JPH06300318A - Radiation type cooling device - Google Patents

Radiation type cooling device

Info

Publication number
JPH06300318A
JPH06300318A JP9029093A JP9029093A JPH06300318A JP H06300318 A JPH06300318 A JP H06300318A JP 9029093 A JP9029093 A JP 9029093A JP 9029093 A JP9029093 A JP 9029093A JP H06300318 A JPH06300318 A JP H06300318A
Authority
JP
Japan
Prior art keywords
refrigerant
heat exchanger
refrigeration cycle
radiant
pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9029093A
Other languages
Japanese (ja)
Inventor
Shozo Funakura
正三 船倉
Minoru Tagashira
實 田頭
Kazuo Nakatani
和生 中谷
Yuji Yoshida
雄二 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP9029093A priority Critical patent/JPH06300318A/en
Publication of JPH06300318A publication Critical patent/JPH06300318A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a radiation type cooling device in which an indoor heat exchanger is organically connected to the radiation type heat exchanger and the heat exchanger can be excited stably when its operation is started. CONSTITUTION:A compressor 1, an outdoor heat exchanger 3, a first adjusting device 4, and an indoor heat exchanger 5 are connected in sequence. A series- connected circuit comprising a second adjusting device 6 and a first refrigerant- to-refrigerant heat exchanger 7 is connected in parallel with the first adjusting device 4 and the indoor heat exchanger 5 so as to constitute a first freezing cycle 8. Then, a refrigerant pump 10, a radiation type heat exchanger 14, a first refrigerant heat exchanger 7 and a liquid reservoir 11 are connected in sequence. The first refrigerant-to-refrigerant heat exchanger 7 is placed higher than the liquid reservoir 11 and the liquid reservoir 11 is placed higher than the refrigerant pump 10 so as to constitute a second freezing cycle 13. Refrigerant within the first freezing cycle 8 and the refrigerant in the second freezing cycle 13 can be indirectly heat exchanged by the first refrigerant-to-refrigerant heat exchanger 7. In addition, when the operation is started, the first freezing cycle 8 is operated and then the second freezing cycle 13 is operated.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、輻射を利用した冷房装
置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cooling device utilizing radiation.

【0002】[0002]

【従来の技術】従来、よりマイルドな冷房を実現する方
法として、輻射冷房装置が知られている。従来の輻射冷
房装置は、天井面に配管パイプを付設し、その内部に冷
水を流通させるものや、あるいは冷媒配管を付設し冷凍
サイクルの蒸発器として作用させることにより、室内で
の冷気の自然降下によりドラフト感のない冷房を実現し
ようとするものである。また天井面での結露防止策とし
て別に除湿装置を設けていた。
2. Description of the Related Art A radiant cooling device is conventionally known as a method for realizing a milder cooling. The conventional radiant cooling system has a piping pipe attached to the ceiling surface and allows cold water to flow inside it, or a refrigerant pipe is attached to act as an evaporator of a refrigeration cycle, so that the cold air in the room naturally falls. It is intended to realize air conditioning without a draft feeling. In addition, a dehumidifier was installed separately as a measure to prevent condensation on the ceiling.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、従来の
輻射冷房装置で問題となるのは、天井面での冷水や冷媒
の流通は室内空気の顕熱のみを除去させるものであり、
その理由は、潜熱まで奪ってしまうと天井面に結露して
しまうからである。そこで従来の輻射冷房装置では、室
内空気の潜熱を除去する別の冷房装置を必要とし、また
室内の湿度状態や冷房負荷に対応した天井面の温度制御
は、複雑で大がかりなものとなっていた。
However, the problem with the conventional radiant cooling apparatus is that the circulation of cold water or refrigerant on the ceiling surface removes only the sensible heat of the indoor air.
The reason is that if the latent heat is taken away, dew will form on the ceiling. Therefore, the conventional radiant cooling device requires a separate cooling device for removing the latent heat of the indoor air, and the temperature control of the ceiling surface corresponding to the indoor humidity condition and the cooling load is complicated and large-scale. .

【0004】また、冷媒を用いたものでは、冷媒を二相
状態で蒸発器に送り込もうとすると蒸発器入口部での分
流や安定した冷媒循環量を維持することが困難であり、
また、蒸発器入口で冷媒が十分に過冷却されていると蒸
発器入口付近で均一な温度分布が得られないのが現状で
あった。
Further, in the case of using a refrigerant, it is difficult to maintain a shunt at the inlet of the evaporator and a stable refrigerant circulation amount when the refrigerant is fed into the evaporator in a two-phase state.
Further, if the refrigerant is sufficiently supercooled at the evaporator inlet, the current situation is that a uniform temperature distribution cannot be obtained near the evaporator inlet.

【0005】また輻射冷房と強制通風冷房を有機的に結
合し、一つの簡単な熱源機で、運転開始時や急激な湿度
上昇時にも対応できるシステムを実現しているものはな
く、これらの問題点が普及の妨げとなっていた。
Further, there is no one that realizes a system capable of coping with radiant cooling and forced draft cooling organically, by one simple heat source device even at the start of operation or when the humidity rises suddenly. The points hindered the spread.

【0006】本発明は、かかる従来の輻射冷房装置の課
題を解消するためのものであり、冷媒を用いた輻射冷房
装置と潜熱を除去するための強制通風冷房装置を有機的
に結合するばかりでなく、運転開始時も安定に起動し、
急激な湿度上昇時にも結露の心配のない輻射冷房装置を
提供することを目的とするものである。
[0006] The present invention is to solve the problems of the conventional radiant cooling apparatus, and not only organically combine the radiant cooling apparatus using a refrigerant and the forced draft cooling apparatus for removing latent heat. Without, it starts stably even at the start of operation,
It is an object of the present invention to provide a radiant cooling device that does not cause dew condensation even when the humidity rises rapidly.

【0007】[0007]

【課題を解決するための手段】本発明の輻射冷房装置
は、圧縮機、室外熱交換器、第1絞り装置、室内熱交換
器を順に接続し、直列に第2絞り装置、第1冷媒対冷媒
熱交換器を接続したものを、第1絞り装置と室内熱交換
器に対し、並列に接続して第1冷凍サイクルを構成し、
冷媒ポンプ、輻射熱交換器、第1冷媒対冷媒熱交換器、
貯液器などを順に接続し、第1冷媒対冷媒熱交換器を貯
液器よりも高く配置し、貯液器を冷媒ポンプよりも高く
配置して第2冷凍サイクルを構成し、第1冷凍サイクル
内を循環する冷媒と第2冷凍サイクルを循環する冷媒を
第1冷媒対冷媒熱交換器で間接的に熱交換可能にする構
成としたものである。
A radiant cooling apparatus according to the present invention comprises a compressor, an outdoor heat exchanger, a first expansion device, and an indoor heat exchanger, which are connected in this order, and a second expansion device and a first refrigerant pair are connected in series. The refrigerant heat exchanger is connected to the first expansion device and the indoor heat exchanger in parallel to form a first refrigeration cycle,
Refrigerant pump, radiant heat exchanger, first refrigerant to refrigerant heat exchanger,
The first refrigeration cycle is configured by connecting the reservoirs and the like in order, arranging the first refrigerant-refrigerant heat exchanger higher than the reservoir, and arranging the reservoir higher than the refrigerant pump to form the second refrigeration cycle. The refrigerant circulating in the cycle and the refrigerant circulating in the second refrigeration cycle are indirectly heat-exchangeable by the first refrigerant-refrigerant heat exchanger.

【0008】また、本発明輻射冷房装置は、運転開始時
には上記圧縮機を起動して第1冷凍サイクルを運転させ
た後、冷媒ポンプを起動して第2冷凍サイクルを運転さ
せるものである。
Further, the radiant cooling apparatus of the present invention starts the compressor to operate the first refrigeration cycle at the start of operation, and then starts the refrigerant pump to operate the second refrigeration cycle.

【0009】また、本発明の輻射冷房装置は、上記輻射
熱交換器に輻射熱交換器表面温度計測手段、近傍に露点
温度計測手段を設け、上記第2冷凍サイクルの冷媒ポン
プの出口に第2冷媒対冷媒熱交換器を接続し、上記第1
冷凍サイクルの圧縮機と室外熱交換器の間に四方弁、第
2冷媒対冷媒熱交換器を接続し、露点温度に応じて四方
弁を切り換えることによって、第1冷凍サイクル内を循
環する冷媒と第2冷凍サイクルを循環する冷媒を第2冷
媒対冷媒熱交換器で間接的に熱交換可能にする構成とし
たものである。
Further, in the radiant cooling apparatus of the present invention, the radiant heat exchanger is provided with a radiant heat exchanger surface temperature measuring means and a dew point temperature measuring means in the vicinity thereof, and a second refrigerant pair is provided at an outlet of the refrigerant pump of the second refrigeration cycle. Refrigerant heat exchanger is connected to the first
By connecting a four-way valve and a second refrigerant-to-refrigerant heat exchanger between the compressor of the refrigeration cycle and the outdoor heat exchanger, and switching the four-way valve according to the dew point temperature, the refrigerant circulating in the first refrigeration cycle The configuration is such that the refrigerant circulating in the second refrigeration cycle can indirectly exchange heat with the second refrigerant-refrigerant heat exchanger.

【0010】[0010]

【作用】本発明の輻射冷房装置では、第1冷凍サイクル
においては、室外熱交換器は凝縮器、室内熱交換器およ
び第1冷媒対冷媒熱交換器は共に蒸発器として作用す
る。一方、第2冷凍サイクルにおいては、第1冷媒対冷
媒熱交換器は凝縮器、輻射熱交換器は蒸発器として作用
する。ここで第1冷媒対冷媒熱交換器の下方に貯液器
を、さらに貯液器の下方に冷媒ポンプを配置することに
より、第1冷媒対冷媒熱交換器で冷媒が十分に過冷却さ
れなくても、冷媒ポンプ出入口で冷媒は液状態を維持し
やすいため冷媒を安定して輻射熱交換器に送り込むこと
ができると同時に、輻射熱交換器入口での冷媒の過冷却
度を小さくすることができて輻射熱交換器入口付近でも
均一な温度分布が得られる。
In the radiant cooling apparatus of the present invention, in the first refrigeration cycle, the outdoor heat exchanger functions as a condenser, the indoor heat exchanger, and the first refrigerant-refrigerant heat exchanger function as an evaporator. On the other hand, in the second refrigeration cycle, the first refrigerant-to-refrigerant heat exchanger acts as a condenser and the radiant heat exchanger acts as an evaporator. Here, by disposing the reservoir below the first refrigerant-refrigerant heat exchanger and further arranging the refrigerant pump below the reservoir, the refrigerant is not sufficiently supercooled in the first refrigerant-refrigerant heat exchanger. However, since it is easy to maintain the liquid state of the refrigerant at the refrigerant pump inlet / outlet, the refrigerant can be stably sent to the radiant heat exchanger, and at the same time, the degree of supercooling of the refrigerant at the radiant heat exchanger inlet can be reduced. A uniform temperature distribution can be obtained near the entrance of the radiant heat exchanger.

【0011】また、運転開始時には圧縮機を起動して第
1冷凍サイクルを運転させ、第1冷媒対冷媒熱交換器で
第2冷凍サイクル内の冷媒を凝縮させて貯液器に液冷媒
を貯留した後に、冷媒ポンプを起動して第2冷凍サイク
ルを運転させることにより、あらかじめ室内熱交換器に
おいて室内空気の顕熱と潜熱(水分)を除去すると同時
に、冷媒ポンプ起動直後から、安定して冷媒を輻射熱交
換器に供給でき、輻射熱交換器温度を迅速に低下させる
ことができる。
When the operation is started, the compressor is started to operate the first refrigeration cycle, and the refrigerant in the second refrigeration cycle is condensed by the first refrigerant-refrigerant heat exchanger to store the liquid refrigerant in the reservoir. After that, the refrigerant pump is started to operate the second refrigeration cycle to remove sensible heat and latent heat (moisture) of the indoor air in the indoor heat exchanger in advance, and at the same time, immediately after starting the refrigerant pump, the refrigerant is stably cooled. Can be supplied to the radiant heat exchanger, and the radiant heat exchanger temperature can be rapidly lowered.

【0012】さらに、窓が開放された時など、露点温度
が上昇したときには、四方弁を切り換えて、冷媒ポンプ
を出た第2冷凍サイクルの冷媒と、圧縮機で圧縮されて
高温となった第1冷凍サイクルの冷媒とを第2冷媒対冷
媒熱交換器で間接的に熱交換させることにより、輻射熱
交換器の温度を上昇させて露点温度以上に維持すること
ができ、結露を防ぐことができる。したがって、室内熱
交換器において室内空気の潜熱を除去しながら、輻射熱
交換器において室内空気の顕熱を除去して、マイルドな
冷房を実現することが可能となるものであり、例えば輻
射熱交換器を天井面に付設した配管パイプで構成すると
きには、天井面に結露水の生じる危険を防止できるもの
である。
Further, when the dew point temperature rises, such as when the window is opened, the four-way valve is switched, and the refrigerant of the second refrigeration cycle that has exited the refrigerant pump and the first refrigerant that has become hot due to being compressed by the compressor. By indirectly exchanging heat with the refrigerant in one refrigeration cycle in the second refrigerant-refrigerant heat exchanger, the temperature of the radiant heat exchanger can be increased and maintained at a dew point temperature or higher, and dew condensation can be prevented. . Therefore, it is possible to realize a mild cooling by removing the sensible heat of the indoor air in the radiant heat exchanger while removing the latent heat of the indoor air in the indoor heat exchanger. When the pipe is attached to the ceiling surface, the risk of dew condensation on the ceiling surface can be prevented.

【0013】[0013]

【実施例】以下、本発明の実施例について図面を参照し
て説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0014】図1は本発明にかかる輻射冷房装置の一実
施例であり、1は圧縮機、2は四方弁、3は室外熱交換
器、4は第1絞り装置、5は室内熱交換器、6は第2絞
り装置、7は第1冷媒対冷媒熱交換器であり、順にこれ
らの機器を接続して第1冷凍サイクル8を構成してい
る。第2絞り装置6と第1冷媒対冷媒熱交換器7の直列
部分は、第1絞り装置4と室内熱交換器5の直列部分に
対して並列に接続されている。さらに四方弁2を切り換
えることにより、圧縮機1を出た冷媒を直接室外熱交換
器3に、あるいは第2冷媒対冷媒熱交換器9を経て室外
熱交換器3に導入できるように接続されている。
FIG. 1 shows an embodiment of a radiant cooling apparatus according to the present invention, in which 1 is a compressor, 2 is a four-way valve, 3 is an outdoor heat exchanger, 4 is a first throttle device, and 5 is an indoor heat exchanger. , 6 is a second expansion device, 7 is a first refrigerant-to-refrigerant heat exchanger, and these devices are sequentially connected to form a first refrigeration cycle 8. The series portion of the second expansion device 6 and the first refrigerant-to-refrigerant heat exchanger 7 is connected in parallel to the series portion of the first expansion device 4 and the indoor heat exchanger 5. Further, by switching the four-way valve 2, the refrigerant discharged from the compressor 1 is connected directly to the outdoor heat exchanger 3 or to the outdoor heat exchanger 3 via the second refrigerant-refrigerant heat exchanger 9. There is.

【0015】また、10は冷媒ポンプ、11は貯液器、
12は輻射熱交換器であり、第1冷媒対冷媒熱交換器
7、第2冷媒対冷媒熱交換器9とともに接続され第2冷
凍サイクル13を構成している。14は輻射熱交換器表
面温度計測手段であり、本実施例では輻射熱交換器12
の圧力を計測してその圧力の飽和温度から表面温度を求
めるものである。15は輻射熱交換器12の近傍の露点
温度計測手段であり、輻射熱交換器表面温度計測手段1
4から求めた表面温度と露点温度計測手段15から求め
た露点温度を比較し、表面温度が高くなるように制御装
置16を介し四方弁2を制御できるように接続されてい
る。
Further, 10 is a refrigerant pump, 11 is a reservoir,
A radiant heat exchanger 12 is connected with the first refrigerant-refrigerant heat exchanger 7 and the second refrigerant-refrigerant heat exchanger 9 to form a second refrigeration cycle 13. Reference numeral 14 is a radiant heat exchanger surface temperature measuring means, and in the present embodiment, the radiant heat exchanger 12 is used.
Is measured and the surface temperature is obtained from the saturation temperature of the pressure. Reference numeral 15 is a dew point temperature measuring means near the radiant heat exchanger 12, which is a radiant heat exchanger surface temperature measuring means 1
4 is compared with the dew point temperature obtained from the dew point temperature measuring means 15, and the four-way valve 2 is connected so that the four-way valve 2 can be controlled via the control device 16 so that the surface temperature becomes higher.

【0016】第1冷媒対冷媒熱交換器7においては、第
1冷凍サイクル8の冷媒と第2冷凍サイクル13の冷媒
が間接的に熱交換するように構成されている。さらに第
2冷媒対冷媒熱交換器9においては、四方弁2を切り換
えることにより第1冷凍サイクル8の冷媒と第2冷凍サ
イクル13の冷媒が間接的に熱交換するように構成され
ている。
In the first refrigerant-refrigerant heat exchanger 7, the refrigerant of the first refrigeration cycle 8 and the refrigerant of the second refrigeration cycle 13 are indirectly heat-exchanged. Further, in the second refrigerant-refrigerant heat exchanger 9, the refrigerant of the first refrigeration cycle 8 and the refrigerant of the second refrigeration cycle 13 are indirectly heat-exchanged by switching the four-way valve 2.

【0017】次に、かかる輻射冷房装置の動作を説明す
る。まず圧縮機1の吐出側と室外熱交換器3が直接接続
するように四方弁2を設定した場合について説明する。
第1冷凍サイクル8においては、室外熱交換器3が凝縮
器、室内熱交換器5および第1冷媒対冷媒熱交換器7が
蒸発器として作用する。圧縮機1より吐出された高温高
圧の冷媒が四方弁2を経て室外熱交換器3で外気と熱交
換して冷却され凝縮液化し、第1絞り装置4で低圧まで
絞られて室内熱交換器5に流入する。ここで室内の空気
より熱を奪って冷媒が蒸発する。一方、第2絞り装置6
で減圧された冷媒は、第1冷媒対冷媒熱交換器7に流入
し、ここで後述の第2冷凍サイクル13の冷媒ガスと間
接的に熱交換して吸熱、気化し、室内熱交換器5を通っ
た冷媒と合流し圧縮機1に吸入される。
Next, the operation of the radiant cooling device will be described. First, a case where the four-way valve 2 is set so that the discharge side of the compressor 1 and the outdoor heat exchanger 3 are directly connected will be described.
In the first refrigeration cycle 8, the outdoor heat exchanger 3 functions as a condenser, and the indoor heat exchanger 5 and the first refrigerant-to-refrigerant heat exchanger 7 function as an evaporator. The high-temperature and high-pressure refrigerant discharged from the compressor 1 passes through the four-way valve 2 and exchanges heat with the outside air in the outdoor heat exchanger 3 to be cooled and condensed into liquid, and is reduced to a low pressure in the first expansion device 4 to be reduced to the indoor heat exchanger. Inflow to 5. Here, heat is taken from the air in the room to evaporate the refrigerant. On the other hand, the second diaphragm device 6
The refrigerant depressurized by the refrigerant flows into the first refrigerant-refrigerant heat exchanger 7, where it indirectly exchanges heat with the refrigerant gas of the second refrigeration cycle 13 to be described later to absorb and vaporize the refrigerant gas, and the indoor heat exchanger 5 It merges with the refrigerant passing through and is sucked into the compressor 1.

【0018】一方、第2冷凍サイクル13においては、
冷媒ポンプ10で送られた液冷媒が第2冷媒対冷媒熱交
換器9を経て輻射熱交換器12に流れる。このとき四方
弁2により、第2冷媒対冷媒熱交換器9は第1冷凍サイ
クル8とは切り離されているので、第2冷媒対冷媒熱交
換器9では冷媒ポンプ10で送られた液冷媒は状態変化
をせずにそのまま輻射熱交換器12に流れる。そして輻
射熱交換器12で蒸発して室内の冷房に寄与し、第1冷
媒対冷媒熱交換器7に流入する。ここで前述の第1冷凍
サイクル8の冷媒と間接的に熱交換し、放熱、液化し
て、貯液器11を経て再び冷媒ポンプ9へ戻る。このと
き第1冷媒対冷媒熱交換器7の下方に貯液器11を、さ
らに貯液器11の下方に冷媒ポンプ10を配置すること
により、第1冷媒対冷媒熱交換器7で冷媒が十分に過冷
却されなくても、冷媒ポンプ10の出入口で冷媒は液状
態を維持しやすいため冷媒を安定して輻射熱交換器12
に送り込むことができる。すなわち、第1冷媒対冷媒熱
交換器7での冷媒の過冷却度が小さくても安定した冷媒
流量が得られるので、輻射熱交換器12の入口での冷媒
の過冷却度を小さくすることができて輻射熱交換器12
の入口付近でも均一な温度分布が得られる。
On the other hand, in the second refrigeration cycle 13,
The liquid refrigerant sent by the refrigerant pump 10 flows through the second refrigerant-to-refrigerant heat exchanger 9 to the radiant heat exchanger 12. At this time, since the second refrigerant-to-refrigerant heat exchanger 9 is separated from the first refrigeration cycle 8 by the four-way valve 2, in the second refrigerant-to-refrigerant heat exchanger 9, the liquid refrigerant sent by the refrigerant pump 10 is It flows into the radiant heat exchanger 12 as it is without changing its state. Then, it is evaporated in the radiant heat exchanger 12, contributes to the cooling in the room, and flows into the first refrigerant-to-refrigerant heat exchanger 7. Here, heat is indirectly exchanged with the refrigerant of the first refrigeration cycle 8 described above, and heat is released and liquefied, and then returns to the refrigerant pump 9 again via the reservoir 11. At this time, by arranging the reservoir 11 below the first refrigerant-refrigerant heat exchanger 7 and further arranging the refrigerant pump 10 below the reservoir 11, the refrigerant in the first refrigerant-refrigerant heat exchanger 7 is sufficient. Even if it is not supercooled, the refrigerant can easily maintain the liquid state at the inlet and outlet of the refrigerant pump 10, so that the refrigerant is stably radiated.
Can be sent to. That is, since a stable refrigerant flow rate can be obtained even if the degree of supercooling of the refrigerant in the first refrigerant-refrigerant heat exchanger 7 is small, the degree of supercooling of the refrigerant at the inlet of the radiant heat exchanger 12 can be reduced. Radiant heat exchanger 12
A uniform temperature distribution can be obtained near the entrance of the.

【0019】さらに、かかる輻射冷房装置の運転開始時
には、まず圧縮機1を起動して第1冷凍サイクル8のみ
を運転させる。これにより、室内熱交換器5において室
内空気の顕熱と潜熱(水分)を除去すると同時に、第1
冷媒対冷媒熱交換器7で第2冷凍サイクル13内の冷媒
を凝縮させて貯液器11に液冷媒を貯留する。その後、
冷媒ポンプ10を起動して第2冷凍サイクル13を運転
させることが出来る。この様にすることによって、室内
熱交換器5であらかじめ室内空気露点温度を低下させる
ことができると同時に、冷媒ポンプ10起動直後から、
安定して冷媒を輻射熱交換器12に供給でき、輻射熱交
換器12の温度を迅速に低下させることができる。
Further, when the operation of the radiant cooling apparatus is started, first, the compressor 1 is started to operate only the first refrigeration cycle 8. As a result, the sensible heat and latent heat (moisture) of the indoor air are removed in the indoor heat exchanger 5, and at the same time the first heat
The refrigerant-refrigerant heat exchanger 7 condenses the refrigerant in the second refrigeration cycle 13 and stores the liquid refrigerant in the liquid storage 11. afterwards,
The refrigerant pump 10 can be started to operate the second refrigeration cycle 13. By doing so, the indoor heat exchanger 5 can lower the indoor air dew point temperature in advance, and at the same time, immediately after the refrigerant pump 10 is started,
The refrigerant can be stably supplied to the radiant heat exchanger 12, and the temperature of the radiant heat exchanger 12 can be rapidly lowered.

【0020】次に、かかる輻射冷房装置で、窓が開放さ
れた時など、露点温度が上昇したときについて説明す
る。まず露点温度計測手段15で室内空気の露点温度上
昇を検出し、輻射熱交換器表面温度計測手段14で輻射
熱交換器12の表面温度を検出する。これらの露点温
度、表面温度を入力とする制御装置16では、露点温度
が上昇して表面温度に近付いたときには四方弁2を切り
換えて、冷媒ポンプ10を出た第2冷凍サイクル13の
冷媒と、圧縮機1で圧縮されて高温となった第1冷凍サ
イクル8の冷媒とを第2冷媒対冷媒熱交換器9で間接的
に熱交換させる。このとき第2冷凍サイクル13では、
冷媒ポンプ10を出た液冷媒は、第2冷媒対冷媒熱交換
器9で吸熱してガス冷媒となり、輻射熱交換器12に送
られる。輻射熱交換器12では、ガス冷媒が顕熱の一部
あるいは顕熱と潜熱の一部を放出することにより輻射熱
交換器12の表面温度を上昇させる。その後、冷媒は第
1冷媒対冷媒熱交換器7に導かれて第1冷凍サイクル8
の冷媒と熱交換して液冷媒となり、貯液器11を経て再
び冷媒ポンプ10に吸入される。したがって、露点温度
が上昇して表面温度に近付いたときには四方弁2を切り
換えることにより輻射熱交換器12の表面温度を上昇さ
せて、結露を防止することができる。
Next, a description will be given of the case where the dew point temperature rises in the radiant cooling apparatus, such as when the window is opened. First, the dew point temperature measuring means 15 detects an increase in the dew point temperature of indoor air, and the radiant heat exchanger surface temperature measuring means 14 detects the surface temperature of the radiant heat exchanger 12. In the control device 16 which inputs these dew point temperature and surface temperature, when the dew point temperature rises and approaches the surface temperature, the four-way valve 2 is switched, and the refrigerant of the second refrigeration cycle 13 that has exited the refrigerant pump 10 and The second refrigerant-to-refrigerant heat exchanger 9 indirectly exchanges heat with the refrigerant of the first refrigeration cycle 8 that has been compressed by the compressor 1 and has reached a high temperature. At this time, in the second refrigeration cycle 13,
The liquid refrigerant discharged from the refrigerant pump 10 absorbs heat in the second refrigerant-refrigerant heat exchanger 9 to become a gas refrigerant, and is sent to the radiant heat exchanger 12. In the radiant heat exchanger 12, the gas refrigerant releases a part of the sensible heat or a part of the sensible heat and the latent heat to raise the surface temperature of the radiant heat exchanger 12. Then, the refrigerant is guided to the first refrigerant-to-refrigerant heat exchanger 7 and the first refrigeration cycle 8
Is exchanged with the refrigerant to become a liquid refrigerant, and is sucked into the refrigerant pump 10 again via the liquid storage 11. Therefore, when the dew point temperature rises and approaches the surface temperature, the surface temperature of the radiant heat exchanger 12 can be raised by switching the four-way valve 2 to prevent dew condensation.

【0021】以上説明した通り、かかる輻射冷房装置で
は、室内熱交換器5において室内空気の潜熱(水分)を
除去しながら、輻射熱交換器12において室内空気の顕
熱を除去して、マイルドな冷房を実現することが可能と
なるものであり、また第1冷媒対冷媒熱交換器7で冷媒
が十分に過冷却されなくても、冷媒を安定して輻射熱交
換器12に送り込むことができると同時に、輻射熱交換
器12入口での冷媒の過冷却度を小さくすることができ
て輻射熱交換器12入口付近でも均一な温度分布を得る
ことができる。また、運転開始時には、室内空気の潜熱
(水分)を除去しながらかつ、冷媒ポンプ10起動直後
から安定して冷媒を輻射熱交換器12に供給でき、輻射
熱交換器温度を迅速に低下させることができる。さら
に、露点温度が上昇したときには、輻射熱交換器12の
温度を上昇させて露点温度以上に維持することができ、
結露を防ぐことができる。
As described above, in such a radiant cooling apparatus, the radiant heat exchanger 12 removes the sensible heat of the indoor air while removing the latent heat (moisture) of the indoor air in the indoor heat exchanger 5, thereby providing a mild cooling. In addition, even if the first refrigerant-to-refrigerant heat exchanger 7 does not sufficiently cool the refrigerant, the refrigerant can be stably fed to the radiant heat exchanger 12 and at the same time. The degree of supercooling of the refrigerant at the inlet of the radiant heat exchanger 12 can be reduced, and a uniform temperature distribution can be obtained even near the inlet of the radiant heat exchanger 12. Further, at the start of the operation, the latent heat (moisture) of the indoor air is removed, and the refrigerant can be stably supplied to the radiant heat exchanger 12 immediately after the refrigerant pump 10 is started, and the radiant heat exchanger temperature can be rapidly lowered. . Further, when the dew point temperature rises, the temperature of the radiant heat exchanger 12 can be raised and maintained above the dew point temperature,
Condensation can be prevented.

【0022】なお、上記実施例では、輻射熱交換器10
は天井面に付設された配管パイプにより構成されるもの
として説明したが、本発明は、これに限定されず、例え
ば天井裏チャンバー内に配置された空気熱交換器により
構成し、熱伝導により天井面を冷却してもよい。また室
内熱交換器5で適宜外気を導入して換気を行なわせたり
する構成にしてもよい。さらに圧縮機1と室外熱交換器
3側に新たな四方弁(図示せず)を設け冷房、暖房を可
能にすることは容易に可能である。
In the above embodiment, the radiant heat exchanger 10 is used.
Is described as being constituted by a piping pipe attached to the ceiling surface, but the present invention is not limited to this, and is constituted by, for example, an air heat exchanger arranged inside the ceiling chamber, and the ceiling is formed by heat conduction. The surface may be cooled. Further, the indoor heat exchanger 5 may be configured to appropriately introduce outside air to perform ventilation. Further, it is easily possible to provide a new four-way valve (not shown) on the side of the compressor 1 and the outdoor heat exchanger 3 to enable cooling and heating.

【0023】[0023]

【発明の効果】以上述べたところから明らかなように、
本発明にかかる輻射冷房装置は、第1冷媒対冷媒熱交換
器を貯液器よりも高く配置し、貯液器を冷媒ポンプより
も高く配置して第2冷凍サイクルを構成したものである
ので、第1冷媒対冷媒熱交換器で冷媒が十分に過冷却さ
れなくても、冷媒ポンプ出入口で冷媒は液状態を維持し
やすいため、冷媒を安定して輻射熱交換器に送り込むこ
とができると同時に、輻射熱交換器入口での冷媒の過冷
却度を小さくすることができて輻射熱交換器入口付近で
も均一な温度分布が得られるという長所を有する。
As is apparent from the above description,
Since the radiant cooling apparatus according to the present invention constitutes the second refrigeration cycle by arranging the first refrigerant-refrigerant heat exchanger higher than the reservoir and the reservoir higher than the refrigerant pump. Even if the refrigerant is not sufficiently subcooled in the first refrigerant-refrigerant heat exchanger, the refrigerant can easily be maintained in the liquid state at the refrigerant pump inlet / outlet, so that the refrigerant can be stably fed to the radiant heat exchanger. Further, it has an advantage that the degree of supercooling of the refrigerant at the inlet of the radiant heat exchanger can be reduced and a uniform temperature distribution can be obtained near the inlet of the radiant heat exchanger.

【0024】また、本発明にかかる輻射冷房装置は、運
転開始時には圧縮機を起動して第1冷凍サイクルを運転
させた後、冷媒ポンプを起動して第2冷凍サイクルを運
転させることにより、あらかじめ室内熱交換器5におい
て室内空気の顕熱と潜熱(水分)を除去すると同時に、
冷媒ポンプ起動直後から、安定して冷媒を輻射熱交換器
に供給でき、輻射熱交換器温度を迅速に低下させること
ができるという長所を有する。
Further, in the radiant cooling apparatus according to the present invention, when the operation is started, the compressor is activated to operate the first refrigeration cycle, and then the refrigerant pump is activated to operate the second refrigeration cycle. At the same time as removing sensible heat and latent heat (moisture) of indoor air in the indoor heat exchanger 5,
Immediately after the refrigerant pump is activated, the refrigerant can be stably supplied to the radiant heat exchanger, and the radiant heat exchanger temperature can be rapidly lowered.

【0025】また、本発明にかかる輻射冷房装置は、露
点温度が上昇したときには、第1冷凍サイクル内を循環
する冷媒と第2冷凍サイクルを循環する冷媒を第2冷媒
対冷媒熱交換器で間接的に熱交換可能にするので、露点
温度に応じて、四方弁を切り換えることにより、輻射熱
交換器の温度を上昇させて露点温度以上に維持すること
ができ、結露を防ぐことができるという長所を有する。
したがって、輻射冷房装置と強制通風冷房装置を有機的
に結合するばかりでなく、運転開始時にも安定して起動
でき、急激な湿度上昇時にも結露の心配のない輻射冷房
装置を実現できる。
Further, in the radiant cooling apparatus according to the present invention, when the dew point temperature rises, the refrigerant circulating in the first refrigeration cycle and the refrigerant circulating in the second refrigeration cycle are indirectly connected by the second refrigerant-refrigerant heat exchanger. Since the heat exchange is made possible, by switching the four-way valve according to the dew point temperature, the temperature of the radiant heat exchanger can be raised and maintained above the dew point temperature, which has the advantage of preventing dew condensation. Have.
Therefore, not only the radiant cooling device and the forced draft cooling device can be organically coupled, but also the radiant cooling device can be stably started even at the start of operation, and there is no fear of dew condensation even when the humidity suddenly rises.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明にかかる輻射冷房装置の一実施例を示す
空調回路図である。
FIG. 1 is an air conditioning circuit diagram showing an embodiment of a radiation cooling device according to the present invention.

【符号の説明】[Explanation of symbols]

1 圧縮機 2 四方弁 3 室外熱交換器 4 第1絞り装置 5 室内熱交換器 6 第2絞り装置 7 第1冷媒対冷媒熱交換器 8 第1冷凍サイクル 9 第2冷媒対冷媒熱交換器 10 冷媒ポンプ 11 貯液器 12 輻射熱交換器 13 第2冷凍サイクル 14 輻射熱交換器表面温度計測手段 15 露点温度計測手段 16 制御装置 DESCRIPTION OF SYMBOLS 1 Compressor 2 Four-way valve 3 Outdoor heat exchanger 4 1st expansion device 5 Indoor heat exchanger 6 2nd expansion device 7 1st refrigerant-refrigerant heat exchanger 8 1st refrigeration cycle 9 2nd refrigerant-refrigerant heat exchanger 10 Refrigerant pump 11 Reservoir 12 Radiant heat exchanger 13 Second refrigeration cycle 14 Radiant heat exchanger Surface temperature measuring means 15 Dew point temperature measuring means 16 Control device

───────────────────────────────────────────────────── フロントページの続き (72)発明者 吉田 雄二 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yuji Yoshida 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも、圧縮機、室外熱交換器、第
1絞り装置、室内熱交換器を順に接続し、第2絞り装置
及び第1冷媒対冷媒熱交換器を直列に接続したものを、
前記第1絞り装置及び前記室内熱交換器の直列接続部分
に対し、並列に接続してなる第1冷凍サイクルと、 少なくとも、冷媒ポンプ、輻射熱交換器、前記第1冷媒
対冷媒熱交換器、貯液器を順に接続し、前記第1冷媒対
冷媒熱交換器を前記貯液器よりも高く配置し、前記貯液
器を前記冷媒ポンプよりも高く配置してなる第2冷凍サ
イクルとを備え、 前記第1冷凍サイクル内を循環する冷媒と前記第2冷凍
サイクルを循環する冷媒とを前記第1冷媒対冷媒熱交換
器で間接的に熱交換可能としてなることを特徴とする輻
射冷房装置。
1. At least a compressor, an outdoor heat exchanger, a first expansion device, an indoor heat exchanger are connected in this order, and a second expansion device and a first refrigerant-refrigerant heat exchanger are connected in series,
A first refrigeration cycle in which the first expansion device and the indoor heat exchanger are connected in parallel with each other, and at least a refrigerant pump, a radiant heat exchanger, the first refrigerant-to-refrigerant heat exchanger, a storage And a second refrigeration cycle in which the first refrigerant-refrigerant heat exchanger is arranged higher than the reservoir and the reservoir is arranged higher than the refrigerant pump. A radiant cooling apparatus, wherein the refrigerant circulating in the first refrigeration cycle and the refrigerant circulating in the second refrigeration cycle can be indirectly heat-exchanged by the first refrigerant-refrigerant heat exchanger.
【請求項2】 圧縮機を起動して前記第1冷凍サイクル
を運転させた後、前記冷媒ポンプを起動して前記第2冷
凍サイクルを運転させることを特徴とする請求項1記載
の輻射冷房装置。
2. The radiant cooling apparatus according to claim 1, wherein after the compressor is activated to operate the first refrigeration cycle, the refrigerant pump is activated to operate the second refrigeration cycle. .
【請求項3】 輻射熱交換器の表面温度を計測する計測
手段を設け、前記輻射熱交換器の近傍に露点温度を計測
する露点温度計測手段を設け、前記第2冷凍サイクルの
前記冷媒ポンプの出口に第2冷媒対冷媒熱交換器を接続
し、前記第1冷凍サイクルの前記圧縮機と前記室外熱交
換器との間に、四方弁及び前記第2冷媒対冷媒熱交換器
を接続し、前記露点温度計測手段の出力に応じて、前記
四方弁を切り換えることによって前記第1冷凍サイクル
内を循環する冷媒と前記第2冷凍サイクルを循環する冷
媒を前記第2冷媒対冷媒熱交換器で間接的に熱交換させ
ることを特徴とする請求項1記載の輻射冷房装置。
3. A measuring means for measuring the surface temperature of the radiant heat exchanger, and a dew point temperature measuring means for measuring the dew point temperature in the vicinity of the radiant heat exchanger are provided at the outlet of the refrigerant pump of the second refrigeration cycle. A second refrigerant-to-refrigerant heat exchanger is connected, a four-way valve and the second refrigerant-to-refrigerant heat exchanger are connected between the compressor and the outdoor heat exchanger of the first refrigeration cycle, and the dew point is The refrigerant circulating in the first refrigeration cycle and the refrigerant circulating in the second refrigeration cycle are indirectly transferred to the second refrigerant-refrigerant heat exchanger by switching the four-way valve in accordance with the output of the temperature measuring means. The radiant cooling apparatus according to claim 1, wherein heat is exchanged.
JP9029093A 1993-04-16 1993-04-16 Radiation type cooling device Pending JPH06300318A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9029093A JPH06300318A (en) 1993-04-16 1993-04-16 Radiation type cooling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9029093A JPH06300318A (en) 1993-04-16 1993-04-16 Radiation type cooling device

Publications (1)

Publication Number Publication Date
JPH06300318A true JPH06300318A (en) 1994-10-28

Family

ID=13994406

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9029093A Pending JPH06300318A (en) 1993-04-16 1993-04-16 Radiation type cooling device

Country Status (1)

Country Link
JP (1) JPH06300318A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100389272B1 (en) * 2001-03-17 2003-06-27 진금수 Heat pump type air conditioning apparatus
CN103791574A (en) * 2014-01-24 2014-05-14 叶立英 Device and method for heat medium exchanger changeover

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100389272B1 (en) * 2001-03-17 2003-06-27 진금수 Heat pump type air conditioning apparatus
CN103791574A (en) * 2014-01-24 2014-05-14 叶立英 Device and method for heat medium exchanger changeover
CN103791574B (en) * 2014-01-24 2016-02-24 叶立英 Make the device and method that caloic permutoid switches

Similar Documents

Publication Publication Date Title
JP2003075009A (en) Heat pump system
JPH08189713A (en) Binary refrigerating device
US7353664B2 (en) Heat pump and compressor discharge pressure controlling apparatus for the same
JP2018132269A (en) Heat pump system
JPH116665A (en) Heat-storing-type air-conditioner
JPH10339513A (en) Air conditioning system
CA2530567C (en) Multi-range cross defrosting heat pump system
KR100215283B1 (en) Cooling system with heat pump
JP2006220332A (en) Composite type air conditioner
JPH06300318A (en) Radiation type cooling device
JPS6220459B2 (en)
JP3781340B2 (en) Thermal storage refrigeration air conditioner
JP3289373B2 (en) Heat pump water heater
JPH06147558A (en) Radiation air conditioning device
KR102345053B1 (en) Air conditioner with integrated structure
JPH1194395A (en) Multi-room air conditioner
JP2000356428A (en) Heat storage air conditioner
KR100291107B1 (en) Low pressure refrigerant temperature riser of air conditioner
KR200405760Y1 (en) hEAT-EXCHANGING APPARATUS RAISING THE HEATING CAPACITY
JPH04263749A (en) Panel cooling and heating device
JPS5885047A (en) Ventilation control device for cold insulating type air conditioner
JPH03164668A (en) Heat pump device
JP2000179985A (en) Multifunction heat pump system
JPH05157384A (en) Radiation room cooler
KR100308759B1 (en) Heating air conditioner