JPS59217460A - Refrigeration cycle of air conditioner - Google Patents

Refrigeration cycle of air conditioner

Info

Publication number
JPS59217460A
JPS59217460A JP9363683A JP9363683A JPS59217460A JP S59217460 A JPS59217460 A JP S59217460A JP 9363683 A JP9363683 A JP 9363683A JP 9363683 A JP9363683 A JP 9363683A JP S59217460 A JPS59217460 A JP S59217460A
Authority
JP
Japan
Prior art keywords
contact
solenoid valve
coil
energized
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9363683A
Other languages
Japanese (ja)
Other versions
JPH048704B2 (en
Inventor
中村 節
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP9363683A priority Critical patent/JPS59217460A/en
Priority to US06/610,728 priority patent/US4557115A/en
Priority to GB08413310A priority patent/GB2145209B/en
Priority to AU28713/84A priority patent/AU560624B2/en
Publication of JPS59217460A publication Critical patent/JPS59217460A/en
Publication of JPH048704B2 publication Critical patent/JPH048704B2/ja
Granted legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 この発明は、室内側と室外側のユニットを有する分離形
空気調和(幾のようなし一トポンプ方式の空気調和(穴
の冷凍サイクルに関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a separate air conditioner (one-pump type air conditioner (hole refrigeration cycle) having an indoor side unit and an outdoor side unit).

従来、上記のような空気調和機の冷凍サイクルとして第
1図に示すものがあった。
Conventionally, there has been a refrigeration cycle for an air conditioner as described above, as shown in FIG.

第1図において、1は圧mfii、 2は四方弁、3は
室外側熱交換器、4はディストリビュータ、5は膨張弁
、6は接続配管、7は室内側熱交換器、8は接続配管、
9はアキュームレータであり、分離形空気調和磯では少
なくとも室内側熱交換器7か室内側ユニットに設けられ
、室内側ユニ7)に設けられていない各部材か室外側ユ
ニン1に設けられている。
In Fig. 1, 1 is the pressure mfii, 2 is the four-way valve, 3 is the outdoor heat exchanger, 4 is the distributor, 5 is the expansion valve, 6 is the connecting pipe, 7 is the indoor heat exchanger, 8 is the connecting pipe,
Reference numeral 9 denotes an accumulator, which is provided in at least the indoor heat exchanger 7 or the indoor unit in the separate air conditioning system, and each member not provided in the indoor unit 7) is provided in the outdoor unit 1.

このような冷凍サイクルは、空気調和機の冷房運転時に
、圧縮機1から吐出された高温高圧の冷媒とこの冷媒に
混入された潤滑用の冷凍磯油か四方弁2を経て室外側熱
交換器3に至り、ここで熱又換されて高温高圧の液冷媒
となり、この液冷媒がディス) リビュータ4を経て膨
張弁5で減圧され、#:続配管6を経て室内側熱交換器
7に歪力、ここで蒸発して接続配管8を通り四方弁2、
アキュームレータ9を経て再び圧縮機1に吸入される循
環サイクルを形成している。
In such a refrigeration cycle, during cooling operation of an air conditioner, high-temperature, high-pressure refrigerant discharged from a compressor 1 and frozen oil for lubrication mixed with this refrigerant are passed through a four-way valve 2 to an outdoor heat exchanger. 3, where the heat is exchanged to become a high-temperature, high-pressure liquid refrigerant, and this liquid refrigerant passes through the distributor 4, is depressurized by the expansion valve 5, and is strained into the indoor heat exchanger 7 through the connecting pipe 6. The power evaporates here and passes through the connecting pipe 8 to the four-way valve 2.
A circulation cycle is formed in which the air is sucked into the compressor 1 again through the accumulator 9.

しかし、このような冷凍サイクルでは、圧1alff1
1の起動時に冷凍機油中に混入しいわゆる寝込み状態に
なっていた冷媒が7オーミングな起し、大量の冷凍()
文油が吐出され、吐出された冷凍機油は冷凍サイクルを
循環して圧縮(幾1の吸入側に戻って来るか、接続配管
6,7か長くなった場合、吐出された冷凍機油が循環し
て圧縮(幾1に戻って来るまでに時間かかかり、圧縮代
1内の冷凍機油が少なくなって、圧縮機の潤滑不良を起
し、摺動部の焼料などを起す欠点かある。また、このよ
うな欠点は暖房運転時にも同様である。
However, in such a refrigeration cycle, the pressure 1alff1
When the refrigerant was started, the refrigerant that had been mixed into the refrigerating machine oil and was in a so-called stale state started to rise to 7 ohms, causing a large amount of refrigeration ().
The refrigerating machine oil is discharged, and the discharged refrigerating machine oil circulates through the refrigeration cycle and is compressed. It takes a long time for the compressor to return to the compression range (1), and the refrigerating machine oil in the compression range (1) decreases, causing poor lubrication of the compressor and scorching of the sliding parts. , These drawbacks also occur during heating operation.

さらに、圧縮(幾の容量制御運転や低負荷運転を行なっ
た時に、冷媒の循環量か少なくなり、配管内を流れる冷
媒の速度が低下するために、冷凍機油の圧縮(戊への戻
りが悪くなって、上述したと間柱な圧縮代の潤滑不良を
起す欠点かある。
Furthermore, when performing compression (capacity control operation or low load operation), the amount of refrigerant circulated decreases and the speed of the refrigerant flowing in the piping decreases, resulting in poor compression of the refrigerant oil (return to the outlet). Therefore, as mentioned above, there is a drawback of poor lubrication of the compression margin between the studs.

この発明は、上述した従来のものの欠点を除去しようと
するものであって、圧縮代の吐出側と四方弁の間に油分
離器を設け、この油分離器とアキュームレータを電磁弁
を介してバイパス路で接続し、上記電磁弁を制御装置に
よって圧縮を幾の起動時から一定時間開いてバイパス路
から冷凍機油をアキニームレータに戻すことにより、冷
凍機油の不足による圧縮#民の潤滑不良を防止でbるよ
うにした空気調和機の冷凍サイクルを提供することを]
」的としている。
This invention attempts to eliminate the above-mentioned drawbacks of the conventional ones, and includes an oil separator between the discharge side of the compression allowance and the four-way valve, and bypasses the oil separator and accumulator via a solenoid valve. By connecting the above-mentioned solenoid valve with a control device and opening the compression for a certain period of time from the time of startup, the refrigerating machine oil is returned to the Akinimulator from the bypass path, thereby preventing poor lubrication of the compressor due to a lack of refrigerating machine oil. To provide a refrigeration cycle for an air conditioner that
"It has been the target.

以下、この発明の一実施例を第2図、第3図について説
明する。
An embodiment of the present invention will be described below with reference to FIGS. 2 and 3.

第2図において、第1図と同一部分は同符号をつけてこ
れらの説明を省略する。10は油分離器であり、この油
分離器10は冷凍サイクルの圧縮代1の吐出側と四方弁
2の間にこれらと」二部か接続されて設けられている。
In FIG. 2, parts that are the same as those in FIG. 1 are given the same reference numerals, and their explanation will be omitted. Reference numeral 10 denotes an oil separator, and this oil separator 10 is provided between the discharge side of the compression allowance 1 of the refrigeration cycle and the four-way valve 2, with two parts connected thereto.

11は油分離器10の下部と7キユームレータ9を接続
するバイパス路、12はバイパス路11の途中に設けら
れた電磁弁である。
Reference numeral 11 indicates a bypass passage connecting the lower part of the oil separator 10 and the 7-cumulator 9, and reference numeral 12 indicates a solenoid valve provided in the middle of the bypass passage 11.

第3図はこの実施例による制御装置の電気回路を示す。FIG. 3 shows the electrical circuit of the control device according to this embodiment.

第3図において、CMは圧縮<幾1用電動機、F、Mは
室外側熱交換器3に送風するための送風楊用電動磯、F
2Mは室内側熱交換器7に送風するための送風機用電動
機、SWlは運転スイッチ、SW2は冷暖房切換スイッ
チ、23〜′は室内温度サーモスイッチであり、室内温
度か設定値より高い時は」1記サーモスイッチ23Wの
接点が(ハ)−(イ)に、設定値より低い時はその接点
が(ロ)−(ハ)に切換えられるようになっている。5
2Fは送風(幾用電動磯F2M用の接触器のコイルであ
り、このコイル52Fか通電励磁されるとその接点52
fか閉となり、送風機用電動機F2Mに通電されてこれ
が運転され非通電消磁されると接点52fが開となり送
風機用電動機F2Mが停止される。また、52Cは圧縮
代用電動機CMと送風機用電動機F、Mの接触器のフィ
ルであり、このフィル52Cが通電励磁されるとその接
点52cか閉となり、圧縮(代用電動tficMおよび
送風機用電動敗F、Mが運転され、非通電消磁されると
接点S2cが開となり、圧縮代用電動tf4 CM、送
風機用電動機F1Mが停止される。21Cは電磁弁12
のコイルであり、このコイル21Cが通電励磁されると
電磁弁12が開となり、非通電消磁されると電磁弁12
が閉となる。21S4は四方弁2のコイルで、このフィ
ル21S4が通電励磁されると第2図の破線矢印のよう
に冷媒が流れる暖房運転となり、非通電消磁されると第
2図の実線矢印のように冷媒か流れる冷房運転(または
デフロスト運転)となるように四方弁2か切換えられる
。TMはタイマのモータであり、 このモータTMは通
電されると回転し、非通電にされると回転が停止する。
In Fig. 3, CM is an electric motor for compression <1, F and M are electric rocks for blowing air to the outdoor heat exchanger 3, and F
2M is a blower electric motor for blowing air to the indoor heat exchanger 7, SWl is an operation switch, SW2 is an air conditioning/heating selector switch, and 23~' are indoor temperature thermo switches. The contacts of the thermoswitch 23W are switched between (c) and (a), and when the temperature is lower than the set value, the contacts are switched between (b) and (c). 5
2F is the coil of the contactor for the air blower (Ikuyo Electric Iso F2M), and when this coil 52F is energized and excited, its contact 52
When the contact 52f is closed, the blower motor F2M is energized and operated, and then deenergized and deenergized, the contact 52f is opened and the blower motor F2M is stopped. Further, 52C is a contactor fill for the compression substitute electric motor CM and the blower electric motors F and M. When this fill 52C is energized and excited, its contact 52c is closed, and the compression (substitute electric motor tficM and blower electric motor F , M are operated and de-energized, the contact S2c is opened, and the compression substitute electric motor TF4 CM and the blower electric motor F1M are stopped. 21C is the solenoid valve 12
When this coil 21C is energized and excited, the solenoid valve 12 is opened, and when it is de-energized, the solenoid valve 12 is opened.
is closed. 21S4 is a coil of the four-way valve 2. When this fill 21S4 is energized and excited, the heating operation is performed in which refrigerant flows as shown by the broken line arrow in FIG. The four-way valve 2 is switched so that the cooling operation (or defrost operation) is performed. TM is a timer motor, which rotates when energized and stops rotating when de-energized.

janはタイマの接点であり、設定時間(tm+ +t
m2)でタイマ用モータか1回転し、この時に設定時間
tln1の開は接点Lmが開、次の設定時間tm2の間
は接点L+nか閉となり、これを繰返す。Yは限時継電
器であり、この限時継電器Yは通電されると一定時間L
m3たけ、その接点yが閉となり、その後は通電されで
いる限り接点yか開となる。そして、接触器のコイル5
2C1電磁012のコイル21C、タイマのモータTM
、限時継電器Yは室内温度サーモスイッチ23Wの接点
(ハ)に対し並列に接続されている。
jan is the contact point of the timer, and the set time (tm+ +t
m2), the timer motor rotates once, and at this time, the contact Lm is opened for the set time tln1, and the contact L+n is closed during the next set time tm2, and this process is repeated. Y is a time-limited relay, and when energized, this time-limited relay Y operates for a certain period of time L.
After m3, the contact y is closed, and thereafter, as long as the current is energized, the contact y is open. And coil 5 of the contactor
2C1 electromagnetic 012 coil 21C, timer motor TM
, the time-limited relay Y is connected in parallel to the contact point (c) of the indoor temperature thermoswitch 23W.

26Sは吸入配管に取付けられたサーモスクノトの接点
であって、温度かある設定値以下になると閉じ、設定値
より高いと開く。26D1は霜取開始サーモスタットの
接点であって、温度が設定値以下になると閉し、設定値
より高いと開く。
26S is a contact point of a thermos node attached to the suction pipe, which closes when the temperature falls below a certain set value and opens when the temperature rises above the set value. 26D1 is a contact point of the defrost start thermostat, which closes when the temperature falls below a set value and opens when the temperature rises above the set value.

ン61)2は霜取終了サーモスタットの接点であって、
温度が設定値以下になると閉じ、設定値より高いと開く
。なお、霜取開始サーモスフ帰の設定値は7f1取終了
サーモススタツ)の設定値よりも低い。×2は補助リレ
ーのフィルであって、サーモスタット26r)、、26
D2と直列に接続され、通電励磁されるとその接点2χ
aが閉じ接点2χ13゜2χc、2χd、2χeが開き
、非通電消磁されると接点2χaが開き接点2χ1)、
2χc、2χd。
61) 2 is a contact point of the defrost end thermostat,
It closes when the temperature falls below the set value and opens when the temperature rises above the set value. Note that the setting value of the defrosting start thermostat is lower than the setting value of the defrosting end thermostat (7f1). ×2 is the fill of the auxiliary relay, and the thermostat 26r), 26
Connected in series with D2, when energized and excited, its contact 2χ
a closes, contacts 2χ13゜2χc, 2χd, 2χe open, and when deenergized, contact 2χa opens and contacts 2χ1),
2χc, 2χd.

2χeが閉じる。×3は補助リレーのコイルであって、
サーモスタットの接点26Sと直列に接続され、通電励
磁されるとその接点3χaが閉じ、非通電消磁されると
接点3χaが開く。×1は補助リレーのコイルであって
サーモスタットの接点261、)1.26D2 と直列
で補助1炒−のフィル×2と並列に接続され、通電1j
l+磁されるとその?          接点1χa
が閉し、非通電消磁されると接点1χaか開く。また、
電磁弁12のフィル21にタイマの接点tn+ 、限時
継電器Yの接点y、補助リレーX2および×3の接点2
χaおよび3χaが並列に接続されている。
2χe closes. ×3 is the coil of the auxiliary relay,
It is connected in series with the contact 26S of the thermostat, and when it is energized and energized, its contact 3χa closes, and when it is deenergized and deenergized, its contact 3χa is opened. ×1 is the coil of the auxiliary relay, which is connected in series with the thermostat contact 261, )1.26D2 and in parallel with the auxiliary 1st filter ×2, and when energized 1j
Is that what happens when you get l+magnetized? Contact 1χa
is closed, and when deenergized and deenergized, contact 1χa opens. Also,
The fill 21 of the solenoid valve 12 is connected to the timer contact tn+, the time limit relay Y contact y, and the auxiliary relays X2 and x3 contact 2.
χa and 3χa are connected in parallel.

そして、室内温度がサーモスイッチ23 wの設定値よ
りも高い冷房時には、運転スイッチS〜′5を投入する
と、接触器のコイル52Fが励磁されて接点52fが閉
となり、室内側熱交換器の送風機用電動(幾F2h=i
が起動され冷暖房切換スイッチSW2が冷房側(ニ)と
なり、サーモスイッチ231tlの接点(イ)と(ハ)
が接続されているので、接触器のフィル52Cが励磁さ
れて接点52cが閉となり、圧縮機の電動機CMが駆動
し始め圧縮機1が起動される。
When the indoor temperature is higher than the setting value of the thermo switch 23w during cooling, when the operation switch S~'5 is turned on, the coil 52F of the contactor is energized and the contact 52f is closed, and the blower of the indoor heat exchanger is turned on. electric motor (number F2h=i
is started, the air conditioning/heating selector switch SW2 is set to the cooling side (d), and the contacts (a) and (c) of the thermo switch 231tl are activated.
is connected, the fill 52C of the contactor is excited and the contact 52c is closed, and the compressor electric motor CM starts to drive and the compressor 1 is started.

また、限時継電器Yも励磁されるので、接点yは閉とな
って、電磁弁のコイル2ICが励磁され、電磁弁12が
開とな;)、バイパス路11が開く。
Further, since the time-limited relay Y is also energized, the contact y is closed, the coil 2IC of the solenoid valve is energized, the solenoid valve 12 is opened;), and the bypass path 11 is opened.

さらに、設定時間tm3を経過した後に限時継電器Yか
消磁されて接点yが開となり、電磁弁のコイル21Cが
消磁されて電磁弁12が閑となり、バイパス路11は閉
しる。なお、これは暖房時の起動でも同様である。タイ
マのモータTMは通電されて回転し続け、設定時間t1
n+か経過すると、接点ttn カ閉トナ1)、電磁弁
ty>コイル21 (J’rjh磁されて電磁弁12が
開となり、設定時間t+n2の経過後に接点L111が
開となりコイル2ICが消磁されて電磁弁12が閉し、
以後上述した動作を繰返えす。なお、これは暖房時も同
様である。
Furthermore, after the set time tm3 has elapsed, the time-limited relay Y is demagnetized and the contact y is opened, the coil 21C of the solenoid valve is demagnetized, the solenoid valve 12 becomes idle, and the bypass path 11 is closed. Note that this also applies to startup during heating. The timer motor TM is energized and continues to rotate for the set time t1.
When n+ has elapsed, contact ttn closes (toner 1), solenoid valve ty>coil 21 (J'rjh is magnetized and solenoid valve 12 is opened, and after set time t+n2, contact L111 is opened and coil 2IC is demagnetized. Solenoid valve 12 closes,
Thereafter, the above-described operation is repeated. Note that this also applies during heating.

室内温度がサーモスイッチ23’、Vの設定値よりも低
い暖房時には、運転スイッチS ’vV 、を投入する
と、接触器のコイル52Fが励磁されて接点52[が閉
となり、室内側熱交換器の送風機電動磯r−’2Mか起
動され、冷暖房切換スイッチSW2が暖房側(ホ)とな
り、四方弁2のコイル21S、か励磁されて暖房運転と
なり、サーモスイッチ23tlIの接点(ロ)と(ハ)
が接続されているので、接触器のコイル52Cが励磁さ
れて接点52cか閑となり、j−j遣rl幾1が起動さ
れる。
During heating, when the indoor temperature is lower than the set value of the thermo switch 23', V, when the operation switch S'vV is turned on, the coil 52F of the contactor is energized, the contact 52[ is closed, and the indoor heat exchanger is closed. The blower electric Iso r-'2M is started, the air conditioning/heating selector switch SW2 is set to the heating side (E), the coil 21S of the four-way valve 2 is energized, and the heating operation is started, and the contacts (B) and (C) of the thermo switch 23tlI are activated.
is connected, the coil 52C of the contactor is energized, the contact 52c becomes idle, and the j-j transmission r1 is activated.

限時継電器Yも励磁されるので、接点yは閑となって電
磁弁のコイル21Cが励磁され、電磁弁12か開となり
バイパス路11か形成される。
Since the time-limiting relay Y is also energized, the contact y becomes idle and the coil 21C of the solenoid valve is energized, so that the solenoid valve 12 is opened and the bypass path 11 is formed.

さらに、設定時間tτ03  後に限時継電器)′か消
磁されて接点yか開となり、コイル2ICか消磁されて
電磁弁12か閑となり、バイパス路11は閉じる。
Furthermore, after the set time tτ03, the time-limited relay)' is demagnetized, the contact y is opened, the coil 2IC is demagnetized, the solenoid valve 12 is idle, and the bypass path 11 is closed.

タイマのモータT Mは通電されて回転を続け、上述し
た冷房時と同様に設定時間t+n1か経過するとフィル
21Cが励磁され、設定時間1 +n 2の経過後に消
磁されて電磁弁12か開閉される動作を繰返えす。
The timer motor TM is energized and continues to rotate, and the filter 21C is energized after the set time t+n1 has elapsed, and is demagnetized after the set time 1+n2 has elapsed, and the solenoid valve 12 is opened and closed, as in the case of cooling mentioned above. Repeat the action.

また、暖房低温時(二吸入配管に取イく1けられたサー
モスタットの温度か設定値以下になると、その接点26
Sか閉じ、補助リレーのコイル×3が・励磁されて接点
3χaか閉となり、電磁弁のコイル21Cか励磁されて
電磁弁12か開となリノ\イパス路11が開く。
In addition, when the heating temperature is low (the temperature of the thermostat set aside for the two suction pipes is below the set value), the contact 26
S is closed, the auxiliary relay coil x 3 is energized, the contact 3χa is closed, the solenoid valve coil 21C is energized, the solenoid valve 12 is opened, and the reno path 11 is opened.

さら1こ、除霜(デフロスト)は、よす設定温度が高い
方の霜取終了サーモスタンドの設定値以下になるとその
接点26D2か閉となり、次に76取開始サーモスタン
ドの設定値以下になるとその接点26D1か閉となり、
補助リレーのコイルX2か励磁されて接点2χCが開と
なるので、四方弁2のコイル21S、が消磁されて除霜
を開始する。
Furthermore, defrosting is performed when the set temperature falls below the set value of the higher defrost end thermo stand, and that contact 26D2 closes, and then when it falls below the set value of the defrost start thermo stand. The contact 26D1 is closed,
Since the coil X2 of the auxiliary relay is excited and the contact 2χC is opened, the coil 21S of the four-way valve 2 is demagnetized and defrosting begins.

同時に補助リレーのコイルX2の接点2χd。At the same time, contact 2χd of coil X2 of the auxiliary relay.

2χeか開となって室内側熱交換器7の電動[、+iか
停止I−シ、接点2χaが開となって電磁弁のフィル2
ICか16j」磁されて電磁弁12か開となり、バイパ
ス路11か開く。また、補助リレーのコイル×1は励磁
されて接点1χaか閉となり、霜取開始サーモスタット
の接点26D1 と並列に接続される。除霜か開始され
ると、すぐに霜取開始サーモスタンドの設定値より温度
が」1昇してその接点2 に l:) 1は開となり、
霜取終了サーモスタットの接点26D7.接点1χa、
補助リレーのコイルX2.XIの回路か形成される。霜
取サーモスタットの設定値よりも温度が上列した時に、
その接点26+)2が開となり、補助リレーのコイルX
2゜Xlか?肖磁されて霜取が終了する。
2χe is opened, and the indoor heat exchanger 7 is stopped, and the contact 2χa is opened, and the electromagnetic valve fill 2 is closed.
The IC 16j is magnetized, the solenoid valve 12 is opened, and the bypass passage 11 is opened. Further, the coil x1 of the auxiliary relay is energized to close the contact 1χa, and is connected in parallel to the contact 26D1 of the defrosting start thermostat. When defrosting starts, the temperature immediately rises by 1 from the set value of the defrosting start thermo stand, and its contact 2 becomes open.
Defrost end thermostat contact 26D7. Contact point 1χa,
Auxiliary relay coil X2. A circuit of XI is formed. When the temperature rises above the defrost thermostat set value,
Its contact 26+)2 becomes open, and the auxiliary relay coil
2゜Xl? The porcelain is polished and the frosting process is completed.

次に、第2図に示す冷凍サイクルの動作を説明する。第
2図中、実線矢印は冷房、除霜運転時の冷媒の流れ、破
線矢印は暖房時の冷媒の流れ、1点鎖線はバイパス路中
の冷媒、冷凍(民泊の流れを示す。
Next, the operation of the refrigeration cycle shown in FIG. 2 will be explained. In Fig. 2, solid arrows indicate the flow of refrigerant during cooling and defrosting operations, dashed arrows indicate the flow of refrigerant during heating, and dash-dotted lines indicate the flow of refrigerant and refrigeration in the bypass path (in private lodging).

冷房運転時には、圧縮機1から吐出された高温高圧の冷
媒ガスと冷凍機油か油分離器10に−に部から入り、冷
凍機油は冷媒ガスと分離され′C油分離器10の底に溜
まっている。冷凍機油と分離した冷媒ガスは油分離器1
0の上部から出て四方弁2を通り室外側熱交換器3に至
り、ここで熱交換して高温高圧の冷媒液となり、ディス
トリビュータ4を通り膨張弁5で減圧され、接続配管6
を経て室内側熱交換器7で・蒸発し、さらに接続配管8
、四方弁2、アキュームレータ9を経て圧縮(幾に戻る
During cooling operation, high-temperature, high-pressure refrigerant gas discharged from the compressor 1 and refrigerating machine oil enter the oil separator 10 from below, and the refrigerating machine oil is separated from the refrigerant gas and accumulates at the bottom of the oil separator 10. There is. The refrigerant gas separated from the refrigeration oil is transferred to oil separator 1.
0, passes through the four-way valve 2, reaches the outdoor heat exchanger 3, where it exchanges heat and becomes a high-temperature, high-pressure refrigerant liquid, passes through the distributor 4, is depressurized by the expansion valve 5, and is transferred to the connecting pipe 6.
It evaporates in the indoor heat exchanger 7 and then connects to the connecting pipe 8.
, the four-way valve 2, and the accumulator 9.

この運転中は、バイパス路11の途中にある電磁弁12
か閉しられているか、油分離器10に冷凍(民泊が溜ま
ると信号により電磁弁12か開かれて、油分離器10の
下部に溜まった冷凍機油かバイパス路11を通り、電磁
弁12を介してアキュームレータ9に戻され、室内側熱
交換器7から戻って来た低温低圧の冷媒ガスと共に、圧
縮(幾1に戻ることになり、冷凍機油の循環回路か大幅
に短縮される。この動作は暖房運転時もほぼ同様である
During this operation, the solenoid valve 12 located in the middle of the bypass path 11
If the oil separator 10 is closed, the solenoid valve 12 is opened by a signal, and the refrigerating machine oil accumulated at the bottom of the oil separator 10 passes through the bypass path 11 and closes the solenoid valve 12. The refrigerant gas is returned to the accumulator 9 through the compressor, and together with the low-temperature, low-pressure refrigerant gas that has returned from the indoor heat exchanger 7, it is compressed (returns to 1), and the refrigerating machine oil circulation circuit is significantly shortened. is almost the same during heating operation.

したかって、空気調和磯の室内側ユニントと室外側ユニ
/)の距離か遠く離れている場合、すなわち接続配管6
,8か長い場合でも、冷凍機油の循環回路はバイパス路
11を通り短いため、圧縮(;交1の冷凍(民泊不足を
起すことかない。また、圧1tliilt史1か容量制
御形の場合に、圧縮機から吐出される冷媒の循環量か大
幅に減少して少量になる運転時、オなわも冷媒の配管内
を動く速度か低くなった時にも、冷凍(民泊が循環する
回路の距離が短いために、冷凍(民泊の戻り不足を起す
ことはない。
Therefore, if the distance between the indoor unit and the outdoor unit of the air conditioner is far apart, that is, the connection piping 6
, 8. Even if the refrigeration oil circulation circuit is short, passing through the bypass path 11, compression (; AC 1 refrigeration (no shortage of private lodging) will occur. Also, in the case of pressure 1 tliilt history 1 or capacity control type, During operation, the amount of circulating refrigerant discharged from the compressor decreases significantly, and even when the speed at which the refrigerant moves in the piping decreases, refrigeration (in private lodging houses, the distance of the circulation circuit is short) Therefore, there will be no shortage of refrigerated (minpaku) returns.

そして、圧縮機1の起動時には、限時継電器Yによって
、起動後一定時間tm3だけ電磁弁12を開い′Cおく
ようにしたので、圧縮機1の停止時に冷凍機油中に混入
して寝込んでいる冷媒か圧縮(代の起動によって7オー
ミングな起し、通常の連続運転IL11に比べて大量の
冷凍機油か圧縮機1がら吐出しても、油分離器10によ
って冷凍機油か冷媒から分離してこの冷媒の回路を循環
することなく、バイパス路11を経由し、開いている電
磁弁12を介してアキュームレータ9に戻り、低圧のガ
スと共に圧縮機1に戻り、圧縮(脱の冷凍(幾油の不足
を短時間で補うことかてトる。
When the compressor 1 is started, the solenoid valve 12 is kept open for a certain period of time tm3 by the time-limited relay Y, so that when the compressor 1 is stopped, the refrigerant mixed in the refrigerating machine oil is removed. Even if a large amount of refrigerating machine oil or compressor 1 is discharged compared to normal continuous operation IL11 due to the 7 ohm start-up, the oil separator 10 separates the refrigerant from the refrigerating machine oil or refrigerant. It returns to the accumulator 9 via the bypass path 11 via the open electromagnetic valve 12 without circulating through the circuit, and returns to the compressor 1 together with the low-pressure gas, where it is compressed (de-refrigerated and refrigerated). It's hard to make up for it in a short time.

さらに、暖房運転から除霜運転になると、補助リレーの
コイル×2か励磁され、接点2χaか閉し、電磁弁のコ
イル21Cか励磁されて電磁弁12が開き、これと共に
四方弁2か切換えられる。このため、圧縮機1で圧縮さ
れた高温高圧の冷媒ガスは、油分離器10を経て四方弁
2を通り室外側熱交換器3に至り、これの除霜を行なっ
た後にディス) l)ピユータ4を経て膨張弁5で減圧
され、接続配管6、室内側熱交換器7、接続配管8を経
て四方弁2を通りアキュームレータ5〕に戻される。
Furthermore, when the heating operation changes to the defrosting operation, the auxiliary relay coil x 2 is energized, the contact 2χa is closed, the solenoid valve coil 21C is energized, the solenoid valve 12 is opened, and at the same time, the four-way valve 2 is switched. . Therefore, the high-temperature, high-pressure refrigerant gas compressed by the compressor 1 passes through the oil separator 10, the four-way valve 2, and the outdoor heat exchanger 3, where it is defrosted and then disposed of. 4, the pressure is reduced by the expansion valve 5, the connection pipe 6, the indoor heat exchanger 7, the connection pipe 8, and the four-way valve 2 are returned to the accumulator 5].

同時に圧縮機1から出た高温高圧の冷媒カスの一部は、
油分離器1()の下部から7Xイパス路11を経由し、
電磁弁2を通ってアキューl、レーク(Jに戻される。
At the same time, some of the high-temperature, high-pressure refrigerant scum that came out of the compressor 1
From the bottom of oil separator 1 () via 7X Ipass path 11,
It passes through the solenoid valve 2 and is returned to the aqueous L and rake (J).

アキュームレータ9で゛は、蒸発器として働く室内側熱
交換器7を通って来た低温低圧の冷媒ガスにバイパス路
11を通って来た高温高圧の冷媒ガスか混合されるため
に、低圧冷媒ガスの圧力か上昇して圧縮俄]に戻る。こ
の結果、冷媒カスに比容積が小さく循環量か多い状態を
作ることかで゛き、したかって室外側熱交換器3に付着
した)“1−1を短時間で溶解して除去することができ
る。
In the accumulator 9, the low-pressure refrigerant gas is mixed with the low-temperature, low-pressure refrigerant gas that has passed through the indoor heat exchanger 7, which functions as an evaporator, and the high-temperature, high-pressure refrigerant gas that has passed through the bypass path 11. The pressure increases and returns to compression. As a result, it is possible to create a state in which the specific volume of the refrigerant scum is small and the circulation rate is large, thus making it possible to dissolve and remove "1-1" attached to the outdoor heat exchanger 3 in a short time. can.

暖房低温時には、室外側熱交換器3にすぐに着j′aす
る恐れかあるため、吸入配管に取付けられたサーモスタ
ットの設定値以下の温度になるとその接点26Sか閉と
なり、補助リレーのコイル×3か励磁されてその接点3
χaか閉じ、電磁弁のコイル21Cを励磁させて電磁弁
12を開き、圧縮(;文1から出た高温高圧の冷媒ガス
の一部か油分離器10、バイパス路11を経てアキュー
ムレータく〕にバイパスして戻され、これによって暖房
低温時の暖房能力か増加する。
When the temperature is low for heating, there is a risk that the heat will quickly reach the outdoor heat exchanger 3, so if the temperature falls below the set value of the thermostat attached to the suction pipe, its contact 26S will close, and the coil of the auxiliary relay 3 is energized and its contact 3
χa is closed, the solenoid valve coil 21C is energized, the solenoid valve 12 is opened, and a part of the high-temperature, high-pressure refrigerant gas discharged from sentence 1 is transferred to the accumulator via the oil separator 10 and the bypass path 11. The air is bypassed and returned, thereby increasing the heating capacity at low temperatures.

そして、容量可変形の圧縮俄1を使用している場合には
、」二連した除霜、暖房低温時の電磁弁122    
        ″゛開ys(y>る状態で・圧縮(幾
を能力か最大0運転状態にすることにより、除霜能力、
暖房能力の増加に一層効果的である。
When using a variable capacity compression valve 1, double solenoid valve 122 for defrosting and heating at low temperatures is used.
In the state of ``open ys (y>
It is more effective in increasing heating capacity.

冷房、暖房運転時に、圧縮(幾1の起動後に一定時間t
n)lの連続運転を行ない、その後にタイマモータTM
の接点t 111が閑となり、タイマモータTMか回転
を続けることにより、設定時間t m 2間隔で設定時
間Lm3だけコイル2ICが励磁されて電磁弁12か開
くので、油分離器10に溜められている冷凍(民泊は、
油分離器1()からバイパス路11を経由し電磁弁12
を介してアキュームレータ9に戻され、蒸発器となって
いる熱交換器から戻って来た低温低圧の冷媒力スと共に
圧縮(幾1に戻されて、圧縮(戊に冷凍機油が補充され
るので、その不足か生じない。
During cooling or heating operation, compression (for a certain period of time t after startup)
n)l continuous operation, and then the timer motor TM
The contact t111 becomes idle and the timer motor TM continues to rotate, so that the coil 2IC is energized for a set time Lm3 at intervals of tm2 and the solenoid valve 12 is opened, so that oil is stored in the oil separator 10. Frozen (homestay)
From the oil separator 1 ( ) via the bypass path 11 to the solenoid valve 12
It is returned to the accumulator 9 via the evaporator, and is compressed together with the low-temperature, low-pressure refrigerant power that has returned from the heat exchanger that serves as the evaporator. , the shortage will not occur.

さらに、この実施例の冷凍サイクルは、」二連のように
構成したので、空気調和(代の停止時に接続配管8に溜
まっていた冷媒が圧*1i(11の吐出「1側に自重に
よって戻って米ても、油分離器1 (,1に溜められて
、圧縮(幾1の吐出口に侵入することを防止でき、した
かって起動時に圧縮(;月の弁の破損を防ぐことがでと
る。
Furthermore, since the refrigeration cycle of this embodiment is configured as a double series, the refrigerant accumulated in the connecting pipe 8 when the air conditioning system is stopped returns to the discharge side of the pressure *1i (11) by its own weight. Even if the oil is stored in the oil separator 1, it can be compressed and prevented from entering the discharge port. .

なお、上記実施例では圧縮俄が室外側にあるスブリ/ト
形の空気調和(幾について述べたか、この発明は、圧縮
俄か室内側にあるリモート形のものにも適用できる。ま
た、」−記実施例では絞り装置として膨張弁を用いたか
、この発明は、キャビラリチューフ、電気式膨張弁、ま
たはオリフィスのような絞り装置を用いることができ、
絞り装置の収(1位1買も室内側熱交換器と室外側熱交
換器間のどの位置にしてもよい。
In addition, in the above embodiment, the compression stage is located outside the room (although the present invention is also applicable to a remote type air conditioner where the compression stage is located outside the room). Although an expansion valve is used as the throttling device in the embodiment described above, the present invention can also use a throttling device such as a cavillary tube, an electric expansion valve, or an orifice.
The throttle device can be placed anywhere between the indoor heat exchanger and the outdoor heat exchanger.

以−1−説明したように、この発明によれば、圧縮俄の
吐出側と四方弁の間に油分離器を設け、この油分離器と
アキュームレークを電磁弁を介してバイパス路で接続し
、上記電磁弁を開いてバイパス路から冷凍機油および高
温高圧の冷媒ガスをバイパス路を経由してアキュームレ
ータに戻すようにしたので、室内側と室外側のユニット
の設置距離すなわちこれらの接続配管を長くすることか
簡単にでき、また、容量可変形の圧縮(枝を用いた場合
に冷媒吐出量が大幅に低下する運転をしても、冷凍(戊
油を容易かつ十分に圧縮俄に戻すことができ、とくに圧
縮機の起動時に電磁弁を開す一定時間後に閉じる手段を
制御装置に設けたので、停止時に圧縮機油に寝込んでい
る冷媒か圧縮俄の起動によって7オーミングな起し、通
常の連続運転時に比べて大量の冷凍(民泊か圧縮俄から
吐出されても、冷凍機油を圧縮俄に短時間で容易に戻す
ことかでき、したがってヒートポンプにおける快適性、
信頼性が高く、高精度の冷凍サイクルを簡単な構成で安
価に提供できるという効果が得られる。
As explained above-1-, according to the present invention, an oil separator is provided between the discharge side of the compression chamber and the four-way valve, and the oil separator and the accumulation rake are connected via the solenoid valve by a bypass path. By opening the above solenoid valve, the refrigerating machine oil and high-temperature, high-pressure refrigerant gas are returned to the accumulator via the bypass path, so the installation distance between the indoor and outdoor units, that is, the connecting piping between these can be lengthened. It is easy to do this, and even if the refrigerant discharge amount is significantly reduced when variable capacity compression (branches are used), refrigeration (oil can be easily and sufficiently returned to compression). In particular, the control device is equipped with a means of opening the solenoid valve when the compressor is started and closing it after a certain period of time. Even if a large amount of refrigeration oil is discharged from the compression stage compared to during operation, the refrigerating machine oil can be easily returned to the compression stage in a short time, which improves the comfort of the heat pump.
The effect is that a highly reliable and highly accurate refrigeration cycle can be provided at low cost with a simple configuration.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の空気調和機の冷凍サイクルを示す構成説
明図、第2図はこの発明の一実施例1こよる冷凍サイク
ルを示す構成説明図、第3図はこの発明の一実施例の制
御装置の電気回路図である。 1・・・圧縮機、2・・・四方弁、3・・・室外側熱交
換器、1・し・・ディストリビュータ、5・・・膨張弁
、6.S・・・接続配管、7・・・室外側熱交換器、5
」・・・アキュームレータ、10・・・油分離器、11
・・・バイパス路、12・・・電磁弁。 Cき・1・・・圧縮磯用電動俄 ト1\i、 p: hi・・・室外側、室内側熱交換器
の送風磯用電動磯 S Wl ・・・運転スイッチ S〜′、・・・冷暖房切換スイッチ 23〜′・・・室内温度サー毫スイッチ52C,52F
・・・接触器のコイル 21C・・・電磁弁のコイル 21S、・・・四方弁のコイル T M・・・タイムのモータ Y・・・限時継電器 26D、、26D、・・・霜取開始、霜取終了サーモス
タットの接点 268・・・サーモスタットの接点 XI、X2.X3・・・補助リレーのフィル。 なお、図中同一符号は同一または相当部分を示大  岩
  増  雄 (ほか2名) 才 2[2i 才 a 図 1旨′11)長信1+ウ ド1¥11の表示   $、、7ip/!昭58− ’
13 tv 36 号2、づご明の名称 空気調和機の冷凍サイクル :3 補止をする者 名 称  (601)三菱電機株式会社代表者片山仁八
部 1、代理人 (1)明細書の発明の詳細な説明のm16゜補正の内容 (1)明細四箇7頁6行目に「サーモスタット」とある
を「サーモスタットjと補正する。 (2)同第7頁20行目に「コイル、2.7」とあるを
「コイル2/C」と補正する。 272
Fig. 1 is a structural explanatory diagram showing a refrigeration cycle of a conventional air conditioner, Fig. 2 is a structural explanatory diagram showing a refrigeration cycle according to a first embodiment of the present invention, and Fig. 3 is a structural explanatory diagram showing a refrigeration cycle according to an embodiment of the present invention. FIG. 3 is an electrical circuit diagram of the control device. DESCRIPTION OF SYMBOLS 1... Compressor, 2... Four-way valve, 3... Outdoor heat exchanger, 1... Distributor, 5... Expansion valve, 6. S... Connection piping, 7... Outdoor heat exchanger, 5
"...Accumulator, 10...Oil separator, 11
... Bypass path, 12... Solenoid valve. Cki・1...Electric boat for compression rock 1\i, p: hi...Electric boat for blowing outdoor and indoor heat exchangers for rocky shore S Wl... Operation switch S~',...・Air conditioning/heating selector switch 23~'... Indoor temperature switch 52C, 52F
... Contactor coil 21C ... Solenoid valve coil 21S, ... Four-way valve coil T M ... Time motor Y ... Time limit relay 26D, 26D, ... Start defrosting, Defrost end thermostat contact 268...Thermostat contact XI, X2. X3... Auxiliary relay fill. In addition, the same symbols in the figures indicate the same or equivalent parts. 1982-'
13 tv 36 No. 2, Akira Zugo's name Air conditioner refrigeration cycle: 3 Name of person making the supplement Name (601) Mitsubishi Electric Corporation Representative Hitoshi Katayama 1, Agent (1) Invention of the specification Contents of the m16° correction in the detailed explanation (1) The word "thermostat" on page 7, line 6 of the specification is corrected to "thermostat j." (2) The word "thermostat" on page 7, line 20 of the same specification is corrected as "coil, 2. 7" should be corrected to "Coil 2/C". 272

Claims (1)

【特許請求の範囲】[Claims] 圧1+i磯、四方弁、室外側熱交換器、絞り装置、室内
側熱交換器およびアキュームレータを環状に接続した冷
凍サイクルを有する空気調和機において、手記圧縮磯の
吐出側と四方弁の間に設けた油分離器と、この油分離器
と上記アキュームレータを電磁弁を介して接続するバイ
パス路と、上記圧A11i磯の起動時に」1記電磁弁を
開と一定時間後に閉じる手段をもつ制御装置とを(lf
iiえたことを特徴と千“る空気調和(戊の冷凍サイク
ル。
In an air conditioner with a refrigeration cycle in which a pressure 1+i iso, a four-way valve, an outdoor heat exchanger, a throttling device, an indoor heat exchanger, and an accumulator are connected in a ring, it is installed between the discharge side of the compressor and the four-way valve. an oil separator, a bypass path connecting the oil separator and the accumulator via a solenoid valve, and a control device having means for opening the solenoid valve and closing it after a certain period of time when the pressure A11i is activated. (lf
The air conditioning system (the refrigeration cycle) is characterized by a wide range of features.
JP9363683A 1983-05-25 1983-05-25 Refrigeration cycle of air conditioner Granted JPS59217460A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP9363683A JPS59217460A (en) 1983-05-25 1983-05-25 Refrigeration cycle of air conditioner
US06/610,728 US4557115A (en) 1983-05-25 1984-05-16 Heat pump having improved compressor lubrication
GB08413310A GB2145209B (en) 1983-05-25 1984-05-24 Heat pump
AU28713/84A AU560624B2 (en) 1983-05-25 1984-05-25 Heat pump compressor lubrication

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9363683A JPS59217460A (en) 1983-05-25 1983-05-25 Refrigeration cycle of air conditioner

Publications (2)

Publication Number Publication Date
JPS59217460A true JPS59217460A (en) 1984-12-07
JPH048704B2 JPH048704B2 (en) 1992-02-17

Family

ID=14087824

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9363683A Granted JPS59217460A (en) 1983-05-25 1983-05-25 Refrigeration cycle of air conditioner

Country Status (1)

Country Link
JP (1) JPS59217460A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0373880U (en) * 1989-11-17 1991-07-25
JP2007240105A (en) * 2006-03-10 2007-09-20 Espec Corp Environmental testing device and operation method
JP2014020661A (en) * 2012-07-18 2014-02-03 Panasonic Corp Air conditioner
JP2014202399A (en) * 2013-04-03 2014-10-27 三菱電機株式会社 Refrigerator
WO2018229890A1 (en) * 2017-06-14 2018-12-20 三菱電機株式会社 Refrigeration cycle device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51137162A (en) * 1975-05-22 1976-11-26 Daikin Ind Ltd Refrigerating system
JPS5462147U (en) * 1977-10-12 1979-05-01
JPS5536769U (en) * 1978-08-31 1980-03-08
JPS5548054U (en) * 1978-09-25 1980-03-29

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52109268A (en) * 1976-03-05 1977-09-13 Konishiroku Photo Ind Method of attracting and conveying sheet

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51137162A (en) * 1975-05-22 1976-11-26 Daikin Ind Ltd Refrigerating system
JPS5462147U (en) * 1977-10-12 1979-05-01
JPS5536769U (en) * 1978-08-31 1980-03-08
JPS5548054U (en) * 1978-09-25 1980-03-29

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0373880U (en) * 1989-11-17 1991-07-25
JP2007240105A (en) * 2006-03-10 2007-09-20 Espec Corp Environmental testing device and operation method
JP4579173B2 (en) * 2006-03-10 2010-11-10 エスペック株式会社 Environmental test apparatus and operation method thereof
JP2014020661A (en) * 2012-07-18 2014-02-03 Panasonic Corp Air conditioner
JP2014202399A (en) * 2013-04-03 2014-10-27 三菱電機株式会社 Refrigerator
WO2018229890A1 (en) * 2017-06-14 2018-12-20 三菱電機株式会社 Refrigeration cycle device

Also Published As

Publication number Publication date
JPH048704B2 (en) 1992-02-17

Similar Documents

Publication Publication Date Title
US4557115A (en) Heat pump having improved compressor lubrication
JPS6325471A (en) Air conditioner
JP2002005537A (en) Refrigerant heating apparatus and air conditioning apparatus
JPS59217460A (en) Refrigeration cycle of air conditioner
JPS59217463A (en) Refrigeration cycle of air conditioner
JP3099574B2 (en) Air conditioner pressure equalizer
JPH0141105Y2 (en)
JP2001235248A (en) Air conditioner
JPH06323636A (en) Refrigerator
JPH05240522A (en) Air conditioning apparatus
JPH0526543A (en) Refrigerating plant
JPH0214626B2 (en)
JPS5856528Y2 (en) Refrigeration equipment
JP2001235250A (en) Air conditioner
JPH048703B2 (en)
JPS6346350B2 (en)
JPH02272237A (en) Heat storage type air conditioner
JPH0123089Y2 (en)
JPH0451744B2 (en)
JPS6252381A (en) Heat pump type air conditioner
JPH11254956A (en) Vehicular air-conditioning device
JP3168730B2 (en) Air conditioner
JPH0334614Y2 (en)
JPS6036844Y2 (en) Heat pump refrigeration equipment
JP2792185B2 (en) Vehicle air conditioner