JP2000356428A - Heat storage air conditioner - Google Patents

Heat storage air conditioner

Info

Publication number
JP2000356428A
JP2000356428A JP11164853A JP16485399A JP2000356428A JP 2000356428 A JP2000356428 A JP 2000356428A JP 11164853 A JP11164853 A JP 11164853A JP 16485399 A JP16485399 A JP 16485399A JP 2000356428 A JP2000356428 A JP 2000356428A
Authority
JP
Japan
Prior art keywords
heat storage
temperature
heat
heating
storage material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11164853A
Other languages
Japanese (ja)
Inventor
Shizuo Usui
鎭雄 薄井
Kiyoo Sugawara
清男 菅原
Koji Onuma
宏二 大沼
Makoto Suganuma
誠 菅沼
Goji Ohira
剛司 大平
Tomiyuki Noma
富之 野間
Yosuke Miyake
洋右 三宅
Masahiro Kishino
正裕 岸野
Hiroshi Kitayama
浩 北山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku Electric Power Co Inc
Panasonic Holdings Corp
Original Assignee
Matsushita Refrigeration Co
Tohoku Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Refrigeration Co, Tohoku Electric Power Co Inc filed Critical Matsushita Refrigeration Co
Priority to JP11164853A priority Critical patent/JP2000356428A/en
Publication of JP2000356428A publication Critical patent/JP2000356428A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To lengthen heat storage maintaining time in daytime heat storage utilization heating by increasing a heating heat storage amount in winter. SOLUTION: A heat storage air conditioner is adapted such than an electrical heating apparatus 21 is disposed on a heat storage tank 3 for heating a heat storage member 4, and the heat storage member 4 is heated by heat radiation of a heat storage heat exchanger 15 upon heating heat storage in the night in winter, and simultaneously the heat storage member 4 is heated with the electrical heating apparatus 21 above condensation temperature of the heat storage heat exchanger 15. Thus, a heating heat storage amount is increased and hence heating heat storage amount useable in daytime heat storage utilization heating is increased, and hence sufficient heating capability is ensured by lengthening heat storage maintaining time.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、夜間電力により蓄
熱槽に熱エネルギーを蓄え、昼間に蓄熱槽に蓄えられた
熱エネルギーを利用して冷暖房を行う蓄熱式空気調和機
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat storage type air conditioner for storing heat energy in a heat storage tank by nighttime electric power and performing cooling and heating using the heat energy stored in the heat storage tank in the daytime.

【0002】[0002]

【従来の技術】近年、蓄熱式空気調和機は、電力負荷の
平準化、省エネルギーを目的に急速に普及が進んでい
る。
2. Description of the Related Art In recent years, regenerative air conditioners have been rapidly spreading for the purpose of leveling the power load and saving energy.

【0003】従来の蓄熱式空気調和機としては、特開平
6−82114公報に示されているものがある。
A conventional regenerative air conditioner is disclosed in Japanese Patent Application Laid-Open No. 6-82114.

【0004】以下、図面を参照しながら上記従来の蓄熱
式空気調和機について説明する。
Hereinafter, the above-mentioned conventional regenerative air conditioner will be described with reference to the drawings.

【0005】図6は、従来の蓄熱式空気調和機のシステ
ム図である。図6において、1は圧縮機、、2は四方
弁、3は熱交換器を有する蓄熱槽、4は蓄熱槽3に貯留
した蓄熱材である。5はガス配管から蓄熱槽3への分岐
配管、6は第1の電磁弁、7a,7bは膨張弁、8は蓄
熱槽3から液配管への分岐配管、9は室外熱交換器であ
る。10は第2の電磁弁、11は第3の電磁弁、12は
室内熱交換器である。
FIG. 6 is a system diagram of a conventional regenerative air conditioner. In FIG. 6, 1 is a compressor, 2 is a four-way valve, 3 is a heat storage tank having a heat exchanger, and 4 is a heat storage material stored in the heat storage tank 3. 5 is a branch pipe from the gas pipe to the heat storage tank 3, 6 is a first solenoid valve, 7a and 7b are expansion valves, 8 is a branch pipe from the heat storage tank 3 to the liquid pipe, and 9 is an outdoor heat exchanger. Reference numeral 10 denotes a second solenoid valve, 11 denotes a third solenoid valve, and 12 denotes an indoor heat exchanger.

【0006】従来の蓄熱式空気調和機は、圧縮機1、四
方弁2、室外熱交換器9、第2の電磁弁10、膨張弁7
a、室内熱交換器12を順次環状に連接し、蓄熱槽3内
の熱交換器の一端を、途中に第1の電磁弁6を有する分
岐配管5を介して室内熱交換器12と四方弁2との間の
配管に接続するとともに、途中に第3の電磁弁11を有
する分岐配管を介して第2の電磁弁10と膨張弁7aと
の間の配管に接続し、蓄熱槽3内の熱交換器の他端を、
途中に膨張弁7bを有する分岐配管8を介して室外熱交
換器9と第2の電磁弁10との間の配管に接続したもの
である。
A conventional regenerative air conditioner includes a compressor 1, a four-way valve 2, an outdoor heat exchanger 9, a second solenoid valve 10, and an expansion valve 7.
a, the indoor heat exchanger 12 is sequentially connected in a ring shape, and one end of the heat exchanger in the heat storage tank 3 is connected to the indoor heat exchanger 12 and the four-way valve via a branch pipe 5 having a first solenoid valve 6 in the middle. 2 and a branch pipe having a third solenoid valve 11 on the way to a pipe between the second solenoid valve 10 and the expansion valve 7a. Connect the other end of the heat exchanger
It is connected to a pipe between the outdoor heat exchanger 9 and the second solenoid valve 10 via a branch pipe 8 having an expansion valve 7b on the way.

【0007】以上のように構成された従来の蓄熱式空気
調和機について、以下その動作について説明する。
The operation of the conventional heat storage type air conditioner configured as described above will be described below.

【0008】冬季夜間の暖房蓄熱時には、まず、圧縮機
1により吐出された高温の冷媒ガスは、四方弁2を経由
してガス配管から蓄熱槽3への分岐配管5および第1の
電磁弁6を経て、蓄熱槽3内の熱交換器から蓄熱槽3に
貯留した蓄熱材4に放熱し凝縮され、蓄熱槽3に暖房蓄
熱され、膨張弁7bで減圧された後、分岐配管8を経
て、室外熱交換器9で吸熱蒸発され、四方弁2を経由し
て圧縮機1へと戻る。第2の電磁弁10および第3の電
磁弁11は全閉となっており、室内熱交換器12には冷
媒が流れない。
At the time of heating heat storage in winter night, first, the high-temperature refrigerant gas discharged from the compressor 1 passes through the four-way valve 2 from the gas pipe to the branch pipe 5 to the heat storage tank 3 and the first solenoid valve 6. , Heat is condensed from the heat exchanger in the heat storage tank 3 to the heat storage material 4 stored in the heat storage tank 3, condensed, heated and stored in the heat storage tank 3, decompressed by the expansion valve 7 b, and then passed through the branch pipe 8. The heat is absorbed and evaporated in the outdoor heat exchanger 9 and returns to the compressor 1 via the four-way valve 2. The second solenoid valve 10 and the third solenoid valve 11 are fully closed, and no refrigerant flows through the indoor heat exchanger 12.

【0009】また、外気温度が低い冬季昼間の蓄熱利用
暖房時においては、第1の電磁弁6および第2の電磁弁
10は全閉となっており、圧縮機1により吐出された高
温の冷媒ガスは、四方弁2を経由してガス配管から室内
熱交換器12で放熱凝縮して室内を蓄熱利用暖房し、膨
張弁7aで減圧された後、途中に第3の電磁弁11を有
する分岐配管を経て、蓄熱槽3内の熱交換器において蓄
熱槽3に貯留した蓄熱材4から吸熱し蒸発して、膨張弁
7、分岐配管8を通り、室外熱交換器9を経て四方弁2
を経由して圧縮機1へと戻る。
Further, during heating using heat storage during the daytime in winter when the outside air temperature is low, the first solenoid valve 6 and the second solenoid valve 10 are fully closed, and the high-temperature refrigerant discharged by the compressor 1 is discharged. The gas is radiated and condensed from the gas pipe through the indoor heat exchanger 12 via the four-way valve 2 to heat and heat the room by utilizing the heat stored therein, and after the pressure is reduced by the expansion valve 7a, a branch having a third solenoid valve 11 on the way. The heat is absorbed and evaporated from the heat storage material 4 stored in the heat storage tank 3 in the heat exchanger in the heat storage tank 3 through the pipe, passes through the expansion valve 7, the branch pipe 8, passes through the outdoor heat exchanger 9, and flows through the four-way valve 2.
And returns to the compressor 1.

【0010】このとき、蓄熱槽3の熱を蒸発器側として
利用するため、圧縮機1の吸入圧力が上げられ、効率の
よい運転状態となる。
At this time, since the heat of the heat storage tank 3 is used as the evaporator side, the suction pressure of the compressor 1 is increased, and the operation state becomes efficient.

【0011】[0011]

【発明が解決しようとする課題】しかしながら、上記従
来の構成では、暖房蓄熱時において、冷凍サイクルの凝
縮温度以下にしか蓄熱槽3内の蓄熱材4の温度を上昇で
きず、暖房蓄熱量が少ないことから、昼間の蓄熱利用暖
房で蓄熱維持時間が短いという欠点があった。
However, in the above-mentioned conventional configuration, the temperature of the heat storage material 4 in the heat storage tank 3 can be increased only to the condensing temperature of the refrigeration cycle or less during the heating heat storage, and the heating heat storage amount is small. Therefore, there is a disadvantage that the heat storage maintenance time is short in daytime heat storage heating heating.

【0012】本発明は従来の課題を解決するのもので、
冬季、暖房蓄熱量を増大させて昼間の蓄熱利用暖房で蓄
熱維持時間を長くすることを目的とする。
The present invention solves the conventional problems.
An object of the present invention is to increase the amount of heat storage in winter to extend the heat storage maintenance time in daytime heat storage heating.

【0013】[0013]

【課題を解決するための手段】この目的を達成するため
本発明は、冬季夜間の暖房蓄熱時に蓄熱材を加熱する電
熱装置を前記蓄熱槽に配設したのである。
According to the present invention, in order to achieve this object, an electric heating device for heating a heat storage material at the time of heating and storing heat in winter night is provided in the heat storage tank.

【0014】これにより、暖房蓄熱量を増大させて昼間
の蓄熱利用暖房で蓄熱維持時間を長くすることができ
る。
Thus, the heat storage amount can be increased, and the heat storage maintenance time can be extended in daytime heat storage heating.

【0015】[0015]

【発明の実施の形態】本発明の請求項1に記載の発明
は、圧縮機、四方弁、室外熱交換器、第2の膨張弁機
構、室内熱交換器を順次環状に連接し、蓄熱槽内に蓄熱
材と共に収納された蓄熱熱交換器の一端を、第1の電磁
弁を介して前記室内熱交換器と前記四方弁との間の配管
に接続するとともに、第2の電磁弁を介して前記室外熱
交換器と前記第2の膨張弁機構との間の配管に接続し、
前記蓄熱熱交換器の他端を、第1の膨張弁機構を介して
前記第2の膨張弁機構と前記室内熱交換器との間の配管
に接続し、冬季夜間の暖房蓄熱時に前記蓄熱材を加熱す
る電熱装置を前記蓄熱槽に配設したものであり、冬季夜
間の暖房蓄熱時に、蓄熱槽に配設した電熱装置で蓄熱材
の温度を冷凍サイクルの凝縮温度以上にして、蓄熱材の
単位容積あたりに蓄熱可能な暖房蓄熱量を増大すること
で、暖房蓄熱量を多くでき、したがって昼間の蓄熱利用
暖房で利用できる暖房蓄熱量が多くなり、蓄熱維持時間
を長くすることによって必要な暖房能力が維持でき、充
分な暖房能力が確保できるという作用を有する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An invention according to claim 1 of the present invention is a heat storage tank in which a compressor, a four-way valve, an outdoor heat exchanger, a second expansion valve mechanism, and an indoor heat exchanger are sequentially connected in a ring shape. One end of the heat storage heat exchanger housed together with the heat storage material is connected to a pipe between the indoor heat exchanger and the four-way valve via a first electromagnetic valve, and is connected via a second electromagnetic valve. Connected to a pipe between the outdoor heat exchanger and the second expansion valve mechanism,
The other end of the heat storage heat exchanger is connected to a pipe between the second expansion valve mechanism and the indoor heat exchanger via a first expansion valve mechanism, and the heat storage material is used when heating and storing heat during winter night. An electric heat device for heating the heat storage material is provided in the heat storage tank, and the temperature of the heat storage material is set to be equal to or higher than the condensing temperature of the refrigeration cycle by the electric heat device provided in the heat storage tank at the time of heating heat storage in winter night. By increasing the amount of heating heat storage that can be stored per unit volume, the amount of heating heat storage can be increased, and therefore the amount of heating heat storage that can be used in daytime heat storage heating increases, and the required heating by increasing the heat storage maintenance time It has the effect that the capacity can be maintained and a sufficient heating capacity can be secured.

【0016】また、本発明の請求項2に記載の発明は、
圧縮機、四方弁、室外熱交換器、第2の膨張弁機構、室
内熱交換器を順次環状に連接し、蓄熱槽内に蓄熱材と共
に収納された蓄熱熱交換器の一端を、第1の電磁弁を介
して前記室内熱交換器と前記四方弁との間の配管に接続
するとともに、第2の電磁弁を介して前記室外熱交換器
と前記第2の膨張弁機構との間の配管に接続し、前記蓄
熱熱交換器の他端を、第1の膨張弁機構を介して前記第
2の膨張弁機構と前記室内熱交換器との間の配管に接続
し、前記蓄熱材を加熱する電熱装置を前記蓄熱槽に配設
し、冬季夜間の暖房蓄熱時に、前記蓄熱熱交換器の放熱
により前記蓄熱材を加熱すると共に、前記電熱装置によ
り前記蓄熱材を前記蓄熱熱交換器の凝縮温度以上に加熱
するよう構成したものであり、冬季夜間の暖房蓄熱時
に、蓄熱熱交換器を冷凍サイクルの凝縮器として蓄熱材
に放熱凝縮し、これと併用して電熱装置で蓄熱材に暖房
蓄熱することにより、限られた暖房蓄熱時間内に、さら
に、暖房蓄熱量を多くでき、したがって昼間の蓄熱利用
暖房で利用できる暖房蓄熱量が多くなり、蓄熱維持時間
を長くすることによって必要な暖房能力が維持でき、充
分な暖房能力が確保できるという作用を有する。
[0016] The invention described in claim 2 of the present invention provides:
The compressor, the four-way valve, the outdoor heat exchanger, the second expansion valve mechanism, and the indoor heat exchanger are sequentially connected in a ring shape, and one end of the heat storage heat exchanger housed together with the heat storage material in the heat storage tank is connected to the first heat storage heat exchanger. A pipe connected between the indoor heat exchanger and the four-way valve via a solenoid valve, and a pipe connected between the outdoor heat exchanger and the second expansion valve mechanism via a second solenoid valve And the other end of the heat storage heat exchanger is connected to a pipe between the second expansion valve mechanism and the indoor heat exchanger via a first expansion valve mechanism to heat the heat storage material. The heat storage device is disposed in the heat storage tank, and during heat storage during winter nights, the heat storage material is heated by the heat of the heat storage heat exchanger, and the heat storage material is condensed by the heat storage device by the heat storage device. It is configured to heat to a temperature higher than the temperature. By radiating and condensing heat on the heat storage material as a condenser for the freezing cycle and using it together with the heat storage device to heat and store heat in the heat storage material, the heating heat storage amount can be further increased within the limited heating heat storage time, and therefore during the daytime The amount of heating heat storage that can be used in the heat storage utilizing heating increases, and by increasing the heat storage maintaining time, the required heating capacity can be maintained and sufficient heating capacity can be secured.

【0017】また、本発明の請求項3に記載の発明は、
請求項2に記載の発明において、蓄熱材の温度を検知す
る蓄熱材温度検知手段と、圧縮機から吐出された冷媒の
凝縮温度を検知する凝縮温度検知手段と、冬季夜間の暖
房蓄熱時に、前記蓄熱材温度検知手段で検知した蓄熱材
の温度と前記凝縮温度検知手段で検知した凝縮温度とを
基に、冷凍サイクルの運転と電熱装置の運転とを制御す
る暖房蓄熱制御手段とを備え、前記暖房蓄熱制御手段
は、前記蓄熱材温度検知手段で検知した蓄熱材の温度
が、前記凝縮温度検知手段で検知した凝縮温度より低く
前記凝縮温度に近い所定の温度範囲に入るまでは、前記
冷凍サイクルと前記電熱装置の両方を運転し、前記所定
の温度範囲に入ると前記電熱装置のみ運転を停止し、前
記所定の温度範囲の上限温度を超えると、前記冷凍サイ
クルの運転を停止して前記電熱装置のみ運転するもので
あり、請求項2に記載の発明の作用に加えて、さらに、
蓄熱材の温度が冷凍サイクルの凝縮温度近くなる一定期
間、電熱装置を一端停止させ、冷凍サイクルが凝縮温度
に達して停止した以後、再度電熱装置で蓄熱材を加温し
暖房蓄熱を行ことで、暖房蓄熱時の蓄熱式空気調和機の
最大消費電力を低減することができるという作用を有す
る。
[0017] The invention according to claim 3 of the present invention provides:
In the invention according to claim 2, the heat storage material temperature detecting means for detecting the temperature of the heat storage material, the condensing temperature detecting means for detecting the condensing temperature of the refrigerant discharged from the compressor, and the heat storage heat during winter night, Heating heat storage control means for controlling the operation of the refrigeration cycle and the operation of the electric heating device based on the temperature of the heat storage material detected by the heat storage material temperature detection means and the condensation temperature detected by the condensation temperature detection means, The heating heat storage control unit is configured to execute the refrigeration cycle until the temperature of the heat storage material detected by the heat storage material temperature detection unit falls within a predetermined temperature range lower than the condensation temperature detected by the condensation temperature detection unit and close to the condensation temperature. Operate both the and the electric heating device, stop only the electric heating device when entering the predetermined temperature range, stop the operation of the refrigeration cycle when exceeding the upper limit temperature of the predetermined temperature range. Serial is intended to operate only the electric heating device, in addition to the effect of the invention according to claim 2, further
For a certain period when the temperature of the heat storage material is close to the condensing temperature of the refrigeration cycle, the electric heating device is temporarily stopped, and after the refrigeration cycle reaches the condensing temperature and stopped, the heat storage material is heated again by the electric heating device to perform heating heat storage. This has the effect that the maximum power consumption of the regenerative air conditioner during heating heat storage can be reduced.

【0018】また、本発明の請求項4に記載の発明は、
請求項2に記載の発明において、電熱装置は蓄熱槽に複
数配設され、蓄熱材の温度を検知する蓄熱材温度検知手
段と、圧縮機から吐出された冷媒の凝縮温度を検知する
凝縮温度検知手段と、冬季夜間の暖房蓄熱時に、前記蓄
熱材温度検知手段で検知した蓄熱材の温度と前記凝縮温
度検知手段で検知した凝縮温度とを基に、冷凍サイクル
の運転と複数の前記電熱装置の運転とを制御する暖房蓄
熱制御手段とを備え、前記暖房蓄熱制御手段は、前記蓄
熱材温度検知手段で検知した蓄熱材の温度が、前記凝縮
温度検知手段で検知した凝縮温度より低く前記凝縮温度
に近い所定の温度以下のときは、前記冷凍サイクルと複
数の前記電熱装置の一部とを運転し、前記所定の温度を
超えると、前記冷凍サイクルの運転を停止して複数の前
記電熱装置の全部を運転するものであり、冬季夜間の暖
房蓄熱時に、蓄熱熱交換器を冷凍サイクルの凝縮器とし
て蓄熱材に放熱凝縮し、これと併用して複数の電熱装置
で蓄熱材に暖房蓄熱することにより、限られた暖房蓄熱
時間内に、さらに、暖房蓄熱量を多くでき、したがって
昼間の蓄熱利用暖房で利用できる暖房蓄熱量が多くな
り、蓄熱維持時間を長くすることによって必要な暖房能
力が維持でき、充分な暖房能力が確保できる。
Further, the invention according to claim 4 of the present invention provides:
In the invention according to claim 2, a plurality of electric heat devices are provided in the heat storage tank, and a heat storage material temperature detecting means for detecting a temperature of the heat storage material, and a condensing temperature detection for detecting a condensing temperature of the refrigerant discharged from the compressor. Means, during heating heat storage in winter night, based on the temperature of the heat storage material detected by the heat storage material temperature detection means and the condensation temperature detected by the condensation temperature detection means, the operation of the refrigeration cycle and the plurality of the electric heating device Heating and heat storage control means for controlling the operation and the heating and heat storage control means, wherein the temperature of the heat storage material detected by the heat storage material temperature detection means is lower than the condensation temperature detected by the condensation temperature detection means. When the temperature is equal to or less than a predetermined temperature, the refrigeration cycle and a part of the plurality of electric heating devices are operated, and when the temperature exceeds the predetermined temperature, the operation of the refrigeration cycle is stopped and the plurality of the electric heating devices are operated. All It is a thing that operates, and when heating and storing heat in the winter night, the heat storage heat exchanger is radiated and condensed on the heat storage material as a condenser of the refrigeration cycle, and by using it together with multiple electric heating devices, the heat is stored in the heat storage material, Within the limited heating heat storage time, the heating heat storage amount can be further increased, so that the heating heat storage amount that can be used in daytime heat storage use heating increases, and the necessary heating capacity can be maintained by extending the heat storage maintenance time, Sufficient heating capacity can be secured.

【0019】またさらに、複数の電熱装置の一部で蓄熱
材を加温し暖房蓄熱を行い、冷凍サイクルが凝縮温度に
達して停止した以後、すべての電熱装置で蓄熱材を加温
し暖房蓄熱を行ことで、暖房蓄熱時の蓄熱式空気調和機
の最大消費電力を低減することができるという作用を有
する。
Still further, after a part of the plurality of electric heating devices heats the heat storage material to perform heating and heat storage, and after the refrigerating cycle reaches the condensing temperature and stops, the heat storage material is heated and heated and stored in all the electric heating devices. Has the effect of reducing the maximum power consumption of the regenerative air conditioner during heating and storage.

【0020】[0020]

【実施例】以下、本発明による蓄熱式空気調和機の実施
例について、図面を参照しながら説明する。なお、従来
と同一構成については、同一符号を付して詳細な説明を
省略する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a regenerative air conditioner according to the present invention will be described below with reference to the drawings. The same components as those in the related art are denoted by the same reference numerals, and detailed description is omitted.

【0021】(実施例1)図1は、本発明の実施例1に
よる蓄熱式空気調和機の冷凍サイクル図である。
(Embodiment 1) FIG. 1 is a refrigeration cycle diagram of a regenerative air conditioner according to Embodiment 1 of the present invention.

【0022】図1において、1は圧縮機であり、2は四
方弁、9は室外熱交換器であり、12は室内熱交換器で
ある。13は液管であり、14はガス管である。15は
液管13とガス管14のバイパス回路に配設された蓄熱
熱交換器である。3は蓄熱熱交換器15を収納した蓄熱
槽であり、4は蓄熱槽3に貯留した蓄熱材である。16
は液管13と蓄熱熱交換器15の間に配設した第1の膨
張弁機構であり、17はガス管14と蓄熱熱交換器15
の間に配設した回路切替用の第1の電磁弁である。18
はガス管14と蓄熱熱交換器15の間の配管から分岐し
液管13に接続される分岐配管であり、19は分岐配管
18に配設した回路切替用の第2電磁弁である。20は
第1の膨張弁機構16と分岐配管18の液管13との接
続点との間の液管13に配設された第2の膨張弁機構で
ある。21は蓄熱槽3に配設された蓄熱材4を加温する
電熱装置である。
In FIG. 1, 1 is a compressor, 2 is a four-way valve, 9 is an outdoor heat exchanger, and 12 is an indoor heat exchanger. Reference numeral 13 denotes a liquid pipe, and 14 denotes a gas pipe. Reference numeral 15 denotes a heat storage heat exchanger provided in a bypass circuit between the liquid pipe 13 and the gas pipe 14. Reference numeral 3 denotes a heat storage tank containing the heat storage heat exchanger 15, and reference numeral 4 denotes a heat storage material stored in the heat storage tank 3. 16
Is a first expansion valve mechanism disposed between the liquid pipe 13 and the heat storage heat exchanger 15, and 17 is a gas pipe 14 and the heat storage heat exchanger 15.
1 is a first solenoid valve for switching a circuit disposed between the first solenoid valve and the first solenoid valve. 18
Reference numeral 19 denotes a branch pipe that branches from a pipe between the gas pipe 14 and the heat storage heat exchanger 15 and is connected to the liquid pipe 13. Reference numeral 19 denotes a second solenoid valve for circuit switching provided in the branch pipe 18. Reference numeral 20 denotes a second expansion valve mechanism disposed on the liquid pipe 13 between the first expansion valve mechanism 16 and a connection point of the branch pipe 18 with the liquid pipe 13. Reference numeral 21 denotes an electric heating device that heats the heat storage material 4 disposed in the heat storage tank 3.

【0023】実施例1による蓄熱式空気調和機は、圧縮
機1、四方弁2、室外熱交換器9、第2の膨張弁機構2
0、室内熱交換器12を順次環状に連接し、蓄熱槽3内
に蓄熱材4と共に収納された蓄熱熱交換器15の一端
を、第1の電磁弁17を介して室内熱交換器12と四方
弁2との間の配管に接続するとともに、第2の電磁弁1
9を介して室外熱交換器9と第2の膨張弁機構20との
間の配管に接続し、蓄熱熱交換器15の他端を、第1の
膨張弁機構16を介して第2の膨張弁機構20と室内熱
交換器12との間の配管に接続し、冬季夜間の暖房蓄熱
時に蓄熱材4を加熱する電熱装置21を蓄熱槽3に配設
したものである。
The regenerative air conditioner according to the first embodiment includes a compressor 1, a four-way valve 2, an outdoor heat exchanger 9, and a second expansion valve mechanism 2.
0, the indoor heat exchangers 12 are sequentially connected in a ring shape, and one end of the heat storage heat exchanger 15 housed in the heat storage tank 3 together with the heat storage material 4 is connected to the indoor heat exchanger 12 via the first electromagnetic valve 17. The second solenoid valve 1 is connected to a pipe between the four-way valve 2 and the second solenoid valve 1.
9 is connected to the pipe between the outdoor heat exchanger 9 and the second expansion valve mechanism 20, and the other end of the heat storage heat exchanger 15 is connected to the second expansion valve via the first expansion valve mechanism 16. An electric heating device 21 that is connected to a pipe between the valve mechanism 20 and the indoor heat exchanger 12 and that heats the heat storage material 4 when heating and storing heat during winter night is provided in the heat storage tank 3.

【0024】以上のように構成された蓄熱式空気調和機
について、以下その動作を説明する。
The operation of the regenerative air conditioner configured as described above will be described below.

【0025】冬季夜間の暖房蓄熱時には、蓄熱槽3に配
設した電熱装置20で蓄熱材4を加温し暖房蓄熱を行
う。このことで蓄熱材4の温度を冷凍サイクルの凝縮温
度以上にして、蓄熱材4の単位容積あたりに蓄熱可能な
暖房蓄熱量を増大することで、暖房蓄熱量を多くでき
る。
At the time of heating heat storage in winter night, the heat storage material 4 is heated by the electric heating device 20 disposed in the heat storage tank 3 to perform heating heat storage. This makes the temperature of the heat storage material 4 equal to or higher than the condensing temperature of the refrigeration cycle and increases the amount of heating heat storage that can be stored per unit volume of the heat storage material 4, thereby increasing the heating heat storage amount.

【0026】そして、昼間の蓄熱利用暖房時には、圧縮
機1で吐出した高温の冷媒ガスが四方弁2を経由して、
室内熱交換器12で放熱凝縮し室内を暖房した後、第1
の膨張弁機構16で減圧膨張し、蓄熱熱交換器15を蒸
発器として蓄熱材4から蒸発吸熱して蓄熱利用し、分岐
配管18から第2の電磁弁19を経て、室外熱交換器9
から四方弁2を経由して圧縮機1に戻る。
At the time of daytime heating using heat storage, the high-temperature refrigerant gas discharged from the compressor 1 passes through the four-way valve 2,
After the heat is condensed and heated in the indoor heat exchanger 12, the first heat
The expansion valve mechanism 16 decompresses and expands, and the heat storage heat exchanger 15 is used as an evaporator to evaporate and absorb heat from the heat storage material 4 to utilize the heat storage. The branch pipe 18 passes through the second solenoid valve 19 to the outdoor heat exchanger 9.
To the compressor 1 via the four-way valve 2.

【0027】この時に、蓄熱利用できる暖房蓄熱量が多
くなり、蓄熱維持時間を長くすることによって必要な暖
房能力が維持でき、充分な暖房能力が確保できる。
At this time, the amount of heat storage that can be used for heat storage increases, and the required heating capacity can be maintained by extending the heat storage maintenance time, so that sufficient heating capacity can be secured.

【0028】以上のように本実施例の蓄熱式空気調和機
は、圧縮機1、四方弁2、室外熱交換器9、第2の膨張
弁機構20、室内熱交換器12を順次環状に連接し、蓄
熱槽3内に蓄熱材4と共に収納された蓄熱熱交換器15
の一端を、第1の電磁弁17を介して室内熱交換器12
と四方弁2との間の配管に接続するとともに、第2の電
磁弁19を介して室外熱交換器9と第2の膨張弁機構2
0との間の配管に接続し、蓄熱熱交換器15の他端を、
第1の膨張弁機構16を介して第2の膨張弁機構20と
室内熱交換器12との間の配管に接続し、冬季夜間の暖
房蓄熱時に、蓄熱材4を加熱する電熱装置21を蓄熱槽
3に配設したことにより、冬季夜間の暖房蓄熱時に、蓄
熱槽3に配設した電熱装置21で蓄熱材4の温度を冷凍
サイクルの凝縮温度以上にして、蓄熱材4の単位容積あ
たりに蓄熱可能な暖房蓄熱量を増大することで、暖房蓄
熱量を多くでき、したがって昼間の蓄熱利用暖房で利用
できる暖房蓄熱量が多くなり、蓄熱維持時間を長くする
ことによって必要な暖房能力が維持でき、充分な暖房能
力が確保できる。 (実施例2)次に、本発明の実施例2による蓄熱式空気
調和機について説明するが、実施例2による蓄熱式空気
調和機の冷凍サイクル図は、図1に示された実施例1に
よる蓄熱式空気調和機の冷凍サイクル図と同じである
が、冬季夜間の暖房蓄熱時に、蓄熱熱交換器15の放熱
により蓄熱材4を加熱すると共に、電熱装置21により
蓄熱材4を蓄熱熱交換器15の凝縮温度以上に加熱する
ように構成した点で、実施例1とは冬季夜間の暖房蓄熱
時の動作が異なる。
As described above, in the regenerative air conditioner of this embodiment, the compressor 1, the four-way valve 2, the outdoor heat exchanger 9, the second expansion valve mechanism 20, and the indoor heat exchanger 12 are sequentially connected in a ring shape. The heat storage heat exchanger 15 housed in the heat storage tank 3 together with the heat storage material 4
Of the indoor heat exchanger 12 through the first solenoid valve 17.
And the outdoor heat exchanger 9 and the second expansion valve mechanism 2 via a second solenoid valve 19.
0, and the other end of the heat storage heat exchanger 15
An electric heating device 21 that is connected to a pipe between the second expansion valve mechanism 20 and the indoor heat exchanger 12 via the first expansion valve mechanism 16 and that heats the heat storage material 4 during heating and storage during winter nights. Since the heat storage material 4 is disposed in the tank 3, the temperature of the heat storage material 4 is set to be equal to or higher than the condensing temperature of the refrigeration cycle by the electric heating device 21 disposed in the heat storage tank 3 at the time of heating heat storage in winter night, and By increasing the amount of heat storage that can be stored, the amount of heat storage can be increased, and thus the amount of heat storage that can be used in daytime heat storage heating increases, and the required heating capacity can be maintained by extending the heat storage maintenance time. Sufficient heating capacity can be secured. (Embodiment 2) Next, a regenerative air conditioner according to Embodiment 2 of the present invention will be described. A refrigeration cycle diagram of the regenerative air conditioner according to Embodiment 2 is based on Embodiment 1 shown in FIG. This is the same as the refrigerating cycle diagram of the regenerative air conditioner, except that the heat storage material 4 is heated by the heat radiation of the heat storage heat exchanger 15 and the heat storage material 4 is stored by the electric heat device 21 at the time of the winter heat storage. Example 1 differs from Example 1 in the operation at the time of heating and storing heat in winter nights in that the heating is performed at a temperature of 15 or more.

【0029】冬季夜間の暖房蓄熱時に、圧縮機1より吐
出された高温の冷媒ガスは四方弁2を経由して、ガス管
14から第1の電磁弁17を経て、蓄熱槽3の内部に配
設した蓄熱熱交換器15で蓄熱材4に放熱凝縮して暖房
蓄熱し、全開の第1の膨張弁機構16を経て、第2の膨
張弁機構20で減圧された後、室外熱交換器9で吸熱蒸
発し、四方弁2を経由して圧縮機1へと戻る。
At the time of heat storage during winter night, the high-temperature refrigerant gas discharged from the compressor 1 is distributed to the inside of the heat storage tank 3 via the four-way valve 2, the gas pipe 14, the first solenoid valve 17, and the like. After the heat is condensed and stored in the heat storage material 4 in the heat storage heat exchanger 15 provided for heating and heat storage, the pressure is reduced by the second expansion valve mechanism 20 through the first expansion valve mechanism 16 which is fully opened, and then the outdoor heat exchanger 9 , And returns to the compressor 1 via the four-way valve 2.

【0030】この時、第2の電磁弁19は閉じている。
さらに、この冷凍サイクルの暖房蓄熱と併用して、蓄熱
槽3に配設した電熱装置21で蓄熱材4を加温し暖房蓄
熱を行う。
At this time, the second solenoid valve 19 is closed.
Further, the heat storage material 4 is heated by the electric heating device 21 disposed in the heat storage tank 3 to perform heating and heat storage together with the heat storage of the refrigeration cycle.

【0031】このことで、冬季夜間の暖房蓄熱時に、蓄
熱熱交換器15を冷凍サイクルの凝縮器として蓄熱材4
に放熱凝縮し、これと併用して電熱装置21で蓄熱材4
に暖房蓄熱することにより、限られた暖房蓄熱時間内
に、蓄熱材4の温度を冷凍サイクルの凝縮温度以上にし
て、蓄熱材4の単位容積あたりに蓄熱可能な暖房蓄熱量
を増大することで、さらに、暖房蓄熱量を多くできる。
Thus, when the heat storage is performed during the winter night, the heat storage heat exchanger 15 is used as a condenser of the refrigeration cycle when the heat storage material 4 is used.
The heat storage material 4 is condensed by the heat storage
By increasing the temperature of the heat storage material 4 to the condensing temperature of the refrigeration cycle within a limited heating heat storage time by increasing the heat storage time, the amount of heat storage that can be stored per unit volume of the heat storage material 4 is increased. Further, the heat storage amount can be increased.

【0032】そして、昼間の蓄熱利用暖房時には、圧縮
機1で吐出した高温の冷媒ガスが四方弁2を経由して、
室内熱交換器12で放熱凝縮し室内を暖房した後、第1
の膨張弁機構16で減圧膨張し、蓄熱熱交換器15を蒸
発器として蓄熱材4から蒸発吸熱して蓄熱利用し、分岐
配管18から第2の電磁弁19を経て、室外熱交換器9
から四方弁2を経由して圧縮機1に戻る。
At the time of daytime heating using heat storage, the high-temperature refrigerant gas discharged from the compressor 1 passes through the four-way valve 2,
After the heat is condensed and heated in the indoor heat exchanger 12, the first heat
The expansion valve mechanism 16 decompresses and expands, and the heat storage heat exchanger 15 is used as an evaporator to evaporate and absorb heat from the heat storage material 4 to utilize the heat storage. The branch pipe 18 passes through the second solenoid valve 19 to the outdoor heat exchanger 9.
To the compressor 1 via the four-way valve 2.

【0033】この時に、蓄熱利用できる暖房蓄熱量がさ
らに多くなり、蓄熱維持時間を長くすることによって必
要な暖房能力が維持でき、充分な暖房能力が確保でき
る。
At this time, the amount of heating heat storage that can be used for heat storage is further increased, and the necessary heating capacity can be maintained by extending the heat storage maintaining time, so that sufficient heating capacity can be secured.

【0034】以上のように本実施例の蓄熱式空気調和機
は、圧縮機1、四方弁2、室外熱交換器9、第2の膨張
弁機構20、室内熱交換器12を順次環状に連接し、蓄
熱槽3内に蓄熱材4と共に収納された蓄熱熱交換器15
の一端を、第1の電磁弁17を介して室内熱交換器12
と四方弁2との間の配管に接続するとともに、第2の電
磁弁19を介して室外熱交換器9と第2の膨張弁機構2
0との間の配管に接続し、蓄熱熱交換器15の他端を、
第1の膨張弁機構16を介して第2の膨張弁機構20と
室内熱交換器12との間の配管に接続し、蓄熱材4を加
熱する電熱装置21を蓄熱槽3に配設し、冬季夜間の暖
房蓄熱時に、蓄熱熱交換器15の放熱により蓄熱材4を
加熱すると共に、電熱装置21により蓄熱材4を蓄熱熱
交換器15の凝縮温度以上に加熱するよう構成したこと
により、限られた暖房蓄熱時間内に、さらに、暖房蓄熱
量を多くでき、したがって昼間の蓄熱利用暖房で利用で
きる暖房蓄熱量が多くなり、蓄熱維持時間を長くするこ
とによって必要な暖房能力が維持でき、充分な暖房能力
が確保できる。
As described above, in the regenerative air conditioner of this embodiment, the compressor 1, the four-way valve 2, the outdoor heat exchanger 9, the second expansion valve mechanism 20, and the indoor heat exchanger 12 are sequentially connected in a ring shape. The heat storage heat exchanger 15 housed in the heat storage tank 3 together with the heat storage material 4
Of the indoor heat exchanger 12 through the first solenoid valve 17.
And the outdoor heat exchanger 9 and the second expansion valve mechanism 2 via a second solenoid valve 19.
0, and the other end of the heat storage heat exchanger 15
An electric heating device 21 that is connected to a pipe between the second expansion valve mechanism 20 and the indoor heat exchanger 12 via the first expansion valve mechanism 16 and heats the heat storage material 4 is provided in the heat storage tank 3, By heating the heat storage material 4 by heat radiation of the heat storage heat exchanger 15 and heating the heat storage material 4 by the electric heating device 21 to a temperature equal to or higher than the condensing temperature of the heat storage heat exchanger 15 at the time of heating and storing in winter night, Within the specified heating heat storage time, the heating heat storage amount can be further increased, so that the heating heat storage amount that can be used in daytime heat storage use heating increases, and the necessary heating capacity can be maintained by extending the heat storage maintenance time, and Heating capacity can be secured.

【0035】(実施例3)図2は、本発明の実施例3に
よる蓄熱式空気調和機の構成図である。図3は、同実施
例の動作を示すフローチャートである。なお、本実施例
において、実施例1または実施例2と同一構成について
は同一符号を付して、その詳細な説明は省略する。
(Embodiment 3) FIG. 2 is a configuration diagram of a regenerative air conditioner according to Embodiment 3 of the present invention. FIG. 3 is a flowchart showing the operation of the embodiment. In the present embodiment, the same components as those of the first or second embodiment are denoted by the same reference numerals, and the detailed description thereof will be omitted.

【0036】図2において、22は蓄熱材4の温度を検
出する蓄熱材温度検出手段であり、23は圧縮機1の運
転状況を検出する圧縮機運転状況検出手段であり、24
は凝縮温度を検出する凝縮温度検出手段である。25
は、蓄熱材温度検出手段22、圧縮機運転状況検出手段
23、凝縮温度検出手段24を入力とし、圧縮機1およ
び電熱装置21を制御する暖房蓄熱制御手段である。
In FIG. 2, reference numeral 22 denotes a heat storage material temperature detecting means for detecting the temperature of the heat storage material 4; 23, a compressor operating state detecting means for detecting the operating state of the compressor 1;
Is a condensation temperature detecting means for detecting the condensation temperature. 25
Is a heating and heat storage control means for controlling the compressor 1 and the electric heating device 21 by using the heat storage material temperature detecting means 22, the compressor operating state detecting means 23, and the condensing temperature detecting means 24 as inputs.

【0037】実施例3による蓄熱式空気調和機は、圧縮
機1、四方弁2、室外熱交換器9、第2の膨張弁機構2
0、室内熱交換器12を順次環状に連接し、蓄熱槽3内
に蓄熱材4と共に収納された蓄熱熱交換器15の一端
を、第1の電磁弁17を介して室内熱交換器12と四方
弁2との間の配管に接続するとともに、第2の電磁弁1
9を介して室外熱交換器9と第2の膨張弁機構20との
間の配管に接続し、蓄熱熱交換器15の他端を、第1の
膨張弁機構16を介して第2の膨張弁機構20と室内熱
交換器12との間の配管に接続し、蓄熱材4を加熱する
電熱装置21を蓄熱槽3に配設した実施例2による蓄熱
式空気調和機の構成において、蓄熱材4の温度を検知す
る蓄熱材温度検知手段22と、圧縮機1の運転状況を検
出する圧縮機運転状況検出手段23と、圧縮機1から吐
出された冷媒の凝縮温度を検知する凝縮温度検知手段2
4と、冬季夜間の暖房蓄熱時に、蓄熱材温度検知手段2
2で検知した蓄熱材4の温度と凝縮温度検知手段24で
検知した凝縮温度とを基に、冷凍サイクル(圧縮機1)
の運転と電熱装置21の運転とを制御する暖房蓄熱制御
手段25とを備えたものである。
The regenerative air conditioner according to the third embodiment includes a compressor 1, a four-way valve 2, an outdoor heat exchanger 9, and a second expansion valve mechanism 2.
0, the indoor heat exchangers 12 are sequentially connected in a ring shape, and one end of the heat storage heat exchanger 15 housed in the heat storage tank 3 together with the heat storage material 4 is connected to the indoor heat exchanger 12 via the first electromagnetic valve 17. The second solenoid valve 1 is connected to a pipe between the four-way valve 2 and the second solenoid valve 1.
9 is connected to the pipe between the outdoor heat exchanger 9 and the second expansion valve mechanism 20, and the other end of the heat storage heat exchanger 15 is connected to the second expansion valve via the first expansion valve mechanism 16. In the configuration of the heat storage type air conditioner according to the second embodiment in which an electric heating device 21 for heating the heat storage material 4 is connected to a pipe between the valve mechanism 20 and the indoor heat exchanger 12 and disposed in the heat storage tank 3, 4, a heat storage material temperature detecting means 22 for detecting the temperature of the compressor 4, a compressor operating state detecting means 23 for detecting an operating state of the compressor 1, and a condensing temperature detecting means for detecting a condensing temperature of the refrigerant discharged from the compressor 1. 2
4 and a heat storage material temperature detecting means 2 for heating and storing heat during winter nights.
Refrigeration cycle (compressor 1) based on the temperature of heat storage material 4 detected in 2 and the condensation temperature detected in condensation temperature detecting means 24.
And the heating heat storage control means 25 for controlling the operation of the electric heating device 21.

【0038】なお、暖房蓄熱制御手段25は、蓄熱材温
度検知手段22で検知した蓄熱材4の温度が、凝縮温度
検知手段24で検知した凝縮温度より低く凝縮温度に近
い所定の温度範囲に入るまでは、冷凍サイクル(圧縮機
1)と電熱装置21の両方を運転し、所定の温度範囲に
入ると電熱装置21のみ運転を停止し、所定の温度範囲
の上限温度を超えると、冷凍サイクル(圧縮機1)の運
転を停止して電熱装置21のみ運転するものである。
The heating and heat storage control means 25 controls the temperature of the heat storage material 4 detected by the heat storage material temperature detection means 22 to fall within a predetermined temperature range lower than the condensation temperature detected by the condensation temperature detection means 24 and close to the condensation temperature. Up to this point, both the refrigeration cycle (compressor 1) and the electric heating device 21 are operated, and when the temperature falls within a predetermined temperature range, only the operation of the electric heating device 21 is stopped, and when the temperature exceeds the upper limit temperature of the predetermined temperature range, the refrigeration cycle ( The operation of the compressor 1) is stopped and only the electric heating device 21 is operated.

【0039】以上のように構成された蓄熱式空気調和機
について、以下その動作を図3のフローチャートをもと
にして説明する。
The operation of the regenerative air conditioner configured as described above will be described below with reference to the flowchart of FIG.

【0040】まず、暖房蓄熱運転開始後、ステップ01
で蓄熱材温度Twを検知する。ステップ02で凝縮温度
Tcを検知する。ステップ03ではステップ01で検知
した蓄熱材温度Twがステップ02で検知した凝縮温度
Tcから所定の温度差△T1(例えば5K)差し引いた
値より低ければステップ08に進み、そうでなければス
テップ04に進む。
First, after the heating and heat storage operation is started, Step 01
Detects the heat storage material temperature Tw. In step 02, the condensation temperature Tc is detected. In step 03, if the heat storage material temperature Tw detected in step 01 is lower than a value obtained by subtracting a predetermined temperature difference ΔT1 (for example, 5K) from the condensation temperature Tc detected in step 02, the process proceeds to step 08; otherwise, the process proceeds to step 04. move on.

【0041】ステップ08では冷凍サイクルを運転し、
ステップ09では電熱装置を運転してステップ10へ進
む。
In step 08, the refrigeration cycle is operated.
In step 09, the electric heating device is operated, and the process proceeds to step 10.

【0042】ステップ04では蓄熱材温度Twが第1の
所定温度T2(例えば45℃)より高ければステップ0
5に進み、そうでなければステップ06に進む。ステッ
プ05では冷凍サイクルを停止してステップ09に進
む。
In step 04, if the heat storage material temperature Tw is higher than the first predetermined temperature T2 (for example, 45 ° C.), step 0 is executed.
Go to step 5, otherwise go to step 06. In step 05, the refrigeration cycle is stopped, and the process proceeds to step 09.

【0043】ステップ06では冷凍サイクルを運転し、
ステップ07では電熱装置を停止してステップ10に進
む。
In step 06, the refrigeration cycle is operated.
In step 07, the electric heating device is stopped and the process proceeds to step 10.

【0044】ステップ10ではステップ01で検知した
蓄熱材温度Twが第2の所定温度T3(例えば55℃)
以上ならステップ11に進み、そうでなければステップ
01に戻る。ステップ11では電熱装置を停止し暖房蓄
熱運転を終了する。
In step 10, the temperature Tw of the heat storage material detected in step 01 is changed to a second predetermined temperature T3 (for example, 55 ° C.).
If so, proceed to step 11; otherwise, return to step 01. In step 11, the electric heating device is stopped, and the heating and heat storage operation ends.

【0045】本実施例の蓄熱式空気調和機は、冬季夜間
の暖房蓄熱時に、蓄熱材温度Twが第1の所定温度T2
まで蓄熱熱交換器15を冷凍サイクルの凝縮器として蓄
熱材4に放熱凝縮し、これと併用して電熱装置21で蓄
熱材4に暖房蓄熱する。
In the regenerative air conditioner of the present embodiment, the heat storage material temperature Tw is set to the first predetermined temperature T2 during the heating and heat storage in winter night.
The heat storage heat exchanger 15 is used as a condenser of the refrigeration cycle until the heat storage material 4 is radiated and condensed on the heat storage material 4.

【0046】これにより、限られた暖房蓄熱時間内に、
蓄熱材4の温度を冷凍サイクルの凝縮温度以上にして、
蓄熱材4の単位容積あたりに蓄熱可能な暖房蓄熱量を増
大することで、暖房蓄熱量を多くできる。
Thus, within a limited heating heat storage time,
By setting the temperature of the heat storage material 4 to be equal to or higher than the condensation temperature of the refrigeration cycle,
By increasing the heating heat storage amount that can store heat per unit volume of the heat storage material 4, the heating heat storage amount can be increased.

【0047】そして、昼間の蓄熱利用暖房時には、圧縮
機1で吐出した高温の冷媒ガスが四方弁2を経由して、
室内熱交換器12で放熱凝縮し室内を暖房した後、第1
の膨張弁機構16で減圧膨張し、蓄熱熱交換器15を蒸
発器として蓄熱材4から蒸発吸熱して蓄熱利用し、分岐
配管18から第2の電磁弁19を経て、室外熱交換器9
から四方弁2を経由して圧縮機1に戻る。
At the time of heating using heat storage in the daytime, high-temperature refrigerant gas discharged from the compressor 1 passes through the four-way valve 2,
After the heat is condensed and heated in the indoor heat exchanger 12, the first heat
The expansion valve mechanism 16 decompresses and expands, and the heat storage heat exchanger 15 is used as an evaporator to evaporate and absorb heat from the heat storage material 4 to utilize the heat storage. The branch pipe 18 passes through the second solenoid valve 19 to the outdoor heat exchanger 9.
To the compressor 1 via the four-way valve 2.

【0048】この時に、蓄熱利用できる暖房蓄熱量が多
くなり、蓄熱維持時間を長くすることによって必要な暖
房能力が維持でき、充分な暖房能力が確保できる。
At this time, the amount of heat storage that can be used for heat storage increases, and the required heating capacity can be maintained by extending the heat storage maintenance time, so that sufficient heating capacity can be secured.

【0049】さらに、蓄熱材温度Twが冷凍サイクルを
停止する第1の所定温度T2以下で、かつ、凝縮温度T
cから所定の温度差△T1を差し引いた値より高いと
き、すなわち、冷凍サイクルが凝縮温度付近で運転して
おり、冷凍サイクル上の凝縮圧力が高く、圧縮機1の圧
縮比が高く、圧縮機1の消費電力が高い時に、電熱装置
21の運転を停止することで蓄熱式空気調和機の最大消
費電力を低減することができる。
Further, the heat storage material temperature Tw is equal to or lower than the first predetermined temperature T2 for stopping the refrigeration cycle, and the condensing temperature T
c is higher than a value obtained by subtracting a predetermined temperature difference ΔT1, that is, the refrigeration cycle is operating near the condensing temperature, the condensing pressure on the refrigeration cycle is high, the compression ratio of the compressor 1 is high, and By stopping the operation of the electric heating device 21 when the power consumption of 1 is high, the maximum power consumption of the regenerative air conditioner can be reduced.

【0050】以上のように本実施例の蓄熱式空気調和機
は、圧縮機1、四方弁2、室外熱交換器9、第2の膨張
弁機構20、室内熱交換器12を順次環状に連接し、蓄
熱槽3内に蓄熱材4と共に収納された蓄熱熱交換器15
の一端を、第1の電磁弁17を介して室内熱交換器12
と四方弁2との間の配管に接続するとともに、第2の電
磁弁19を介して室外熱交換器9と第2の膨張弁機構2
0との間の配管に接続し、蓄熱熱交換器15の他端を、
第1の膨張弁機構16を介して第2の膨張弁機構20と
室内熱交換器12との間の配管に接続し、蓄熱材4を加
熱する電熱装置21を蓄熱槽3に配設した蓄熱式空気調
和機において、さらに、蓄熱材4の温度を検知する蓄熱
材温度検知手段22と、圧縮機1の運転状況を検出する
圧縮機運転状況検出手段23と、圧縮機1から吐出され
た冷媒の凝縮温度を検知する凝縮温度検知手段24と、
冬季夜間の暖房蓄熱時に、蓄熱材温度検知手段22で検
知した蓄熱材4の温度と凝縮温度検知手段24で検知し
た凝縮温度とを基に、冷凍サイクル(圧縮機1)の運転
と電熱装置21の運転とを制御する暖房蓄熱制御手段2
5とを備え、暖房蓄熱制御手段25は、蓄熱材温度検知
手段22で検知した蓄熱材4の温度が、凝縮温度検知手
段24で検知した凝縮温度より低く凝縮温度に近い所定
の温度範囲に入るまでは、冷凍サイクル(圧縮機1)と
電熱装置21の両方を運転し、所定の温度範囲に入ると
電熱装置21のみ運転を停止し、所定の温度範囲の上限
温度を超えると、冷凍サイクル(圧縮機1)の運転を停
止して電熱装置21のみ運転するものであるから、冬季
夜間の暖房蓄熱時に、蓄熱材温度Twが第1の所定温度
T2まで蓄熱熱交換器15を冷凍サイクルの凝縮器とし
て蓄熱材4に放熱凝縮し、これと併用して電熱装置21
で蓄熱材4に暖房蓄熱することにより、限られた暖房蓄
熱時間内に、蓄熱材4の温度を冷凍サイクルの凝縮温度
以上にして、蓄熱材4の単位容積あたりに蓄熱可能な暖
房蓄熱量を増大することで、暖房蓄熱量を多くでき、し
たがって昼間の蓄熱利用暖房時に蓄熱利用できる暖房蓄
熱量が多くなり、蓄熱維持時間を長くすることによって
必要な暖房能力が維持でき、充分な暖房能力が確保でき
る。
As described above, in the regenerative air conditioner of this embodiment, the compressor 1, the four-way valve 2, the outdoor heat exchanger 9, the second expansion valve mechanism 20, and the indoor heat exchanger 12 are sequentially connected in a ring shape. The heat storage heat exchanger 15 housed in the heat storage tank 3 together with the heat storage material 4
Of the indoor heat exchanger 12 through the first solenoid valve 17.
And the outdoor heat exchanger 9 and the second expansion valve mechanism 2 via a second solenoid valve 19.
0, and the other end of the heat storage heat exchanger 15
Heat storage connected to a pipe between the second expansion valve mechanism 20 and the indoor heat exchanger 12 via the first expansion valve mechanism 16 and provided in the heat storage tank 3 with an electric heating device 21 for heating the heat storage material 4. In the air conditioner, the heat storage material temperature detection means 22 for detecting the temperature of the heat storage material 4, the compressor operation state detection means 23 for detecting the operation state of the compressor 1, and the refrigerant discharged from the compressor 1 Condensation temperature detection means 24 for detecting the condensation temperature of
At the time of heating and storing heat during the winter night, the operation of the refrigeration cycle (compressor 1) and the electric heating device 21 are performed based on the temperature of the heat storage material 4 detected by the heat storage material temperature detecting means 22 and the condensing temperature detected by the condensing temperature detecting means 24. Heat storage control means 2 for controlling the operation of
And the heating / heat storage control means 25 includes a predetermined temperature range in which the temperature of the heat storage material 4 detected by the heat storage material temperature detection means 22 is lower than the condensation temperature detected by the condensation temperature detection means 24 and close to the condensation temperature. Up to this point, both the refrigeration cycle (compressor 1) and the electric heating device 21 are operated, and when the temperature falls within a predetermined temperature range, only the operation of the electric heating device 21 is stopped, and when the temperature exceeds the upper limit temperature of the predetermined temperature range, the refrigeration cycle ( Since the operation of the compressor 1) is stopped and only the electric heat device 21 is operated, the heat storage material temperature Tw is reduced to the first predetermined temperature T2 by the heat storage heat exchanger 15 during the winter heat storage during the heat storage. The heat is condensed on the heat storage material 4 as a heat exchanger, and the electric heat
By heating and storing heat in the heat storage material 4, the temperature of the heat storage material 4 is set to be equal to or higher than the condensation temperature of the refrigeration cycle within a limited heating heat storage time, and the heating heat storage amount that can be stored per unit volume of the heat storage material 4 is obtained. By increasing, the amount of heat storage can be increased, and therefore the amount of heat storage that can be used during daytime heat storage heating increases, and the required heating capacity can be maintained by extending the heat storage maintenance time, and sufficient heating capacity can be maintained. Can be secured.

【0051】さらに、蓄熱材温度Twが冷凍サイクルを
停止する第1の所定温度T2以下で、かつ、凝縮温度T
cから所定の温度差△T1を差し引いた値より高いと
き、すなわち、冷凍サイクルが凝縮温度付近で運転して
おり、冷凍サイクル上の凝縮圧力が高く、圧縮機1の圧
縮比が高く、圧縮機1の消費電力が高い時に、電熱装置
21の運転を一端停止させることで、暖房蓄熱時の蓄熱
式空気調和機の最大消費電力を低減することができる。 (実施例4)図4は、本発明の実施例4による蓄熱式空
気調和機の構成図である。図5は、同実施例の動作を示
すフローチャートである。なお、本実施例において、実
施例1〜実施例3と同一構成については同一符号を付し
て、その詳細な説明は省略する。
Further, the heat storage material temperature Tw is equal to or lower than the first predetermined temperature T2 for stopping the refrigeration cycle, and the condensing temperature T
c is higher than a value obtained by subtracting a predetermined temperature difference ΔT1, that is, the refrigeration cycle is operating near the condensing temperature, the condensing pressure on the refrigeration cycle is high, the compression ratio of the compressor 1 is high, and By temporarily stopping the operation of the electric heating device 21 when the power consumption of 1 is high, it is possible to reduce the maximum power consumption of the regenerative air conditioner during the heat storage. (Embodiment 4) FIG. 4 is a configuration diagram of a regenerative air conditioner according to Embodiment 4 of the present invention. FIG. 5 is a flowchart showing the operation of the embodiment. In the present embodiment, the same components as those in the first to third embodiments are denoted by the same reference numerals, and detailed description thereof will be omitted.

【0052】図4において、26は複数の電熱装置、2
7は電熱装置の一部である。
In FIG. 4, reference numeral 26 denotes a plurality of electric heating devices, 2
7 is a part of an electric heating device.

【0053】実施例4による蓄熱式空気調和機は、圧縮
機1、四方弁2、室外熱交換器9、第2の膨張弁機構2
0、室内熱交換器12を順次環状に連接し、蓄熱槽3内
に蓄熱材4と共に収納された蓄熱熱交換器15の一端
を、第1の電磁弁17を介して室内熱交換器12と四方
弁2との間の配管に接続するとともに、第2の電磁弁1
9を介して室外熱交換器9と第2の膨張弁機構20との
間の配管に接続し、蓄熱熱交換器15の他端を、第1の
膨張弁機構16を介して第2の膨張弁機構20と室内熱
交換器12との間の配管に接続し、蓄熱材4を加熱する
複数の電熱装置26を蓄熱槽3に配設し、さらに、蓄熱
材4の温度を検知する蓄熱材温度検知手段22と、圧縮
機1の運転状況を検出する圧縮機運転状況検出手段23
と、圧縮機1から吐出された冷媒の凝縮温度を検知する
凝縮温度検知手段24と、冬季夜間の暖房蓄熱時に、蓄
熱材温度検知手段22で検知した蓄熱材4の温度と凝縮
温度検知手段24で検知した凝縮温度とを基に、冷凍サ
イクル(圧縮機1)の運転と複数の電熱装置26の運転
とを制御する暖房蓄熱制御手段25とを備えたものであ
る。
The regenerative air conditioner according to the fourth embodiment includes a compressor 1, a four-way valve 2, an outdoor heat exchanger 9, and a second expansion valve mechanism 2.
0, the indoor heat exchangers 12 are sequentially connected in a ring shape, and one end of the heat storage heat exchanger 15 housed in the heat storage tank 3 together with the heat storage material 4 is connected to the indoor heat exchanger 12 via the first electromagnetic valve 17. The second solenoid valve 1 is connected to a pipe between the four-way valve 2 and the second solenoid valve 1.
9 is connected to the pipe between the outdoor heat exchanger 9 and the second expansion valve mechanism 20, and the other end of the heat storage heat exchanger 15 is connected to the second expansion valve via the first expansion valve mechanism 16. A plurality of electric heating devices 26 connected to a pipe between the valve mechanism 20 and the indoor heat exchanger 12 for heating the heat storage material 4 are provided in the heat storage tank 3, and further, a heat storage material for detecting the temperature of the heat storage material 4. Temperature detecting means 22 and compressor operating state detecting means 23 for detecting the operating state of compressor 1
Condensation temperature detection means 24 for detecting the condensation temperature of the refrigerant discharged from the compressor 1, and the temperature of the heat storage material 4 detected by the heat storage material temperature detection means 22 and the condensation temperature detection means 24 during the heating and heat storage during winter night. And a heating and heat storage control means 25 for controlling the operation of the refrigeration cycle (compressor 1) and the operation of the plurality of electric heating devices 26 based on the condensing temperature detected in step (1).

【0054】なお、暖房蓄熱制御手段25は、蓄熱材温
度検知手段22で検知した蓄熱材4の温度が、凝縮温度
検知手段24で検知した凝縮温度より低く凝縮温度に近
い所定の温度以下のときは、冷凍サイクル(圧縮機1)
と複数の電熱装置の一部27とを運転し、所定の温度を
超えると、冷凍サイクル(圧縮機1)の運転を停止して
複数の電熱装置26の全部を運転するものである。
The heating heat storage control means 25 determines whether the temperature of the heat storage material 4 detected by the heat storage material temperature detecting means 22 is lower than a predetermined temperature which is lower than the condensing temperature detected by the condensing temperature detecting means 24 and close to the condensing temperature. Is the refrigeration cycle (compressor 1)
When the temperature exceeds a predetermined temperature, the operation of the refrigeration cycle (compressor 1) is stopped and all of the plurality of electric heating devices 26 are operated.

【0055】以上のように構成された蓄熱式空気調和機
について、以下その動作を図5のフローチャートをもと
にして説明する。
The operation of the regenerative air conditioner configured as described above will be described below with reference to the flowchart of FIG.

【0056】まず、暖房蓄熱運転開始後、ステップ12
で蓄熱材温度Twを検知する。ステップ13で凝縮温度
Tcを検知する。ステップ14ではステップ01で検知
した蓄熱材温度Twが第3の所定の水温T4以下ならス
テップ17へ進み、そうでなければステップ15へ進
む。
First, after the heating and heat storage operation is started, step 12 is executed.
Detects the heat storage material temperature Tw. In step 13, the condensation temperature Tc is detected. In step 14, if the heat storage material temperature Tw detected in step 01 is equal to or lower than the third predetermined water temperature T4, the process proceeds to step 17, and if not, the process proceeds to step 15.

【0057】ステップ17では冷凍サイクルを運転し、
ステップ18では電熱装置の一部11を運転しステップ
19へ進む。ステップ15では冷凍サイクルを停止し、
ステップ16では複数の電熱装置すべてを運転してステ
ップ19へ進む。
In step 17, the refrigeration cycle is operated,
In step 18, the part 11 of the electric heating device is operated, and the process proceeds to step 19. In step 15, the refrigeration cycle is stopped,
In step 16, all the plurality of electric heating devices are operated, and the process proceeds to step 19.

【0058】ステップ19ではステップ01で検知した
蓄熱材温度Twが第4の所定の水温T5以下ならステッ
プ12へ戻り、そうでなければステップ20へ進む。ス
テップ20では複数の電熱装置すべてを停止して暖房蓄
熱運転を終了する。
In step 19, if the heat storage material temperature Tw detected in step 01 is equal to or lower than the fourth predetermined water temperature T5, the flow returns to step 12, and if not, the flow proceeds to step 20. In step 20, all of the plurality of electric heating devices are stopped, and the heating and heat storage operation is terminated.

【0059】本実施例の蓄熱式空気調和機は、冬季夜間
の暖房蓄熱時に、蓄熱材温度Twが第3の所定温度T4
まで蓄熱熱交換器15を冷凍サイクルの凝縮器として蓄
熱材4に放熱凝縮し、これと併用して電熱装置の一部2
7で蓄熱材4に暖房蓄熱し、蓄熱材温度Twが第3の所
定温度T4以上になると複数の電熱装置26で暖房蓄熱
する。
In the heat storage type air conditioner of this embodiment, the heat storage material temperature Tw is set to the third predetermined temperature T4 during the heating and heat storage in the nighttime in winter.
The heat storage heat exchanger 15 is used as a condenser of a refrigerating cycle to radiate and condense heat on the heat storage material 4 and use it together with a part 2 of the electric heat device.
At 7, the heat storage material 4 is heated and stored, and when the heat storage material temperature Tw becomes equal to or higher than the third predetermined temperature T <b> 4, the plurality of electric heat devices 26 perform heating storage.

【0060】これにより、限られた暖房蓄熱時間内に、
蓄熱材4の温度を冷凍サイクルの凝縮温度以上にして、
蓄熱材4の単位容積あたりに蓄熱可能な暖房蓄熱量を増
大することで、さらに、暖房蓄熱量を多くできる。
Thus, within a limited heating heat storage time,
By setting the temperature of the heat storage material 4 to be equal to or higher than the condensation temperature of the refrigeration cycle,
By increasing the heating heat storage amount that can store heat per unit volume of the heat storage material 4, the heating heat storage amount can be further increased.

【0061】そして、昼間の蓄熱利用暖房時には、圧縮
機1で吐出した高温の冷媒ガスが四方弁2を経由して、
室内熱交換器12で放熱凝縮し室内を暖房した後、第1
の膨張弁機構16で減圧膨張し、蓄熱熱交換器15を蒸
発器として蓄熱材4から蒸発吸熱して蓄熱利用し、分岐
配管18から第2の電磁弁19を経て、室外熱交換器9
から四方弁2を経由して圧縮機1に戻る。
At the time of heating using heat storage in the daytime, high-temperature refrigerant gas discharged from the compressor 1 passes through the four-way valve 2,
After the heat is condensed and heated in the indoor heat exchanger 12, the first heat
The expansion valve mechanism 16 decompresses and expands, and the heat storage heat exchanger 15 is used as an evaporator to evaporate and absorb heat from the heat storage material 4 to utilize the heat storage. The branch pipe 18 passes through the second solenoid valve 19 to the outdoor heat exchanger 9.
To the compressor 1 via the four-way valve 2.

【0062】この時に、蓄熱利用できる暖房蓄熱量がさ
らに多くなり、蓄熱維持時間を長くすることによって必
要な暖房能力が維持でき、充分な暖房能力が確保でき
る。
At this time, the amount of heat storage that can be used for heat storage is further increased, and the required heating capacity can be maintained by extending the heat storage maintenance time, and sufficient heating capacity can be secured.

【0063】さらに、蓄熱材温度Twが冷凍サイクルを
停止する第3の所定温度T4以下では、電熱装置の一部
27のみを運転することにより、冷凍サイクルと併用し
て暖房蓄熱する電熱装置の消費電力を低減でき蓄熱式空
気調和機の最大消費電力を低減することができる。
Further, when the heat storage material temperature Tw is equal to or lower than the third predetermined temperature T4 at which the refrigeration cycle is stopped, by operating only a part 27 of the electric heating apparatus, the consumption of the electric heating apparatus for heating and storing in combination with the refrigeration cycle is reduced. Electric power can be reduced, and the maximum power consumption of the regenerative air conditioner can be reduced.

【0064】以上のように本実施例の蓄熱式空気調和機
は、圧縮機1、四方弁2、室外熱交換器9、第2の膨張
弁機構20、室内熱交換器12を順次環状に連接し、蓄
熱槽3内に蓄熱材4と共に収納された蓄熱熱交換器15
の一端を、第1の電磁弁17を介して室内熱交換器12
と四方弁2との間の配管に接続するとともに、第2の電
磁弁19を介して室外熱交換器9と第2の膨張弁機構2
0との間の配管に接続し、蓄熱熱交換器15の他端を、
第1の膨張弁機構16を介して第2の膨張弁機構20と
室内熱交換器12との間の配管に接続し、蓄熱材4を加
熱する複数の電熱装置26を蓄熱槽3に配設した蓄熱式
空気調和機において、さらに、蓄熱材4の温度を検知す
る蓄熱材温度検知手段22と、圧縮機1の運転状況を検
出する圧縮機運転状況検出手段23と、圧縮機1から吐
出された冷媒の凝縮温度を検知する凝縮温度検知手段2
4と、冬季夜間の暖房蓄熱時に、蓄熱材温度検知手段2
2で検知した蓄熱材4の温度と凝縮温度検知手段24で
検知した凝縮温度とを基に、冷凍サイクル(圧縮機1)
の運転と電熱装置26の運転とを制御する暖房蓄熱制御
手段25とを備え、暖房蓄熱制御手段25は、蓄熱材温
度検知手段22で検知した蓄熱材4の温度が、凝縮温度
検知手段24で検知した凝縮温度より低く凝縮温度に近
い所定の温度(T4)以下のときは、冷凍サイクル(圧
縮機1)と複数の電熱装置の一部27とを運転し、所定
の温度(T4)を超えると、冷凍サイクル(圧縮機1)
の運転を停止して複数の電熱装置26の全部を運転する
ものであるから、冬季夜間の暖房蓄熱時に、蓄熱材温度
Twが第3の所定温度T4まで蓄熱熱交換器15を冷凍
サイクルの凝縮器として蓄熱材4に放熱凝縮し、これと
併用して電熱装置の一部27で蓄熱材4に暖房蓄熱し、
蓄熱材温度Twが第3の所定温度T4以上になると複数
の電熱装置26で暖房蓄熱することにより、限られた暖
房蓄熱時間内に、蓄熱材4の温度を冷凍サイクルの凝縮
温度以上にして、蓄熱材4の単位容積あたりに蓄熱可能
な暖房蓄熱量を増大することで、さらに、暖房蓄熱量を
多くでき、したがって昼間の蓄熱利用暖房時に、蓄熱利
用できる暖房蓄熱量がさらに多くなり、蓄熱維持時間を
長くすることによって必要な暖房能力が維持でき、充分
な暖房能力が確保できる。
As described above, in the regenerative air conditioner of this embodiment, the compressor 1, the four-way valve 2, the outdoor heat exchanger 9, the second expansion valve mechanism 20, and the indoor heat exchanger 12 are sequentially connected in a ring shape. The heat storage heat exchanger 15 housed in the heat storage tank 3 together with the heat storage material 4
Of the indoor heat exchanger 12 through the first solenoid valve 17.
And the outdoor heat exchanger 9 and the second expansion valve mechanism 2 via a second solenoid valve 19.
0, and the other end of the heat storage heat exchanger 15
A plurality of electric heating devices 26 connected to a pipe between the second expansion valve mechanism 20 and the indoor heat exchanger 12 via the first expansion valve mechanism 16 to heat the heat storage material 4 are provided in the heat storage tank 3. In the heat storage type air conditioner, the heat storage material temperature detection means 22 for detecting the temperature of the heat storage material 4, the compressor operation state detection means 23 for detecting the operation state of the compressor 1, and the discharge from the compressor 1 Temperature detecting means 2 for detecting the condensation temperature of the refrigerant
4 and a heat storage material temperature detecting means 2 for heating and storing heat during winter nights.
Refrigeration cycle (compressor 1) based on the temperature of heat storage material 4 detected in 2 and the condensation temperature detected in condensation temperature detecting means 24.
Heating heat storage control means 25 for controlling the operation of the heat storage device 4 and the operation of the electric heating device 26. The heating heat storage control means 25 detects the temperature of the heat storage material 4 detected by the heat storage material temperature detection means 22 by the condensation temperature detection means 24. When the temperature is equal to or lower than a predetermined temperature (T4) lower than the detected condensing temperature and close to the condensing temperature, the refrigeration cycle (compressor 1) and a part 27 of the plurality of electric heating devices are operated to exceed the predetermined temperature (T4). And refrigeration cycle (compressor 1)
Is stopped and all of the plurality of electric heating devices 26 are operated. Therefore, at the time of heating and storing heat during the winter night, the heat storage material exchanger Tw condenses the heat storage heat exchanger 15 until the third predetermined temperature T4. Heat is condensed on the heat storage material 4 as a heat exchanger, and is used together with the heat storage material 4 to heat and store the heat in the heat storage material 4 in a part 27 of the electric heating device,
When the heat storage material temperature Tw becomes equal to or higher than the third predetermined temperature T4, the plurality of electric heat devices 26 perform heating and heat storage, so that the temperature of the heat storage material 4 is set to be equal to or higher than the condensing temperature of the refrigeration cycle within a limited heating heat storage time. By increasing the amount of heating heat storage that can store heat per unit volume of the heat storage material 4, the amount of heating heat storage can be further increased. Therefore, during daytime heat storage heating heating, the amount of heating heat storage that can be used for heat storage is further increased. By increasing the time, the required heating capacity can be maintained, and sufficient heating capacity can be secured.

【0065】さらに、蓄熱材温度Twが冷凍サイクルを
停止する第3の所定温度T4以下では、電熱装置の一部
27のみを運転することにより、冷凍サイクルと併用し
て暖房蓄熱する電熱装置の消費電力を低減でき蓄熱式空
気調和機の最大消費電力を低減することができる。
Further, when the temperature Tw of the heat storage material is equal to or lower than the third predetermined temperature T4 at which the refrigeration cycle is stopped, by operating only a part 27 of the electric heat device, the consumption of the electric heat device for heating and storing the heat in combination with the refrigeration cycle is reduced. Electric power can be reduced, and the maximum power consumption of the regenerative air conditioner can be reduced.

【0066】[0066]

【発明の効果】以上説明したように請求項1に記載の発
明は、圧縮機、四方弁、室外熱交換器、第2の膨張弁機
構、室内熱交換器を順次環状に連接し、蓄熱槽内に蓄熱
材と共に収納された蓄熱熱交換器の一端を、第1の電磁
弁を介して前記室内熱交換器と前記四方弁との間の配管
に接続するとともに、第2の電磁弁を介して前記室外熱
交換器と前記第2の膨張弁機構との間の配管に接続し、
前記蓄熱熱交換器の他端を、第1の膨張弁機構を介して
前記第2の膨張弁機構と前記室内熱交換器との間の配管
に接続し、冬季夜間の暖房蓄熱時に前記蓄熱材を加熱す
る電熱装置を前記蓄熱槽に配設したものであり、冬季夜
間の暖房蓄熱時に、蓄熱槽に配設した電熱装置で蓄熱材
の温度を冷凍サイクルの凝縮温度以上にして、蓄熱材の
単位容積あたりに蓄熱可能な暖房蓄熱量を増大すること
で、暖房蓄熱量を多くでき、したがって昼間の蓄熱利用
暖房で利用できる暖房蓄熱量が多くなり、蓄熱維持時間
を長くすることによって必要な暖房能力が維持でき、充
分な暖房能力が確保できる。
As described above, according to the first aspect of the present invention, a compressor, a four-way valve, an outdoor heat exchanger, a second expansion valve mechanism, and an indoor heat exchanger are sequentially connected in a ring shape to form a heat storage tank. One end of the heat storage heat exchanger housed together with the heat storage material is connected to a pipe between the indoor heat exchanger and the four-way valve via a first electromagnetic valve, and is connected via a second electromagnetic valve. Connected to a pipe between the outdoor heat exchanger and the second expansion valve mechanism,
The other end of the heat storage heat exchanger is connected to a pipe between the second expansion valve mechanism and the indoor heat exchanger via a first expansion valve mechanism, and the heat storage material is used when heating and storing heat during winter night. An electric heat device for heating the heat storage material is provided in the heat storage tank, and the temperature of the heat storage material is set to be equal to or higher than the condensing temperature of the refrigeration cycle by the electric heat device provided in the heat storage tank at the time of heating heat storage in winter night. By increasing the amount of heating heat storage that can be stored per unit volume, the amount of heating heat storage can be increased, and therefore the amount of heating heat storage that can be used in daytime heat storage heating increases, and the required heating by increasing the heat storage maintenance time Capacity can be maintained and sufficient heating capacity can be secured.

【0067】また、本発明の請求項2に記載の発明は、
圧縮機、四方弁、室外熱交換器、第2の膨張弁機構、室
内熱交換器を順次環状に連接し、蓄熱槽内に蓄熱材と共
に収納された蓄熱熱交換器の一端を、第1の電磁弁を介
して前記室内熱交換器と前記四方弁との間の配管に接続
するとともに、第2の電磁弁を介して前記室外熱交換器
と前記第2の膨張弁機構との間の配管に接続し、前記蓄
熱熱交換器の他端を、第1の膨張弁機構を介して前記第
2の膨張弁機構と前記室内熱交換器との間の配管に接続
し、前記蓄熱材を加熱する電熱装置を前記蓄熱槽に配設
し、冬季夜間の暖房蓄熱時に、前記蓄熱熱交換器の放熱
により前記蓄熱材を加熱すると共に、前記電熱装置によ
り前記蓄熱材を前記蓄熱熱交換器の凝縮温度以上に加熱
するよう構成したものであり、冬季夜間の暖房蓄熱時
に、蓄熱熱交換器を冷凍サイクルの凝縮器として蓄熱材
に放熱凝縮し、これと併用して電熱装置で蓄熱材に暖房
蓄熱することにより、限られた暖房蓄熱時間内に、さら
に、暖房蓄熱量を多くでき、したがって昼間の蓄熱利用
暖房で利用できる暖房蓄熱量が多くなり、蓄熱維持時間
を長くすることによって必要な暖房能力が維持でき、充
分な暖房能力が確保できる。
The invention according to claim 2 of the present invention provides
The compressor, the four-way valve, the outdoor heat exchanger, the second expansion valve mechanism, and the indoor heat exchanger are sequentially connected in a ring shape, and one end of the heat storage heat exchanger housed together with the heat storage material in the heat storage tank is connected to the first heat storage heat exchanger. A pipe connected between the indoor heat exchanger and the four-way valve via a solenoid valve, and a pipe connected between the outdoor heat exchanger and the second expansion valve mechanism via a second solenoid valve And the other end of the heat storage heat exchanger is connected to a pipe between the second expansion valve mechanism and the indoor heat exchanger via a first expansion valve mechanism to heat the heat storage material. The heat storage device is disposed in the heat storage tank, and during heat storage during winter nights, the heat storage material is heated by the heat of the heat storage heat exchanger, and the heat storage material is condensed by the heat storage device by the heat storage device. It is configured to heat to a temperature higher than the temperature. By radiating and condensing heat on the heat storage material as a condenser for the freezing cycle and using it together with the heat storage device to heat and store heat in the heat storage material, the heating heat storage amount can be further increased within the limited heating heat storage time, and therefore during the daytime The amount of heating heat storage that can be used in the heat storage utilizing heating increases, and the required heating capacity can be maintained by extending the heat storage maintenance time, and sufficient heating capacity can be secured.

【0068】また、本発明の請求項3に記載の発明は、
請求項2に記載の発明において、蓄熱材の温度を検知す
る蓄熱材温度検知手段と、圧縮機から吐出された冷媒の
凝縮温度を検知する凝縮温度検知手段と、冬季夜間の暖
房蓄熱時に、前記蓄熱材温度検知手段で検知した蓄熱材
の温度と前記凝縮温度検知手段で検知した凝縮温度とを
基に、冷凍サイクルの運転と電熱装置の運転とを制御す
る暖房蓄熱制御手段とを備え、前記暖房蓄熱制御手段
は、前記蓄熱材温度検知手段で検知した蓄熱材の温度
が、前記凝縮温度検知手段で検知した凝縮温度より低く
前記凝縮温度に近い所定の温度範囲に入るまでは、前記
冷凍サイクルと前記電熱装置の両方を運転し、前記所定
の温度範囲に入ると前記電熱装置のみ運転を停止し、前
記所定の温度範囲の上限温度を超えると、前記冷凍サイ
クルの運転を停止して前記電熱装置のみ運転するもので
あり、請求項2に記載の発明の効果に加えて、さらに、
蓄熱材の温度が冷凍サイクルの凝縮温度近くなる一定期
間、電熱装置を一端停止させ、冷凍サイクルが凝縮温度
に達して停止した以後、再度電熱装置で蓄熱材を加温し
暖房蓄熱を行ことで、暖房蓄熱時の蓄熱式空気調和機の
最大消費電力を低減することができる。
The invention according to claim 3 of the present invention provides
In the invention according to claim 2, the heat storage material temperature detecting means for detecting the temperature of the heat storage material, the condensing temperature detecting means for detecting the condensing temperature of the refrigerant discharged from the compressor, and the heat storage heat during winter night, Heating heat storage control means for controlling the operation of the refrigeration cycle and the operation of the electric heating device based on the temperature of the heat storage material detected by the heat storage material temperature detection means and the condensation temperature detected by the condensation temperature detection means, The heating heat storage control unit is configured to execute the refrigeration cycle until the temperature of the heat storage material detected by the heat storage material temperature detection unit falls within a predetermined temperature range lower than the condensation temperature detected by the condensation temperature detection unit and close to the condensation temperature. Operate both the and the electric heating device, stop only the electric heating device when entering the predetermined temperature range, stop the operation of the refrigeration cycle when exceeding the upper limit temperature of the predetermined temperature range. Serial is intended to operate only the electric heating device, in addition to the effect of the invention according to claim 2, further
For a certain period when the temperature of the heat storage material is close to the condensing temperature of the refrigeration cycle, the electric heating device is temporarily stopped, and after the refrigeration cycle reaches the condensing temperature and stopped, the heat storage material is heated again by the electric heating device to perform heating heat storage. In addition, it is possible to reduce the maximum power consumption of the regenerative air conditioner during the heat storage.

【0069】また、本発明の請求項4に記載の発明は、
請求項2に記載の発明において、電熱装置は蓄熱槽に複
数配設され、蓄熱材の温度を検知する蓄熱材温度検知手
段と、圧縮機から吐出された冷媒の凝縮温度を検知する
凝縮温度検知手段と、冬季夜間の暖房蓄熱時に、前記蓄
熱材温度検知手段で検知した蓄熱材の温度と前記凝縮温
度検知手段で検知した凝縮温度とを基に、冷凍サイクル
の運転と複数の前記電熱装置の運転とを制御する暖房蓄
熱制御手段とを備え、前記暖房蓄熱制御手段は、前記蓄
熱材温度検知手段で検知した蓄熱材の温度が、前記凝縮
温度検知手段で検知した凝縮温度より低く前記凝縮温度
に近い所定の温度以下のときは、前記冷凍サイクルと複
数の前記電熱装置の一部とを運転し、前記所定の温度を
超えると、前記冷凍サイクルの運転を停止して複数の前
記電熱装置の全部を運転するものであり、冬季夜間の暖
房蓄熱時に、蓄熱熱交換器を冷凍サイクルの凝縮器とし
て蓄熱材に放熱凝縮し、これと併用して複数の電熱装置
で蓄熱材に暖房蓄熱することにより、限られた暖房蓄熱
時間内に、さらに、暖房蓄熱量を多くでき、したがって
昼間の蓄熱利用暖房で利用できる暖房蓄熱量が多くな
り、蓄熱維持時間を長くすることによって必要な暖房能
力が維持でき、充分な暖房能力が確保できる。
The invention according to claim 4 of the present invention provides
In the invention according to claim 2, a plurality of electric heat devices are provided in the heat storage tank, and a heat storage material temperature detecting means for detecting a temperature of the heat storage material, and a condensing temperature detection for detecting a condensing temperature of the refrigerant discharged from the compressor. Means, during heating heat storage in winter night, based on the temperature of the heat storage material detected by the heat storage material temperature detection means and the condensation temperature detected by the condensation temperature detection means, the operation of the refrigeration cycle and the plurality of the electric heating device Heating and heat storage control means for controlling the operation and the heating and heat storage control means, wherein the temperature of the heat storage material detected by the heat storage material temperature detection means is lower than the condensation temperature detected by the condensation temperature detection means. When the temperature is equal to or less than a predetermined temperature, the refrigeration cycle and a part of the plurality of electric heating devices are operated, and when the temperature exceeds the predetermined temperature, the operation of the refrigeration cycle is stopped and the plurality of the electric heating devices are operated. All It is a thing that operates, and when heating and storing heat in the winter night, the heat storage heat exchanger is radiated and condensed on the heat storage material as a condenser of the refrigeration cycle, and by using it together with multiple electric heating devices, the heat is stored in the heat storage material, Within the limited heating heat storage time, the heating heat storage amount can be further increased, so that the heating heat storage amount that can be used in daytime heat storage use heating increases, and the necessary heating capacity can be maintained by extending the heat storage maintenance time, Sufficient heating capacity can be secured.

【0070】またさらに、複数の電熱装置の一部で蓄熱
材を加温し暖房蓄熱を行い、冷凍サイクルが凝縮温度に
達して停止した以後、すべての電熱装置で蓄熱材を加温
し暖房蓄熱を行ことで、暖房蓄熱時の蓄熱式空気調和機
の最大消費電力を低減することができる。
Further, the heat storage material is heated by a part of the plurality of electric heat devices to perform heating and heat storage, and after the refrigerating cycle reaches the condensing temperature and stopped, the heat storage material is heated and heated and stored by all the electric heat devices. , The maximum power consumption of the regenerative air conditioner at the time of heating and storage can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による蓄熱式空気調和機の実施例1およ
び実施例2の冷凍サイクル図
FIG. 1 is a refrigeration cycle diagram of Embodiments 1 and 2 of a regenerative air conditioner according to the present invention.

【図2】本発明による蓄熱式空気調和機の実施例3の構
成図
FIG. 2 is a configuration diagram of Embodiment 3 of a regenerative air conditioner according to the present invention.

【図3】本発明による蓄熱式空気調和機の実施例3の動
作を示すフローチャート
FIG. 3 is a flowchart showing the operation of a heat storage type air conditioner according to a third embodiment of the present invention.

【図4】本発明による蓄熱式空気調和機の実施例4の構
成図
FIG. 4 is a configuration diagram of Embodiment 4 of a regenerative air conditioner according to the present invention.

【図5】同実施例の蓄熱式空気調和機の動作を示すフロ
ーチャート
FIG. 5 is a flowchart showing the operation of the regenerative air conditioner of the embodiment.

【図6】従来の蓄熱式空気調和機の冷凍サイクル図FIG. 6 is a refrigeration cycle diagram of a conventional regenerative air conditioner.

【符号の説明】 1 圧縮機 2 四方弁 3 蓄熱槽 4 蓄熱材 9 室外熱交換器 12 室内熱交換器 15 蓄熱熱交換器 16 第1の膨張弁機構 17 第1の電磁弁 19 第2の電磁弁 20 第2の膨張弁機構 21 電熱装置 22 蓄熱材温度検知手段 24 凝縮温度検知手段 25 暖房蓄熱制御手段 26 電熱装置 27 電熱装置の一部[Description of Signs] 1 Compressor 2 Four-way valve 3 Heat storage tank 4 Heat storage material 9 Outdoor heat exchanger 12 Indoor heat exchanger 15 Heat storage heat exchanger 16 First expansion valve mechanism 17 First electromagnetic valve 19 Second electromagnetic Valve 20 Second expansion valve mechanism 21 Electric heating device 22 Heat storage material temperature detecting means 24 Condensing temperature detecting means 25 Heating heat storage control means 26 Electric heating device 27 Part of electric heating device

フロントページの続き (72)発明者 菅原 清男 山形県山形市本町二丁目1番9号 東北電 力株式会社内 (72)発明者 大沼 宏二 山形県山形市本町二丁目1番9号 東北電 力株式会社内 (72)発明者 菅沼 誠 宮城県仙台市青葉区一番町三丁目7番1号 東北電力株式会社内 (72)発明者 大平 剛司 大阪府東大阪市高井田本通4丁目2番5号 松下冷機株式会社内 (72)発明者 野間 富之 大阪府東大阪市高井田本通4丁目2番5号 松下冷機株式会社内 (72)発明者 三宅 洋右 大阪府東大阪市高井田本通4丁目2番5号 松下冷機株式会社内 (72)発明者 岸野 正裕 大阪府東大阪市高井田本通4丁目2番5号 松下冷機株式会社内 (72)発明者 北山 浩 大阪府東大阪市高井田本通4丁目2番5号 松下冷機株式会社内 Fターム(参考) 3L092 TA02 TA08 TA11 UA13 VA02 WA02 XA28 YA03 Continued on the front page (72) Inventor Kiyoo Sugawara 2-9-1, Honcho, Yamagata City, Yamagata Prefecture Inside Tohoku Electric Power Co., Inc. (72) Inventor Koji Onuma 2-9-1, Honmachi, Yamagata City, Yamagata Prefecture Tohoku Electric Power (72) Inventor Makoto Suganuma 3-7-1, Ichibancho, Aoba-ku, Sendai City, Miyagi Prefecture Tohoku Electric Power Co., Inc. (72) Inventor Takeshi Ohira 4-5-2, Takaidahondori, Higashi Osaka City, Osaka Prefecture No. Matsushita Refrigerator Co., Ltd. (72) Tomiyuki Noma, Inventor 4-5-2 Takaida Hondori, Higashi-Osaka City, Osaka Prefecture Inside Matsushita Refrigerator Co., Ltd. 2-5 Matsushita Refrigeration Machinery Co., Ltd. (72) Masahiro Kishino 4-5-2-5 Matsushita Refrigeration Machinery Co., Ltd. (72) Inventor Hiroshi Kitayama Takaita Motodori, Higashi-Osaka City, Osaka 4-chome 2-5 Matsushita Refrigeration Co., Ltd. F term (reference) 3L092 TA02 TA08 TA11 UA13 VA02 WA02 XA28 YA03

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 圧縮機、四方弁、室外熱交換器、第2の
膨張弁機構、室内熱交換器を順次環状に連接し、 蓄熱槽内に蓄熱材と共に収納された蓄熱熱交換器の一端
を、第1の電磁弁を介して前記室内熱交換器と前記四方
弁との間の配管に接続するとともに、第2の電磁弁を介
して前記室外熱交換器と前記第2の膨張弁機構との間の
配管に接続し、 前記蓄熱熱交換器の他端を、第1の膨張弁機構を介して
前記第2の膨張弁機構と前記室内熱交換器との間の配管
に接続し、 冬季夜間の暖房蓄熱時に前記蓄熱材を加熱する電熱装置
を前記蓄熱槽に配設した蓄熱式空気調和機。
An end of a heat storage heat exchanger in which a compressor, a four-way valve, an outdoor heat exchanger, a second expansion valve mechanism, and an indoor heat exchanger are sequentially connected in a ring shape, and are stored together with a heat storage material in a heat storage tank. Is connected to a pipe between the indoor heat exchanger and the four-way valve via a first solenoid valve, and the outdoor heat exchanger and the second expansion valve mechanism are connected via a second solenoid valve. The other end of the heat storage heat exchanger is connected to a pipe between the second expansion valve mechanism and the indoor heat exchanger via a first expansion valve mechanism, A heat storage type air conditioner in which an electric heat device for heating the heat storage material during heating heat storage in winter night is provided in the heat storage tank.
【請求項2】 圧縮機、四方弁、室外熱交換器、第2の
膨張弁機構、室内熱交換器を順次環状に連接し、 蓄熱槽内に蓄熱材と共に収納された蓄熱熱交換器の一端
を、第1の電磁弁を介して前記室内熱交換器と前記四方
弁との間の配管に接続するとともに、第2の電磁弁を介
して前記室外熱交換器と前記第2の膨張弁機構との間の
配管に接続し、 前記蓄熱熱交換器の他端を、第1の膨張弁機構を介して
前記第2の膨張弁機構と前記室内熱交換器との間の配管
に接続し、 前記蓄熱材を加熱する電熱装置を前記蓄熱槽に配設し、 冬季夜間の暖房蓄熱時に、前記蓄熱熱交換器の放熱によ
り前記蓄熱材を加熱すると共に、前記電熱装置により前
記蓄熱材を前記蓄熱熱交換器の凝縮温度以上に加熱する
よう構成した蓄熱式空気調和機。
2. A heat storage heat exchanger, in which a compressor, a four-way valve, an outdoor heat exchanger, a second expansion valve mechanism, and an indoor heat exchanger are sequentially connected in a ring shape, and one end of a heat storage heat exchanger housed in a heat storage tank together with a heat storage material. Is connected to a pipe between the indoor heat exchanger and the four-way valve via a first solenoid valve, and the outdoor heat exchanger and the second expansion valve mechanism are connected via a second solenoid valve. The other end of the heat storage heat exchanger is connected to a pipe between the second expansion valve mechanism and the indoor heat exchanger via a first expansion valve mechanism, An electric heat device that heats the heat storage material is disposed in the heat storage tank, and when heating and storing heat during winter nights, the heat storage material is heated by radiating the heat storage heat exchanger, and the heat storage material is stored by the electric heat device. A regenerative air conditioner configured to heat above the condensation temperature of the heat exchanger.
【請求項3】 蓄熱材の温度を検知する蓄熱材温度検知
手段と、圧縮機から吐出された冷媒の凝縮温度を検知す
る凝縮温度検知手段と、 冬季夜間の暖房蓄熱時に、前記蓄熱材温度検知手段で検
知した蓄熱材の温度と前記凝縮温度検知手段で検知した
凝縮温度とを基に、冷凍サイクルの運転と電熱装置の運
転とを制御する暖房蓄熱制御手段とを備え、 前記暖房蓄熱制御手段は、前記蓄熱材温度検知手段で検
知した蓄熱材の温度が、前記凝縮温度検知手段で検知し
た凝縮温度より低く前記凝縮温度に近い所定の温度範囲
に入るまでは、前記冷凍サイクルと前記電熱装置の両方
を運転し、前記所定の温度範囲に入ると前記電熱装置の
み運転を停止し、前記所定の温度範囲の上限温度を超え
ると、前記冷凍サイクルの運転を停止して前記電熱装置
のみ運転することを特徴とする請求項2記載の蓄熱式空
気調和機。
3. A heat storage material temperature detecting means for detecting the temperature of the heat storage material, a condensing temperature detecting means for detecting a condensing temperature of the refrigerant discharged from the compressor, and the heat storing material temperature detecting means for heating and storing heat during winter night. Heating heat storage control means for controlling the operation of the refrigeration cycle and the operation of the electric heating device based on the temperature of the heat storage material detected by the means and the condensation temperature detected by the condensation temperature detection means, The refrigeration cycle and the electric heating device until the temperature of the heat storage material detected by the heat storage material temperature detection means falls within a predetermined temperature range lower than the condensation temperature detected by the condensation temperature detection means and close to the condensation temperature. Operate both, and when the temperature falls within the predetermined temperature range, only the operation of the electric heating device is stopped.When the temperature exceeds the upper limit temperature of the predetermined temperature range, the operation of the refrigeration cycle is stopped and only the electric heating device is operated. Thermal storage type air conditioner according to claim 2, characterized in that the rolling.
【請求項4】 電熱装置は蓄熱槽に複数配設され、 蓄熱材の温度を検知する蓄熱材温度検知手段と、圧縮機
から吐出された冷媒の凝縮温度を検知する凝縮温度検知
手段と、 冬季夜間の暖房蓄熱時に、前記蓄熱材温度検知手段で検
知した蓄熱材の温度と前記凝縮温度検知手段で検知した
凝縮温度とを基に、冷凍サイクルの運転と複数の前記電
熱装置の運転とを制御する暖房蓄熱制御手段とを備え、 前記暖房蓄熱制御手段は、前記蓄熱材温度検知手段で検
知した蓄熱材の温度が、前記凝縮温度検知手段で検知し
た凝縮温度より低く前記凝縮温度に近い所定の温度以下
のときは、前記冷凍サイクルと複数の前記電熱装置の一
部とを運転し、前記所定の温度を超えると、前記冷凍サ
イクルの運転を停止して複数の前記電熱装置の全部を運
転することを特徴とする請求項2記載の蓄熱式空気調和
機。
4. A plurality of electric heat devices are provided in a heat storage tank, wherein a heat storage material temperature detecting means for detecting a temperature of the heat storage material, a condensing temperature detecting means for detecting a condensing temperature of the refrigerant discharged from the compressor, During nighttime heat storage, the operation of the refrigeration cycle and the operation of the plurality of electric heating devices are controlled based on the temperature of the heat storage material detected by the heat storage material temperature detection means and the condensation temperature detected by the condensation temperature detection means. Heating heat storage control means, wherein the temperature of the heat storage material detected by the heat storage material temperature detection means is lower than the condensation temperature detected by the condensation temperature detection means and is close to the predetermined condensation temperature. When the temperature is equal to or less than the temperature, the refrigeration cycle and a part of the plurality of electric heating devices are operated, and when the temperature exceeds the predetermined temperature, the operation of the refrigeration cycle is stopped and all of the plurality of electric heating devices are operated. That The regenerative air conditioner according to claim 2, wherein:
JP11164853A 1999-06-11 1999-06-11 Heat storage air conditioner Pending JP2000356428A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11164853A JP2000356428A (en) 1999-06-11 1999-06-11 Heat storage air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11164853A JP2000356428A (en) 1999-06-11 1999-06-11 Heat storage air conditioner

Publications (1)

Publication Number Publication Date
JP2000356428A true JP2000356428A (en) 2000-12-26

Family

ID=15801170

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11164853A Pending JP2000356428A (en) 1999-06-11 1999-06-11 Heat storage air conditioner

Country Status (1)

Country Link
JP (1) JP2000356428A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7905216B2 (en) 2006-10-02 2011-03-15 Bosch Corporation Common rail and method of manufacturing common rail
WO2014061131A1 (en) * 2012-10-18 2014-04-24 ダイキン工業株式会社 Air conditioner

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7905216B2 (en) 2006-10-02 2011-03-15 Bosch Corporation Common rail and method of manufacturing common rail
WO2014061131A1 (en) * 2012-10-18 2014-04-24 ダイキン工業株式会社 Air conditioner
CN104736950A (en) * 2012-10-18 2015-06-24 大金工业株式会社 Air conditioner

Similar Documents

Publication Publication Date Title
US7614249B2 (en) Multi-range cross defrosting heat pump system and humidity control system
KR101387541B1 (en) Air conditioner and Defrosting driving method of the same
EP2966382B1 (en) Regenerative air-conditioning apparatus
KR20030019774A (en) Heat pump system
JP2002372320A (en) Refrigerating device
KR100712196B1 (en) Heat pump system and a method for eliminating frost on the outdoor heat exchanger of the heat pump system
KR101964946B1 (en) temperature compensated cooling system high efficiency
CA2530567C (en) Multi-range cross defrosting heat pump system
KR200412598Y1 (en) Heat pump system for having function of hot water supply
KR101348846B1 (en) Heat pump boiler
CN216114369U (en) Air conditioner system
KR100788477B1 (en) Heat pump type air harmony system having heat-exchanger
JP2000356428A (en) Heat storage air conditioner
JP2962311B1 (en) Binary refrigeration equipment
JP3781340B2 (en) Thermal storage refrigeration air conditioner
KR100796373B1 (en) Constant temperature/humidity device
KR100389269B1 (en) Heat pump system
KR100436843B1 (en) Regeneration Hybrid Heating and Cooling System
JPS611967A (en) Air-conditioning and hot-water supply heat pump device
JPH0849938A (en) Regenerative air-conditioner
JPH0849924A (en) Heat storage type air-conditioner
JPH0886529A (en) Air conditioner
JPH0788992B2 (en) Air conditioning / hot water supply heat pump device
KR100419479B1 (en) Auxiliary refrigerator mounted heat pump system
JPH11304272A (en) Compression type cooling device