JPH0432307B2 - - Google Patents

Info

Publication number
JPH0432307B2
JPH0432307B2 JP59106741A JP10674184A JPH0432307B2 JP H0432307 B2 JPH0432307 B2 JP H0432307B2 JP 59106741 A JP59106741 A JP 59106741A JP 10674184 A JP10674184 A JP 10674184A JP H0432307 B2 JPH0432307 B2 JP H0432307B2
Authority
JP
Japan
Prior art keywords
hot water
air conditioning
contact
temperature
water supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59106741A
Other languages
Japanese (ja)
Other versions
JPS60248964A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP10674184A priority Critical patent/JPS60248964A/en
Publication of JPS60248964A publication Critical patent/JPS60248964A/en
Publication of JPH0432307B2 publication Critical patent/JPH0432307B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)
  • Sorption Type Refrigeration Machines (AREA)
  • Other Air-Conditioning Systems (AREA)

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明はヒートポンプ式給湯機に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a heat pump water heater.

〔従来技術〕[Prior art]

従来の空気熱源ヒートポンプ式給湯機の例を第
1図に示す。図において1は給湯用圧縮機、2は
給湯用凝縮器、3は膨張機構、4は送風機5を備
えた蒸発器であり、これらを順次冷媒配管で連結
してヒートポンプ回路を構成している。そして、
実線矢印は冷媒の流れを示す。
An example of a conventional air source heat pump water heater is shown in Fig. 1. In the figure, 1 is a compressor for hot water supply, 2 is a condenser for hot water supply, 3 is an expansion mechanism, and 4 is an evaporator equipped with an air blower 5. These are successively connected by refrigerant piping to form a heat pump circuit. and,
Solid arrows indicate the flow of refrigerant.

6は貯湯タンク、7は貯湯タンク6下部にもう
けた給水口で、市水配管8と減圧逆止弁9を介し
て貯湯タンク6に接続されている。10は貯湯タ
ンク6上部にもうけた給湯口で、給湯配管11を
介して給湯栓12に接続している。
6 is a hot water storage tank, and 7 is a water supply port provided at the bottom of the hot water storage tank 6, which is connected to the hot water storage tank 6 via a city water pipe 8 and a pressure reducing check valve 9. A hot water supply port 10 is provided at the top of the hot water storage tank 6, and is connected to a hot water tap 12 via a hot water supply pipe 11.

13は貯湯タンク6下部にもうけた循環水取出
口、14は貯湯タンク6上部にもうけた循環水返
し口、15は循環ポンプであり、そして給湯用凝
縮器2と水管で接続している。16は貯湯タンク
6下部に取付けられたヒータである。
13 is a circulating water outlet provided at the bottom of the hot water storage tank 6, 14 is a circulating water return port provided at the top of the hot water storage tank 6, and 15 is a circulation pump, which is connected to the hot water supply condenser 2 through a water pipe. 16 is a heater attached to the lower part of the hot water storage tank 6.

つぎに、上記第1図に示した各構成機器の運転
制御回路の一例を第2図に示す。図において、1
8は給湯運転スイツチ、19は貯湯タンク6内の
水温を検出するサーモスタツト、20はヒートポ
ンプ運転から、ヒータ運転へ切換えるサーモスタ
ツト、21はヒータ16に相当するヒータ回路、
22は給湯用圧縮機1に相当する給湯用圧縮機モ
ータ回路、23は送風機5に相当する送風機モー
タ回路、24は循環ポンプ15に相当するポンプ
モータ回路である。
Next, FIG. 2 shows an example of an operation control circuit for each component shown in FIG. 1 above. In the figure, 1
8 is a hot water supply operation switch; 19 is a thermostat that detects the water temperature in the hot water storage tank 6; 20 is a thermostat that switches from heat pump operation to heater operation; 21 is a heater circuit corresponding to heater 16;
22 is a hot water supply compressor motor circuit corresponding to the hot water supply compressor 1; 23 is a blower motor circuit corresponding to the blower 5; and 24 is a pump motor circuit corresponding to the circulation pump 15.

次に、動作について説明する。まず、給湯運転
スイツチ18を閉接し、サーモスタツト19が閉
成し、サーモスタツト20が第2図に示すように
b接点側に接点接続していると、すなわち、貯湯
タンク6の水温が所定値以下の場合、給湯用圧縮
機モータ回路22、送風機モータ回路23、及び
ポンプモータ回路24が作動しヒートポンプ運転
を行なう。これにより、給湯用圧縮機1から吐出
された高温高圧冷媒ガス(フロン12)は給湯用
凝縮器2において、貯湯タンク6下部から循環ポ
ンプ15によつて送られる給湯水と熱交換し、給
湯水を加熱し、自らは凝縮液化し、膨張機構3で
減圧され蒸発器4にて、空気より採熱し、蒸発
し、給湯用圧縮機1にもどる冷凍サイクルを形成
する。一方、給湯水側は市水配管8、減圧逆止弁
9を通り給水口7より給水される。また貯湯タン
ク6を満している給湯水は、循環水取出口13よ
り循環ポンプ15によつて給湯用凝縮器2に送ら
れ、加熱され循環水返し口14をへて貯湯タンク
6にもどり循環される。このようにして貯湯タン
ク6内の給湯水は順次循環加熱され昇温されてい
く。この時貯湯タンク6内は給湯水の循環により
均一な温度分布になつている。こうして昇温を続
け貯湯タンク6内の給湯水が所定温度以上になる
と、サーモスタツト20の接点はb接点側よりa
接点側に切換わり、給湯用圧縮機モータ回路2
2、送風機モータ回路23、及びポンプモータ回
路24は停止する。同時にヒータ回路21が作動
し、ヒータ16に通電される。貯湯タンク6内の
給湯水が所定の温度となると、サーモスタツト1
9は開成し、ヒータ回路21が停止する。
Next, the operation will be explained. First, when the hot water supply operation switch 18 is closed, the thermostat 19 is closed, and the thermostat 20 is connected to the B contact side as shown in FIG. In the following cases, the hot water supply compressor motor circuit 22, the blower motor circuit 23, and the pump motor circuit 24 operate to perform heat pump operation. As a result, the high-temperature, high-pressure refrigerant gas (Freon 12) discharged from the hot water supply compressor 1 exchanges heat with the hot water supplied by the circulation pump 15 from the lower part of the hot water storage tank 6 in the hot water condenser 2, and the hot water is heated, condenses and liquefies itself, is depressurized by the expansion mechanism 3, takes heat from the air in the evaporator 4, evaporates, and returns to the hot water supply compressor 1, forming a refrigeration cycle. On the other hand, the hot water side is supplied from a water supply port 7 through a city water pipe 8 and a pressure reducing check valve 9. The hot water filling the hot water storage tank 6 is sent from the circulating water outlet 13 to the hot water supply condenser 2 by the circulating pump 15, heated, and returned to the hot water storage tank 6 through the circulating water return port 14 for circulation. be done. In this way, the hot water in the hot water storage tank 6 is successively circulated and heated to raise its temperature. At this time, the inside of the hot water storage tank 6 has a uniform temperature distribution due to the circulation of hot water. When the temperature continues to rise and the hot water in the hot water storage tank 6 reaches a predetermined temperature or higher, the contacts of the thermostat 20 are switched from the B contact side to the A contact side.
Switched to the contact side, hot water supply compressor motor circuit 2
2. The blower motor circuit 23 and the pump motor circuit 24 are stopped. At the same time, the heater circuit 21 is activated and the heater 16 is energized. When the hot water in the hot water storage tank 6 reaches a predetermined temperature, the thermostat 1
9 is opened and the heater circuit 21 is stopped.

以上のように従来の空気熱源ヒートポンプ式給
湯機は構成されていた。従つて、外気温度が低い
冬期(例えは0℃以下)では、空気からの採熱量
が少ない為、蒸発圧力が低くなり、給湯能力が小
さかった。また、高温給湯水を得ようとすれば凝
縮圧力が上昇し、給湯用圧縮機1の圧縮比(=凝
縮圧力/蒸発圧力)が8以上となり、かつ、給湯
用圧縮機1の吐出冷媒ガス温が上昇し(例えば
130℃以上)給湯用圧縮機1の信頼性及び寿命に
大きな影響を与える為、圧縮機1の運転を停止さ
せ、その代替として、補助熱源(例えば電気ヒー
タ)によつて昇温する等の手段がとられていた。
しかし、これは機器の効率(成績係数)を悪くし
ていた。また、空気熱源ヒートポンプ式である
為、夏期外気温が高い場合、給湯能力が大きく、
冬期外気温が低い場合には給湯能力が小さくな
る。これは、給湯負荷とは全く逆の傾向であり、
負荷は外気温が高い夏期には小さく、外気温の低
い冬期には大きくなる。従つて、機器の特性と負
荷とのバランスがとれず、機種選定においては、
かなり大きな容量の機器が必要であつた。
The conventional air source heat pump type water heater is configured as described above. Therefore, in winter when the outside temperature is low (for example, below 0° C.), the amount of heat extracted from the air is small, so the evaporation pressure is low and the hot water supply capacity is low. In addition, when trying to obtain high-temperature hot water, the condensing pressure increases, the compression ratio (=condensing pressure/evaporation pressure) of the hot water supply compressor 1 becomes 8 or more, and the temperature of the refrigerant gas discharged from the hot water supply compressor 1 increases. increases (e.g.
(130°C or higher) This has a significant impact on the reliability and lifespan of the hot water supply compressor 1, so measures such as stopping the operation of the compressor 1 and raising the temperature using an auxiliary heat source (for example, an electric heater) as an alternative. was taken.
However, this worsened the efficiency (coefficient of performance) of the equipment. In addition, since it is an air source heat pump type, when the outside temperature is high in summer, the hot water supply capacity is large.
When the outside temperature is low in winter, the hot water supply capacity is reduced. This is a completely opposite trend to the hot water supply load.
The load is small in the summer when the outside temperature is high, and becomes large in the winter when the outside temperature is low. Therefore, the characteristics of the equipment and the load cannot be balanced, and when selecting a model,
Equipment with a fairly large capacity was required.

〔発明の概要〕[Summary of the invention]

この発明は、上記欠点を改善する目的でなされ
たもので空気熱源ヒートポンプチラーの水側熱交
換器及び水熱源ヒートポンプ給湯機の蒸発器を熱
的に接触させるように構成したものであり、かつ
補助熱源装置(例えば電気ヒータ)なしで、効率
良く、高温出湯を可能とし、あわせて、冷暖房を
も可能としたヒートポンプ式冷暖房給湯機を提供
するものである。
This invention was made for the purpose of improving the above-mentioned drawbacks, and is configured so that the water-side heat exchanger of an air-source heat pump chiller and the evaporator of a water-source heat pump water heater are brought into thermal contact with each other. To provide a heat pump type air-conditioning/heating water heater that can efficiently produce hot water at a high temperature without a heat source device (for example, an electric heater), and can also perform air-conditioning/heating.

〔発明の実施例〕[Embodiments of the invention]

通常、単段の冷凍サイクルでは、凝縮温度と蒸
発温度の差が大きくなると、特に給湯水温度が高
くなると冷凍サイクルの成績係数(C・O・P)
は悪くなる。これは圧縮機の圧縮比が大きくな
り、体積効率が低下するためである。
Normally, in a single-stage refrigeration cycle, when the difference between the condensing temperature and the evaporation temperature increases, especially when the hot water temperature increases, the coefficient of performance (C・O・P) of the refrigeration cycle increases.
becomes worse. This is because the compression ratio of the compressor increases and the volumetric efficiency decreases.

例えば、給湯水温度67℃;外気0℃の場合につ
いて、単段圧縮の空気熱源ヒートポンプテラーの
場合と、二元冷凍即ち低段側に空気熱源ヒートポ
ンプチラー、高段側に水熱源ヒートポンプ給湯機
を設け、低段側の凝縮熱を高段側の採熱量とした
場合の圧縮機の体積効率を比較してみる。第3図
にレシプロ圧縮機の圧縮比と体積効率との関係、
及び、それぞれの方式の運転特性を表わすモリエ
ル線図を示す。単段方式の場合(冷媒フロン22
使用)、高圧32Kg/cm2abs低圧4Kg/cm2abs圧縮比
8となり、体積効率は42%である。二元冷凍方式
の場合、低段側(冷媒R−22使用)、高圧14Kg/
cm2abs低圧4Kg/cm2abs圧縮比3.5となり、体積効
率72%、高段側(冷媒フロン12使用)、高圧20
Kg/cm2abs低圧6.6Kg/cm2abs圧縮比3となり、体
積効率は75%である。これらの体積効率をもと
に、それぞれのモリエル線図上からみた理論加熱 C,O,Pは、単段方式では1,4、二元冷凍
方式では2を越え、二元冷凍方式の方が効率が良
い。
For example, for the case where the hot water temperature is 67℃ and the outside temperature is 0℃, there is a case where a single-stage compression air source heat pump teller is used, and a dual refrigeration, that is, an air source heat pump chiller on the lower stage and a water source heat pump water heater on the higher stage. Let's compare the volumetric efficiency of the compressor when the heat of condensation on the low stage side is taken as the amount of heat collected on the high stage side. Figure 3 shows the relationship between the compression ratio and volumetric efficiency of a reciprocating compressor.
A Mollier diagram showing the operating characteristics of each method is also shown. In case of single stage system (refrigerant Freon 22
(use), high pressure 32Kg/cm 2 abs low pressure 4Kg/cm 2 abs The compression ratio is 8, and the volumetric efficiency is 42%. In the case of dual refrigeration system, low stage side (using refrigerant R-22), high pressure 14Kg/
cm 2 abs low pressure 4Kg/cm 2 abs compression ratio 3.5, volumetric efficiency 72%, high stage side (using refrigerant Freon 12), high pressure 20
Kg/cm 2 abs low pressure is 6.6 Kg/cm 2 abs compression ratio is 3, and volumetric efficiency is 75%. Based on these volumetric efficiencies, the theoretical heating values C, O, and P seen from the respective Mollier diagrams exceed 1.4 for the single-stage system and 2 for the binary refrigeration system, and the binary refrigeration system is better. Good efficiency.

本発明によるヒートポンプ式冷暖房給湯機の一
実施例を第4図に示す。図において1は給湯用圧
縮機、2は給湯用凝縮器、3は膨張機構、25は
空調用冷凍サイクルと水回路を共用して空調用の
冷温水をつくる水側熱交換器、26はアキユムレ
ータこれらを順次冷媒配管で連結して水熱源ヒー
トポンプ回路を構成している。27は給湯用圧縮
機1に取付けたクランクケースヒータ、28はア
キユムレータ26に取付けたクランクケースヒー
タである。そして実線矢印は冷媒の流れを示す。
6は貯湯タンク6下部にもうけた給水口で、市水
配管8と減圧逆止弁9を介して貯湯タンク6に接
続されている。10は貯湯タンク6上部にもうけ
た給湯口で、給湯配管を11を介して給湯栓12
に接続している。
An embodiment of the heat pump type air-conditioning/heating water heater according to the present invention is shown in FIG. In the figure, 1 is a compressor for hot water supply, 2 is a condenser for hot water supply, 3 is an expansion mechanism, 25 is a water side heat exchanger that shares the water circuit with the refrigeration cycle for air conditioning to create hot and cold water for air conditioning, and 26 is an accumulator. These are sequentially connected via refrigerant piping to form a water heat source heat pump circuit. 27 is a crankcase heater attached to the hot water supply compressor 1, and 28 is a crankcase heater attached to the accumulator 26. And solid arrows indicate the flow of refrigerant.
Reference numeral 6 denotes a water supply port provided at the bottom of the hot water storage tank 6, which is connected to the hot water storage tank 6 via a city water pipe 8 and a pressure reducing check valve 9. 10 is a hot water supply port provided at the top of the hot water storage tank 6, and the hot water supply pipe is connected to the hot water tap 12 through 11.
is connected to.

13は貯湯タンク6下部にもうけた循環水取出
口、14は貯湯タンク6上部にもうけた循環水返
し口、15は循環ポンプであり、そして、給湯用
凝縮器2で水管で接続している。
13 is a circulating water outlet provided at the bottom of the hot water storage tank 6, 14 is a circulating water return port provided at the top of the hot water storage tank 6, 15 is a circulation pump, and these are connected to the hot water supply condenser 2 by a water pipe.

29は空調用圧縮機、30は四方弁、31は膨
張機構、32は送風機33を備えた空気側熱交換
器、これらと上記水側熱交換器を順次冷媒配管で
連結して空気熱源ヒートポンプ回路を構成してい
る。そして実線矢印は暖房時、破線矢印は冷房時
の冷媒の流れを示す。
29 is an air conditioning compressor, 30 is a four-way valve, 31 is an expansion mechanism, 32 is an air side heat exchanger equipped with a blower 33, and these and the water side heat exchanger are successively connected by refrigerant piping to form an air source heat pump circuit. It consists of The solid arrows indicate the flow of refrigerant during heating, and the dashed arrows indicate the flow of refrigerant during cooling.

34は空調用循環ポンプ、35は三方弁36を
備えた放熱器、これらと水側熱交換器25を順次
水配管で連結して、空調用水回路を構成してい
る。そして白抜き矢印は冷温水の流れを示す。
34 is an air conditioning circulation pump, 35 is a radiator equipped with a three-way valve 36, and these and the water side heat exchanger 25 are successively connected by water piping to form an air conditioning water circuit. The white arrows indicate the flow of cold and hot water.

次に上記第4図に示した各構成機器の運転制御
回路の一実施例を第5図に示す。図において18
は給湯運転スイツチ、19は貯湯タンク6内に水
温を検出し、所定温度に達すると接点を開成する
サーモスタツト、22は給湯用圧縮機1に相当す
る給湯用圧縮機モータ回路、24は循環ポンプ1
5に相当するポンプモータ回路、37は装置の運
転時間を制御するタイマ、38はタイマ37の出
力接点、39は補助リレー、40a1,40a2は補
助リレー39の出力接点、41は暖房運転時に空
調用温水の温度を検出し、所定値以上で閉成し、
給湯用圧縮機モータ22を制御するサーモスタツ
ト、42は補助リレー、43は補助リレー42の
出力接点、44は外気温度を感知するサーモスタ
ツト、45は空調用水回路の水温を感知し、空調
用水回路の加熱運転を制御するサーモスタツト、
46はサーモスタツト45より設定値が高く、空
調用水回路の水温を感知し、空調用水回路の加熱
運転を制御するサーモスタツト、47は補助リレ
ー、48a1,48a2,49b1,49a2は補助リレ
ー47の出力接点、50は遅延タイマ、51は遅
延タイマ50の出力限時接点、52は空調運転ス
イツチ、53は補助リレー、54a1,54a2,5
5,56は補助リレー53の出力接点、57は補
助リレー、58は補助リレー57の出力接点、5
9は冷暖房切換スイツチ、60は補助リレー、6
1a1,61a2,63c1,63c2は補助リレー60
の出力接点、64はサーモスタツト45より設定
値の低い、かつ、空調用冷媒回路の冷媒温を検出
し、冷房運転時のみ作用する凍結防止サーモスタ
ツト、65は補助リレー、66は補助リレー65
の接点、67は空調用循環ポンプ34に相当する
ポンプモータ回路、68は空調用冷水温度を検出
し、冷房運転を制御するサーモスタツトであり、
サーモスタツト45より設定値が高い、69は空
調用温水温度を検出し、暖房運転を制御するサー
モスタツトであり、サーモスタツト41より設定
値が高い。70は空調用圧縮機29に相当する空
調用圧縮機モータ回路、71は送風機33に相当
する送風機モータ回路、72は四方弁30のコイ
ルである。
Next, FIG. 5 shows an embodiment of the operation control circuit for each component shown in FIG. 4 above. 18 in the figure
19 is a hot water supply operation switch, 19 is a thermostat that detects the water temperature in the hot water storage tank 6 and opens a contact when it reaches a predetermined temperature, 22 is a hot water supply compressor motor circuit corresponding to the hot water supply compressor 1, and 24 is a circulation pump. 1
Pump motor circuit corresponding to 5, 37 is a timer that controls the operating time of the device, 38 is an output contact of timer 37, 39 is an auxiliary relay, 40a 1 , 40a 2 is an output contact of auxiliary relay 39, 41 is during heating operation Detects the temperature of hot water for air conditioning, closes when it exceeds a predetermined value,
A thermostat that controls the hot water supply compressor motor 22, 42 an auxiliary relay, 43 an output contact of the auxiliary relay 42, 44 a thermostat that senses the outside temperature, 45 that senses the water temperature of the air conditioning water circuit, and 45 the air conditioning water circuit. thermostat that controls the heating operation of
The thermostat 46 has a higher set value than the thermostat 45 and senses the water temperature in the air conditioning water circuit and controls the heating operation of the air conditioning water circuit. 47 is an auxiliary relay, and 48a 1 , 48a 2 , 49b 1 , 49a 2 are auxiliary relays. Output contact of relay 47, 50 is a delay timer, 51 is an output time limit contact of delay timer 50, 52 is an air conditioning operation switch, 53 is an auxiliary relay, 54a 1 , 54a 2 , 5
5, 56 are output contacts of the auxiliary relay 53, 57 are auxiliary relays, 58 are output contacts of the auxiliary relay 57, 5
9 is an air conditioning/heating selector switch, 60 is an auxiliary relay, 6
1a 1 , 61a 2 , 63c 1 , 63c 2 are auxiliary relays 60
output contact, 64 is an anti-freezing thermostat which has a lower set value than the thermostat 45 and which detects the refrigerant temperature in the air conditioning refrigerant circuit and is activated only during cooling operation; 65 is an auxiliary relay; 66 is an auxiliary relay 65;
67 is a pump motor circuit corresponding to the air conditioning circulation pump 34, 68 is a thermostat that detects the temperature of the air conditioning cold water and controls the cooling operation,
A thermostat 69, which has a higher set value than the thermostat 45, detects the temperature of hot water for air conditioning and controls the heating operation, and has a higher set value than the thermostat 41. 70 is an air conditioning compressor motor circuit corresponding to the air conditioning compressor 29, 71 is a blower motor circuit corresponding to the blower 33, and 72 is a coil of the four-way valve 30.

次に動作について説明する。 Next, the operation will be explained.

まず、給湯運転スイツチ18が閉成され、空調
運転スイツチ52が切側に接点接続されている場
合、すなわち、貯湯加熱運転モードについて説明
する。貯湯加熱運転時間帯になると、タイマ37
の作用により、接点38が閉成する。この時、貯
湯タンク6内が所定水温以下の場合はサーモスタ
ツト19は閉成しており、補助リレー39が励磁
され、接点40a1が閉成され、ポンプモータ回路
24が作動する。補助リレー65は電源投入と同
時に励磁され、接点66が閉成される。また、補
助リレー39が励磁され、接点40a2が閉成され
ることで補助リレー53が励磁され、接点54
a1,54a2は閉成、接点55は開成、接点56が
a側に接点接続され、接点54a2で冷房用凍結防
止サーモスタツト64を短絡している。
First, the case where the hot water supply operation switch 18 is closed and the air conditioning operation switch 52 is connected to the off side, that is, the hot water storage heating operation mode will be described. When the hot water storage heating operation period comes, timer 37
Due to this action, the contact 38 is closed. At this time, if the water temperature in the hot water storage tank 6 is below a predetermined water temperature, the thermostat 19 is closed, the auxiliary relay 39 is energized, the contact 40a1 is closed, and the pump motor circuit 24 is activated. The auxiliary relay 65 is energized at the same time as the power is turned on, and the contacts 66 are closed. Further, the auxiliary relay 39 is energized and the contact 40a 2 is closed, so the auxiliary relay 53 is energized and the contact 54 is closed.
a 1 and 54a 2 are closed, the contact 55 is open, and the contact 56 is connected to the a side, and the antifreeze thermostat 64 for cooling is short-circuited at the contact 54a 2 .

また、接点55が開成しているので空調用圧縮
機モータ回路70、送風機モータ回路71の運転
制御は接点48a1の開閉より制御される。この時
に冷暖切換スイツチ59が暖側接点に接続してい
る場合は、補助リレー60が励磁され、接点61
a1,61a2が開成、接点63c1,63c2がa側に
接点接続され接点61a1で冷房用凍結防止サーモ
スタツト64を短絡している。
Further, since the contact 55 is open, the operation of the air conditioning compressor motor circuit 70 and the blower motor circuit 71 is controlled by opening and closing the contact 48a1 . At this time, if the cooling/heating changeover switch 59 is connected to the warm side contact, the auxiliary relay 60 is energized and the contact 61
A 1 and 61a 2 are open, contacts 63c 1 and 63c 2 are connected to the a side, and the antifreeze thermostat 64 for cooling is short-circuited at the contact 61a 1 .

接点54a1が閉成されると、補助リレー57が
励磁され、接点58がa側に接点接続され、空調
用循環ポンプモータ回路67が作動する。一方、
補助リレー47が非励磁の場合、接点49b1は閉
成されており、給湯用圧縮機モータ回路22が作
動し貯湯加熱運転を開始し、また、補助リレー4
2が励磁され、接点43が開成し、それまで給湯
用圧縮機モータ回路22が停止している間通電さ
れていたクランクケースヒータ27,28が非通
電となる。そして給湯用圧縮機1より送られた高
温高圧冷媒は給湯用凝縮器2において貯湯タンク
6下部から循環ポンプ15によつて送られてきた
給湯水と熱交換し、加熱し、自らは放熱凝縮し、
膨張機構3で減圧され、水側熱交換器25で空調
用循環ポンプ34によつて送られてきた冷水と熱
交換し、冷却し、自らは採熱蒸発し、アキユムレ
ータ26をへて、給湯用圧縮機1へもどる冷凍サ
イクルを形成する。一方、市水配管8、減圧逆止
弁9を通り給水口7より給水され、貯湯タンク6
を満している給湯水は、循環水取出口より循環ポ
ンプ15によつて給湯用凝縮器2に送られ、加熱
され、循環水返し口14をへて貯湯タンク6にも
どるように循環される。
When the contact 54a 1 is closed, the auxiliary relay 57 is energized, the contact 58 is connected to the a side, and the air conditioning circulation pump motor circuit 67 is activated. on the other hand,
When the auxiliary relay 47 is de-energized, the contact 49b 1 is closed, and the hot water supply compressor motor circuit 22 operates to start hot water storage heating operation, and the auxiliary relay 4
2 is energized, the contact 43 is opened, and the crankcase heaters 27 and 28, which were previously energized while the hot water supply compressor motor circuit 22 was stopped, are de-energized. The high-temperature, high-pressure refrigerant sent from the hot water supply compressor 1 exchanges heat with hot water sent from the lower part of the hot water storage tank 6 by the circulation pump 15 in the hot water supply condenser 2, heats it, and condenses itself by heat radiation. ,
The pressure is reduced by the expansion mechanism 3, and the water-side heat exchanger 25 exchanges heat with the cold water sent by the air conditioning circulation pump 34, cools it, collects heat, evaporates, and passes through the accumulator 26 to water for hot water supply. A refrigeration cycle is formed that returns to the compressor 1. On the other hand, water is supplied from a water supply port 7 through a city water pipe 8 and a pressure reducing check valve 9, and a hot water storage tank 6
The hot water filling the hot water tank is sent from the circulating water outlet to the hot water supply condenser 2 by the circulating pump 15, heated, and circulated back to the hot water storage tank 6 through the circulating water return port 14. .

このようにして貯湯タンク6内の水は順次循環
加熱され、昇温される。また給湯側の冷凍サイク
ルにとつては熱源水回路の空調用水回路は、空調
用循環ポンプ34により水側熱交換器25に送ら
れ、水側熱交換器25で冷却されて、三方弁36
へ送られ三方弁36の切換によつて放熱器35を
バイパスし、空調用循環ポンプ34にもどり空調
用水回路の水温は、しだいに低下していく。外気
温度を感知しているサーモスタツト44は、外気
温が設定温度以下の場合はa側接点に接続し、設
定温度以上の場合はb側接点に接続している。サ
ーモスタツト44がa側接点に接続している時に
空調用水回路の水温が給湯側冷凍サイクルの採熱
により所定の水温以下になるとサーモスタツト4
6が開成し、補助リレー47、遅延タイマ50が
励磁される。
In this way, the water in the hot water storage tank 6 is sequentially circulated and heated to raise its temperature. In addition, for the refrigeration cycle on the hot water supply side, the air conditioning water circuit of the heat source water circuit is sent to the water side heat exchanger 25 by the air conditioning circulation pump 34, cooled by the water side heat exchanger 25, and cooled by the three-way valve 36.
By switching the three-way valve 36, the water bypasses the radiator 35 and returns to the air conditioning circulation pump 34, where the water temperature in the air conditioning water circuit gradually decreases. The thermostat 44, which senses the outside air temperature, is connected to the a-side contact when the outside air temperature is below a set temperature, and connected to the b-side contact when it is above the set temperature. When the thermostat 44 is connected to the a side contact, if the water temperature in the air conditioning water circuit falls below a predetermined water temperature due to heat collection from the hot water supply side refrigeration cycle, the thermostat 4
6 is opened, and the auxiliary relay 47 and delay timer 50 are excited.

サーモスタツト44がb側接点に接続している
時に空調用水回路の水温が給湯側冷凍サイクルの
採熱により所定の水温以下になると、サーモスタ
ツト45が閉成し、補助リレー47、遅延タイマ
50が励磁される。つまり外気温が低い場合は、
サーモスタツト45にくらべて設定値の高いサー
モスタツト46で回路を形成する。補助リレー4
7が励磁されると、接点49b1が開成し、給湯用
圧縮器モータ回路22が停止し、いつたん貯湯加
熱運転を停止させる。また補助リレー42が非励
磁になり接点43が閉成し、クランクケースヒー
タ27,28に通電される。一方接点48a1が閉
成することで空調用圧縮機モータ回路70と送風
機モータ回路71が動作する。この時接点48a2
が閉成し、接点49b2が開成することで四方弁3
0のコイル72は非通電の状態になつてから、一
定時間後に遅延タイマ50の接点51が閉成し、
四方弁30のコイル72が通電される。これによ
つて空調用冷凍サイクルは一定時間、冷房運転し
たのち暖房運転、すなわち給湯側冷凍サイクルの
熱源水のバツクアツプ加熱運転に入る。冷房運転
時は空調用圧縮機29より送られた高温高圧冷媒
は四方弁30によつて破線矢印の示す方向に切換
えられ空気側熱交換器32へ送られ凝縮し、膨張
機構31で減圧され水側熱交換器25へ送られ蒸
発し、四方弁30をへて空調用圧縮機29へもど
り空調用冷凍サイクルを形成する。一定時間の冷
房運転後、バツクアツプ加熱運転時は四方弁30
の切換により空調用圧縮機29より送られた高温
高圧冷媒ガスは四方弁30を通つて実線矢印の示
す方向に送られ水側熱交換器25で、空調用循環
ポンプ34で送られてきた冷温水と熱交換し、加
熱し、自らは放熱凝縮して、膨張機構31で減圧
され、空気側熱交換器52で採熱蒸発し、四方弁
30をへて空調用圧縮機29へもどる。このバツ
クアツプ加熱運転によつて空調用水回路の水温が
上昇し、外気温が感知するサーモスタツト44が
b側接点に接続されている場合はサーモスタツト
45が開成する温度まで上昇すると補助リレー4
7、遅延タイマ50の励磁がとけて、接点48a1
が開成し空調用圧縮機モータ回路70と送風機モ
ータ回路71が動作を停止し、バツクアツプ加熱
運転が終了し、一方接点49b1が閉成することで
給湯用圧縮機モータ回路22が動作し、再び貯湯
加熱運転を開始し、補助リレー42が励磁されて
接点43が開成し、クランクケースヒータ27と
クランクケースヒータ28が非通電になる。また
外気温を感知するサーモスタツト44がa側接点
に接続されている場合はサーモスタツト46が開
成する温度まで空調用水回路の水温が上昇すると
補助リレー47、遅延タイマ50の励磁がとけ
て、接点48a1が開成し空調用圧縮機モータ回路
70と送風機モータ回路71の動作が停止し、バ
ツクアツプ加熱運転が終了し、一方接点49b1
開成することで給湯用圧縮機モータ回路22が動
作し再び貯湯加熱運転を開始し、クランクケース
ヒータ27とクランクケースヒータ28が非通電
になる。こうして貯湯加熱運転によつて貯湯タン
ク6内の水温が所定の温度以上となり、サーモス
タツト19が開成するか、あるいは貯湯加熱運転
時間帯が終了しタイマ37の動作により接点38
が開成すると、補助リレー39の励磁がとけ、接
点40a1,40a2が開成する。接点40a1が開成
することで、ポンプモータ回路24が停止し、給
湯用圧縮機モータ回路22が停止し、補助リレー
42の励磁がとけて、接点43が閉成しクランク
ケースヒータ27、クランクケースヒータ28が
通電され、一方接点40a2が開成することで補助
リレー53の励磁がとけて接点54a1,54a2
開成し、接点56がb側接点に接続され、接点5
4a1が開成することで補助リレー57の青磁がと
けて、接点58がb側接点に接続され、空調用循
環ポンプモータ回路67が停止し、貯湯加熱運転
が終了する。つぎに給湯運転スイツチ18が閉成
され、空調運転スイツチ52が入側接点に接続さ
れており、冷暖房切換スイツチ59が暖側接点に
接続されている場合、つまり貯湯加熱運転と暖房
運転を同時に行なう場合について説明する。電源
が投入されると補助リレー65が励磁され接点6
6が閉成される。空調運転スイツチ52が入側接
点に接続されると補助リレー57が励磁され接点
58がa側接点に接続される。また冷暖房切換ス
イツチ59が暖側接点に接続されると、補助リレ
ー60が励磁し、接点61a1,61a2が閉成し、
接点63c1,63c2がそれぞれa側接点に接続さ
れる。接点61a1が閉成することで凍結防止サー
モスタツト64を短絡させる。接点58がa側接
点に接続することで空調用循環ポンプモータ回路
67が動作し、補助リレー53が非励磁であるの
で接点55が閉成されており、接点63c2がa側
接点に接続されているので、空調用水回路の冷温
水が所定の水温以下の場合はサーモスタツト69
が閉成されて空調用圧縮機モータ回路70と送風
機モータ回路が動作する。また接点61a2が閉成
されて四方弁30のコイル72が通電され、暖房
運転を行なう。空調用圧縮機29を出た高温高圧
の冷媒ガスは四方弁30で実線矢印の方向に切換
えられて水側熱交換器25に送られ、ここで空調
用循環ポンプ34から送られた空調用冷温水と熱
交換し、加熱させ、自らは放熱凝縮し、膨張機構
31で減圧され、空気側熱交換器32で大気より
採熱し、蒸発して四方弁30をへて空調用圧縮器
29にもどり、冷凍サイクルを形成する。空調用
循環ポンプ34から送られた空調用冷温水は水側
交換器25で加熱され三方弁36へ送られ、三方
弁36により空調負荷のある場合は放熱器35へ
送られ、空調負荷のない場合は放熱器35をバイ
パスし、空調用循環ポンプ34へもどる。空調用
水回路の冷温水が所定の水温以上になるとサーモ
スタツト69が開成されて空調用圧縮機モータ回
路70と送風機モータ回路71が停止し、暖房運
転を停止する。このように暖房運転の運転制御は
サーモスタツト69にて行なう。この暖房運転を
行なつている時に、同時に貯湯加熱運転を行なう
場合は、給湯運転スイツチ18が開成され、貯湯
加熱運転時間帯になるとタイマ37の動作により
接点38が閉成し、貯湯タンク6内の貯湯水温が
所定の温度以下であるとサーモスタツト19が閉
成して補助リレー39が励磁される。これにより
接点40a1が閉成され、ポンプモータ回路24が
動作する。接点49b1が閉成し、接点63c1がa
側接点に接続され、接点56がb側接点に接続さ
れ、空調用水回路の冷温水が所定の温度以下の場
合はサーモスタツト41が開成し給湯用圧縮機モ
ータ回路22は動作せず、即ち貯湯加熱運転は停
止され、空調用水回路の冷温水が所定の温度以上
の場合はサーモスタツト41が閉成し給湯用圧縮
機モータ回路22が動作し、貯湯加熱運転を行な
う。また給湯用圧縮機モータ回路22が動作して
いる時は補助リレー42が励磁され、接点43が
開成し、クランクケースヒータ27とクランクケ
ースヒータ28は非通電になる。このようにして
貯湯加熱運転と暖房運転を同時に行なう。
When the water temperature of the air conditioning water circuit becomes lower than the predetermined water temperature due to the heat collection of the hot water supply side refrigeration cycle while the thermostat 44 is connected to the b side contact, the thermostat 45 closes and the auxiliary relay 47 and delay timer 50 are activated. Excited. In other words, if the outside temperature is low,
A circuit is formed with a thermostat 46 having a higher setting value than the thermostat 45. Auxiliary relay 4
7 is energized, the contact 49b1 is opened, the hot water supply compressor motor circuit 22 is stopped, and the hot water storage heating operation is immediately stopped. Further, the auxiliary relay 42 is de-energized, the contact 43 is closed, and the crankcase heaters 27 and 28 are energized. On the other hand, when the contact 48a1 is closed, the air conditioning compressor motor circuit 70 and the blower motor circuit 71 operate. At this time contact 48a 2
is closed and contact 49b 2 is opened, causing four-way valve 3
The contact 51 of the delay timer 50 closes after a certain period of time after the 0 coil 72 becomes de-energized.
The coil 72 of the four-way valve 30 is energized. As a result, the air conditioning refrigeration cycle performs cooling operation for a certain period of time and then enters heating operation, that is, back-up heating operation of the heat source water of the hot water supply side refrigeration cycle. During cooling operation, the high-temperature, high-pressure refrigerant sent from the air-conditioning compressor 29 is switched in the direction indicated by the broken line arrow by the four-way valve 30, sent to the air-side heat exchanger 32, where it condenses, and is depressurized by the expansion mechanism 31 to become water. It is sent to the side heat exchanger 25 and evaporated, and returns to the air conditioning compressor 29 through the four-way valve 30 to form an air conditioning refrigeration cycle. After a certain period of cooling operation, during back-up heating operation, the four-way valve 30
By switching, the high-temperature, high-pressure refrigerant gas sent from the air conditioning compressor 29 is sent through the four-way valve 30 in the direction indicated by the solid line arrow, and is transferred to the water side heat exchanger 25, where it is transferred to the cold temperature sent by the air conditioning circulation pump 34. It exchanges heat with water, heats it, radiates heat and condenses itself, is depressurized by the expansion mechanism 31, collects heat and evaporates in the air-side heat exchanger 52, and returns to the air conditioning compressor 29 through the four-way valve 30. This back-up heating operation causes the water temperature in the air conditioning water circuit to rise, and if the thermostat 44 that senses the outside air temperature is connected to the b-side contact, when the temperature rises to a temperature at which the thermostat 45 opens, the auxiliary relay 4
7. The delay timer 50 is de-energized and the contact 48a 1
opens, the air conditioning compressor motor circuit 70 and the blower motor circuit 71 stop operating, and the backup heating operation ends.On the other hand, when the contact 49b1 closes, the hot water supply compressor motor circuit 22 starts operating again. The hot water storage heating operation is started, the auxiliary relay 42 is energized, the contact 43 is opened, and the crankcase heater 27 and the crankcase heater 28 are de-energized. In addition, when the thermostat 44 that senses the outside temperature is connected to the a side contact, when the water temperature in the air conditioning water circuit rises to the temperature at which the thermostat 46 opens, the auxiliary relay 47 and delay timer 50 are de-energized and the contact is opened. 48a 1 opens, the operation of the air conditioning compressor motor circuit 70 and the blower motor circuit 71 stops, and the backup heating operation ends. On the other hand, when the contact 49b 1 opens, the hot water supply compressor motor circuit 22 starts operating again. The hot water storage heating operation is started, and the crankcase heater 27 and the crankcase heater 28 are de-energized. As a result of the hot water storage heating operation, the water temperature in the hot water storage tank 6 rises to a predetermined temperature or higher, and the thermostat 19 opens, or the hot water storage heating operation period ends and the timer 37 operates to open the contact 38.
When , the auxiliary relay 39 is de-energized and the contacts 40a 1 and 40a 2 are opened. When the contact 40a1 is opened, the pump motor circuit 24 is stopped, the hot water supply compressor motor circuit 22 is stopped, the auxiliary relay 42 is deenergized, the contact 43 is closed, and the crankcase heater 27 and the crankcase are closed. When the heater 28 is energized and the one contact 40a 2 is opened, the auxiliary relay 53 is deenergized and the contacts 54a 1 and 54a 2 are opened, the contact 56 is connected to the b-side contact, and the contact 5
4a1 is opened, the celadon of the auxiliary relay 57 is melted, the contact 58 is connected to the b side contact, the air conditioning circulation pump motor circuit 67 is stopped, and the hot water storage heating operation is completed. Next, when the hot water supply operation switch 18 is closed, the air conditioning operation switch 52 is connected to the inlet side contact, and the air conditioning/heating selector switch 59 is connected to the warm side contact, that is, hot water storage heating operation and heating operation are performed simultaneously. Let me explain the case. When the power is turned on, the auxiliary relay 65 is energized and the contact 6
6 is closed. When the air conditioning operation switch 52 is connected to the inlet side contact, the auxiliary relay 57 is energized and the contact 58 is connected to the a side contact. Further, when the air conditioning/heating selector switch 59 is connected to the warm side contact, the auxiliary relay 60 is energized and the contacts 61a 1 and 61a 2 are closed.
Contacts 63c 1 and 63c 2 are each connected to the a-side contact. The antifreeze thermostat 64 is short-circuited by closing the contact 61a1 . When the contact 58 is connected to the a side contact, the air conditioning circulation pump motor circuit 67 is operated, and since the auxiliary relay 53 is de-energized, the contact 55 is closed, and the contact 63c2 is connected to the a side contact. Therefore, if the cold and hot water in the air conditioning water circuit is below the specified water temperature, the thermostat 69
is closed, and the air conditioning compressor motor circuit 70 and the blower motor circuit operate. Further, the contact 61a2 is closed, the coil 72 of the four-way valve 30 is energized, and heating operation is performed. The high-temperature, high-pressure refrigerant gas that exits the air conditioning compressor 29 is switched in the direction of the solid arrow by the four-way valve 30 and sent to the water-side heat exchanger 25, where it is transferred to the air-conditioning cold temperature sent from the air-conditioning circulation pump 34. It exchanges heat with water, heats it, radiates heat and condenses itself, is depressurized by the expansion mechanism 31, takes heat from the atmosphere in the air side heat exchanger 32, evaporates, passes through the four-way valve 30, and returns to the air conditioning compressor 29. , forming a refrigeration cycle. Cold and hot water for air conditioning sent from the air conditioning circulation pump 34 is heated by the water side exchanger 25 and sent to the three-way valve 36. When there is an air conditioning load, the three-way valve 36 sends it to the radiator 35, and when there is no air conditioning load, it is sent to the radiator 35. If so, the radiator 35 is bypassed and the process returns to the air conditioning circulation pump 34. When the cold/hot water in the air conditioning water circuit reaches a predetermined temperature or higher, the thermostat 69 is opened, the air conditioning compressor motor circuit 70 and the blower motor circuit 71 are stopped, and the heating operation is stopped. In this way, the heating operation is controlled by the thermostat 69. If hot water storage heating operation is to be performed at the same time as this heating operation, the hot water supply operation switch 18 is opened, and when the hot water storage heating operation time period is reached, the contact 38 is closed by the operation of the timer 37, and the hot water storage tank 6 is heated. When the temperature of the stored hot water is below a predetermined temperature, the thermostat 19 is closed and the auxiliary relay 39 is energized. This closes the contact 40a 1 and the pump motor circuit 24 operates. Contact 49b 1 is closed, contact 63c 1 is a
The contact 56 is connected to the b side contact, and when the cold/hot water in the air conditioning water circuit is below a predetermined temperature, the thermostat 41 is opened and the hot water supply compressor motor circuit 22 does not operate, that is, the hot water is stored. The heating operation is stopped, and if the cold/hot water in the air conditioning water circuit is at a predetermined temperature or higher, the thermostat 41 is closed and the hot water supply compressor motor circuit 22 is operated to perform hot water storage heating operation. Further, when the hot water supply compressor motor circuit 22 is operating, the auxiliary relay 42 is energized, the contact 43 is opened, and the crankcase heater 27 and the crankcase heater 28 are de-energized. In this way, hot water storage heating operation and heating operation are performed simultaneously.

つぎに給湯運転スイツチ18が閉成され、空調
運転スイツチ52が入側接点に接続されていて、
冷暖房切換スイツチ59が冷側接点に接続してい
る場合、つまり貯湯加熱運転と冷房運転を同時に
行なう場合について説明する。電源が投入される
と補助リレー65が励磁され、接点66が閉成さ
れる。空調運転スイツチ52が入側接点に接続さ
れると補助リレー57が励磁され接点58がa側
接点に接続される。また冷暖房切換スイツチが冷
側接点に接続されると、補助リレー60の励磁は
とけ、接点61a1,61a2が開成し接点63c1
63c2がそれぞれb側接点に接続される。
Next, the hot water supply operation switch 18 is closed, the air conditioning operation switch 52 is connected to the inlet side contact,
The case where the air conditioning/heating changeover switch 59 is connected to the cold side contact, that is, the case where the hot water storage heating operation and the cooling operation are performed at the same time will be described. When the power is turned on, the auxiliary relay 65 is energized and the contacts 66 are closed. When the air conditioning operation switch 52 is connected to the inlet side contact, the auxiliary relay 57 is energized and the contact 58 is connected to the a side contact. Further, when the air conditioning/heating selector switch is connected to the cold side contact, the auxiliary relay 60 is deenergized, the contacts 61a 1 and 61a 2 are opened, and the contacts 63c 1 and
63c2 are connected to the b-side contacts, respectively.

接点58がa側接点に接続することで空調用循
環ポンプモータ回路67が動作し、補助リレー5
3が非励磁であるので接点55が閉成されてお
り、接点63c2がb側接点に接続されているの
で、空調用水回路の冷温水が所定の水温以上の場
合はサーモスタツト68が閉成されていると空調
用圧縮機モータ回路70と送風機モータ回路71
が動作する。また接点61a2が開成されて四方弁
30のコイル72が非通電になり、冷房運転を行
なう。空調用圧縮機29を出た高温高圧の冷媒ガ
スは四方弁30で破線矢印の方向に切換えられて
空気側熱交換器32で大気へ放熱し、凝縮し、膨
張機構31で減圧され、水側熱交換器25に送ら
れ、ここで空調用循環ポンプ34から送られた空
調用冷温水と熱交換し、冷却し、自らは採熱し、
蒸発して四方弁30をへて空調用圧縮機29にも
どり冷凍サイクルを形成する。空調用循環ポンプ
34から送られた空調用冷温水は水側熱交換器2
5で冷却され三方弁36へ送られ、三方弁36に
より空調負荷のある場合は放熱器35へ送られ、
空調負荷のない場合は放熱器35をバイパスし、
空調用循環ポンプ34へもどる。空調用水回路の
冷温水が所定の水温以下になるとサーモスタツト
68が開成されて空調用圧縮機モータ回路70と
送風機モータ回路71が停止し、冷房運転を停止
する。このように冷房運転の運転制御はサーモス
タツト68にて行なう。この冷房運転を行なつて
いる時に、同時に貯湯加熱運転を行なう場合は、
給湯運転スイツチ18が閉成され、貯湯加熱運転
時間帯になるとタイマ37の動作により接点38
が閉成し、貯湯タンク6内の貯湯水温が所定の温
度以下であると、サーモスタツト19が閉成して
補助リレー39が励磁される。これにより接点4
0a1が閉成され、ポンプモータ回路24が動作す
る。接点49b1が閉成されていると、接点63c1
がb側接点に接続されており、給湯用圧縮機モー
タ回路22が動作し、貯湯加熱運転を行なう。貯
湯加熱運転時は補助リレー42が励磁され、接点
43が開成し、クランクケースヒータ27とクラ
クケースヒータ28が非通電になる。空調負荷が
少なく、冷房運転がサーモスタツト68の開成に
より停止し、なお給湯側冷凍サイクルの採熱によ
り空調用水回路の冷温水温度が下がりつづけた場
合、外気温を感知するサーモスタツト44がb側
接点に接続されている場合、空調用水回路の冷温
水温度が所定の温度以下になるとサーモスタツト
45が閉成し、補助リレー47と遅延タイマ50
が励磁する。これにより接点49b1が開成し給湯
用圧縮機モータ回路22が停止し、いつたん貯湯
加熱運転が停止する。同時に補助リレー42が非
励磁になり接点43が閉成し、クランクケースヒ
ータ27とクランクケースヒータ28に通電され
る。一方接点48a1が閉成することで空調用圧縮
機モータ回路70と送風機モータ回路71が動作
する。また接点48a2が閉成し、接点49b2が開
成し、四方弁30のコイル72は非通電の状態に
なつてから、一定時間後に遅延タイマ50の接点
51が閉成し、四方弁30のコイル72が通電さ
れる。これによつて空調用冷凍サイクルは一定時
間冷房運転したのち暖房運転、すなわち給湯側冷
凍サイクルの熱源水のバツクアツプ加熱運転に入
る。このバツクアツプ加熱運転によつて空調用水
回路の冷温水温度が上昇しサーモスタツト45が
開成する温度まで上昇すると補助リレー47、遅
延タイマ50の励磁がとけて接点48a2が開成
し、四方弁30のコイル72が非通電になり、バ
ツクアツプ加熱運転が終了し、接点48a1が開成
され、サーモスタツト68によつて空調用圧縮機
モータ回路70と送風機モータ回路71の動作が
制御される冷房運転を行なう。また接点49b1
閉成し、給湯用圧縮機モータ回路22が動作し、
再び貯湯加熱運転を開始し、補助リレー42が励
磁されて接点43が開成し、補助リレー42が励
磁されて接点43が開成し、クランクケースヒー
タ27とクランクケースヒータ28が非通電にな
る。
When the contact 58 connects to the a side contact, the air conditioning circulation pump motor circuit 67 operates, and the auxiliary relay 5
3 is de-energized, the contact 55 is closed, and the contact 63c2 is connected to the b-side contact, so if the cold/hot water in the air conditioning water circuit is at a predetermined water temperature or higher, the thermostat 68 is closed. If so, the air conditioning compressor motor circuit 70 and the blower motor circuit 71
works. Further, the contact 61a2 is opened, the coil 72 of the four-way valve 30 is de-energized, and cooling operation is performed. The high-temperature, high-pressure refrigerant gas that exits the air conditioning compressor 29 is switched in the direction of the dashed arrow by the four-way valve 30, radiates heat to the atmosphere in the air side heat exchanger 32, condenses, is depressurized by the expansion mechanism 31, and is transferred to the water side. It is sent to the heat exchanger 25, where it exchanges heat with the air conditioning cold and hot water sent from the air conditioning circulation pump 34, is cooled, and collects heat by itself.
It evaporates and returns to the air conditioning compressor 29 through the four-way valve 30 to form a refrigeration cycle. The air conditioning cold and hot water sent from the air conditioning circulation pump 34 is sent to the water side heat exchanger 2.
5 and sent to the three-way valve 36, and when there is an air conditioning load by the three-way valve 36, sent to the radiator 35,
When there is no air conditioning load, the radiator 35 is bypassed,
Return to the air conditioning circulation pump 34. When the cold/hot water in the air conditioning water circuit becomes lower than a predetermined water temperature, the thermostat 68 is opened, the air conditioning compressor motor circuit 70 and the blower motor circuit 71 are stopped, and the cooling operation is stopped. In this way, the cooling operation is controlled by the thermostat 68. If you are performing hot water storage heating operation at the same time as this cooling operation,
When the hot water supply operation switch 18 is closed and the hot water storage heating operation period begins, the contact 38 is closed by the operation of the timer 37.
is closed and the temperature of the hot water stored in the hot water storage tank 6 is below a predetermined temperature, the thermostat 19 is closed and the auxiliary relay 39 is energized. This causes contact 4
0a1 is closed and the pump motor circuit 24 is operated. When contact 49b 1 is closed, contact 63c 1
is connected to the b-side contact, and the hot water supply compressor motor circuit 22 operates to perform hot water heating operation. During hot water storage heating operation, the auxiliary relay 42 is energized, the contact 43 is opened, and the crankcase heater 27 and crankcase heater 28 are de-energized. When the air conditioning load is small and the cooling operation is stopped by opening the thermostat 68, and the temperature of cold and hot water in the air conditioning water circuit continues to drop due to heat collection from the refrigeration cycle on the hot water supply side, the thermostat 44 that senses the outside temperature switches to the b side. When connected to the contact point, when the temperature of cold and hot water in the air conditioning water circuit falls below a predetermined temperature, the thermostat 45 closes, and the auxiliary relay 47 and delay timer 50 close.
is excited. As a result, the contact 49b1 is opened, the hot water supply compressor motor circuit 22 is stopped, and the hot water storage heating operation is immediately stopped. At the same time, the auxiliary relay 42 is de-energized, the contact 43 is closed, and the crankcase heater 27 and the crankcase heater 28 are energized. On the other hand, when the contact 48a1 is closed, the air conditioning compressor motor circuit 70 and the blower motor circuit 71 operate. Further, the contact 48a 2 is closed, the contact 49b 2 is opened, and the coil 72 of the four-way valve 30 is de-energized. After a certain period of time, the contact 51 of the delay timer 50 is closed, and the four-way valve 30 is closed. Coil 72 is energized. As a result, the air conditioning refrigeration cycle performs cooling operation for a certain period of time and then enters heating operation, that is, back-up heating operation of the heat source water of the hot water supply side refrigeration cycle. As a result of this back-up heating operation, the temperature of cold and hot water in the air conditioning water circuit rises to a temperature at which the thermostat 45 opens, the auxiliary relay 47 and the delay timer 50 are de-energized, the contact 48a2 is opened, and the four-way valve 30 is opened. The coil 72 is de-energized, the backup heating operation is completed, the contact 48a1 is opened, and the cooling operation is performed in which the operation of the air conditioning compressor motor circuit 70 and the blower motor circuit 71 is controlled by the thermostat 68. . In addition, the contact 49b 1 is closed, and the hot water supply compressor motor circuit 22 is operated.
The hot water storage heating operation is started again, the auxiliary relay 42 is energized and the contact 43 is opened, the auxiliary relay 42 is energized and the contact 43 is opened, and the crankcase heater 27 and the crankcase heater 28 are de-energized.

〔発明の効果〕〔Effect of the invention〕

この発明は以上説明したとおり、給湯用冷凍サ
イクル運転時に給湯用冷凍サイクルの採熱によ
り、空調用冷温水温度が所定の温度以下になつた
場合に、空調用冷凍サイクルをバツクアツプ加熱
運転させて、空調用温水を昇温させて、給湯用冷
凍サイクルの採熱源を一定範囲の温度レベルで安
定的に供給することを可能とした。
As explained above, the present invention causes the air conditioning refrigeration cycle to perform backup heating operation when the temperature of cold/hot water for air conditioning falls below a predetermined temperature due to heat collection of the refrigeration cycle for hot water supply during operation of the refrigeration cycle for hot water supply. By raising the temperature of hot water for air conditioning, it is possible to stably supply the heat source for the refrigeration cycle for hot water supply at a certain temperature level.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来例を示す空気熱源ヒートポンプ式
給湯機のシステム図、第2図は従来例の電気回路
図、第3図はレシプロ圧縮機の圧縮比と体積効率
の関係を示す図、第4図は本発明のヒートポンプ
式冷暖房給湯機の一実施例を示すシステム図、第
5図は本発明の一実施例の電気回路図を示す。 図において、1は給湯用圧縮機、2は給湯用凝
縮器、3は膨張機構、6は貯湯タンク、15は循
環ポンプ、25は水側熱交換器、26はアキユム
レータ、27はクランクケースヒータ、28はク
ランクケースヒータ、29は空調用圧縮器、30
は四方弁、31は膨張機構、32は空気側熱交換
器、34は空調用循環ポンプ、35は放熱器、3
6は三方弁、41はサーモスタツト、44はサー
モスタツト、45はサーモスタツト、46はサー
モスタツト、50は遅延タイマ、68はサーモス
タツト、69はサーモスタツト、72はコイルで
ある。なお、図中同一符号は同一または相当部分
を示す。
Figure 1 is a system diagram of an air source heat pump type water heater showing a conventional example, Figure 2 is an electric circuit diagram of a conventional example, Figure 3 is a diagram showing the relationship between compression ratio and volumetric efficiency of a reciprocating compressor, and Figure 4 is a diagram showing the relationship between compression ratio and volumetric efficiency of a reciprocating compressor. The figure shows a system diagram showing one embodiment of the heat pump type air-conditioning/heating water heater of the present invention, and FIG. 5 shows an electric circuit diagram of one embodiment of the present invention. In the figure, 1 is a compressor for hot water supply, 2 is a condenser for hot water supply, 3 is an expansion mechanism, 6 is a hot water storage tank, 15 is a circulation pump, 25 is a water side heat exchanger, 26 is an accumulator, 27 is a crankcase heater, 28 is a crankcase heater, 29 is an air conditioning compressor, 30
is a four-way valve, 31 is an expansion mechanism, 32 is an air side heat exchanger, 34 is an air conditioning circulation pump, 35 is a radiator, 3
6 is a three-way valve, 41 is a thermostat, 44 is a thermostat, 45 is a thermostat, 46 is a thermostat, 50 is a delay timer, 68 is a thermostat, 69 is a thermostat, and 72 is a coil. Note that the same reference numerals in the figures indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】[Claims] 1 圧縮機、給湯用凝縮器、膨張機構及び蒸発器
として作用する水側熱交換器を順次冷媒配管接続
して構成される給湯用冷凍サイクルと、給湯用循
環ポンプにて上記給湯用凝縮器に流通された貯湯
タンク内の給湯水と熱交換関係をなす給湯水回路
と、圧縮器、四方弁、空気側熱交換器、膨張機構
及び水側熱交換器を順次冷媒配管接続して構成さ
れる空調用冷凍サイクルと、空調用循環ポンプに
より上記水側熱交換器を通り負荷側へ流通される
空調用冷温水回路とを備え、上記水側熱交換器に
て給湯用冷凍サイクルと冷温水を介して熱交換関
係に空調用冷凍サイクルを配設すると共に空調用
冷温水回路の水温を感知する温度感知手段を設
け、この温度感知手段により給湯用冷凍サイクル
運転時に空調用冷温水温度が所定の温度以下にな
つたのを感知すると常に空調用冷凍サイクルを加
熱運転させて空調用冷温水を昇温させる制御手段
を有することを特徴とするヒートポンプ式冷暖房
給湯機。
1. A refrigeration cycle for hot water supply consisting of a compressor, a condenser for hot water supply, an expansion mechanism, and a water side heat exchanger that acts as an evaporator connected to refrigerant piping in sequence, and a circulation pump for hot water supply to the condenser for hot water supply. It consists of a hot water supply circuit that has a heat exchange relationship with the hot water in the distributed hot water storage tank, a compressor, a four-way valve, an air side heat exchanger, an expansion mechanism, and a water side heat exchanger, which are sequentially connected through refrigerant piping. It is equipped with an air conditioning refrigeration cycle and an air conditioning cold/hot water circuit that is distributed to the load side through the water side heat exchanger by an air conditioning circulation pump, and the water supply refrigeration cycle and cold/hot water are distributed through the water side heat exchanger. An air conditioning refrigeration cycle is disposed in a heat exchange relationship through the air conditioner, and a temperature sensing means for sensing the water temperature of the air conditioning cold/hot water circuit is provided. 1. A heat pump type air-conditioning/heating water heater characterized by having a control means for always heating an air-conditioning refrigeration cycle to raise the temperature of air-conditioning cold/hot water when it senses that the temperature has dropped below the temperature.
JP10674184A 1984-05-23 1984-05-23 Heat pump type air-conditioning hot-water supply machine Granted JPS60248964A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10674184A JPS60248964A (en) 1984-05-23 1984-05-23 Heat pump type air-conditioning hot-water supply machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10674184A JPS60248964A (en) 1984-05-23 1984-05-23 Heat pump type air-conditioning hot-water supply machine

Publications (2)

Publication Number Publication Date
JPS60248964A JPS60248964A (en) 1985-12-09
JPH0432307B2 true JPH0432307B2 (en) 1992-05-28

Family

ID=14441343

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10674184A Granted JPS60248964A (en) 1984-05-23 1984-05-23 Heat pump type air-conditioning hot-water supply machine

Country Status (1)

Country Link
JP (1) JPS60248964A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62190364A (en) * 1986-02-17 1987-08-20 新菱冷熱工業株式会社 Compression absorption composite heat pump device
GB2499823A (en) 2012-03-01 2013-09-04 Cummins Ltd Turbine-generator and operation method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5946463A (en) * 1982-09-09 1984-03-15 三菱電機株式会社 Hot-water supply device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5946463A (en) * 1982-09-09 1984-03-15 三菱電機株式会社 Hot-water supply device

Also Published As

Publication number Publication date
JPS60248964A (en) 1985-12-09

Similar Documents

Publication Publication Date Title
JP3775933B2 (en) Solar heat pump air conditioning water heater
JPS6155018B2 (en)
JPS61101771A (en) Heat pump type air-conditioning hot-water supply machine
JPH0432669A (en) Heat pump system controlling method therefor
JPH0432307B2 (en)
JPH0849936A (en) Regenerative air-conditioner
JPH0125978B2 (en)
JPH0219389B2 (en)
JPS61101769A (en) Heat pump type air-conditioning hot-water supply machine
JPS61101770A (en) Heat pump type air-conditioning hot-water supply machine
JPS60248963A (en) Heat pump type air-conditioning hot-water supply machine
JPS58124138A (en) Controlling method of driving auxiliary heat source in regenerative air conditioner
JPS60248967A (en) Heat pump type air-conditioning hot-water supply machine
JPS60248962A (en) Heat pump type air-conditioning hot-water supply machine
JPS59217460A (en) Refrigeration cycle of air conditioner
JPS6256426B2 (en)
JP3723402B2 (en) Air conditioner
JPS60248965A (en) Heat pump type air-conditioning hot-water supply machine
JPS60248966A (en) Heat pump type air-conditioning hot-water supply machine
JPH03125856A (en) Heat pump hot water feeder
JPS60248970A (en) Heat pump type air-conditioning hot-water supply machine
JPS60248969A (en) Heat pump type air-conditioning hot-water supply machine
JPS5849006Y2 (en) Hot water supply and cooling equipment
JPS6018895B2 (en) Solar heat pump air conditioner
JPS5856528Y2 (en) Refrigeration equipment