low temperature (5 ° C.) reference voltage at the “+” terminal and an output signal of the low temperature sensor 124 at the “−” terminal, the magnitudes of the voltages input to both terminals are compared, and the comparison value is obtained. Is output as a logic signal, an inverter 127 that receives the output signal of the second comparator 126 and inverts the logic state and outputs the inverted signal, and the output signal of the first comparator 125 or the inverter 127. An OR gate 128 that receives the logical sum operation and outputs the operation result, and a switch 129 that performs a turn-on operation to supply power to the circulation pump 23 if the operation result of the OR gate 128 is a logical high level. Consists of.

【0020】30はヒートパイプである。前記ヒートパ
イプ30は、前記加熱熱交換器11の外周に設置する蒸
発部31と、前記蓄熱槽10の外部に位置させる放熱部
32と、前記蒸発部31と前記放熱部32を連結する連
結管33とからなり、内部に蒸留水、アルコールなどの
作動流体を真空充填してなるものである。
Reference numeral 30 is a heat pipe. The heat pipe 30 includes an evaporation unit 31 installed on the outer periphery of the heating heat exchanger 11, a heat dissipation unit 32 located outside the heat storage tank 10, and a connecting pipe connecting the evaporation unit 31 and the heat dissipation unit 32. 33, which is vacuum filled with working fluid such as distilled water or alcohol.

【0021】40は第1吸熱熱交換器、41は第2吸熱
熱交換器である。前記第1吸熱熱交換器40及び第2吸
熱熱交換器41は前記吸入導管9に並設して、第1吸熱
熱交換器40は前記放熱部32に内蔵し、第2吸熱熱交
換器41は前記蓄熱槽10に内蔵する。そして、前記第
1及び第2吸熱熱交換器40、41の入口側には、吸入
導管9の圧縮機2の吸入側に設置した温度センサ42の
出力信号によって開放されるソレノイドバルブ40’、
41’を設置し、圧縮機2に吸入される冷媒蒸気の温度
が適正温度(例えば12℃)以上の場合にはソレノイド
バルブ40’を開放し、圧縮機2に吸入される冷媒蒸気
を放熱部32で作動流体の凝縮熱によって加熱して少し
だけ温度を上げ、適正温度以下の場合にはソレノイドバ
ルブ41’を開放して第2吸熱熱交換器41で熱媒体の
保有熱によって加熱して大きく温度を上げることによ
り、圧縮機2に吸入される湿り冷媒蒸気を乾き飽和また
は過熱蒸気化するものである。
Reference numeral 40 is a first endothermic heat exchanger, and 41 is a second endothermic heat exchanger. The first endothermic heat exchanger 40 and the second endothermic heat exchanger 41 are arranged side by side in the suction conduit 9, the first endothermic heat exchanger 40 is built in the heat radiating section 32, and the second endothermic heat exchanger 41 is provided. Is built in the heat storage tank 10. And, at the inlet side of the first and second endothermic heat exchangers 40, 41, a solenoid valve 40 'which is opened by an output signal of a temperature sensor 42 installed on the suction side of the compressor 2 of the suction conduit 9,
41 ′ is installed, and when the temperature of the refrigerant vapor sucked into the compressor 2 is equal to or higher than an appropriate temperature (for example, 12 ° C.), the solenoid valve 40 ′ is opened and the refrigerant vapor sucked into the compressor 2 is radiated. In 32, the temperature is raised slightly by heating with the condensation heat of the working fluid, and when the temperature is below the proper temperature, the solenoid valve 41 ′ is opened and in the second endothermic heat exchanger 41 it is heated with the heat of the heat medium to increase the temperature. By increasing the temperature, the wet refrigerant vapor sucked into the compressor 2 is dried and saturated or superheated.

【0022】未説明符号51はファン、52、53はチ
ェックバルブをそれぞれ示す。上述した本発明は、加熱
運転時には、四方弁3を冷媒が実線矢印に沿って流れる
ように操作した後、圧縮機2を駆動すると、圧縮機2で
圧縮された高温・高圧の冷媒蒸気は、凝縮器として作用
する室内熱交換器4に流入して凝縮され、その凝縮熱に
よって流体を加熱させることにより、温水を生成し或い
は空気調和(暖房)機能などを行い、室内熱交換器4で
凝縮された高温・高圧の冷媒液は、チェックバルブ52
を経由して蓄熱槽10に内蔵された加熱熱交換器11で
ヒートパイプ30の蒸発部31内の作動流体を蒸発させ
ると同時に熱媒体12を加熱することにより過冷却され
る。前記過冷却された冷媒液は、加熱用膨張弁6で膨張
された後、蒸発器として作用する室外熱交換器7で外気
を熱源として蒸発され、室外熱交換器7で蒸発された低
温・低圧の冷媒蒸気は、四方弁3を経由した後、吸入導
管9に並設してヒートパイプ30の放熱部32及び蓄熱
槽10に内蔵された第1吸熱熱交換器40または第2吸
熱熱交換器41を選択的に経由しながら、作動流体の凝
縮熱または熱媒体保有熱によって加熱され、乾き飽和ま
たは過熱蒸気化された後、圧縮機2に吸入されて再圧縮
されるサイクルを繰り返す。
An unexplained reference numeral 51 is a fan, and 52 and 53 are check valves. In the above-described present invention, when the compressor 2 is driven after the four-way valve 3 is operated so that the refrigerant flows along the solid arrow during the heating operation, the high-temperature / high-pressure refrigerant vapor compressed by the compressor 2 becomes It flows into the indoor heat exchanger 4 that acts as a condenser and is condensed. By heating the fluid by the condensation heat, hot water is generated or an air conditioning (heating) function is performed, and the indoor heat exchanger 4 condenses. The high-temperature and high-pressure refrigerant liquid that has been discharged is checked valve 52.
Via the heating heat exchanger 11 built into the heat storage tank 10 via the heat storage tank 10 to evaporate the working fluid in the evaporation portion 31 of the heat pipe 30 and simultaneously heat the heat medium 12 to supercool it. The supercooled refrigerant liquid is expanded by the expansion valve 6 for heating, then is evaporated by the outdoor heat exchanger 7 acting as an evaporator by using the outside air as a heat source, and the low temperature and low pressure evaporated by the outdoor heat exchanger 7. After passing through the four-way valve 3, the refrigerant vapor of the first endothermic heat exchanger 40 or the second endothermic heat exchanger 40 installed in the suction pipe 9 in parallel with the heat radiation part 32 of the heat pipe 30 and the heat storage tank 10. While selectively passing through 41, the cycle of being heated by the heat of condensation of the working fluid or the heat of holding the heat medium, being saturated with steam or being superheated to vapor, and then being sucked into the compressor 2 and being recompressed is repeated.

【0023】そして、冷却運転時には、四方弁3を冷媒
が破線矢印に沿って流れるように操作した後、圧縮機2
を駆動すると、圧縮機2で圧縮された高温・高圧の冷媒
蒸気は、凝縮器として作用する室外熱交換器7に流入さ
れて凝縮され、室外熱交換器7で凝縮された高温・高圧
の冷媒液はチェックバルブ53を経由して冷却用膨張弁
5で膨張された後、蒸発器として作用する室内熱交換器
4に流入されて蒸発しながら、その蒸発熱を流体で吸収
して流体を冷却させることにより、冷水を生成し或いは
空気調和(冷房)機能などを行い、室内熱交換器4で蒸
発された低温・低圧の冷媒蒸気は、四方弁3及び吸入導
管9を経由して圧縮機2に吸入されて再圧縮されるサイ
クルを繰り反す。前記冷却サイクルを繰返し行った場
合、加熱熱交換器11、第1吸熱熱交換器40及び第2
吸熱熱交換器41は前記加熱運転時と同一の機能を行
う。
During the cooling operation, the four-way valve 3 is operated so that the refrigerant flows along the broken line arrow, and then the compressor 2 is operated.
Driving, the high temperature / high pressure refrigerant vapor compressed in the compressor 2 flows into the outdoor heat exchanger 7 acting as a condenser and is condensed, and the high temperature / high pressure refrigerant condensed in the outdoor heat exchanger 7 is driven. The liquid is expanded by the expansion valve 5 for cooling through the check valve 53, then flows into the indoor heat exchanger 4 which functions as an evaporator and evaporates, and the heat of evaporation is absorbed by the fluid to cool the fluid. By doing so, cold water is generated or an air conditioning (cooling) function is performed, and the low-temperature low-pressure refrigerant vapor evaporated in the indoor heat exchanger 4 is passed through the four-way valve 3 and the suction conduit 9 to the compressor 2 It is inhaled and recompressed. When the cooling cycle is repeated, the heating heat exchanger 11, the first endothermic heat exchanger 40, and the second
The endothermic heat exchanger 41 performs the same function as during the heating operation.

【0024】一方、上述したように加熱及び冷却運転時
に加熱熱交換器11で冷媒液が過冷却される場合、その
凝縮熱を放熱してヒートパイプ30の蒸発部31に充填
された作動流体を蒸発させると同時に熱媒体12が加熱
され、前記熱媒体12の温度が潜熱蓄熱材13の相変化
温度27〜30℃以上になると、潜熱蓄熱材13が液体
になると共に融解熱を吸収貯蔵し、相変化温度以下にな
ると、固体になると共に熱媒体に凝固熱を放出すること
により、熱媒体12はほぼ一定の温度を維持する。
On the other hand, when the refrigerant liquid is supercooled in the heating heat exchanger 11 during the heating and cooling operation as described above, the condensation heat of the refrigerant liquid is radiated and the working fluid filled in the evaporation portion 31 of the heat pipe 30 is discharged. When the heat medium 12 is heated at the same time as evaporation, and the temperature of the heat medium 12 becomes a phase change temperature of the latent heat storage material 13 of 27 to 30 ° C. or higher, the latent heat storage material 13 becomes a liquid and absorbs and stores heat of fusion, When the temperature becomes lower than the phase change temperature, the heat medium 12 maintains a substantially constant temperature by becoming solid and releasing heat of solidification to the heat medium.

【0025】このような状態で加熱運転を行う時に外気
温が5℃以下になると、低温センサ124の出力信号は
第2比較器126の「−」端子に入力される。すると、
第2比較器126は「+」端子と「−」端子に入力され
る電圧の大きさを比較してローレベルの論理信号「0」
を出力する。次に、前記第2比較器126の出力信号は
インバータ127を介して反転される。ORゲート12
8ではその演算結果によってスイッチ129を「オン」
させる。これにより、循環ポンプ23が駆動されて蓄熱
槽10に貯蔵され、潜熱蓄熱材13の凝固熱によって加
熱された熱媒体12を熱交換器20に供給して室外熱交
換器7の吸入部周囲の外気を予熱した後、室外熱交換器
7に吸入されるようにした。このため、外気温が低い場
合にも室外熱交換器7に霜が付かないか、或いは霜が除
去されるため、室外熱交換器7で冷媒液の蒸発が良好に
なる。一方、外気温が5℃以上になると、循環ポンプ2
3が停止することにより、室外熱交換器7の吸入部の外
気予熱は中止される。したがって、運転中止などの理由
で、温度が適正温度以下の場合にはヒータ14によって
加熱するものである。
When the outside air temperature becomes 5 ° C. or lower during the heating operation in such a state, the output signal of the low temperature sensor 124 is input to the “−” terminal of the second comparator 126. Then,
The second comparator 126 compares the magnitudes of the voltages input to the “+” terminal and the “−” terminal and compares the low level logic signal “0”.
Is output. Next, the output signal of the second comparator 126 is inverted through the inverter 127. OR gate 12
8, the switch 129 is turned “on” according to the calculation result.
Let As a result, the circulation pump 23 is driven to be stored in the heat storage tank 10, and the heat medium 12 heated by the solidification heat of the latent heat storage material 13 is supplied to the heat exchanger 20 so that the heat transfer medium around the suction portion of the outdoor heat exchanger 7 is supplied. After preheating the outside air, the outside air was taken into the outdoor heat exchanger 7. Therefore, even when the outdoor temperature is low, the outdoor heat exchanger 7 is not frosted or the frost is removed, so that the outdoor heat exchanger 7 evaporates the refrigerant liquid well. On the other hand, when the outside temperature rises above 5 ° C, the circulation pump 2
When 3 is stopped, the outside air preheating of the suction part of the outdoor heat exchanger 7 is stopped. Therefore, when the temperature is equal to or lower than the appropriate temperature for the reason such as the operation stop, the heater 14 heats it.

【0026】また、冷却運転時に外気温が30℃以上に
なると、高温センサ123の出力信号は、第1比較器1
25の「+」端子に入力される。前記第1比較器125
は「+」端子と「−」端子に入力される電圧の大きさを
比較してハイレベルの論理信号「1」を出力し、前記第
1比較器125の出力信号はORゲート128でその演
算結果によってスイッチ129を「オン」させる。これ
により、循環ポンプ23が駆動されて蓄熱槽10に貯蔵
された熱媒体を熱交換器20に供給して室外熱供給器7
周囲の外気を冷却させた後、室外熱交換器7に吸入され
るようにした。このため、冷媒蒸気の凝縮温度と外気温
との差を大きくすることにより、冷媒蒸気の凝縮が良好
になり、外気温が30℃未満になると、循環ポンプ23
は停止する。
Further, when the outside air temperature becomes 30 ° C. or higher during the cooling operation, the output signal of the high temperature sensor 123 indicates that the first comparator 1
25 is input to the “+” terminal. The first comparator 125
Outputs a high level logic signal "1" by comparing the magnitudes of the voltages input to the "+" terminal and the "-" terminal, and the output signal of the first comparator 125 is calculated by the OR gate 128. Depending on the result, the switch 129 is turned “on”. As a result, the circulation pump 23 is driven to supply the heat medium stored in the heat storage tank 10 to the heat exchanger 20 to supply the outdoor heat supply device 7
After cooling the ambient air, it was sucked into the outdoor heat exchanger 7. Therefore, by increasing the difference between the condensation temperature of the refrigerant vapor and the outside air temperature, the condensation of the refrigerant vapor is improved, and when the outside air temperature is less than 30 ° C., the circulation pump 23
Will stop.

【0027】前記冷却運転時に高温センサ123の出力
信号温度を30℃と例示したが、室外熱交換器7の熱伝
達面積または外気の気候条件などによって上昇または下
降させることができ、この場合、潜熱蓄熱材13の相変
化温度も変更する。
Although the output signal temperature of the high temperature sensor 123 is exemplified as 30 ° C. during the cooling operation, it can be increased or decreased depending on the heat transfer area of the outdoor heat exchanger 7 or the climatic condition of the outside air. The phase change temperature of the heat storage material 13 is also changed.

【0028】そして、上述した加熱及び冷却運転時に、
室外熱交換器7または室内熱交換器4で蒸発された冷媒
蒸気の温度が適正温度、例えば12℃以下の場合には、
吸入導管9の圧縮機2の吸入側に設置した温度センサ4
2の出力信号によってソレノイドバルブ41’が開放さ
れるので、その湿り冷媒蒸気は第2吸熱熱交換器41を
経由して熱媒体によって加熱され、12℃以上の場合に
はソレノイドバルブ40’が開放されるので、その湿り
冷媒蒸気はヒートパイプ30の放熱部32で作動流体が
凝縮される時の凝縮熱によって加熱されることにより、
乾き飽和または過熱蒸気化されるため、圧縮機のリキッ
ドバック及びリキッドハンマーが発生しなくなる。
During the above heating and cooling operation,
When the temperature of the refrigerant vapor evaporated in the outdoor heat exchanger 7 or the indoor heat exchanger 4 is an appropriate temperature, for example, 12 ° C. or lower,
Temperature sensor 4 installed on the suction side of the compressor 2 of the suction conduit 9
Since the solenoid valve 41 'is opened by the output signal of 2, the wet refrigerant vapor is heated by the heat medium via the second endothermic heat exchanger 41, and the solenoid valve 40' is opened when the temperature is 12 ° C or higher. Therefore, the moist refrigerant vapor is heated by the heat of condensation when the working fluid is condensed in the heat dissipation portion 32 of the heat pipe 30,
Since it is dry saturated or superheated steam, liquid back and liquid hammer of the compressor do not occur.

【0029】本発明は、このように外気温の低い加熱運
転時には室外熱交換器で冷媒液の蒸発を良好にし、外気
温の高い冷却運転時には室外熱交換器で冷媒蒸気の凝縮
を良好にすると同時に、圧縮機に吸入される湿り冷媒蒸
気を乾き飽和または過熱蒸気化することにより、圧縮機
の信頼性を確保することができる。
According to the present invention, it is possible to improve the evaporation of the refrigerant liquid in the outdoor heat exchanger during the heating operation at low outside air temperature and to condense the refrigerant vapor in the outdoor heat exchanger during the cooling operation at high outside air temperature. At the same time, the reliability of the compressor can be ensured by drying and saturating the wet refrigerant vapor sucked into the compressor into saturated or superheated vapor.

【0030】[0030]

【発明の効果】本発明の請求項1または2記載の発明
は、基本冷凍回路の冷却用膨張弁と加熱用膨張弁との間
に蓄熱槽を設置し、凝縮器として作用する室内または室
外熱交換器から排出される冷媒液で熱媒体を加熱して、
前記熱媒体を室外熱交換器の吸入部に設置した熱交換器
に供給することにより、室外熱交換器に吸入される外気
を加熱または冷却するようにしたため、外気温の低い加
熱運転時には室外熱交換器で冷媒液の蒸発を良好にし、
外気温の高い冷却運転時には冷媒蒸気の凝縮を良好にす
るとともに、前記熱媒体及びヒットパイプの作動流体に
よって圧縮機に吸入される湿り冷媒蒸気を乾き飽和また
は過熱蒸気化することにより、圧縮機のリキッドバック
及びリキッドハンマーの発生を防止したため、成積係数
が向上し、外気温が低い或いは高い時にも成積係数が向
上することにより、季節に拘らず効率を良好に維持する
ことができる。
According to the first or second aspect of the present invention, a heat storage tank is installed between the expansion valve for cooling and the expansion valve for heating of the basic refrigeration circuit, and indoor or outdoor heat acting as a condenser is provided. The heat medium is heated by the refrigerant liquid discharged from the exchanger,
Since the heat medium is supplied to the heat exchanger installed in the suction part of the outdoor heat exchanger to heat or cool the outside air sucked into the outdoor heat exchanger, the outdoor heat is generated during the heating operation with a low outdoor temperature. The exchanger improves the evaporation of the refrigerant liquid,
In a cooling operation with a high outside temperature, while making the condensation of the refrigerant vapor good, the wet refrigerant vapor sucked into the compressor by the heat medium and the working fluid of the hit pipe is dried and saturated or superheated, thereby By preventing the occurrence of liquid back and liquid hammer, the product coefficient is improved, and the product coefficient is improved even when the outside temperature is low or high, so that the efficiency can be maintained excellent regardless of the season.

【0031】請求項3記載の発明は、前記請求項1及び
2の効果に加え、循環ポンプの制御を良好に行うことが
できる。
According to the invention described in claim 3, in addition to the effects of claims 1 and 2, the circulation pump can be satisfactorily controlled.

【0032】請求項4記載の発明は、前記請求項1及び
2の効果に加え、蓄熱槽の温度調節を良好に行うことが
できる。
In addition to the effects of the first and second aspects, the invention according to the fourth aspect can favorably control the temperature of the heat storage tank.

【0033】請求項5記載の発明は、前記請求項1及び
2の効果に加え、圧縮機に吸入される湿り飽和蒸気を外
気または運転条件に拘らず、良好に乾き飽和または過熱
蒸気化することができる。
According to the invention of claim 5, in addition to the effects of claims 1 and 2, the wet saturated steam sucked into the compressor is satisfactorily dried and saturated or superheated steam regardless of outside air or operating conditions. You can

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の実施例を示す構成図である。FIG. 1 is a configuration diagram showing an embodiment of the present invention.

【図2】 本発明の実施例に係る循環ポンプの制御回路
図である。
FIG. 2 is a control circuit diagram of the circulation pump according to the embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 基本冷凍回路、4 室内熱交換器、7 室外熱交換
器、10 蓄熱槽、11 加熱熱交換器、13 潜熱蓄
熱材、14 ヒータ、20 熱交換器、30ヒートパイ
プ、31 蒸発部、32 放熱部、40、41 第1及
び第2吸熱熱交換器。
1 basic refrigeration circuit, 4 indoor heat exchanger, 7 outdoor heat exchanger, 10 heat storage tank, 11 heating heat exchanger, 13 latent heat storage material, 14 heater, 20 heat exchanger, 30 heat pipe, 31 evaporation section, 32 heat radiation Parts, 40, 41 first and second endothermic heat exchangers.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 3L092 AA01 AA02 AA07 AA09 BA05 BA16 BA17 CA00 DA01 DA02 DA03 DA17 EA02 EA16 FA17 FA22 FA23 FA24 MA00 NA03 NA12 NA16 PA11 PA15 TA08 TA09 TA10 TA13 TA15 TA16 UA03 UA04 UA11 UA34 VA04 VA08 WA03 WA13 WA23 XA06 XA08 XA23 YA12 YA13 YA18   ─────────────────────────────────────────────────── ─── Continued front page    F-term (reference) 3L092 AA01 AA02 AA07 AA09 BA05                       BA16 BA17 CA00 DA01 DA02                       DA03 DA17 EA02 EA16 FA17                       FA22 FA23 FA24 MA00 NA03                       NA12 NA16 PA11 PA15 TA08                       TA09 TA10 TA13 TA15 TA16                       UA03 UA04 UA11 UA34 VA04                       VA08 WA03 WA13 WA23 XA06                       XA08 XA23 YA12 YA13 YA18

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 圧縮機、四方弁、室内熱交換器、冷却用
膨張弁、加熱用膨張弁、室外熱交換器及び前記四方弁を
導管で順次連結し、前記四方弁と圧縮機を吸入導管で連
結した基本冷凍回路と、 前記導管の冷却用膨張弁と加熱用膨張弁との間に設置し
て熱媒体を充填し、潜熱蓄熱材を内蔵した蓄熱槽と、 前記蓄熱槽を貫通する前記導管に設置した加熱熱交換器
と、 前記蓄熱槽に供給管及び循環ポンプ付き帰還管で連結
し、前記室外熱交換器の吸入側に設置した熱交換器と、 前記加熱熱交換器の外周に蒸発部を設置し、前記蒸発部
に連結管で連結された放熱部を蓄熱槽の外部に位置させ
たヒートパイプと、 前記吸入導管に並設し、前記放熱部及び蓄熱槽に内蔵し
て、圧縮機に吸入される冷媒蒸気の温度によって選択的
に作用する第1及び第2吸熱熱交換器とを備えるヒート
ポンプシステム。
1. A compressor, a four-way valve, an indoor heat exchanger, a cooling expansion valve, a heating expansion valve, an outdoor heat exchanger and the four-way valve are sequentially connected by a conduit, and the four-way valve and the compressor are suction conduits. And a basic refrigeration circuit connected with each other, installed between the cooling expansion valve and the heating expansion valve of the conduit to be filled with a heat medium, a heat storage tank containing a latent heat storage material, and the heat storage tank penetrating the heat storage tank. A heating heat exchanger installed in the conduit, a heat exchanger connected to the heat storage tank by a supply pipe and a return pipe with a circulation pump, installed on the suction side of the outdoor heat exchanger, and on the outer circumference of the heating heat exchanger. A heat pipe in which an evaporating unit is installed and a heat radiating unit connected to the evaporating unit by a connecting pipe is located outside the heat storage tank, is installed in parallel with the suction conduit, and is incorporated in the heat radiating unit and the heat storage tank, The first and second suctions that selectively operate according to the temperature of the refrigerant vapor drawn into the compressor. Heat pump system comprising a heat exchanger.
【請求項2】 前記循環ポンプは、外気温が5℃以下或
いは30℃以上の時に駆動されることを特徴とする請求
項1記載のヒートポンプシステム。
2. The heat pump system according to claim 1, wherein the circulation pump is driven when the outside air temperature is 5 ° C. or lower or 30 ° C. or higher.
【請求項3】 前記循環ポンプは、室外熱交換器の吸入
側に設置して信号を出力する高温センサ及び低温センサ
と、高温基準電圧を「−」端子、前記高温センサの出力
信号を「+」端子に受け、その両端子に入力される電圧
の大きさを比較して、その比較値を論理信号として出力
する第1比較器と、低温基準電圧を「+」端子、前記低
温センサの出力信号を「−」端子に受け、その両端子に
入力される電圧の大きさを比較して、その比較値を論理
信号として出力する第2比較器と、前記第2比較器の出
力信号を受け、論理状態を反転させて出力するインバー
タと、前記第1比較器またはインバータの出力信号を受
けて論理和演算を行い、その演算結果を出力するORゲ
ートと、前記ORゲートの演算結果が論理ハイレベルで
あれば、ターンオンして循環ポンプに電源を供給するス
イッチとからなる制御回路によって制御されることを特
徴とする請求項1または2記載のヒートポンプシステ
ム。
3. The circulation pump is installed on the suction side of an outdoor heat exchanger to output a high temperature sensor and a low temperature sensor, a high temperature reference voltage is a “−” terminal, and an output signal of the high temperature sensor is a “+”. A first comparator that receives the voltage at the terminals and compares the magnitudes of the voltages input to both terminals, and outputs the comparison value as a logic signal, and a low temperature reference voltage at the "+" terminal, the output of the low temperature sensor A second comparator that receives a signal at the "-" terminal, compares the magnitudes of the voltages input to both terminals, and outputs the comparison value as a logic signal; and an output signal from the second comparator. An OR gate which receives an output signal of the first comparator or the inverter and outputs an operation result, and an operation result of the OR gate is a logic high. If level, turn on The heat pump system according to claim 1 or 2, wherein the heat pump system is controlled by a control circuit including a switch for supplying power to the circulation pump.
【請求項4】 蓄熱槽にヒータを附設したことを特徴と
する請求項1記載のヒートポンプシステム。
4. The heat pump system according to claim 1, wherein a heater is attached to the heat storage tank.
【請求項5】 前記第1吸熱熱交換器及び第2吸熱熱交
換器の入口側にソレノイドバルブを設置し、吸入導管の
圧縮機の吸入側に設置した温度センサによって選択的に
開放することを特徴とする請求項1記載のヒートポンプ
システム。
5. A solenoid valve is installed on the inlet side of the first endothermic heat exchanger and the second endothermic heat exchanger, and selectively opened by a temperature sensor installed on the intake side of the compressor of the suction conduit. The heat pump system according to claim 1, wherein the heat pump system is a heat pump system.
JP2002219687A 2001-08-31 2002-07-29 Heat pump system Expired - Fee Related JP3662557B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2001-0053085A KR100402366B1 (en) 2001-08-31 2001-08-31 Heat pump system
KR2001-053085 2001-08-31

Publications (2)

Publication Number Publication Date
JP2003075009A true JP2003075009A (en) 2003-03-12
JP3662557B2 JP3662557B2 (en) 2005-06-22

Family

ID=19713779

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002219687A Expired - Fee Related JP3662557B2 (en) 2001-08-31 2002-07-29 Heat pump system

Country Status (4)

Country Link
US (1) US6679321B2 (en)
JP (1) JP3662557B2 (en)
KR (1) KR100402366B1 (en)
CN (1) CN1167920C (en)

Families Citing this family (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10234608A1 (en) * 2002-07-30 2004-02-19 Robert Bosch Gmbh Method for operating a cooling and heating circuit of a motor vehicle
EP1422486A3 (en) * 2002-11-25 2004-11-17 Tempia Co., Ltd. Combined regeneration heating and cooling system
JP4567996B2 (en) * 2003-06-09 2010-10-27 パナソニック株式会社 Thermal storage heat pump system
US7180211B2 (en) * 2003-09-22 2007-02-20 Micro Technology, Inc. Temperature sensor
KR100542919B1 (en) * 2003-11-25 2006-01-20 (주)경인에너텍 A heat pump using the heating and conditioning systems
CN100347488C (en) * 2004-03-12 2007-11-07 华南理工大学 Critical heat accumulating heat pump water heater
CN1300532C (en) * 2004-04-14 2007-02-14 河南新飞电器有限公司 Air source heat pump for high humidity area
EP1991821A4 (en) * 2006-02-15 2010-06-02 Lg Electronics Inc Apparatus for supercooling, and method of operating the same
US20070257270A1 (en) * 2006-05-02 2007-11-08 3M Innovative Properties Company Led package with wedge-shaped optical element
US7390117B2 (en) * 2006-05-02 2008-06-24 3M Innovative Properties Company LED package with compound converging optical element
US7525126B2 (en) * 2006-05-02 2009-04-28 3M Innovative Properties Company LED package with converging optical element
US20070258241A1 (en) * 2006-05-02 2007-11-08 3M Innovative Properties Company Led package with non-bonded converging optical element
US20070257271A1 (en) * 2006-05-02 2007-11-08 3M Innovative Properties Company Led package with encapsulated converging optical element
US20080012034A1 (en) * 2006-07-17 2008-01-17 3M Innovative Properties Company Led package with converging extractor
CN100406833C (en) * 2006-09-21 2008-07-30 青岛大学 Heat pipe hot pump composite drying power source system
SE530723C2 (en) * 2006-12-13 2008-08-26 Scandinavian Energy Efficiency Heat pump assembly
CN100432557C (en) * 2007-01-25 2008-11-12 南京大学 Air condition system of heat pipe storing energy
JP5076745B2 (en) * 2007-08-31 2012-11-21 パナソニック株式会社 Ventilation air conditioner
CN101965492B (en) 2008-05-15 2015-02-25 Xdx创新制冷有限公司 Surged vapor compression heat transfer system with reduced defrost
KR100970870B1 (en) * 2008-08-26 2010-07-16 진금수 Heat pump system
KR100970876B1 (en) * 2008-09-10 2010-07-16 진금수 Heat pump type heating and cooling apparatus
US9080795B2 (en) * 2009-05-04 2015-07-14 Lg Electronics Inc. Air conditioning system
US8186175B2 (en) * 2009-08-11 2012-05-29 Te-Shou Lee Structural improvement for electric energy saving equipment
AU2011258052B2 (en) 2010-05-27 2016-06-16 XDX Global, LLC Surged heat pump systems
FR2960629B1 (en) * 2010-05-31 2014-09-12 Valeo Systemes Thermiques METHOD FOR CONTROLLING A STORAGE DEVICE IN A REFRIGERANT CIRCUIT
US8516843B2 (en) * 2010-08-31 2013-08-27 Linde Aktiengesellschaft Energy recovery system of cryogen exhaust gas from freezing systems
US8533975B2 (en) 2010-10-29 2013-09-17 General Electric Company Apparatus and method for refrigeration cycle elevation by modification of cycle start condition
KR101257087B1 (en) * 2011-01-11 2013-04-19 엘지전자 주식회사 Remote controlling apparatus, air conditioning system having the apparatus, and remote controlling method for outdoor unit of the system
CN103446775B (en) * 2013-07-24 2015-08-19 杭州电子科技大学 A kind of control system of novel distillation condensation energy-saving technique
CN104374115A (en) 2013-08-14 2015-02-25 开利公司 Heat pump system, heat pump unit and a multifunctional mode control method for heat pump system
US10317112B2 (en) 2014-04-04 2019-06-11 Johnson Controls Technology Company Heat pump system with multiple operating modes
KR101566747B1 (en) * 2014-04-14 2015-11-13 현대자동차 주식회사 Heat pump system for vehicle
DE102015103732B4 (en) * 2015-03-13 2017-03-23 Matthias Görich Thermodynamic cycle process system and method for reducing pressure and / or temperature peaks in a thermodynamic cycle process plant
CN104807258B (en) * 2015-05-25 2017-05-03 合肥美的暖通设备有限公司 Air conditioning system and heat accumulation and defrosting device and method thereof
CN105526731A (en) * 2015-12-30 2016-04-27 浙江思科国祥制冷设备有限公司 Evaporative condensation air-conditioning heat pump system
DE102017204526A1 (en) * 2017-03-17 2018-09-20 Robert Bosch Gmbh Method for cooling an inverter, in particular a frequency converter in a heat pump cycle
CN107477741A (en) * 2017-09-12 2017-12-15 北京工业大学 A kind of compound annual cooling down system of convertible mode of operation
CN107741102B (en) * 2017-10-13 2020-01-10 北京工业大学 Air source heat pump device with heat pipe radiator running all year round
CN108679739B (en) * 2018-07-02 2023-07-25 珠海格力电器股份有限公司 Heat accumulation defrosting device, air conditioner outdoor unit and air conditioner
WO2020045868A1 (en) * 2018-08-31 2020-03-05 Samsung Electronics Co., Ltd. Refrigerator
US11846454B2 (en) * 2019-06-13 2023-12-19 Will John Temple Heat pump utilizing thermal energy storage
CN112923616B (en) * 2021-01-30 2021-11-23 清华大学 Air source CO for preventing evaporator from frosting by using heat of heat regenerator2Heat pump system
DE102022201790A1 (en) 2021-09-30 2023-03-30 ECOOLTEC Grosskopf GmbH Method and device for tempering a room to be tempered

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4918927A (en) 1972-06-15 1974-02-19
JPS5445949A (en) 1977-09-19 1979-04-11 Matsushita Electric Ind Co Ltd Cooling/heating apparatus
US4182406A (en) * 1978-02-17 1980-01-08 Holbrook Edward M Solar energy system for heating and cooling of buildings utilizing moist air cycles
JPS555017A (en) 1978-06-22 1980-01-14 Toshiba Corp Induction motor controller
JPS5845468A (en) * 1981-09-11 1983-03-16 株式会社日立製作所 Absorption type refrigerator
JPS63118546A (en) * 1986-11-05 1988-05-23 Takenaka Komuten Co Ltd Air conditioning system for building
EP0281762B1 (en) * 1987-03-12 1992-06-17 Takenaka Komuten Co. Ltd. Air conditioning system for buildings
JP2557415B2 (en) 1987-10-15 1996-11-27 株式会社東芝 Heat storage refrigeration cycle device
JPH08121901A (en) * 1994-10-25 1996-05-17 Hitachi Ltd Waste incinerating heat-conversion device
KR100289751B1 (en) 1998-04-15 2001-05-15 진금수 Heat pump type air conditioner
KR100343808B1 (en) 1999-12-30 2002-07-20 진금수 Heat pump type air conditioner

Also Published As

Publication number Publication date
US6679321B2 (en) 2004-01-20
CN1403768A (en) 2003-03-19
KR20030019774A (en) 2003-03-07
JP3662557B2 (en) 2005-06-22
KR100402366B1 (en) 2003-10-17
US20030042014A1 (en) 2003-03-06
CN1167920C (en) 2004-09-22

Similar Documents

Publication Publication Date Title
JP2003075009A (en) Heat pump system
US7984621B2 (en) Air conditioning system for communication equipment and controlling method thereof
JPS6343658B2 (en)
US7353664B2 (en) Heat pump and compressor discharge pressure controlling apparatus for the same
JP6057871B2 (en) Heat pump system and heat pump type water heater
KR20100059170A (en) Heat pump storage system
KR20100059176A (en) Storage system
JP2000028216A (en) Heat pump type air conditioner
CN1325006A (en) Heat pump system
KR20100005734U (en) Heat pump storage system
KR20100005735U (en) storage system
KR101122725B1 (en) Heat pump type cooling and heating apparatus
KR20100005736U (en) Heat pump system
KR20100137050A (en) Refrigeration and air conditioning system
KR100389269B1 (en) Heat pump system
JPH078999Y2 (en) Air source heat pump
JP2008107959A (en) Automatic vending machine
KR100486096B1 (en) Heat pump system
KR100493493B1 (en) Refrigeration cycle
KR100486099B1 (en) Heat pump system
KR100486098B1 (en) Heat pump system
KR100486097B1 (en) Heat pump system
KR200371335Y1 (en) Air conditioner having Dryer for Defrost
KR100473712B1 (en) Refrigeration cycle
CN113060928A (en) Sludge drying system

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050323

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110401

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120401

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130401

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees