JPH07190534A - Heat storage type air conditioning equipment - Google Patents

Heat storage type air conditioning equipment

Info

Publication number
JPH07190534A
JPH07190534A JP5348502A JP34850293A JPH07190534A JP H07190534 A JPH07190534 A JP H07190534A JP 5348502 A JP5348502 A JP 5348502A JP 34850293 A JP34850293 A JP 34850293A JP H07190534 A JPH07190534 A JP H07190534A
Authority
JP
Japan
Prior art keywords
control valve
heat exchanger
indoor
heat storage
electronic control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5348502A
Other languages
Japanese (ja)
Other versions
JP3377846B2 (en
Inventor
Takashi Doi
隆司 土井
Katsuaki Yamagishi
勝明 山岸
Koichi Yamaguchi
山口  広一
Eiji Kuwabara
永治 桑原
Yasuji Ogoshi
靖二 大越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Tohoku Electric Power Co Inc
Kansai Electric Power Co Inc
Kyushu Electric Power Co Inc
Chugoku Electric Power Co Inc
Chubu Electric Power Co Inc
Hokuriku Electric Power Co
Shikoku Electric Power Co Inc
Tokyo Electric Power Co Holdings Inc
Original Assignee
Toshiba Corp
Tohoku Electric Power Co Inc
Kansai Electric Power Co Inc
Tokyo Electric Power Co Inc
Kyushu Electric Power Co Inc
Chugoku Electric Power Co Inc
Chubu Electric Power Co Inc
Hokuriku Electric Power Co
Shikoku Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tohoku Electric Power Co Inc, Kansai Electric Power Co Inc, Tokyo Electric Power Co Inc, Kyushu Electric Power Co Inc, Chugoku Electric Power Co Inc, Chubu Electric Power Co Inc, Hokuriku Electric Power Co, Shikoku Electric Power Co Inc filed Critical Toshiba Corp
Priority to JP34850293A priority Critical patent/JP3377846B2/en
Publication of JPH07190534A publication Critical patent/JPH07190534A/en
Application granted granted Critical
Publication of JP3377846B2 publication Critical patent/JP3377846B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To enable simultaneous execution of a cold storage operation with an indoor cooling operation corresponding to each indoor requested capacity without causing the problem of gathering of a refrigerant due to a difference in an evaporation temperature and to reduce the quantity of power consumption by suppressing an input at the time of the cooling operation utilizing a cold storage. CONSTITUTION:An operation frequency of a compressor 25 is made prescribed and a gas-side electronic control valve 43 on the indoor heat exchanger 33 side is used for a capacity distribution control according to an indoor requested capacity, while a liquid-side electronic control valve 47 on the same side is used for an overheat control of an indoor heat exchanger 33. The opening of a gas-side electronic control valve 51 on the heat storage heat exchanger 39 side is made prescribed, while a liquid-side electronic control valve 55 on the same side is used for the overheat control of a heat storage heat exchanger 39, and a control time of the the liquid-side electronic control valve 47 and the one of the liquid-side electronic control valve 55 are made asynchronous.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、蓄熱材が貯溜される
蓄熱槽を備えた蓄熱式空気調和装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat storage type air conditioner having a heat storage tank in which a heat storage material is stored.

【0002】[0002]

【従来の技術】外気を熱源とし、蓄熱材に蓄冷(冷熱の
蓄熱)を行うとともに室内の冷房を同時に行う蓄冷冷房
運転が可能な蓄熱式空気調和装置としては、図9に示す
ような冷凍サイクル構成を備えたものがある(例えば特
開平3−28671号公報参照)。
2. Description of the Related Art As a heat storage type air conditioner capable of performing cold storage and cooling operation in which the outside air is used as a heat source, the heat storage material stores cold (storage of cold heat) and the room is cooled at the same time, a refrigeration cycle as shown in FIG. There is one having a configuration (for example, see Japanese Patent Laid-Open No. 3-28671).

【0003】この冷凍サイクルは、圧縮機1、四方弁
2、室外熱交換器3、室内熱交換器4、蓄熱槽5、電子
制御弁6,7,8,9,10,11などで構成されてい
る。蓄熱槽5内には、蓄熱材である水Wが満たされ、こ
の水W中には蓄熱熱交換器12が設けられている。前記
水Wを用いて夏期には冷水(氷)を蓄え、昼間の室内冷
房に利用している。
This refrigeration cycle comprises a compressor 1, a four-way valve 2, an outdoor heat exchanger 3, an indoor heat exchanger 4, a heat storage tank 5, electronic control valves 6, 7, 8, 9, 10, 11 and the like. ing. The heat storage tank 5 is filled with water W as a heat storage material, and the heat storage heat exchanger 12 is provided in the water W. Cold water (ice) is stored in the summer using the water W and is used for indoor cooling in the daytime.

【0004】上記したような蓄熱式空気調和装置におけ
る蓄冷冷房運転時での冷媒循環経路を図10に示す。圧
縮機1にて加圧・加熱された冷媒は室外熱交換器3で凝
縮した後、二方に分かれ、一方は電子制御弁10にて減
圧されて蓄熱熱交換器12で蒸発し、他方は電子制御弁
11にて減圧されて室内熱交換器4で蒸発し、ガスとな
る。ガスとなった冷媒は合流し、圧縮機1に吸込まれ
る。このような蓄冷冷房運転での蓄冷は、室内熱交換器
4にて室内冷房を行った残量分にて行う。
FIG. 10 shows a refrigerant circulation path during the cold storage / cooling operation in the heat storage type air conditioner as described above. The refrigerant pressurized and heated in the compressor 1 is condensed in the outdoor heat exchanger 3 and then divided into two, one is decompressed by the electronic control valve 10 and evaporated in the heat storage heat exchanger 12, and the other is The pressure is reduced by the electronic control valve 11 and evaporated in the indoor heat exchanger 4 to become gas. The gasified refrigerant merges and is sucked into the compressor 1. The cold storage in such a cool storage cooling operation is performed by the remaining amount of the indoor cooling performed by the indoor heat exchanger 4.

【0005】上記蓄冷冷房運転での制御方法を図11に
示す。これによれば、水Wへの蓄冷が進むと、蓄熱熱交
換器12の蒸発温度が低下するため、その蒸発温度低下
相当分の圧力を電子制御弁11を用いて下げることによ
り、室内熱交換器4の蒸発温度を蓄熱熱交換器12の蒸
発温度と同程度まで下げ、蓄冷運転と冷房運転とを同時
に行う制御としてある。
FIG. 11 shows a control method in the cold storage / cooling operation. According to this, as the cold storage in the water W progresses, the evaporation temperature of the heat storage heat exchanger 12 decreases. Therefore, the pressure corresponding to the decrease in the evaporation temperature is reduced by using the electronic control valve 11, so that the indoor heat exchange is performed. The control is performed such that the evaporation temperature of the cooler 4 is lowered to the same level as the evaporation temperature of the heat storage heat exchanger 12 and the cold storage operation and the cooling operation are performed at the same time.

【0006】これは、蓄冷冷房運転開始時には、水温が
高いため室内熱交換器4の蒸発温度と蓄熱熱交換器12
の蒸発温度とがほぼ等しいが、蓄冷が進むに従って蓄冷
熱交換器12の蒸発温度が低下するので、蒸発温度低下
相当分の室内熱交換器4の圧力を下げるため電子制御弁
11をある値(蒸発温度に対する最大開度)まで絞り、
室内熱交換器4の蒸発温度を下げることにより、全体の
蒸発温度を下げ、これによって蓄冷運転と冷房運転とを
同時に行えるようにしているのである。
This is because the water temperature is high at the start of the cold storage / cooling operation and the evaporation temperature of the indoor heat exchanger 4 and the heat storage heat exchanger 12
However, since the evaporation temperature of the cold storage heat exchanger 12 decreases as the cold storage progresses, the electronic control valve 11 is set to a certain value (in order to reduce the pressure of the indoor heat exchanger 4 corresponding to the decrease in the evaporation temperature). (Maximum opening for evaporation temperature)
By lowering the evaporation temperature of the indoor heat exchanger 4, the overall evaporation temperature is lowered, and thereby the cold storage operation and the cooling operation can be performed at the same time.

【0007】また、蓄冷運転での圧縮機1の運転周波数
(Hz)制御動作を図12に示す。これによれば、圧縮
機運転周波数は、蓄冷運転残り時間と現在の蓄冷量とに
よって決定されている。このため、蓄冷残り時間が少な
く蓄冷量が少ないと、高周波数で圧縮機1を運転するこ
とになる。
FIG. 12 shows the operation frequency (Hz) control operation of the compressor 1 in the cold storage operation. According to this, the compressor operating frequency is determined by the remaining cold storage operation time and the current amount of cold storage. Therefore, when the remaining cool storage time is short and the cool storage amount is small, the compressor 1 is operated at a high frequency.

【0008】以上のような蓄冷運転と冷房運転とを同時
に行う蓄冷冷房運転に対し、蓄熱材に蓄冷した熱量を室
内冷房に用いる蓄冷利用冷房運転が可能な蓄熱式空気調
和装置としては、図13に示すような冷凍サイクル構成
を備えたものがある(例えば特開平2−306064号
公報参照)。
In contrast to the cold storage cooling operation in which the cold storage operation and the cooling operation are performed at the same time as described above, a heat storage type air conditioner capable of performing the cool storage use cooling operation in which the amount of heat stored in the heat storage material is used for indoor cooling is shown in FIG. There is one having a refrigeration cycle configuration as shown in (see, for example, Japanese Patent Laid-Open No. 2-306064).

【0009】この冷凍サイクルは、圧縮機13、室外熱
交換器14、室内熱交換器15、蓄熱槽16、電子制御
弁17,18,19、二方弁20,21などで構成され
ている。蓄熱槽16内には、前記図9のものと同様に、
蓄熱材である水Wが満たされ、この水W中には蓄熱熱交
換器22が設けられ、前記水Wを用いて夏期には冷水
(氷)を蓄え、昼間の室内冷房に利用する。
This refrigeration cycle comprises a compressor 13, an outdoor heat exchanger 14, an indoor heat exchanger 15, a heat storage tank 16, electronic control valves 17, 18, 19, two-way valves 20, 21 and the like. In the heat storage tank 16, as in the case of FIG. 9,
Water W, which is a heat storage material, is filled, and a heat storage heat exchanger 22 is provided in the water W. The water W is used to store cold water (ice) in the summer and use it for indoor cooling in the daytime.

【0010】上記したような蓄熱式空気調和装置におけ
る蓄冷利用冷房運転時での冷媒循環経路を図14に示
す。圧縮機13にて加圧・加熱された冷媒は室外熱交換
器14で凝縮し、蓄熱熱交換器22にて過冷却される。
過冷却され液となった冷媒は、電子制御弁19にて減圧
され室内熱交換器15で蒸発して室内冷房を行った後、
圧縮機13に吸込まれる。
FIG. 14 shows a refrigerant circulation path during the cooling operation using the cold storage in the heat storage type air conditioner as described above. The refrigerant pressurized and heated by the compressor 13 is condensed by the outdoor heat exchanger 14 and is supercooled by the heat storage heat exchanger 22.
The supercooled liquid refrigerant is decompressed by the electronic control valve 19 and evaporated in the indoor heat exchanger 15 to perform indoor cooling,
It is sucked into the compressor 13.

【0011】このような蓄冷利用冷房運転時での制御動
作を図15に示す。これによれば、電子制御弁19に入
る冷媒温度Thoを検出し、この冷媒温度Thoが目標とす
る冷媒温度Tsoと同温度となるよう電子制御弁17,1
8を制御する。目標冷媒温度Tsoは、圧縮機13の冷媒
循環量・室内要求能力によって演算を行い決定する。こ
のような制御によって蓄冷利用率を調節することが可能
となる。このため、室内要求の冷房能力が大きい場合、
圧縮機運転周波数を高くし、冷媒循環量を増やし、蓄冷
利用率を上げて大きい冷房能力を出すことが可能とな
る。
FIG. 15 shows the control operation during the cooling operation using the cold storage. According to this, the refrigerant temperature Tho entering the electronic control valve 19 is detected, and the electronic control valves 17, 1 are controlled so that the refrigerant temperature Tho becomes the same temperature as the target refrigerant temperature Tso.
Control eight. The target refrigerant temperature Tso is calculated and determined by the refrigerant circulation amount of the compressor 13 and the indoor required capacity. By such control, the cool storage utilization rate can be adjusted. For this reason, when the cooling capacity of the indoor demand is large,
It is possible to increase the compressor operating frequency, increase the refrigerant circulation amount, increase the cool storage utilization rate, and obtain a large cooling capacity.

【0012】[0012]

【発明が解決しようとする課題】しかしながら、このよ
うな従来の蓄冷冷房運転及び蓄冷利用冷房運転での制御
方法では、以下のような問題が生じる。 (1)蓄冷冷房運転の電子制御弁制御により生じる問題 蓄冷が進み蓄熱熱交換器12の蒸発温度が下がると、電
子制御弁11を絞って室内熱交換器4の蒸発温度を下げ
るので、室内冷房能力が大きくなる。このため、このと
きの室内が要求する冷房能力が小さい場合には、無駄な
冷房運転を行ってしまう虞が生じる。
However, the following problems occur in the conventional control methods for the cold storage cooling operation and the cold storage utilizing cooling operation. (1) Problems caused by electronically controlled valve control of cold storage / cooling operation When cold storage progresses and the evaporation temperature of the heat storage heat exchanger 12 decreases, the electronic control valve 11 is throttled to lower the evaporation temperature of the indoor heat exchanger 4, so that indoor cooling is performed. Ability becomes large. For this reason, if the cooling capacity required by the room at this time is small, there is a risk of performing unnecessary cooling operation.

【0013】また、室内要求能力が低く蓄熱熱交換器1
2の蒸発温度が低い場合には、さらに電子制御弁11を
絞ってしまうため、室内熱交換器4内に冷媒が流れにく
くなり、蓄熱熱交換器12に冷媒が溜まってしまう虞が
ある。 (2)蓄冷冷房運転の圧縮機運転周波数制御により生じ
る問題 圧縮機運転周波数が高い場合には、室内冷房を行いつつ
冷媒残量分にて蓄熱槽5に蓄冷を行うことができるが、
圧縮機運転周波数が低くなった場合には、室内冷房を行
った際での冷媒残量がなくなり、蓄冷を行えない虞があ
る。
Further, the indoor required capacity is low and the heat storage heat exchanger 1
When the evaporation temperature of 2 is low, the electronic control valve 11 is further throttled, so that it becomes difficult for the refrigerant to flow into the indoor heat exchanger 4, and the refrigerant may accumulate in the heat storage heat exchanger 12. (2) Problem caused by control of compressor operating frequency in cold storage / cooling operation When the compressor operating frequency is high, it is possible to store cold in the heat storage tank 5 by the residual refrigerant amount while performing indoor cooling.
When the compressor operating frequency becomes low, there is a possibility that the remaining amount of the refrigerant will be exhausted when the indoor cooling is performed and the cold storage cannot be performed.

【0014】また、蓄冷が進み蓄熱熱交換器12に氷が
付着し、圧縮機運転周波数が低くなったときには、蓄熱
熱交換器12及び室内熱交換器4で蒸発する冷媒循環量
が減ってしまう。このため、電子制御弁11を絞り室内
熱交換器4の蒸発温度を下げようとしても、蓄熱熱交換
器12の蒸発温度相当分の圧力に達しない。この結果、
蓄熱熱交換器12に冷媒が溜まってしまい、室内冷房が
できなくなる問題が生じる。蓄熱熱交換器12に冷媒が
溜まって室内熱交換器4に冷媒が流れなくなると、室内
熱交換器4の蒸発温度が上昇してしまい、これに伴い電
子制御弁11を絞り込んでしまうため、室内熱交換器4
に冷媒がさらに流れなくなる。 (3)蓄冷利用冷房運転の圧縮機運転周波数制御により
生じる問題 室内要求に従う能力を出すため、要求能力が高い場合に
は、圧縮機周波数を上げることになり、蓄冷熱量を用い
る比率も大きくなり、能力がさらに向上する。このため
室内要求能力以上の能力が出るだけでなく、電力消費量
も増加し、夜間電力を利用して蓄冷することによる電力
のピークカット効果が低減する。
Further, when the cold storage progresses and ice adheres to the heat storage heat exchanger 12 and the compressor operating frequency becomes low, the refrigerant circulation amount evaporated in the heat storage heat exchanger 12 and the indoor heat exchanger 4 decreases. . Therefore, even if the electronic control valve 11 is squeezed to reduce the evaporation temperature of the indoor heat exchanger 4, the pressure equivalent to the evaporation temperature of the heat storage heat exchanger 12 is not reached. As a result,
The refrigerant accumulates in the heat storage heat exchanger 12, which causes a problem that indoor cooling cannot be performed. When the refrigerant accumulates in the heat storage heat exchanger 12 and the refrigerant does not flow into the indoor heat exchanger 4, the evaporation temperature of the indoor heat exchanger 4 rises, and accordingly the electronic control valve 11 is narrowed down. Heat exchanger 4
Refrigerant does not flow further. (3) Problems caused by compressor operating frequency control of cooling operation using cold storage In order to produce the ability to comply with indoor demand, if the required capacity is high, the compressor frequency will be increased, and the ratio of the amount of stored cold heat will also increase, Ability is further improved. For this reason, not only the capacity higher than the indoor required capacity is obtained, but also the power consumption is increased and the peak cut effect of the power due to the cold storage by using the night power is reduced.

【0015】そこで、この発明は、蓄冷運転と各室内要
求能力に応じた室内冷房運転が、蒸発温度の差による冷
媒溜まりの問題を生じることなく同時に行え、また蓄冷
利用冷房運転時において、運転時の入力を抑えて消費電
力量を低下させることを目的としている。
Therefore, according to the present invention, the cold storage operation and the indoor cooling operation according to the required indoor capacity can be simultaneously performed without causing the problem of refrigerant pooling due to the difference in the evaporation temperature. The purpose is to reduce the power consumption by suppressing the input of.

【0016】[0016]

【課題を解決するための手段】前記目的を達成するため
に、この発明は、圧縮機、室外熱交換器、室内熱交換器
などを備えた冷媒回路に、蓄熱槽内に設けた蓄熱熱交換
器を前記室内熱交換器と並列に接続し、前記室内熱交換
器のガス側冷媒流路及び液側冷媒流路に第1制御弁及び
第2制御弁をそれぞれ設けるとともに、前記蓄熱熱交換
器のガス側冷媒流路及び液側冷媒流路に第3制御弁及び
第4制御弁をそれぞれ設け、前記圧縮機を周波数一定の
運転制御とし、前記第1制御弁を室内要求能力による能
力分配制御に用いるとともに、前記第2制御弁を室内熱
交換器の過熱度制御に用い、前記第3制御弁を一定開度
にし、前記第4制御弁を蓄熱熱交換器の過熱度制御に用
い、前記第2制御弁と第4制御弁との制御時間を非同期
とした構成としてある。
In order to achieve the above object, the present invention relates to a heat storage heat exchange provided in a heat storage tank in a refrigerant circuit provided with a compressor, an outdoor heat exchanger, an indoor heat exchanger and the like. A heat exchanger connected in parallel with the indoor heat exchanger, and a first control valve and a second control valve are respectively provided in the gas-side refrigerant passage and the liquid-side refrigerant passage of the indoor heat exchanger, and the heat storage heat exchanger A third control valve and a fourth control valve are respectively provided in the gas side refrigerant flow path and the liquid side refrigerant flow path, the compressor is set to a constant frequency operation control, and the first control valve is set to a capacity distribution control based on indoor required capacity. And the second control valve is used for superheat control of the indoor heat exchanger, the third control valve is set to a constant opening, and the fourth control valve is used for superheat control of the heat storage heat exchanger. As a configuration in which the control times of the second control valve and the fourth control valve are asynchronous That.

【0017】[0017]

【作用】このような構成の蓄熱式空気調和装置によれ
ば、蓄冷運転と各室内要求能力に応じた室内冷房運転
が、蓄熱熱交換器と室内熱交換器との蒸発温度の差によ
る冷媒溜まりの問題を生じることなく、同時に行える。
また、蓄冷利用冷房運転時において、運転時の入力が抑
えられ消費電力量が低下したものとなる。
According to the heat storage type air conditioner having such a configuration, the cold storage operation and the indoor cooling operation according to the indoor required capacity are performed by the refrigerant accumulation due to the difference in the evaporation temperature between the heat storage heat exchanger and the indoor heat exchanger. It can be done at the same time without the problem of.
Further, during the cooling operation using cold storage, the input during the operation is suppressed and the power consumption is reduced.

【0018】[0018]

【実施例】以下、この発明の実施例を図面に基づき説明
する。
Embodiments of the present invention will be described below with reference to the drawings.

【0019】図1は、この発明の一実施例を示す蓄熱式
空気調和装置における冷凍サイクル構成図である。この
冷凍サイクルは、圧縮機25、冷媒の流れ方向が実線の
状態と破線の状態とに切り替わる四方弁27,29、冷
房時に凝縮器となり暖房時に蒸発器となる室外熱交換器
31、冷房時に蒸発器となり暖房時に凝縮器となる室内
熱交換器33及び、蓄熱槽35を備えている。
FIG. 1 is a configuration diagram of a refrigeration cycle in a heat storage type air conditioner showing an embodiment of the present invention. This refrigeration cycle includes a compressor 25, four-way valves 27 and 29 for switching the flow direction of the refrigerant between a solid line state and a broken line state, an outdoor heat exchanger 31 serving as a condenser during cooling and an evaporator during heating, and evaporation during cooling. It is provided with an indoor heat exchanger 33 that serves as a container and a condenser during heating, and a heat storage tank 35.

【0020】蓄熱槽35内には水などの蓄熱材37が満
たされ、この蓄熱材37中には蓄熱材37と熱交換を行
う蓄熱熱交換器39が設けられている。蓄熱熱交換器3
9と室内熱交換器33は並列に接続されている。
The heat storage tank 35 is filled with a heat storage material 37 such as water, and a heat storage heat exchanger 39 for exchanging heat with the heat storage material 37 is provided in the heat storage material 37. Heat storage heat exchanger 3
9 and the indoor heat exchanger 33 are connected in parallel.

【0021】室内熱交換器33のガス側冷媒流路41に
は第1制御弁としてのガス側電子制御弁43が、同液側
冷媒流路45には第2制御弁としての液側電子制御弁4
7がそれぞれ設けられている。一方、蓄熱熱交換器39
のガス側冷媒流路49には第3制御弁としてのガス側電
子制御弁51が、同液側冷媒流路53には第4制御弁と
しての液側電子制御弁55がそれぞれ設けられている。
また、室内熱交換器33と液側電子制御弁47との間の
液側冷媒流路45と、蓄熱熱交換器39と液側電子制御
弁55との間の液側冷媒流路53とは短絡冷媒流路57
で接続され、この短絡冷媒流路57には液側電子制御弁
59が設けられている。さらに、室外熱交換器31の液
側冷媒流路61には二方弁63が設けられ、圧縮機25
の吸込み側と四方弁27との間の流路には逆止弁65が
設けられている。
The gas side refrigerant passage 41 of the indoor heat exchanger 33 is provided with a gas side electronic control valve 43 as a first control valve, and the liquid side refrigerant passage 45 is provided with a liquid side electronic control as a second control valve. Valve 4
7 are provided respectively. On the other hand, the heat storage heat exchanger 39
The gas side refrigerant passage 49 is provided with a gas side electronic control valve 51 as a third control valve, and the liquid side refrigerant passage 53 is provided with a liquid side electronic control valve 55 as a fourth control valve. .
Further, the liquid-side refrigerant flow passage 45 between the indoor heat exchanger 33 and the liquid-side electronic control valve 47 and the liquid-side refrigerant flow passage 53 between the heat storage heat exchanger 39 and the liquid-side electronic control valve 55 are Short-circuit refrigerant flow path 57
A liquid side electronic control valve 59 is provided in the short-circuit refrigerant flow path 57. Further, a two-way valve 63 is provided in the liquid side refrigerant flow path 61 of the outdoor heat exchanger 31, and the compressor 25
A check valve 65 is provided in the flow path between the suction side of the valve and the four-way valve 27.

【0022】室内熱交換器33の両側のガス側冷媒流路
41と液側冷媒流路45とは、室内熱交換器33をバイ
パスして冷媒の飽和温度を検出するためのキャピラリ冷
媒流路67が接続されている。室内熱交換器33に接続
される液側冷媒流路45には、液側電子制御弁47の冷
媒音を小さくするためにキャピラリ69が設けられ、ま
たガス側冷媒流路41,49及び液側冷媒流路45,5
3にはストレーナ71及びパックドバルブ73が設けら
れ、圧縮機25の吸込み側にはアキュムレータ74が設
けられている。
The gas side refrigerant passage 41 and the liquid side refrigerant passage 45 on both sides of the indoor heat exchanger 33 bypass the indoor heat exchanger 33 and detect the saturation temperature of the refrigerant. Are connected. The liquid-side refrigerant flow passage 45 connected to the indoor heat exchanger 33 is provided with a capillary 69 for reducing the refrigerant noise of the liquid-side electronic control valve 47, and the gas-side refrigerant flow passages 41, 49 and the liquid side. Refrigerant flow paths 45, 5
3, a strainer 71 and a packed valve 73 are provided, and an accumulator 74 is provided on the suction side of the compressor 25.

【0023】圧縮機25の吐出側及び吸込み側には、吐
出ガス温度Td 及び吸込みガス温度Tsuをそれぞれ検出
する温度センサ75及び77が、キャピラリ冷媒流路6
7には室内熱交換器33での飽和温度Tx を検出する温
度センサ79が、室内熱交換器33のガス側冷媒流路4
1には室内熱交換器33のガス温度Tx1を検出する温度
センサ81が、室内熱交換器33にはその中間温度Tc
を検出する温度センサ83が、蓄熱熱交換器39の液側
冷媒流路53及びガス側冷媒流路49には液温度TB1及
びガス温度TB2をそれぞれ検出する温度センサ85及び
87が、室外熱交換器31の液側冷媒流路61には室外
熱交換器31の液温度Te を検出する温度センサ89
が、室外熱交換器31には外気温度To を検出する温度
センサ91が、それぞれ設けられている。また、蓄熱槽
35内には、蓄熱材37の温度を検出する温度センサ9
3が設けられている。これらを用い、各種運転における
電子制御弁及び圧縮機25などに対する制御を行い、蓄
冷運転、蓄冷冷房運転、蓄冷利用冷房運転、通常冷房運
転、蓄熱運転、蓄熱暖房運転、蓄熱利用暖房運転、通常
暖房運転を行う。
On the discharge side and the suction side of the compressor 25, temperature sensors 75 and 77 for detecting the discharge gas temperature Td and the suction gas temperature Tsu, respectively, are provided.
7, a temperature sensor 79 for detecting the saturation temperature Tx in the indoor heat exchanger 33 is provided in the gas-side refrigerant flow path 4 of the indoor heat exchanger 33.
1, a temperature sensor 81 for detecting the gas temperature Tx1 of the indoor heat exchanger 33, and an intermediate temperature Tc for the indoor heat exchanger 33.
The temperature sensor 83 for detecting the temperature of the heat storage heat exchanger 39, the temperature sensor 85 and 87 for detecting the liquid temperature TB1 and the gas temperature TB2 in the gas side refrigerant flow passage 49 of the heat storage heat exchanger 39, respectively, the outdoor heat exchange. A temperature sensor 89 for detecting the liquid temperature Te of the outdoor heat exchanger 31 is provided in the liquid-side refrigerant flow path 61 of the device 31.
However, each of the outdoor heat exchangers 31 is provided with a temperature sensor 91 for detecting the outside air temperature To. Further, in the heat storage tank 35, a temperature sensor 9 for detecting the temperature of the heat storage material 37.
3 is provided. Using these, the electronic control valve and the compressor 25 in various operations are controlled, and the cold storage operation, the cold storage cooling operation, the cold storage cooling operation, the normal cooling operation, the heat storage operation, the heat storage heating operation, the heat storage heating operation, the normal heating Drive.

【0024】図2は、蓄冷冷房運転での冷媒循環経路を
示している。夜間電力を利用して蓄冷を行う際に必要な
運転モードであり、夜間電力時間帯でも冷房運転を可能
とし、特に熱帯夜に有効である。圧縮機25を出た冷媒
は、四方弁27を通り室外熱交換器31に達して凝縮し
液冷媒となり、その後二方に分かれ、一方は液側電子制
御弁55で絞られて膨張し、蓄熱熱交換器39で蒸発し
てガス冷媒となり、四方弁29を通って圧縮機25に戻
ってくる。他方は液側電子制御弁47で絞られて膨張
し、室内熱交換器33で蒸発してガス冷媒となり、四方
弁27を通って圧縮機25に戻ってくる。これにより、
蓄冷と室内冷房とを同時に行う。
FIG. 2 shows a refrigerant circulation path in the cold storage / cooling operation. This is an operation mode required when cold storage is performed by using nighttime electric power, which enables cooling operation even during nighttime electric power hours, and is particularly effective for tropical nights. The refrigerant discharged from the compressor 25 passes through the four-way valve 27, reaches the outdoor heat exchanger 31, and is condensed into a liquid refrigerant, and then divided into two, one of which is throttled and expanded by the liquid side electronic control valve 55 to store heat. It evaporates in the heat exchanger 39 to become a gas refrigerant, and returns to the compressor 25 through the four-way valve 29. The other is throttled and expanded by the liquid side electronic control valve 47, evaporated in the indoor heat exchanger 33 to become a gas refrigerant, and returns to the compressor 25 through the four-way valve 27. This allows
Cooling and indoor cooling are performed simultaneously.

【0025】このときの各電子制御弁の制御を図3及び
図4に示す。ここで、圧縮機25の運転周波数は、高周
波数の一定となるよう制御される。まず、図3に示すよ
うに、室内要求能力が入力され(ステップ301)、こ
の要求能力に応じて電子制御弁制御が行われ(ステップ
303)、室内要求が停止するまで運転周波数一定で行
う(ステップ305)。
The control of each electronic control valve at this time is shown in FIGS. 3 and 4. Here, the operating frequency of the compressor 25 is controlled to be constant at a high frequency. First, as shown in FIG. 3, the indoor required capacity is input (step 301), the electronic control valve control is performed according to the required capacity (step 303), and the operation frequency is kept constant until the indoor request is stopped (step 303). Step 305).

【0026】図4は、電子制御弁に対する制御動作を示
している。すなわち、蓄熱熱交換器39のガス側電子制
御弁51は一定開度にし、短絡冷媒流路57に設けた液
側電子制御弁59は全閉とする(ステップ401)。室
内熱交換器33のガス側電子制御弁43は室内要求能力
による能力分配制御に用い、同液側電子制御弁47は室
内熱交換器33の過熱度制御に用いる(ステップ40
3)。この過熱度制御では、室内熱交換器33のガス温
度Tx1と室内熱交換器33での飽和温度Tx との差Tx1
−Tx =5℃となるようにする。
FIG. 4 shows the control operation for the electronic control valve. That is, the gas side electronic control valve 51 of the heat storage heat exchanger 39 is kept at a constant opening, and the liquid side electronic control valve 59 provided in the short-circuit refrigerant flow path 57 is fully closed (step 401). The gas side electronic control valve 43 of the indoor heat exchanger 33 is used for capacity distribution control according to the required indoor capacity, and the liquid side electronic control valve 47 is used for superheat control of the indoor heat exchanger 33 (step 40).
3). In this superheat control, the difference Tx1 between the gas temperature Tx1 of the indoor heat exchanger 33 and the saturation temperature Tx of the indoor heat exchanger 33.
-Tx = 5 ° C.

【0027】その後、所定時間S(30秒程度)が経過
したら(ステップ405)、蓄熱熱交換器39の液側電
子制御弁55を蓄熱熱交換器39の過熱度制御に用いる
(ステップ407)。つまり、室内熱交換器33側の液
側電子制御弁47及び、蓄熱熱交換器39側の液側電子
制御弁55は、互いに制御時間が非同期となっている。
蓄熱熱交換器39の過熱度制御では、蓄熱熱交換器39
の両側における液温度TB1とガス温度TB2との差TB2−
TB1=5℃となるようにする。そして、この過熱度制御
後、所定時間Sが経過したら電子制御弁の制御が終了す
る。
After that, when the predetermined time S (about 30 seconds) has elapsed (step 405), the liquid side electronic control valve 55 of the heat storage heat exchanger 39 is used for controlling the degree of superheat of the heat storage heat exchanger 39 (step 407). That is, the liquid side electronic control valve 47 on the indoor heat exchanger 33 side and the liquid side electronic control valve 55 on the heat storage heat exchanger 39 side have control times asynchronous with each other.
In the superheat control of the heat storage heat exchanger 39, the heat storage heat exchanger 39
Difference between liquid temperature TB1 and gas temperature TB2 on both sides of
Set TB1 = 5 ° C. Then, after the superheat control, the control of the electronic control valve ends when a predetermined time S has elapsed.

【0028】蓄冷冷房運転開始時では、室内熱交換器3
3の蒸発温度Teiは約10℃であり、蓄熱熱交換器39
の蒸発温度Tetは水温よりも約7℃低いので、これら両
者の差はΔTe =|Tei−Tet|で表される。蓄冷を行
うに従って水温が低下し、蓄熱熱交換器39の蒸発温度
Tetも低下する。また、室内熱交換器33の蒸発温度T
eiは室内温度の変化が少ないのでほとんど一定である。
よって蓄熱熱交換器39の蒸発温度Tetは室内熱交換器
33の蒸発温度Teiよりも低くなる。このため、冷媒流
量が少なくなった場合には、熱交換器の入口と出口との
圧力差が少なくなり、温度の低い蓄熱熱交換器39に冷
媒が溜まりやすくなるが、圧縮機25の運転を高周波数
の一定にすることで、蓄熱熱交換器39に冷媒が溜まる
ことなく両熱交換器39,33に冷媒を流し、熱交換器
の入口と出口との圧力差をつけ、蓄冷運転とともに、室
内冷房運転をも行えることになる。
At the start of the cold storage / cooling operation, the indoor heat exchanger 3
The evaporation temperature Tei of No. 3 is about 10 ° C., and the heat storage heat exchanger 39
Since the evaporation temperature Tet of is about 7 ° C. lower than the water temperature, the difference between them is represented by ΔTe = | Tei−Tet |. As the cold storage is performed, the water temperature decreases, and the evaporation temperature Tet of the heat storage heat exchanger 39 also decreases. Further, the evaporation temperature T of the indoor heat exchanger 33
ei is almost constant because the indoor temperature does not change much.
Therefore, the evaporation temperature Tet of the heat storage heat exchanger 39 becomes lower than the evaporation temperature Tei of the indoor heat exchanger 33. Therefore, when the refrigerant flow rate decreases, the pressure difference between the inlet and the outlet of the heat exchanger decreases, and the refrigerant easily accumulates in the heat storage heat exchanger 39 having a low temperature. By making the high frequency constant, the refrigerant flows through both heat exchangers 39 and 33 without the refrigerant accumulating in the heat storage heat exchanger 39, a pressure difference between the inlet and the outlet of the heat exchanger is given, and with the cold storage operation, The indoor cooling operation can also be performed.

【0029】また、蓄冷が進み、製氷を行うようになる
と、蓄熱熱交換器39の蒸発温度Tetは、−4℃まで低
下しΔTe =14℃となって、蒸発温度が室内熱交換器
33と蓄熱熱交換器39とで大きく異なり、蓄熱熱交換
器39内に冷媒が溜まりやすくなるが、蓄熱熱交換器3
9側のガス側電子制御弁51を一定開度に絞り、室内要
求運転能力による能力分配は室内熱交換器33側のガス
側電子制御弁43により行うことで、蓄熱熱交換器39
内に冷媒が溜まることなく、蓄冷運転と室内冷房運転と
が同時に行える。
Further, when the cold storage progresses and the ice making is started, the evaporation temperature Tet of the heat storage heat exchanger 39 decreases to -4 ° C. and ΔTe = 14 ° C., so that the evaporation temperature becomes the indoor heat exchanger 33. The heat storage heat exchanger 39 is significantly different from the heat storage heat exchanger 39, and the refrigerant easily accumulates in the heat storage heat exchanger 39.
The gas side electronic control valve 51 on the 9 side is throttled to a constant opening degree, and the capacity distribution according to the indoor required operating capacity is performed by the gas side electronic control valve 43 on the indoor heat exchanger 33 side, whereby the heat storage heat exchanger 39
The cold storage operation and the indoor cooling operation can be performed at the same time without the refrigerant being accumulated therein.

【0030】また、室内熱交換器33の過熱度制御を行
う場合、液側電子制御弁47を絞ると、室内熱交換器3
3の蒸発圧力が高くなり、冷媒が流れにくくなる。この
ため冷媒の余剰分が蓄熱熱交換器39に流れ、蓄熱熱交
換器39は蒸発温度が低く圧力も低いので、特に液側電
子制御弁55が開く方向にあると、冷媒は溜まりやすい
が、室内熱交換器33の液側電子制御弁47により過熱
度制御を行い、その制御により変化した温度を用いて、
蓄熱熱交換器39の過熱度制御を行っているので、蒸発
温度の低い蓄熱熱交換器39に冷媒が溜まることなく、
室内側及び蓄熱槽側双方の過熱度制御が可能となる。
When controlling the superheat degree of the indoor heat exchanger 33, if the liquid side electronic control valve 47 is throttled, the indoor heat exchanger 3
The evaporation pressure of 3 becomes high, and it becomes difficult for the refrigerant to flow. Therefore, the surplus refrigerant flows into the heat storage heat exchanger 39, and the heat storage heat exchanger 39 has a low evaporation temperature and a low pressure. Therefore, especially when the liquid side electronic control valve 55 is in the opening direction, the refrigerant easily accumulates, The superheat degree control is performed by the liquid side electronic control valve 47 of the indoor heat exchanger 33, and the temperature changed by the control is used,
Since the superheat control of the heat storage heat exchanger 39 is performed, the refrigerant does not accumulate in the heat storage heat exchanger 39 having a low evaporation temperature,
It is possible to control the degree of superheat on both the indoor side and the heat storage tank side.

【0031】次に、前記図1の冷凍サイクル構成にて蓄
冷利用冷房運転を行ったときの冷媒循環経路を図5に示
す。圧縮機25で圧縮・加熱された冷媒は、四方弁29
を通り蓄熱熱交換器39で凝縮して冷媒液となり、電子
制御弁59で絞られて(減圧されて)膨張し、室内熱交
換器33で蒸発してガス冷媒となり、四方弁27を通っ
て圧縮機25に戻ってくる。これにより、蓄熱槽5内に
蓄冷された冷熱を利用した室内冷房がを行われる。
Next, FIG. 5 shows a refrigerant circulation path when the cooling operation using cold storage is performed in the refrigeration cycle configuration of FIG. The refrigerant compressed / heated by the compressor 25 is a four-way valve 29.
Through the heat storage heat exchanger 39 to become a refrigerant liquid, which is throttled (decompressed) by the electronic control valve 59 to expand, and evaporated at the indoor heat exchanger 33 to become a gas refrigerant, and passes through the four-way valve 27. Return to the compressor 25. As a result, indoor cooling is performed using the cold heat stored in the heat storage tank 5.

【0032】このときの圧縮機25の運転周波数制御を
図6に示す。圧縮機25は室内要求能力の周波数X1
[Hz]で運転し(ステップ601)、その後この運転
周波数X1 とあらかじめ設定した上限値X[Hz]とを
比較し(ステップ603)、運転周波数X1 が上限値X
を下回っている場合には、そのまま室内要求能力に応じ
た運転周波数X1 で運転し(ステップ605)、運転周
波数X1 が上限値X以上の場合には、運転周波数を上限
値Xとして(ステップ607)、室内要求が停止するま
で運転を継続する(ステップ609)。
The operation frequency control of the compressor 25 at this time is shown in FIG. The compressor 25 has a frequency X1 of the indoor required capacity.
It operates at [Hz] (step 601) and then compares this operating frequency X1 with a preset upper limit value X [Hz] (step 603).
If the operating frequency X1 is lower than the upper limit X, the operating frequency X1 is operated at the operating frequency X1 according to the indoor required capacity as it is (step 605). The operation is continued until the indoor request is stopped (step 609).

【0033】上記運転周波数の上限値X[Hz]の決定
は、次のようにして行う。
The upper limit value X [Hz] of the operating frequency is determined as follows.

【0034】図7は、蓄冷利用冷房運転時での圧縮機2
5の運転周波数Hzと、入力(一点鎖線図示)・能力
(実線図示)の関係を示している。運転時での入力は、
一点鎖線で示すように、運転周波数が上昇するに従って
上昇する。また入力の上昇率も、運転周波数が上昇する
に従って高まる。一方、実線で示す能力も運転周波数が
上昇するに従って上昇するが、能力上昇率は、運転周波
数が上昇するに従って低下する。ここで、この能力上昇
率の低下が大きくなる時点での運転周波数をX[Hz]
とする。
FIG. 7 shows the compressor 2 during the cooling operation using the cold storage.
5 shows the relationship between the operating frequency Hz of 5 and the input (shown by a chain line) / capacity (shown by a solid line). The input during driving is
As indicated by the alternate long and short dash line, it increases as the operating frequency increases. Further, the rate of increase of the input also increases as the operating frequency increases. On the other hand, the capacity indicated by the solid line also increases as the operating frequency increases, but the capacity increase rate decreases as the operating frequency increases. Here, the operation frequency at the time when the decrease in the capacity increase rate becomes large is X [Hz]
And

【0035】図8は、運転周波数Hzと運転効率(CO
P)との関係を示している。COPは、低Hzから高H
zになるに従い徐々に低下している。そして、低Hz運
転から上記X[Hz]までのCOPの変化率と、X[H
z]から高Hz運転までのCOPの変化率とを比較する
と、X[Hz]までの低Hz運転の方が、X[Hz]を
越える高Hz運転よりもCOPの低下が少ない。
FIG. 8 shows operating frequency Hz and operating efficiency (CO
P) is shown. COP is from low Hz to high H
It gradually decreases as it becomes z. Then, the rate of change of COP from low Hz operation to the above X [Hz] and X [H
Comparing the change rate of COP from z] to high Hz operation, the low Hz operation up to X [Hz] shows less decrease in COP than the high Hz operation exceeding X [Hz].

【0036】以上により、上記X[Hz]を前述した運
転周波数の上限値Xとすることで、入力を極力抑えた上
で能力を大きく保ち、しかもCOPも高レベルに維持し
て運転を行うことが可能となる。この結果、蓄冷槽5内
に夜間電力を利用して蓄冷した冷熱を利用することによ
る冷房運転を、より少ない消費電力で行うことが可能と
なり、電力の平準化・ピークカット効果がより一層発揮
されることになる。
As described above, by setting the above-mentioned X [Hz] to the above-mentioned upper limit value X of the operating frequency, it is possible to suppress the input as much as possible and to keep the capacity large, and to keep the COP at a high level during the operation. Is possible. As a result, it becomes possible to perform the cooling operation by using the cold heat stored in the cold storage tank 5 by using the nighttime power with less power consumption, and the power leveling / peak cut effect is further exerted. Will be.

【0037】なお、前記図2〜図4における蓄冷冷房運
転で示した制御機能は、上記実施例の構成に限らず、二
つ以上の熱交換器の過熱度制御にも適用できる。
The control function shown in the cold storage / cooling operation in FIGS. 2 to 4 is applicable not only to the configuration of the above embodiment but also to superheat control of two or more heat exchangers.

【0038】[0038]

【発明の効果】以上説明してきたように、この発明によ
れば、蓄熱槽内に冷熱を蓄熱する蓄冷運転と、室内要求
能力に応じた室内冷房とを同時に行う蓄冷冷房運転が、
蓄熱槽内の蓄熱熱交換器と室内熱交換器との蒸発温度の
差による冷媒溜まりの問題を生じることなく行うことが
できる。
As described above, according to the present invention, the cold storage cooling operation for storing cold heat in the heat storage tank and the indoor cold storage operation for simultaneously performing indoor cooling according to the indoor required capacity are performed.
This can be performed without causing the problem of refrigerant pooling due to the difference in evaporation temperature between the heat storage heat exchanger in the heat storage tank and the indoor heat exchanger.

【0039】また、蓄熱した冷熱を利用して冷房運転を
行う蓄冷利用冷房運転においては、圧縮機の運転周波数
の上限値を設定し、上限値以上の室内要求冷房能力があ
る場合には上限値での運転を行い、上限値を下回る室内
要求冷房能力の場合にはその要求能力の圧縮機周波数に
従うようにしたので、運転時の入力を抑えて消費電力量
を低下させることができる。
Further, in the cooling operation using cooling storage in which the stored cooling heat is used to perform the cooling operation, the upper limit value of the operating frequency of the compressor is set, and when the indoor required cooling capacity is equal to or higher than the upper limit value, the upper limit value is set. When the indoor required cooling capacity is less than the upper limit value, the compressor frequency of the required capacity is followed, so that the input during operation can be suppressed and the power consumption can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の一実施例を示す蓄熱式空気調和装置
における冷凍サイクル構成図である。
FIG. 1 is a configuration diagram of a refrigeration cycle in a heat storage type air conditioner showing an embodiment of the present invention.

【図2】図1の冷凍サイクル構成を備えた蓄熱式空気調
和装置にて蓄冷冷房運転を行った場合の冷媒循環経路図
である。
FIG. 2 is a refrigerant circulation path diagram when a cold storage / cooling operation is performed in the heat storage type air conditioner having the refrigeration cycle configuration of FIG.

【図3】蓄冷冷房運転を行った際の制御動作全体を示す
フローチャートである。
FIG. 3 is a flowchart showing the overall control operation when a cold storage / cooling operation is performed.

【図4】蓄冷冷房運転行った際の電子制御弁の制御動作
を示すフローチャートである。
FIG. 4 is a flowchart showing a control operation of an electronic control valve when a cold storage / cooling operation is performed.

【図5】図1の冷凍サイクル構成を備えた蓄熱式空気調
和装置にて蓄冷利用冷房運転を行った場合の冷媒循環経
路図である。
FIG. 5 is a refrigerant circulation path diagram in the case of performing a cool storage utilizing cooling operation in the heat storage type air conditioner having the refrigeration cycle configuration of FIG. 1.

【図6】蓄冷利用冷房運転行った際の圧縮機運転周波数
の制御動作を示すフローチャートである。
FIG. 6 is a flowchart showing a control operation of a compressor operating frequency when a cooling operation using cold storage is performed.

【図7】蓄冷利用冷房運転における運転周波数と入力及
び能力との相関図である。
FIG. 7 is a correlation diagram of the operating frequency and the input and capacity in the cooling operation using the cold storage.

【図8】蓄冷利用冷房運転における運転周波数とCOP
との相関図である。
FIG. 8: Operating frequency and COP in cooling operation using cold storage
It is a correlation diagram with.

【図9】従来例を示す蓄冷冷房運転を行う蓄熱式空気調
和装置の冷凍サイクル構成図である。
[Fig. 9] Fig. 9 is a refrigeration cycle configuration diagram of a heat storage type air conditioner performing a cold storage cooling operation as a conventional example.

【図10】図9の冷凍サイクル構成を備えた蓄熱式空気
調和装置にて蓄冷冷房運転を行った場合の冷媒循環経路
図である。
FIG. 10 is a refrigerant circulation path diagram in the case of performing a cool storage / cooling operation in the heat storage type air conditioner having the refrigeration cycle configuration of FIG. 9.

【図11】図9の蓄熱式空気調和装置にて蓄冷冷房運転
を行った際の電子制御弁の制御動作を示すフローチャー
トである。
FIG. 11 is a flowchart showing a control operation of the electronic control valve when a cool storage / cooling operation is performed in the heat storage type air conditioner of FIG. 9.

【図12】図9の蓄熱式空気調和装置にて蓄冷冷房運転
を行った際の圧縮機運転周波数の制御動作を示すフロー
チャートである。
FIG. 12 is a flowchart showing a control operation of a compressor operating frequency when a cold storage / cooling operation is performed in the heat storage type air conditioner of FIG. 9.

【図13】従来例を示す蓄冷利用冷房運転を行う蓄熱式
空気調和装置の冷凍サイクル構成図である。
FIG. 13 is a refrigeration cycle configuration diagram of a heat storage type air conditioner that performs a cooling operation using cooling storage as a conventional example.

【図14】図13の冷凍サイクル構成を備えた蓄熱式空
気調和装置にて蓄冷利用冷房運転を行った場合の冷媒循
環経路図である。
FIG. 14 is a refrigerant circulation path diagram in the case of performing a cooling storage utilizing cooling operation in the heat storage type air conditioner having the refrigeration cycle configuration of FIG. 13.

【図15】図13の蓄熱式空気調和装置にて蓄冷利用冷
房運転を行った際の圧縮機運転周波数及び電子制御弁の
制御動作を示すフローチャートである。
FIG. 15 is a flowchart showing a compressor operating frequency and a control operation of an electronic control valve when a cooling storage utilizing cooling operation is performed in the heat storage type air conditioner of FIG. 13.

【符号の説明】[Explanation of symbols]

25 圧縮機 31 室外熱交換器 33 室内熱交換器 41,49 ガス側冷媒流路 43 ガス側電子制御弁(第1制御弁) 45,53 液側冷媒流路 47 液側電子制御弁(第2制御弁) 51 ガス側電子制御弁(第3制御弁) 55 液側電子制御弁(第4制御弁) 25 compressor 31 outdoor heat exchanger 33 indoor heat exchanger 41,49 gas-side refrigerant flow passage 43 gas-side electronic control valve (first control valve) 45,53 liquid-side refrigerant flow passage 47 liquid-side electronic control valve (second) Control valve) 51 Gas side electronic control valve (third control valve) 55 Liquid side electronic control valve (fourth control valve)

───────────────────────────────────────────────────── フロントページの続き (71)出願人 000156938 関西電力株式会社 大阪府大阪市北区中之島3丁目3番22号 (71)出願人 000211307 中国電力株式会社 広島県広島市中区小町4番33号 (71)出願人 000180368 四国電力株式会社 香川県高松市丸の内2番5号 (71)出願人 000164438 九州電力株式会社 福岡県福岡市中央区渡辺通2丁目1番82号 (71)出願人 000003078 株式会社東芝 神奈川県川崎市幸区堀川町72番地 (72)発明者 土井 隆司 神奈川県横浜市磯子区新杉田町8番地 株 式会社東芝住空間システム技術研究所内 (72)発明者 山岸 勝明 神奈川県横浜市磯子区新杉田町8番地 株 式会社東芝住空間システム技術研究所内 (72)発明者 山口 広一 神奈川県横浜市磯子区新杉田町8番地 株 式会社東芝住空間システム技術研究所内 (72)発明者 桑原 永治 静岡県富士市蓼原336 株式会社東芝富士 工場内 (72)発明者 大越 靖二 静岡県富士市蓼原336 株式会社東芝富士 工場内 ─────────────────────────────────────────────────── ─── Continuation of the front page (71) Applicant 000156938 Kansai Electric Power Co., Inc. 3-3-22 Nakanoshima, Kita-ku, Osaka-shi, Osaka (71) Applicant 000211307 Chugoku Electric Power Co., Inc. 4-33 Komachi, Naka-ku, Hiroshima-shi, Hiroshima No. (71) Applicant 000180368 Shikoku Electric Power Co., Inc. Marunouchi No. 2-5, Takamatsu City, Kagawa Prefecture (71) Applicant 000164438 Kyushu Electric Power Co., Inc. 2-82 Watanabe-dori, Chuo-ku, Fukuoka City, Fukuoka Prefecture (71) Applicant 000003078 TOSHIBA CORPORATION 72 Horikawa-cho, Saiwai-ku, Kawasaki-shi, Kanagawa Prefecture (72) Inventor Takashi Doi 8 Shinsita-cho, Isogo-ku, Yokohama-shi, Kanagawa Prefecture Incorporated, Toshiba Living Space Systems Research Institute (72) Inventor Katsuaki Yamagishi Yokohama, Kanagawa 8 Shinsita-cho, Isogo-ku, Yokohama, Ltd. Incorporated company Toshiba Living Space Systems Engineering Laboratory (72) Inventor Hirokazu Yamaguchi Iso, Yokohama, Kanagawa Shin-Sugita-cho, Ward 8 Incorporated company Toshiba Living Space Systems Research Institute (72) Inventor Eiji Kuwabara 336 Tatehara, Fuji City, Shizuoka Prefecture 336 Toshiba Corporation Fuji Factory (72) Yasuji Ogoshi, 336 Tatehara Fuji City, Shizuoka Prefecture 336 Toshiba Corporation Inside the Fuji factory

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 圧縮機、室外熱交換器、室内熱交換器な
どを備えた冷媒回路に、蓄熱槽内に設けた蓄熱熱交換器
を前記室内熱交換器と並列に接続し、前記室内熱交換器
のガス側冷媒流路及び液側冷媒流路に第1制御弁及び第
2制御弁をそれぞれ設けるとともに、前記蓄熱熱交換器
のガス側冷媒流路及び液側冷媒流路に第3制御弁及び第
4制御弁をそれぞれ設け、前記圧縮機を周波数一定の運
転制御とし、前記第1制御弁を室内要求能力による能力
分配制御に用いるとともに、前記第2制御弁を室内熱交
換器の過熱度制御に用い、前記第3制御弁を一定開度に
し、前記第4制御弁を蓄熱熱交換器の過熱度制御に用
い、前記第2制御弁と第4制御弁との制御時間を非同期
としたことを特徴とする蓄熱式空気調和装置。
1. A heat storage heat exchanger provided in a heat storage tank is connected in parallel with the indoor heat exchanger to a refrigerant circuit equipped with a compressor, an outdoor heat exchanger, an indoor heat exchanger, etc. A first control valve and a second control valve are provided in the gas-side refrigerant passage and the liquid-side refrigerant passage of the exchanger, respectively, and a third control is performed in the gas-side refrigerant passage and the liquid-side refrigerant passage of the heat storage heat exchanger. Valve and a fourth control valve are provided respectively, the compressor is operated for constant frequency operation, the first control valve is used for capacity distribution control according to indoor required capacity, and the second control valve is used for overheating of the indoor heat exchanger. Temperature control, the third control valve is set to a constant opening degree, the fourth control valve is used for superheat degree control of the heat storage heat exchanger, and the control times of the second control valve and the fourth control valve are asynchronous. A heat storage type air conditioner characterized by the above.
【請求項2】 第3制御弁を一定開度とした状態で第1
制御弁により室内要求能力による能力分配制御を行うと
ともに、第2制御弁により室内熱交換器の過熱度制御を
行い、所定時間経過後に第4制御弁により蓄熱熱交換器
の過熱度制御を行うことを特徴とする請求項1記載の蓄
熱式空気調和装置
2. The first control valve with the third control valve at a constant opening
The control valve performs capacity distribution control according to the required indoor capacity, the second control valve controls the superheat degree of the indoor heat exchanger, and after a lapse of a predetermined time, the fourth control valve controls the superheat degree of the heat storage heat exchanger. The heat storage type air conditioner according to claim 1.
【請求項3】 蓄熱槽内の冷熱を利用する蓄冷利用冷房
運転時での圧縮機運転周波数について上限値を設定し、
この上限値以上の室内要求冷房能力がある場合には上限
値での運転を行う一方、上限値を下回る室内要求冷房能
力がある場合にはその要求能力の圧縮機周波数に従う制
御機能を備えたことを特徴とする蓄熱式空気調和装置。
3. An upper limit value is set for a compressor operating frequency during a cooling operation using cold storage using cold heat in a heat storage tank,
If there is an indoor required cooling capacity above this upper limit value, operation is performed at the upper limit value, while if there is an indoor required cooling capacity below the upper limit value, a control function that follows the compressor frequency of the required capacity is provided. Heat storage type air conditioner characterized by.
JP34850293A 1993-12-27 1993-12-27 Thermal storage type air conditioner Expired - Lifetime JP3377846B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34850293A JP3377846B2 (en) 1993-12-27 1993-12-27 Thermal storage type air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34850293A JP3377846B2 (en) 1993-12-27 1993-12-27 Thermal storage type air conditioner

Publications (2)

Publication Number Publication Date
JPH07190534A true JPH07190534A (en) 1995-07-28
JP3377846B2 JP3377846B2 (en) 2003-02-17

Family

ID=18397448

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34850293A Expired - Lifetime JP3377846B2 (en) 1993-12-27 1993-12-27 Thermal storage type air conditioner

Country Status (1)

Country Link
JP (1) JP3377846B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003028520A (en) * 2001-07-19 2003-01-29 Hitachi Ltd Regenerative refrigerating plant
JP2011158219A (en) * 2010-02-03 2011-08-18 Yamatake Corp Air conditioning control method and device
JP2016509196A (en) * 2013-03-06 2016-03-24 大韓民国農村振興庁Republic Of Korea(Management Rural Development Administration) Outside air temperature sensitive air conditioner
WO2016103584A1 (en) * 2014-12-26 2016-06-30 ダイキン工業株式会社 Heat-storage-type air conditioner
JP2017141981A (en) * 2016-02-08 2017-08-17 ダイキン工業株式会社 Storage type air conditioner
EP3839365A4 (en) * 2018-09-28 2022-03-02 Daikin Industries, Ltd. Air-conditioning system
WO2024024659A1 (en) * 2022-07-28 2024-02-01 株式会社富士通ゼネラル Air conditioner

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109812932B (en) * 2019-01-23 2020-11-13 奥克斯空调股份有限公司 Temperature rise control method and device for power module of variable frequency air conditioner

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003028520A (en) * 2001-07-19 2003-01-29 Hitachi Ltd Regenerative refrigerating plant
JP2011158219A (en) * 2010-02-03 2011-08-18 Yamatake Corp Air conditioning control method and device
JP2016509196A (en) * 2013-03-06 2016-03-24 大韓民国農村振興庁Republic Of Korea(Management Rural Development Administration) Outside air temperature sensitive air conditioner
WO2016103584A1 (en) * 2014-12-26 2016-06-30 ダイキン工業株式会社 Heat-storage-type air conditioner
JP2016125805A (en) * 2014-12-26 2016-07-11 ダイキン工業株式会社 Heat storage type air conditioner
CN107110544A (en) * 2014-12-26 2017-08-29 大金工业株式会社 Heat storage type air conditioner
EP3220071A4 (en) * 2014-12-26 2018-06-06 Daikin Industries, Ltd. Thermal storage air conditioner
US10718540B2 (en) 2014-12-26 2020-07-21 Daikin Industries, Ltd. Thermal storage air conditioner
JP2017141981A (en) * 2016-02-08 2017-08-17 ダイキン工業株式会社 Storage type air conditioner
EP3839365A4 (en) * 2018-09-28 2022-03-02 Daikin Industries, Ltd. Air-conditioning system
WO2024024659A1 (en) * 2022-07-28 2024-02-01 株式会社富士通ゼネラル Air conditioner

Also Published As

Publication number Publication date
JP3377846B2 (en) 2003-02-17

Similar Documents

Publication Publication Date Title
US5228308A (en) Refrigeration system and refrigerant flow control apparatus therefor
EP2587193B1 (en) Air conditioner
JP3932955B2 (en) Air conditioner
EP1933102A1 (en) Air conditioner refrigerant circuit
US6807817B2 (en) Method for operating compressors of air conditioner
JP3377846B2 (en) Thermal storage type air conditioner
JP3334601B2 (en) Air conditioner with natural circulation
JP3724239B2 (en) Cooling system
JP3567168B2 (en) Thermal storage heat pump air conditioner for cold regions
JP4650086B2 (en) Thermal storage heat recovery device
JPH06257868A (en) Heat pump type ice heat accumulating device for air conditioning
JP3416897B2 (en) Air conditioner
JP2962311B1 (en) Binary refrigeration equipment
JPH02157568A (en) Refrigerant residence suppressing device for air conditioning device
JP4104519B2 (en) Refrigeration system
KR20200034474A (en) chiller
JPH0328673A (en) Thermal accumulating type air conditioner
JPH09210505A (en) Heat pump system
JPH07190533A (en) Heat storage type air conditioning equipment
KR20160073619A (en) control method of an air conditioner
JP2001033076A (en) Heat storage air conditioner
JP2022056003A (en) Refrigerant cycle device
JP2022051016A (en) Air conditioner
JPH0765814B2 (en) Heat pump type refrigeration cycle device
JP3197107B2 (en) Thermal storage type air conditioner

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071206

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081206

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081206

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081206

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081206

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091206

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101206

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111206

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111206

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121206

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131206

Year of fee payment: 11

EXPY Cancellation because of completion of term