JPS60248967A - Heat pump type air-conditioning hot-water supply machine - Google Patents

Heat pump type air-conditioning hot-water supply machine

Info

Publication number
JPS60248967A
JPS60248967A JP10674484A JP10674484A JPS60248967A JP S60248967 A JPS60248967 A JP S60248967A JP 10674484 A JP10674484 A JP 10674484A JP 10674484 A JP10674484 A JP 10674484A JP S60248967 A JPS60248967 A JP S60248967A
Authority
JP
Japan
Prior art keywords
hot water
air
air conditioning
contact
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10674484A
Other languages
Japanese (ja)
Inventor
正美 今西
秀一 谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP10674484A priority Critical patent/JPS60248967A/en
Publication of JPS60248967A publication Critical patent/JPS60248967A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)
  • Sorption Type Refrigeration Machines (AREA)
  • Other Air-Conditioning Systems (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明はヒートポンプ式給湯機に喫するものである。[Detailed description of the invention] [Technical field of invention] This invention applies to heat pump water heaters.

〔従来技術〕[Prior art]

従来の空気熱源ヒートポンプ式給湯機の例を第1図に示
す。図tこおいて+1)は給湯用圧縮機、(2)は給湯
用凝縮器、(3月よ膨張機構、(4ンは送風1(5)を
備えた蒸発器、でありこれらを順次冷媒−C!で連結し
てヒートポンプ回路を構成している。そ、して、実線矢
印は冷媒の流れを示す。
An example of a conventional air source heat pump water heater is shown in Fig. 1. In the figure, +1) is a compressor for hot water supply, (2) is a condenser for hot water supply, (3) is an expansion mechanism, (4 is an evaporator equipped with air blower 1 (5), and these are sequentially connected to the refrigerant. -C! to form a heat pump circuit.The solid arrow indicates the flow of the refrigerant.

(6)は貯湯タンク、(7)は貯湯タンク(6)下部に
もうけた給水口で、市水配管(8)と減圧逆゛止弁(9
)を介して貯湯タンク(6)に接続されている一bqt
)−は貯湯タンク(6)上部にもうけた給湯口で、給湯
、配管αηを介して給湯栓(ロ)に接続している。
(6) is the hot water storage tank, (7) is the water supply port installed at the bottom of the hot water storage tank (6), and is connected to the city water pipe (8) and the pressure reducing check valve (9).
) connected to the hot water storage tank (6) through
) - is a hot water supply port provided at the top of the hot water storage tank (6), which is connected to the hot water tap (B) via the hot water supply pipe αη.

(2)は貯湯タンク(6)下部にもうけた循環水取出口
、a<は貯湯タンク(6)上部にもうけた循環水返し口
、(ト)は循環ポンプであり、そし・て給湯用凝縮器(
2)と水管で接続している。aユは貯湯タンク(6)下
部に取付けられた電気ヒータである。
(2) is the circulating water outlet provided at the bottom of the hot water storage tank (6), a< is the circulating water return port provided at the top of the hot water storage tank (6), (g) is the circulation pump, and vessel(
2) is connected with a water pipe. Ayu is an electric heater attached to the lower part of the hot water storage tank (6).

つぎに、上記第1図に示した各構成機器の運転制御回路
の一例を第2図に示す。図において、(ト)は給湯運転
スイッチ、(+1は貯湯タンク(6λ内の水温を検出す
るサーモスタット、(7)はヒートポンプ運転から、ヒ
ータ運転へ切換えるサーモスタット、QpはヒータαQ
に相当するヒータ回路、(2)は給湯用圧縮機(1)に
相当する給湯用圧縮機モータ回路、轍は送風機(5)に
相当する送風機モータ回路、(ハ)は循環ポンプαQに
相当するポンプモータ回路である。
Next, FIG. 2 shows an example of an operation control circuit for each component shown in FIG. 1 above. In the figure, (g) is the hot water supply operation switch, (+1 is the thermostat that detects the water temperature within the hot water storage tank (6λ), (7) is the thermostat that switches from heat pump operation to heater operation, and Qp is the heater αQ
The heater circuit corresponds to the hot water supply compressor (2), the hot water compressor motor circuit corresponds to the hot water supply compressor (1), the rut corresponds to the blower motor circuit corresponding to the blower (5), and (c) corresponds to the circulation pump αQ. This is the pump motor circuit.

次tこ、動作について説明する。まず給湯運転スイッチ
(ト)を閉接し、サーモスタットO0が閉成し、サーモ
スタット(イ)が第2図に示すようにb接点側に接点接
続していると、すなわち貯湯タンク(6ンの水温が所定
値以下の場合給湯用圧縮機モータ回路(2)、送風機モ
ータ回路(2)、及びポンプモータ回路(財)が作動し
ヒートポンプ運転を行なう。これにより、給湯用圧縮機
tl)から吐出された高温高圧冷媒ガス(フロン12)
は給湯用凝縮器(2)において、貯湯タンク(6)下部
から循環ポンプ(7)によって送られる給湯水と熱交換
器し、給湯水を加熱し、自らは、凝縮液化し、膨張機構
(3)で減圧され蒸発器(4)にて、空気より捻熱し、
蒸発し、給湯用圧縮機(1)にもどる冷凍サイクルを形
成する。一方、給湯水側は市水配管(8)、減圧逆止弁
(9)を通り給水口(7)より給水される。また貯湯タ
ンク(6)を満している給湯水は、循環水取出口(至)
より循環ポンプ(至)Iζよって給湯用凝縮器(2)に
送られ加熱され循環水返し口a→をへて貯湯タンク(6
)にもどり循環される。このようにして貯湯タンク(6
)内の給湯水は順次循環加熱され昇【− 温されていく。この時貯湯タンク(6)内は給湯水の循
環により均一な温度分布になっている。こうして昇温を
続は貯湯タンク(6)内の給湯水が所定温度以上になる
と、サーモスタット(イ)の接点はb接点側よりa接点
側に切換わり、給湯用圧縮機モータ回路(イ)、送風機
モータ回路−,及びポンプモータ回路■は停止する。同
時に、ヒータ回路0υが作動し、ヒータσ呻に通電され
る。貯湯タンク(6)内の給湯水が所定の温度となると
、サーモスタット0呻は開成し、ヒータ回路Cυが停止
する。
Next, the operation will be explained. First, the hot water supply operation switch (G) is closed, the thermostat O0 is closed, and the thermostat (A) is connected to the B contact side as shown in Figure 2. If the value is below a predetermined value, the hot water supply compressor motor circuit (2), the blower motor circuit (2), and the pump motor circuit operate to perform heat pump operation. High temperature and high pressure refrigerant gas (Freon 12)
In the hot water condenser (2), the hot water is heat exchanged with the hot water sent by the circulation pump (7) from the bottom of the hot water storage tank (6), and the hot water is heated. ) and then heated from the air in the evaporator (4).
It evaporates and returns to the hot water supply compressor (1), forming a refrigeration cycle. On the other hand, the hot water side is supplied from a water supply port (7) through a city water pipe (8) and a pressure reducing check valve (9). In addition, the hot water filling the hot water storage tank (6) is connected to the circulating water outlet (towards).
The circulating water is then sent to the hot water condenser (2) by the circulation pump (to) Iζ, heated, and passed through the circulating water return port a → to the hot water storage tank (6
) and then circulated. In this way, the hot water storage tank (6
The hot water in ) is circulated and heated in order to increase its temperature. At this time, the inside of the hot water storage tank (6) has a uniform temperature distribution due to the circulation of hot water. In this way, when the temperature continues to rise, when the hot water in the hot water storage tank (6) reaches a predetermined temperature or higher, the contact of the thermostat (A) switches from the B contact to the A contact, and the hot water supply compressor motor circuit (A) Blower motor circuit - and pump motor circuit (■) stop. At the same time, the heater circuit 0υ is activated and the heater σ is energized. When the hot water in the hot water storage tank (6) reaches a predetermined temperature, the thermostat 0 is opened and the heater circuit Cυ is stopped.

以上のように従来の空気熱源ヒートポンプ式給湯機は、
構成されていた。従って、外気温度が低い冬期(例えば
0℃以下)では空気からの採熱量が少ない為、蒸発圧力
が低くなり給湯能力が小さかった。また、高温給湯水を
得ようとすれば凝縮圧力が上昇し、給湯用圧縮機(1)
の圧縮比(=凝縮圧力/蒸発圧力)が8以上となり、か
つ給湯用圧縮機(1)の吐出冷媒ガス温が上昇しく例え
ば180°C以上)給湯用圧縮機(1)の信頼性及び寿
命に大きな影響を与える為給湯用圧縮機+1)の運転を
停止させ、その代替として、補助熱源(例えば電気ヒー
タ)によって昇温する等の手段がとられていた。しかし
、これは機器の効率(成績係数)を悪くしていた。
As mentioned above, conventional air source heat pump water heaters
It was configured. Therefore, in winter when the outside air temperature is low (for example, below 0° C.), the amount of heat extracted from the air is small, so the evaporation pressure is low and the hot water supply capacity is low. In addition, if you try to obtain high-temperature hot water, the condensation pressure will increase, and the compressor for hot water supply (1) will
The compression ratio (=condensation pressure/evaporation pressure) of the hot water supply compressor (1) is 8 or more, and the temperature of the refrigerant gas discharged from the hot water supply compressor (1) increases, for example, 180°C or more).Reliability and life of the hot water supply compressor (1) Since this has a large impact on water supply, the operation of the hot water supply compressor (+1) has been stopped, and as an alternative, measures have been taken such as raising the temperature using an auxiliary heat source (for example, an electric heater). However, this worsened the efficiency (coefficient of performance) of the equipment.

また、空気熱源ヒートポンプ式である為、夏期外気温が
高い場合、給湯能力が大きく、冬期外気温が低い場合に
は給湯能力が小さくなる。これは給湯負荷とは余ったく
逆の傾向であり、負荷は、外気温が高い夏期には小さく
、外気温の低い冬期には大きくなる。従って機器の特性
と負荷とのバランスがとれず、機種選定においては、か
なり大きな容量の機器が必要であった。
Furthermore, since it is an air source heat pump type, the hot water supply capacity is large when the outside temperature is high in the summer, and the hot water supply capacity is small when the outside temperature is low in the winter. This trend is completely opposite to the hot water supply load; the load is small in the summer when the outside temperature is high, and becomes large in the winter when the outside temperature is low. Therefore, the characteristics of the device and the load cannot be balanced, and when selecting a model, a device with a considerably large capacity is required.

〔発明の概要〕[Summary of the invention]

この発明は、上記欠点を嵌着する目的でなされたもので
空気熱源ヒートポンプチラーの水側熱交換器及び水熱源
ヒートポンプ給湯機の蒸発器を熱的に接触させるように
構成したものであり、かつ、補助熱源装置(例えば電気
ヒータ)なしで、効率良く、高温出湯を可能とし、あわ
せて、冷暖房をも可能としてヒートポンプ式冷暖房給湯
機を提案するものである。
This invention was made for the purpose of solving the above-mentioned drawbacks, and is configured so that the water-side heat exchanger of an air-source heat pump chiller and the evaporator of a water-source heat pump water heater are brought into thermal contact with each other, and The present invention proposes a heat pump type air-conditioning/heating water heater that can efficiently produce hot water at a high temperature without the need for an auxiliary heat source device (for example, an electric heater), and can also perform air-conditioning/heating.

〔発明の実施例〕[Embodiments of the invention]

通常、単段の冷凍サイクルでは、凝縮温度と蒸発温度の
差が大きくなると、特に給湯水温度が高くなると冷凍サ
イクルの成績係数(c、o、p)は悪くなる。これは圧
縮機の圧縮比が大きくなり、体積効率が低下するためで
ある。
Normally, in a single-stage refrigeration cycle, the coefficient of performance (c, o, p) of the refrigeration cycle deteriorates when the difference between the condensing temperature and the evaporation temperature increases, especially when the hot water temperature increases. This is because the compression ratio of the compressor increases and the volumetric efficiency decreases.

例えば、給湯水温度67°C2外気0°Cの場合にっい
て、単段圧縮の空気熱源ヒートポンプテラーの場合と、
二元冷凍即ち低段側に空気熱源ヒートポンプチラー、高
段側に水熱源ヒートポンプ給湯機を設け、低段側の凝縮
熱を高段側の採熱量とした場合の圧縮機の体績効率を比
較してみる。第8図にレシプロ圧縮機の圧縮比と体積効
率との関係、及び、それぞれの方式の運転特性を表わす
モリエル線図を示す。単段方式の場合(冷媒フロン22
使用)、高圧82kq/daおS低圧4kg/daBs
圧縮比8となり、体積効率は42%である。二元冷凍方
式の場合、低段側(冷媒R−22使用)、高圧14kg
/cy4 aIbs 。
For example, when the hot water temperature is 67°C and the outside air is 0°C, in the case of a single-stage compression air heat source heat pump Teller,
Comparison of compressor performance efficiency when two-way refrigeration, that is, an air source heat pump chiller is installed on the lower stage side and a water source heat pump water heater is installed on the higher stage side, and the condensed heat on the lower stage side is used as the amount of heat collected on the higher stage side. I'll try it. FIG. 8 shows a Mollier diagram showing the relationship between the compression ratio and volumetric efficiency of a reciprocating compressor and the operating characteristics of each system. In case of single stage system (refrigerant Freon 22
), high pressure 82kq/da and S low pressure 4kg/daBs
The compression ratio is 8, and the volumetric efficiency is 42%. In the case of dual refrigeration system, low stage side (using refrigerant R-22), high pressure 14 kg
/cy4aIbs.

低圧4kg/daubs 圧縮比8.5 となり、体積
効率72%、高段側(冷媒7 CIン12使用)、高圧
20kg/ciabs 。
Low pressure 4kg/daubs, compression ratio 8.5, volumetric efficiency 72%, high stage side (using refrigerant 7 CI in 12), high pressure 20kg/ciabs.

低圧6.67(βabs 、圧縮比8となり、体積効率
は75%である。これらの体積効率をもとに、それぞれ
のモリエル線図上からみた論理加熱C,O,Oは、単段
方式では8.2、二元冷凍方式では4を越え、二元冷凍
方式の方が効率が良い。
The low pressure is 6.67 (βabs), the compression ratio is 8, and the volumetric efficiency is 75%.Based on these volumetric efficiencies, the theoretical heating C, O, and O seen from each Mollier diagram are as follows: 8.2, the binary refrigeration system exceeds 4, and the binary refrigeration system is more efficient.

本発明によるヒートポンプ式冷暖房給湯機の一実施例を
第4図に示す。図において1υは給湯用圧縮機′、(2
)は給湯用凝縮器、(3)は膨張機構、(ハ)は空調用
冷凍サイクルと水回路を共用して空調用の冷温水をつく
る水側熱交換器、(ハ)はアキュームレータこれらを順
次配管で連結して水熱源ヒートポンプ回路を構成してい
る。に)は給湯用圧縮機(1)に取付けたクランクケー
スヒータ、に)はアキュームレータ翰に取付けたタンク
ケースヒータである。そして実線矢印は冷媒の流れを示
す。
An embodiment of the heat pump type air-conditioning/heating water heater according to the present invention is shown in FIG. In the figure, 1υ is the hot water supply compressor', (2
) is a condenser for hot water supply, (3) is an expansion mechanism, (c) is a water side heat exchanger that shares the water circuit with the refrigeration cycle for air conditioning to create cold and hot water for air conditioning, and (c) is an accumulator. They are connected via piping to form a water source heat pump circuit. 2) is the crankcase heater attached to the hot water supply compressor (1), and 2) is the tank case heater attached to the accumulator pan. And solid arrows indicate the flow of refrigerant.

(6)は貯湯タンク、(7)は貯湯タンク(6ン下部ζ
こもうけた給水口で、市水配管(8)と減圧逆止弁i9
)を介して貯湯タンク(6)に接続されている。+tC
)は貯湯タンク(6)上部にもうけた給湯口で、給湯配
管αηを介し。
(6) is a hot water storage tank, (7) is a hot water storage tank (6-inch lower ζ
City water pipe (8) and pressure reducing check valve i9 at the water supply port that was left behind.
) is connected to the hot water storage tank (6). +tC
) is the hot water supply port installed at the top of the hot water storage tank (6), through the hot water supply pipe αη.

て給湯栓(2)に接続している。and is connected to the hot water tap (2).

@は貯湯タンク(6)下部にもうけた循環水取出口、Q
4は貯湯タンク(6)上部にもうけた循環水発し口、(
イ)は循環ポンプであり、そして給湯用凝縮器(2〕と
水管で接続している。
@ is the circulating water outlet provided at the bottom of the hot water storage tank (6), Q
4 is the circulating water outlet installed at the top of the hot water tank (6), (
A) is a circulation pump, and is connected to the hot water supply condenser (2) through a water pipe.

四は空調用圧縮機、(7)は四方弁、C3υは膨張機構
、に)は送風機付を備えた空気側熱交換器、これらと、
上記水側熱交換器に)を順次冷媒配管で連結して空気熱
源ヒートポンプ回路を構成している。そして実線矢印は
暖房時、破線矢印は冷房時の冷媒の流れを示す。
4 is an air conditioning compressor, (7) is a four-way valve, C3υ is an expansion mechanism, 2) is an air side heat exchanger equipped with a blower, and
(to the water side heat exchanger) are successively connected through refrigerant piping to form an air heat source heat pump circuit. The solid arrows indicate the flow of refrigerant during heating, and the dashed arrows indicate the flow of refrigerant during cooling.

(財)は空調用循環ポンプ、に)は三方弁(至)を備え
た放熱器、これらと水側熱交換器に)を順次水配管で連
結して、空調用水回路を構成している。そして白抜き矢
印は冷温水の流れを示す。
(Foundation) is an air conditioning circulation pump, (ii) is a radiator equipped with a three-way valve (to), and these (and the water side heat exchanger) are sequentially connected with water piping to form an air conditioning water circuit. The white arrows indicate the flow of cold and hot water.

□ 次に上記第4図に示した各構成機器の運転制御回路
の一実施例を第5図に示す。図において(財)は給湯運
転スイッチ、(Inは貯湯タンク(6)内の水温を検出
し、所定温度に達すると接点を開成するサーモスタット
、(イ)は給湯用圧縮機fl)に相当する給湯用圧縮機
モータ回路、(ハ)は循環ポンプ(ト)に相当するポン
プモータ回路、(ロ)は装置の運転時間を制御するタイ
マ、に)はタイマ(ロ)の出力接点、に)は補助リレー
、(40al)、(40a2)は補助リレー(至)の出
力接点、θυは暖房運転時に空調用温水の温度を検出し
、所定値以上で閉成し、給湯用圧縮機モータに)を制御
するサーモスタット、働は補助リレー、(財)は補助リ
レー(42の出力接点、■は外気温度を感知するサーモ
スタット、■は空調用水回路の水温を感知し、空調用水
回路の加熱運転を制御するサーモスタット、に)はサー
モスタットに)より設定値が高く、空調用水回路の水温
を感知し空調用水回路の加熱運転を制御するサーモスタ
ット、Oηは補助リレー、(48al)(48a2)(
49bl)(49b2)ハ補助’Jし17)(7)出力
接点、輪は遅延タイマ、i51ζよ遅延タイマ団の出力
限時接点、報は空調運転スイッチ、畷は補助リレー、(
54al ) 、 (54a2) 、暖、■は補助リレ
ー(至)の出力接点、!57+は補助リレー、州は補助
リレー捌の出力接点、−は浴暖房切換スイッチ、州は補
助リレー、(61al) 、 (61a2) 、 (6
8C1) 、 C68C2)は補助リレー−の出力接点
、(財)はサーモスタット顧より設定値の低い、かつ空
調用冷媒回路の冷媒温を検出し、冷房運転時のみ作用す
る凍結防止サーモスタット、嘴は補助リレー、川は補助
リレー−の出力接点、(資)は空調用循環ポンプ■に相
当するポンプモータ回路、啜は空調用冷水温度を検出し
、冷房運転を制御する一サーモスタットであり、サーモ
スタットに)より設定値が高い。呻は空調用温水温度を
検出し、暖房運転を制御するサーモスタットであり、サ
ーモスタットθυより設定値が高い。(lLllは空調
用圧縮機−に相当する空調用圧縮機モータ回路、V旧よ
送風機(至)に相当する送風機モータ回路、(7旧よ四
方弁−のコイルである。
□ Next, FIG. 5 shows an embodiment of the operation control circuit for each component shown in FIG. 4 above. In the figure, (In) is the hot water supply operation switch, (In is the thermostat that detects the water temperature in the hot water storage tank (6) and opens the contact when it reaches a predetermined temperature, and (A) is the hot water supply corresponding to the hot water compressor fl). (c) is the pump motor circuit corresponding to the circulation pump (g), (b) is the timer that controls the operating time of the device, (b) is the output contact of the timer (b), (b) is the auxiliary The relays (40al) and (40a2) are the output contacts of the auxiliary relay (to), and θυ detects the temperature of hot water for air conditioning during heating operation, closes when it exceeds a predetermined value, and controls the hot water supply compressor motor). The function is an auxiliary relay, (foundation) is an auxiliary relay (42 output contacts, ■ is a thermostat that senses the outside temperature, ■ is a thermostat that senses the water temperature of the air conditioning water circuit and controls the heating operation of the air conditioning water circuit. , ni) is a thermostat which has a higher setting value than the thermostat) and senses the water temperature in the air conditioning water circuit and controls the heating operation of the air conditioning water circuit. Oη is the auxiliary relay, (48al) (48a2) (
49bl) (49b2) C auxiliary 'J' 17) (7) Output contact, the ring is the delay timer, i51ζ is the output time limit contact of the delay timer group, the signal is the air conditioning operation switch, the fence is the auxiliary relay, (
54al), (54a2), warm, ■ is the output contact of the auxiliary relay (to),! 57+ is the auxiliary relay, state is the output contact of the auxiliary relay, - is the bath heating changeover switch, state is the auxiliary relay, (61al), (61a2), (6
8C1) and C68C2) are the output contacts of the auxiliary relay, and the beak is the antifreeze thermostat that has a lower setting value than the thermostat and detects the refrigerant temperature in the air conditioning refrigerant circuit and only works during cooling operation.The beak is the auxiliary relay. Relay, river is the output contact of the auxiliary relay, (capital) is the pump motor circuit corresponding to the circulation pump for air conditioning, and so is the thermostat that detects the temperature of the cold water for air conditioning and controls the cooling operation. The setting value is higher. The thermostat detects the temperature of hot water for air conditioning and controls heating operation, and has a higher set value than the thermostat θυ. (lLll is the air conditioning compressor motor circuit corresponding to the air conditioning compressor, V is the blower motor circuit corresponding to the old blower, and (7 is the coil of the four-way valve).

次に動作について説明する。Next, the operation will be explained.

まず、給湯運転スイッチα樽が閉成され、空調運転スイ
ッチf5aが切側に接点接続されている場合、すなわち
、貯湯加熱運転モードについて説明する。
First, the case where the hot water supply operation switch α barrel is closed and the air conditioning operation switch f5a is connected to the off side, that is, the hot water storage heating operation mode will be described.

貯湯加熱運転時間帯になると、タイマー06の作用によ
り、接点(2)が閉成する。この時、貯湯タンク(6)
内が所定水温以下の場合は、サーモスタットOIは閉成
しており、補助リレー■が励磁され、接点(4oa1)
が閉成され、ポンプモータ回路cI4が作動する。補助
リレー(61は電源投入と同時に、励磁され接点−が閉
成される。また、補助リレー■が励磁サレ、接点(40
a2)が閉成されることで補助リレーdが励磁され、接
点(54al ) 、(54a2)は閉成接点(2)は
開成、接点−がa側に接点接続され、接点(54a2)
で冷房用凍結防止サーモスタット(財)を短絡している
When the hot water storage heating operation period comes, the contact (2) is closed by the action of the timer 06. At this time, hot water storage tank (6)
If the inside water temperature is below the specified temperature, the thermostat OI is closed, the auxiliary relay ■ is energized, and the contact (4oa1)
is closed, and the pump motor circuit cI4 is activated. When the power is turned on, the auxiliary relay (61) is energized and its contacts are closed. Also, the auxiliary relay (■) is energized and its contacts (40
When a2) is closed, auxiliary relay d is energized, contacts (54al) and (54a2) are closed, contact (2) is open, contact - is connected to side a, and contact (54a2) is closed.
The antifreeze thermostat for air conditioning (goods) is short-circuited.

また、接点−が開成しているので空調用圧縮機モータ回
路−,送風機モータ回路ヴ1の運転制御は接点(48a
l )の開閉により制御される。この時に、冷暖切換ス
イッチ−が呼側接点に接続している場合は、補助リレー
−が励磁され、接点(61al)、(61a2)が閉成
接点(68C1)、(68C2)がa側に接点接続され
、接点(61al)で冷房用凍結防止サーモスタット(
財)を短絡している。
In addition, since the contact point 48a is open, the operation control of the air conditioning compressor motor circuit and the blower motor circuit V1 is possible through the contact point 48a.
l) is controlled by opening and closing. At this time, if the cooling/heating changeover switch is connected to the call side contact, the auxiliary relay is energized, and the contacts (61al) and (61a2) are the closing contacts (68C1), and (68C2) are the contacts on the a side. It is connected to the antifreeze thermostat for cooling (61al).
goods) are short-circuited.

接点(54al)が閉成されると、補助リレーめηが磁
磁され、接点−がa側に接点接続され、空調用循環ポン
プモータ回路−が作動する。一方補助リレーQ7)が非
励磁の場合、接点(49bl)は閉成されており、給湯
用圧縮機モータ回路(2)が作動し、貯湯加熱運転を開
始し、また補助リレーに)が励磁され、接点(財)が開
成し、それまで給湯用圧縮機モータ回路(2)が停止し
ている間通電されていたクランクケースヒータ■、(ト
)が非通電となる。そして給湯用圧縮機(1)より送ら
れた高温高圧冷媒は給湯用凝縮器(幻をこおいて貯湯タ
ンク(6)下部から循環ポンプ(7)によって送られて
きた給湯水と熱交換し、加熱し、自らは放熱凝柳し、膨
張機構(3)で減圧され、水側熱交換器に)で空調用循
環ポンプ■によって送られてきた冷水と熱交換し、冷却
し、自らは採熱蒸発し、アキュームレータ(ハ)をへて
、給湯用圧縮機(1)へもどる冷凍サイクルを形成する
。一方給湯水は市水配管(8)、減圧逆止弁(9)を通
り給水口(7)より給水され、貯湯タンク(6)を購し
ている給湯水は、循環水取出口@より循環ポンプαQに
よって給湯用凝縮器(2)に送られ、加熱され、循環水
返し口σ荀をへて貯湯タンク(6)9こもどろように循
環される。
When the contact (54al) is closed, the auxiliary relay η is magnetized, the contact is connected to the a side, and the air conditioning circulation pump motor circuit is activated. On the other hand, when the auxiliary relay Q7) is de-energized, the contact (49bl) is closed, the hot water supply compressor motor circuit (2) is activated, and hot water storage heating operation is started, and the auxiliary relay (Q7) is energized. , the contact opens, and the crankcase heaters ① and ①, which had been energized until then while the hot water supply compressor motor circuit (2) was stopped, become de-energized. The high-temperature, high-pressure refrigerant sent from the hot water supply compressor (1) exchanges heat with the hot water supply water sent from the lower part of the hot water storage tank (6) by the circulation pump (7), It heats up, radiates heat, condenses, is depressurized by the expansion mechanism (3), exchanges heat with the cold water sent by the air conditioning circulation pump (in the water side heat exchanger), cools it, and collects heat. It evaporates, passes through the accumulator (c), and returns to the hot water supply compressor (1), forming a refrigeration cycle. On the other hand, the hot water is supplied from the water supply port (7) through the city water pipe (8) and the pressure reducing check valve (9), and the hot water supplied to the hot water storage tank (6) is circulated from the circulating water outlet @. The water is sent to the hot water supply condenser (2) by the pump αQ, heated, and circulated in the hot water storage tank (6) 9 through the circulating water return port σ.

このようにして貯湯タンク(6)内の水は順次循環加熱
され、昇温される。また給湯側の冷凍サイクルにとって
は熱源水回路の空調用水回路は、空調用m環ポンプC→
により水側熱交換器(イ)に送られ、水側熱交換器(4
)で冷却されて、三方弁(至)へ送られる。
In this way, the water in the hot water storage tank (6) is sequentially circulated and heated to raise its temperature. Also, for the refrigeration cycle on the hot water supply side, the air conditioning water circuit of the heat source water circuit is the air conditioning m-ring pump C →
is sent to the water side heat exchanger (A), and the water side heat exchanger (4
) and sent to the three-way valve (to).

空調負荷がある場合は三方弁に)の切換によって放熱器
(至)へ送られ、空調負荷がない場合は三方弁(2)の
切換によって放熱器(2)をバイパスし、空調用循 。
When there is an air conditioning load, the air is sent to the radiator (to) by switching the three-way valve (2), and when there is no air conditioning load, the air is bypassed by the radiator (2) by switching the three-way valve (2), and the air is circulated for air conditioning.

環ポンプ■にもどる。空調負荷が水側熱交換器に)での
冷却能力を下回ると空調用水回路の水温は、しだいに低
下していく。外気温度を感知しているサーモスタット(
財)は、外気温の設定温度以下の場合はa側接点に接続
し、設定温度以上の場合はb側接点に接続している。サ
ーモスタット■がa側接点に接続している時に空調用水
回路の水温が給湯側冷凍サイクルの採熱により所定の水
温以下になるとサーモスタット−が閉成し、補助リレー
(ロ)。
Return to ring pump■. When the air conditioning load falls below the cooling capacity of the water side heat exchanger), the water temperature in the air conditioning water circuit gradually decreases. The thermostat that senses the outside temperature (
When the outside temperature is below the set temperature, it is connected to the a side contact, and when it is above the set temperature, it is connected to the b side contact. When the water temperature of the air conditioning water circuit becomes lower than the predetermined water temperature due to the heat taken by the refrigeration cycle on the hot water supply side while the thermostat ■ is connected to the contact on the A side, the thermostat closes and the auxiliary relay (B) is activated.

遅延タイマーが励磁される。A delay timer is energized.

サーモスタット軸がb側接点に接続している時に空調用
水回路の水温が給湯側冷凍サイクルの採熱により所定の
水温以下になると、サーモスタットに)が閉成し補、助
すレーO乃、遅延タイマーが励磁される。つまり外気温
が低い場合は、サーモスタット■にくらべて設定値の高
いサーモスタット■で回路を形成し、外気温が高い場合
は設定値の低いサーモスタット■で回路を形成する。補
助リレーO′t)が励磁されると、接点(49bl)が
開成し、給湯用圧縮機モータ回路に)が停止し、いった
ん貯湯加熱運転を停止させる。また補助リレーに)が非
励磁になり接点(財)が閉成し、クランクケースヒータ
(ロ)。
When the temperature of the water in the air conditioning water circuit drops below the predetermined water temperature due to the heat taken by the refrigeration cycle on the hot water supply side when the thermostat shaft is connected to the B side contact, the thermostat () closes and the delay timer is activated. is excited. In other words, when the outside temperature is low, a circuit is formed with thermostat ■, which has a higher setting value than thermostat ■, and when the outside temperature is high, a circuit is formed with thermostat ■, which has a lower setting value. When the auxiliary relay O't) is energized, the contact (49bl) is opened, the hot water supply compressor motor circuit) is stopped, and the hot water storage heating operation is temporarily stopped. Also, the auxiliary relay () becomes de-energized, the contact (good) closes, and the crankcase heater (b).

(財)に通電される。一方接点(48al )が閉成す
ることで空調用圧縮機モータ回路ヴ1と送風機モータ回
路りυが動作する。この時接点(48a2)が閉成し、
接点(49b2)が開成することで四方弁に)のコイル
@は非通電の状態になってから、一定時間後に遅延タイ
マ句の接点(5]Iが閉成し、四方弁(至)のコイル@
が通電される。これによって空調用冷凍サイクルは一定
時間、冷房運転したのち暖房運転、すなわち給湯側冷凍
サイクルの熱源水のバックアップ加熱運転に入いる。冷
房運転時は空調用圧縮機(2)より送られた高温高圧冷
媒は四方弁(7)によって破線矢印の示す方向に切換え
られ空気側熱交換器(2)へ送られ凝縮し、膨張機構O
I)で減圧され水側熱交換器(ハ)へ送られ蒸発し、四
方弁…をへて空調用圧縮機に)へもどり空調用冷凍サイ
クルを形成する。一定時間の冷房運転後、バックアップ
加熱運転時は四方弁(7)の切換により空調用圧縮機−
より送られた高温高圧冷媒ガスは四方弁(7)を通って
実線矢印の示す方向に送られ水側熱交換器(ハ)で、空
調用循環ポンプ(ロ)で送られてきた冷温水と熱交換し
、加熱し、自らは放熱凝縮して、膨張機構c11)で減
圧され、空気側熱交換器(イ)で採熱蒸発し、四方弁■
をへて空調用圧縮機(2)へもどる。このバックアップ
加熱運転によって空調用水回路の水温が上昇し、外気温
を感知するサーモスタット■がb側接点に接続されてい
る場合はサーモスタットに)が開成する温度まで上昇す
ると補助リレー0力、遅延タイマ■の励磁がとけて、接
点(48al)が開成し空調用圧縮機モータ回路ffl
と送風機モータ回路q力が動作を停止し、バックアップ
加熱運転が終了し、一方接点(49bl)が閉成するこ
とで給湯用圧縮機モータ回路(財)が動作し、再び貯湯
加熱運転を開始し、補助リレー(6)が励磁されて接点
(財)が開成し、クランクケースヒータ(財)とクラン
クケースヒータ(財)が非通電になる。
(Foundation) is energized. On the other hand, when the contact (48al) is closed, the air conditioning compressor motor circuit V1 and the blower motor circuit V1 operate. At this time, the contact (48a2) is closed,
When the contact (49b2) opens, the coil @ of the four-way valve becomes de-energized, and after a certain period of time, the contact (5) I of the delay timer closes, and the coil of the four-way valve (to) becomes de-energized. @
is energized. As a result, the air conditioning refrigeration cycle performs cooling operation for a certain period of time and then enters heating operation, that is, back-up heating operation of the heat source water of the hot water supply side refrigeration cycle. During cooling operation, the high-temperature, high-pressure refrigerant sent from the air conditioning compressor (2) is switched in the direction indicated by the dashed arrow by the four-way valve (7), sent to the air-side heat exchanger (2), and condensed, and then sent to the expansion mechanism O.
The pressure is reduced in step I), the water is sent to the water side heat exchanger (c), where it evaporates, passes through a four-way valve, and returns to the air conditioning compressor) to form an air conditioning refrigeration cycle. After a certain period of cooling operation, during backup heating operation, the air conditioning compressor is turned off by switching the four-way valve (7).
The high-temperature, high-pressure refrigerant gas sent through the four-way valve (7) is sent in the direction indicated by the solid arrow, and is exchanged with the cold and hot water sent by the air conditioning circulation pump (b) at the water side heat exchanger (c). It exchanges heat, heats up, radiates heat and condenses itself, is depressurized by the expansion mechanism c11), collects heat and evaporates in the air side heat exchanger (a), and then the four-way valve ■
Go back to the air conditioning compressor (2). This backup heating operation causes the water temperature in the air conditioning water circuit to rise, and when the temperature rises to a temperature that opens the thermostat (if the thermostat that senses the outside temperature is connected to the b-side contact), the auxiliary relay goes to zero and the delay timer starts. When the excitation is removed, the contact (48al) opens and the air conditioning compressor motor circuit ffl
Then, the blower motor circuit q power stops operating, the backup heating operation ends, and one contact (49BL) closes, and the hot water supply compressor motor circuit operates, and the hot water storage heating operation starts again. , the auxiliary relay (6) is energized, the contacts are opened, and the crankcase heater and crankcase heater are de-energized.

また外気温を感知するサーモスタット−がa側接点に接
続されている場合はサーモスタット■が開成する温度ま
で空調用水回路の水温が上昇すると補助リレー@乃、遅
延タイマーの励磁がとけて、接点(48al)が開成し
空調用圧縮機モータ回路Vωと送風機モータ回路(71
Jの動作が停止し、バックアップ加熱運転が終了し、一
方接点(49bl)が閉成することで給湯用圧縮機モー
タ回路(2)が動作し再び貯湯加熱運転を開始し、クラ
ンクケースヒータ(転)とクランクケースヒータ(2)
が非通電になる。こうして貯湯加熱運転によって貯湯タ
ンク(6)内の水温が所定の温度以上となり、サーモス
タットaQが開成するか、あるいは貯湯加熱運転時間帯
が終了しタイマ(ロ)の動作により接点(至)が開成す
ると、補助リレー■の励磁がとけ接点(40al)(4
0a2)が開成する。
In addition, if the thermostat that senses the outside temperature is connected to the a side contact, when the water temperature in the air conditioning water circuit rises to the temperature at which the thermostat ) was opened, and the air conditioning compressor motor circuit Vω and the blower motor circuit (71
J stops, the backup heating operation ends, and one contact (49bl) closes, which causes the hot water supply compressor motor circuit (2) to operate and start the hot water storage heating operation again. ) and crankcase heater (2)
becomes de-energized. In this way, when the water temperature in the hot water storage tank (6) rises to a predetermined temperature or higher due to the hot water storage heating operation, and the thermostat aQ opens, or when the hot water storage heating operation period ends and the contact (to) opens due to the operation of the timer (b). , the excitation of the auxiliary relay ■ melts the contact (40al) (4
0a2) is developed.

接点(40al )が開成することで、ポンプモータ回
路(財)が停止し、給湯用圧縮機モータ回路(2)が停
止し、補助リレー四の励磁がとけて、接点(財)が閉成
しクランクケースヒータ(イ)、クランクケースヒータ
ーが通電され、一方接点(40a2)が開成することで
補助リレー■の励磁がとけて接点(54a1)(54a
2)が開成し、接点−がb側接点に接続され、接点(5
4at)が開成することで補助リレーφηの励磁がとけ
て、接点−がb側接点に接続され、空調用循環ポンプモ
ータ回路−が停止し、貯湯加熱運転が終了する。
When the contact (40al) opens, the pump motor circuit (good) stops, the hot water supply compressor motor circuit (2) stops, the auxiliary relay 4 is de-energized, and the contact (good) closes. When the crankcase heater (a) and the crankcase heater are energized and one contact (40a2) is opened, the auxiliary relay ■ is deenergized and the contact (54a1) (54a
2) is opened, the contact - is connected to the b side contact, and the contact (5
4at) is opened, the auxiliary relay φη is de-energized, the contact point - is connected to the b-side contact point, the air conditioning circulation pump motor circuit stops, and the hot water storage heating operation ends.

つぎに給湯運転スイッチ(ト)が閉成され、空調運転ス
イッチ畷が入側接点に接続されており、冷暖房切換スイ
ッチ四が呼側接点に接続されている場合、つまり貯湯加
熱運転と暖房運転を同時に行なう場合について説明する
。電源が投入されると補助リレー−が励磁され接点田力
°5閉成される。空調運転スイッチ(財)が入側接点に
接続されると補助リレー15ηが励磁され接点−がa側
接点に接続される。
Next, when the hot water supply operation switch (G) is closed, the air conditioning operation switch Nawate is connected to the input side contact, and the air conditioning/heating changeover switch 4 is connected to the output side contact, that is, hot water storage heating operation and heating operation are switched on. The case where they are performed simultaneously will be explained. When the power is turned on, the auxiliary relay is energized and the contacts are closed. When the air conditioning operation switch (Incorporated) is connected to the input side contact, the auxiliary relay 15η is excited and the contact - is connected to the a side contact.

また冷暖房切換スイッチ■が呼側接点に接続されると、
補助リレー−が励磁し、接点(61al)(61a2)
が閉成し、接点(68C1)(68C2)がそれぞれa
側接点に接続される。接点(61a1.)が閉成するこ
とで凍結防止サーモスタット141を短絡させる。接点
To%がa側接点に接続することで空調用循環ポンプモ
ータ回路−が動作し、補助リレー−が非励磁であるので
接点−が閉成されており、接点(68C2)がa側接点
に接続されているので(空調用水回路の冷温水が所定の
水温以下の場合はサーモスタット四が閉成されて空調用
圧縮機モータ回路、(Illと送風機モータ回路が動作
する。また接点(6112)が閉成されて四方弁図のコ
イル(7日が通電され、暖房運転を行なう。
Also, when the heating/cooling selector switch ■ is connected to the call side contact,
The auxiliary relay is energized and the contacts (61al) (61a2)
is closed, and the contacts (68C1) and (68C2) are respectively a
Connected to the side contact. The antifreeze thermostat 141 is short-circuited by closing the contact (61a1.). When the contact To% is connected to the a side contact, the air conditioning circulation pump motor circuit operates, and since the auxiliary relay is de-energized, the contact is closed, and the contact (68C2) is connected to the a side contact. Since it is connected (when the cold and hot water in the air conditioning water circuit is below a predetermined water temperature, thermostat 4 is closed and the air conditioning compressor motor circuit, (Ill and blower motor circuit) are operated. Also, the contact (6112) When the coil is closed, the four-way valve coil (7 days) is energized and heating operation is performed.

空調用圧縮機に)を出た高温高圧の冷媒ガスは四方弁(
至)で実線矢印の方向に切換えられて水側熱交換器(ホ
)に送られ、ここで空調用循環ポンプ■から送られた空
調用冷温水と熱交換し、加熱させ、自らは放熱凝縮し、
膨張機構0やで減圧され、空気側熱交換器に)で大気よ
り採熱し、蒸発して四方弁(7)をへて空調用圧縮機(
4)にもどり、冷凍サイクルを形成する。空調用循環ポ
ンプ弼から送られた空調用冷温水は水側熱交換器(2)
で加熱され三方弁(ト)へ送られ、三方弁(至)により
空調負荷のある場合は放熱器(2)へ送られ、空調負荷
のない場合は放熱器(至)をバイパスし、空調用循環ポ
ンプ■へもどる。空調用水回路の冷温水が所定の水温以
上になるとサーモスタット四が開成されて空調用圧縮機
モータ回路り@と送風機モータ回路(711が停止し、
暖房運転を停止する。このように暖房運転の運転制御は
サーモスタット−にて行なう。この暖房運転を行なって
いる時に、同時に貯湯加熱運転を行なう場合は、給湯運
転スイッチ(ハ)が閉成され、貯湯加熱運転時間帯にな
るとタイマ(ロ)の動作により接点(2)が閉成し、貯
湯タンク(6)内の貯湯水温が所定の温度以下であると
サーモスタットQ呻が閉成して補助リレー■が励磁され
る。これにより接点(40al )が閉成され、ポンプ
モータ回路(財)が動作する。接点(49bl)が閉成
し、接点(68C1)がa側接点に接続され、接点(イ
)がb側接点に接続され、空調用水回路の冷温水が所定
の温度以下の場合はサーモスタット(ロ)が開成し給湯
用圧縮機モータ回路(イ)は動作せず、即ち貯湯加熱運
転は停止され、空調用水回路の冷温水が所定の温度以上
の場合はサーモスタット(ロ)が閉成し給湯用圧縮機モ
ータ回路(2)が動作し、貯湯加熱運転を行なう。また
給湯用圧縮機モータ回路(イ)が動作している時は補助
リレー(財)が励磁され、接点−が開成し、クランクケ
ースヒータ(財)とクランクケースヒータに)は非通電
になる。このようにして貯湯加熱運転と暖房運転を同時
に行なう。
The high-temperature, high-pressure refrigerant gas that exits the air conditioning compressor is passed through the four-way valve (
(to) is switched in the direction of the solid arrow and sent to the water side heat exchanger (e), where it exchanges heat with the cold/hot water for air conditioning sent from the air conditioning circulation pump ■, heating it, and condensing it by itself. death,
The pressure is reduced by the expansion mechanism 0, and heat is collected from the atmosphere by the air side heat exchanger), evaporated, and passed through the four-way valve (7) to the air conditioning compressor (
Return to 4) and form the refrigeration cycle. Cold and hot water for air conditioning sent from the air conditioning circulation pump 2 is sent to the water side heat exchanger (2)
When there is an air conditioning load, it is heated by the three-way valve (to) and sent to the radiator (2). When there is no air conditioning load, it is heated by the radiator (to) and sent to the radiator (to). Return to circulation pump ■. When the cold and hot water in the air conditioning water circuit reaches a predetermined water temperature, thermostat 4 is opened and the air conditioning compressor motor circuit and blower motor circuit (711) are stopped.
Stop heating operation. In this way, the heating operation is controlled by the thermostat. If hot water storage heating operation is to be performed at the same time as this heating operation, the hot water supply operation switch (c) is closed, and when the hot water storage heating operation period is reached, the contact (2) is closed by the operation of the timer (b). However, if the temperature of the hot water stored in the hot water storage tank (6) is below a predetermined temperature, the thermostat Q is closed and the auxiliary relay (2) is energized. This closes the contact (40al) and operates the pump motor circuit. When the contact (49bl) is closed, the contact (68C1) is connected to the a-side contact, and the contact (a) is connected to the b-side contact, the thermostat (ro ) is opened and the hot water supply compressor motor circuit (a) does not operate, that is, the hot water storage heating operation is stopped, and if the cold/hot water in the air conditioning water circuit is at a predetermined temperature or higher, the thermostat (b) closes and the hot water supply compressor motor circuit (a) does not operate. The compressor motor circuit (2) operates and performs hot water storage heating operation. In addition, when the hot water supply compressor motor circuit (a) is operating, the auxiliary relay is energized, the contacts are opened, and the crankcase heater and the crankcase heater are de-energized. In this way, hot water storage heating operation and heating operation are performed simultaneously.

つぎに給湯運転スイッチ(ト)が閉成され、空調運転ス
イッチMが入側接点に接続されていて、冷暖 ・房切換
スイッチ四が冷側接点に接続している場合、つまり貯湯
加熱運転と冷房運転を同時に行なう場合について説明す
る。電源が投入されると補助リレー−が励磁され接点−
が閉成される。空調運転スイッチ鰻が入側接点に接続さ
れると補助リレー−ηが励磁され接点■がa側接点に接
続される。また冷暖房切換スイッチが冷側接点に接続さ
れると、補助リレー−の励磁はとけ、接点(61al 
X61a2)が開成し接点C68C1)(68C2)が
それぞれb側接点に接続される。接点−がa側接点に接
続することで空調用循環ポンプモータ回路−が動作し、
補助リレー呻が非励磁であるので接点−が閉成されてお
り、接点(68C2)がb側接点に接続されているので
、空調用水回路の冷温水が所定の水温以上の場合はサー
モスタット−が閉成されていると空調用圧縮機モータ回
路(71と送風機モータ回路(2)が動作する。また接
点(61a2)が開成されて四方弁(至)のコイル四が
非通電になり、冷房運転を行なう。空調用圧縮機(2)
を出た高温高圧の冷媒ガスは四方弁(至)で破線矢印の
方向に切換えられて空気側熱交換器(至)で大気へ放熱
し、膨張機構6])で減圧され、水側熱交換器に)に送
られ、ここで空調用循環ポンプ(ロ)から送られた空調
用冷温水と熱交換し、冷却し、自らは採熱し、蒸発して
四方弁(至)をへて空調用圧縮機(2)にもどり冷凍サ
イクルを形成する。空調用循環ポンプ■から送られた空
調用冷温水は水側熱交換器(ハ)で冷却され三方弁(至
)へ送られ゛、三方弁(至)により空調負荷のある場合
は放熱器(2)へ送られ、空調負荷のない場合は放熱器
(至)をバイパスし、空調用循環ポンプ(ロ)へもどる
。空調用水回路の冷温水が所定の水温以下になるとサー
モスタット188)が開成されて空調用圧lモータ回路
T70)と送風機モータ回路−が停止し、冷房運転を停
止する。このように冷房運転の運転制御はサーモスタッ
ト−にて行なう。
Next, when the hot water supply operation switch (G) is closed, the air conditioning operation switch M is connected to the inlet side contact, and the cooling/heating / air conditioning selector switch 4 is connected to the cold side contact, that is, hot water storage heating operation and cooling operation are performed. A case where operations are performed at the same time will be explained. When the power is turned on, the auxiliary relay is energized and the contacts
is closed. When the air conditioning operation switch eel is connected to the input side contact, the auxiliary relay -η is energized and the contact ■ is connected to the a side contact. Also, when the air conditioning/heating selector switch is connected to the cold side contact, the auxiliary relay is de-energized and the contact (61al
X61a2) is opened, and contacts C68C1) (68C2) are connected to the b-side contacts, respectively. When the contact - connects to the A side contact, the air conditioning circulation pump motor circuit operates,
Since the auxiliary relay output is de-energized, the contact - is closed, and the contact (68C2) is connected to the b-side contact, so if the cold/hot water in the air conditioning water circuit is at a predetermined water temperature or higher, the thermostat will close. When it is closed, the air conditioning compressor motor circuit (71) and the blower motor circuit (2) operate. Also, the contact (61a2) is opened and coil 4 of the four-way valve (to) is de-energized, and cooling operation is started. Air conditioning compressor (2)
The high-temperature, high-pressure refrigerant gas that exits is switched in the direction of the dashed arrow by the four-way valve (to), radiates heat to the atmosphere by the air-side heat exchanger (to), is depressurized by the expansion mechanism 6), and is transferred to the water-side heat exchanger. It exchanges heat with the hot and cold air-conditioning water sent from the air-conditioning circulation pump (b), cools it, collects heat, evaporates, and passes through the four-way valve (to) for air-conditioning. It returns to the compressor (2) to form a refrigeration cycle. The cold and hot water for air conditioning sent from the air conditioning circulation pump ■ is cooled by the water side heat exchanger (c) and sent to the three-way valve (to), and when there is an air conditioning load, the three-way valve (to) sends it to the radiator ( 2), and if there is no air conditioning load, it bypasses the radiator (to) and returns to the air conditioning circulation pump (b). When the cold/hot water in the air conditioning water circuit falls below a predetermined water temperature, the thermostat 188) is opened, the air conditioning pressure l motor circuit T70) and the blower motor circuit are stopped, and the cooling operation is stopped. In this way, the cooling operation is controlled by the thermostat.

この冷房運転を行なっている時に、同時に貯湯加熱運転
を行なう場合は、給湯運転スイッチ(ト)が閉成され、
貯湯加熱運転時間帯になるとタイマ(ロ)の動作により
接点に)が閉成し、貯湯タンク(6)内の貯湯水温が所
定の温度以下であると、サーモスタットa傷が閉成して
補助リレー(2)が励磁される。これにより接点(40
al )が閉成され、ポンプモータ回路(ハ)が動作す
る。接点(49bl )が閉成されると、接点(68C
1)がb側接点に接続されており、給湯用圧縮機モータ
回路(2)が動作し、貯湯加熱運転を行なう。
If you want to perform hot water storage heating operation at the same time as this cooling operation, the hot water supply operation switch (G) is closed.
When the hot water storage heating operation period begins, the timer (b) operates to close the contact, and when the hot water temperature in the hot water storage tank (6) is below a predetermined temperature, the thermostat a is closed and the auxiliary relay is activated. (2) is excited. This allows the contact (40
al) is closed, and the pump motor circuit (c) operates. When the contact (49bl) is closed, the contact (68C
1) is connected to the b-side contact, and the hot water supply compressor motor circuit (2) operates to perform stored hot water heating operation.

貯湯加熱運転時は補助リレーに)が励磁され、接点−が
開成し、クランクケースヒータ@とクランクケースヒー
タ(ホ)が非通電になる。空調負荷が少なく、冷房運転
がサーモスタット−の開成により停止し、なお給湯側冷
凍サイクルの採熱により空調用水回路の冷温水温度が下
がりつづけた場合、外気温を感知するサーモスタット■
がb側接点に接続され、空調用水回路の冷温水温度が所
定の温度以下になるとサーモスタットに)が閉成し、補
助リレー@ηと遅延タイマーが励磁する。これにより接
点(49bl )が開成し給湯用圧縮機モータ回路(2
)が停止し、いったん貯湯加熱運転が停止する。同時に
補助リレー四が非励磁になり接点(財)が閉成し、クラ
ンクケースヒータ(財)とクランクケースヒータ(2)
に通電される。一方接点(48al )が閉成すること
で空調用圧縮機モータ回路(71と送風機モータ回路(
2)が動作する。また接点(48a2)が閉成し、接点
(49b2)が闘成し、四方弁(ト)のコイル(7)は
非通電の状態になってから、一定時間後に遅延タイマ輪
の接点15υが閉成し、西方押釦のコイル(72が通電
される。これによって空調用冷凍サイクルは一定時間、
冷房運転したのち暖房運転、すなわち給線側冷凍サイク
ルの熱源水のバックアップ加熱運転に入いる。
During hot water storage heating operation, the auxiliary relay () is energized, the contact - opens, and the crankcase heater @ and crankcase heater (E) are de-energized. When the air conditioning load is low and the cooling operation is stopped due to opening of the thermostat, and the temperature of cold and hot water in the air conditioning water circuit continues to drop due to heat collection from the refrigeration cycle on the hot water supply side, the thermostat detects the outside temperature.
is connected to the b-side contact, and when the temperature of cold and hot water in the air conditioning water circuit falls below a predetermined temperature, the thermostat) closes and the auxiliary relay @η and delay timer are energized. As a result, the contact point (49bl) opens and the hot water supply compressor motor circuit (2
) stops, and the hot water storage heating operation temporarily stops. At the same time, auxiliary relay 4 becomes de-energized, contacts close, and crankcase heater (2) and crankcase heater (2)
is energized. On the other hand, when the contact (48al) is closed, the air conditioning compressor motor circuit (71) and the blower motor circuit (
2) works. In addition, the contact (48a2) is closed, the contact (49b2) is closed, the coil (7) of the four-way valve (G) is de-energized, and after a certain period of time, the contact 15υ of the delay timer ring is closed. The coil (72) of the west push button is energized.This causes the air conditioning refrigeration cycle to run for a certain period of time.
After the cooling operation, the heating operation, that is, the backup heating operation of the heat source water of the refrigeration cycle on the feeder side is started.

このバックアップ加熱運転によって空調用水回路の冷温
水温度が上昇しサーモスタットに)が開成する温度まで
上昇すると補助リレーCカ、遅延タイマ句の励磁がとけ
て接点(48a2)が開成し、四方弁(7)のコイル(
72が非通電になり、バックアップ加熱運、9転が終了
し、接点(48al)が開成され、サーモスタット囮に
よって空調用圧縮機モータ回路’ff01と送風機モー
タ回路(7υの動作が制御される冷房運転を行なう。ま
た接点(49bl )が閉成し、給湯用圧縮機モータ回
路(イ)が動作し、再び貯湯加熱運転を開始し、補助リ
レーθつが励磁されて接点(財)が開成し、クランクケ
ースヒータ(ロ)とクランクケースヒータ弼が非通電に
なる。
As a result of this backup heating operation, the temperature of the hot and cold water in the air conditioning water circuit rises to a temperature at which the thermostat opens, the auxiliary relay C and the delay timer are deenergized, the contact (48a2) opens, and the four-way valve (7 ) coil (
72 is de-energized, the backup heating operation and 9th rotation are completed, the contact (48al) is opened, and the operation of the air conditioning compressor motor circuit 'ff01 and the blower motor circuit (7υ) is controlled by the thermostat decoy. Also, the contact (49bl) closes, the hot water supply compressor motor circuit (a) operates, and the hot water storage heating operation starts again.The auxiliary relays θ are energized, the contact opens, and the crank The case heater (b) and crankcase heater (b) become de-energized.

〔発明の効果〕〔Effect of the invention〕

この発明は以上説明したとおり、給湯用冷凍サイクル運
転時に給湯用冷凍サイクルの採熱により、空調用冷温水
温度が所定の温度以下になった場合に空調用冷凍サイク
ルが行なうバックアップが加熱運転の制御を、外気温が
低い場合は比較的設定値の高い空調用水回路のサーモス
タットで行ない、外気温が高い場合は比較的設定値の低
い空調用水回路のサーモスタットで行なうように、外気
温を感知するサーモスタットにより電気回路を切換える
ことによって、外気温に応じて給湯用冷凍サイクルの採
熱源である空調用冷温水温度を制御し、給湯負荷が大き
い比較的外気温の低い場合には採熱源の空調用冷温水温
度を比較的高くして結局及び能力を大きくすることが可
能であり、また給湯負荷が小さい比較的外気温の高い場
合には採熱源の空調用冷温水温度を比較的低くして給湯
能力を小さく抑えることを可能とした。すなわち、給湯
負荷に応じた給湯能力を機器が提供することを可能し、
また外気温に応じて効率よく採熱源の空調用冷温水を昇
温することを可能とした。
As explained above, in this invention, when the cold/hot water temperature for air conditioning falls below a predetermined temperature due to the heat collection of the refrigeration cycle for hot water supply during operation of the refrigeration cycle for hot water supply, the backup performed by the refrigeration cycle for air conditioning controls the heating operation. When the outside temperature is low, the thermostat in the air conditioning water circuit has a relatively high setting value, and when the outside temperature is high, the thermostat in the air conditioning water circuit has a relatively low setting value. By switching the electric circuit, the temperature of the cold/hot water for air conditioning, which is the heat source of the refrigeration cycle for hot water supply, is controlled according to the outside temperature, and when the outside temperature is relatively low and the hot water supply load is large, the cold temperature of the cold water for air conditioning, which is the heat source of the heat collection, is controlled by switching the electric circuit. It is possible to raise the water temperature relatively high to increase the capacity, and when the hot water supply load is small and the outside temperature is relatively high, the hot water temperature for air conditioning of the heat collection source can be relatively lowered to increase the hot water supply capacity. This made it possible to keep it small. In other words, the equipment can provide hot water supply capacity according to the hot water supply load,
It also makes it possible to efficiently raise the temperature of the cold/hot water for air conditioning, which is the heat source, according to the outside temperature.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来例を示す空気熱源ヒートポンプ式給勘様の
システム図、第2図は従来例の電気回路図、第8図はレ
シプロ圧縮機の圧縮比と体積効率の関係を示す図、第4
図は本発明のヒートポンプ式冷暖房給湯機の一実施例を
示すシステム図、第5図は本発明の一実施例の電気回路
図を示す。 図において(υは給湯用圧縮機、(2)は給湯用凝縮器
、(3)は膨張機構、(6)は貯湯タンク、aθは循環
ポンプ、に)は水側熱交換器、翰はアキュームレータ、
(財)はクランクケースヒータ、(支)はクランクケー
スヒータ、に)は空調用圧縮機、(ト)は四方弁、0]
)は膨張機構、に)は空気側熱交換器、弼は空調用循環
ポンプ、に)は放熱器、に)は三方弁、(ロ)はサーモ
スタット、θ4はサーモスタット、(ハ)はサーモスタ
ット、に)はサーモスタット、■は遅延タイマ、呻はサ
ーモスタット、−はサーモスタット、つ壜はコイルであ
る。 なお図中同一符号は同一また相当部分を示すものとする
Figure 1 is a system diagram of an air source heat pump type power supply system showing a conventional example, Figure 2 is an electric circuit diagram of a conventional example, Figure 8 is a diagram showing the relationship between compression ratio and volumetric efficiency of a reciprocating compressor, 4
The figure shows a system diagram showing one embodiment of the heat pump type air-conditioning/heating water heater of the present invention, and FIG. 5 shows an electric circuit diagram of one embodiment of the present invention. In the figure, (υ is the compressor for hot water supply, (2) is the condenser for hot water supply, (3) is the expansion mechanism, (6) is the hot water storage tank, aθ is the circulation pump, ) is the water side heat exchanger, and the pen is the accumulator. ,
(Foundation) is a crankcase heater, (Support) is a crankcase heater, (N) is an air conditioning compressor, (G) is a four-way valve, 0]
) is the expansion mechanism, (2) is the air side heat exchanger, (2) is the air conditioning circulation pump, (2) is the radiator, (2) is the three-way valve, (B) is the thermostat, θ4 is the thermostat, (C) is the thermostat, ) is the thermostat, ■ is the delay timer, groan is the thermostat, - is the thermostat, and the bottle is the coil. Note that the same reference numerals in the figures indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】[Claims] 圧縮機、給湯用凝縮器、膨張機構及び蒸発器として作用
する水側熱交換器を順次冷媒配管接続して構成される給
湯用冷凍サイクルと給湯用循環ポンプにて上記給湯用凝
縮器に流通された貯湯タンク内の給湯水と熱交換関係を
なす給湯水回路と、圧縮機、四方弁、非利用側熱交換器
、膨張機構及び水側熱交換器を順次冷媒配管接続して構
成される空調用冷凍サイクルと空調用循環ポンプにより
上記水側熱交換器を通り負荷側へ流通される空調用冷温
水回路を備え上記水側熱交換器にて、給湯用冷凍サイク
ルと冷温水を介して熱交換関係に空調用冷凍サイクルを
配設すると共に上記空調用冷凍サイクルの加熱運転時外
気温度を検出し、外気温度が所定値以上の場合、空調用
水回路の低温用サーモスタットにより、また、所定値以
下の場合空調用水回路の高温用サーモスタットにより上
記空調用冷凍サイクルの運転を制御するようにしたこと
を特徴とするヒートポンプ式冷暖房給湯機。
The hot water is distributed to the hot water condenser through a hot water refrigeration cycle and a hot water circulation pump, which are constructed by sequentially connecting a compressor, a hot water condenser, an expansion mechanism, and a water side heat exchanger that acts as an evaporator with refrigerant piping. An air conditioner consisting of a hot water supply circuit that has a heat exchange relationship with hot water in a hot water storage tank, a compressor, a four-way valve, a heat exchanger on the non-use side, an expansion mechanism, and a heat exchanger on the water side, which are sequentially connected with refrigerant piping. The water-side heat exchanger is equipped with an air-conditioning cold/hot water circuit that is circulated through the water-side heat exchanger to the load side by the air-conditioning refrigeration cycle and the air-conditioning circulation pump. An air conditioning refrigeration cycle is installed in the exchange relationship, and the outside air temperature is detected during heating operation of the air conditioning refrigeration cycle, and if the outside air temperature is above a predetermined value, the low temperature thermostat of the air conditioning water circuit detects whether the air temperature is below the predetermined value or not. A heat pump type air-conditioning/heating water heater, characterized in that the operation of the air-conditioning refrigeration cycle is controlled by a high-temperature thermostat of the air-conditioning water circuit.
JP10674484A 1984-05-23 1984-05-23 Heat pump type air-conditioning hot-water supply machine Pending JPS60248967A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10674484A JPS60248967A (en) 1984-05-23 1984-05-23 Heat pump type air-conditioning hot-water supply machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10674484A JPS60248967A (en) 1984-05-23 1984-05-23 Heat pump type air-conditioning hot-water supply machine

Publications (1)

Publication Number Publication Date
JPS60248967A true JPS60248967A (en) 1985-12-09

Family

ID=14441427

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10674484A Pending JPS60248967A (en) 1984-05-23 1984-05-23 Heat pump type air-conditioning hot-water supply machine

Country Status (1)

Country Link
JP (1) JPS60248967A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63150477A (en) * 1986-12-16 1988-06-23 Calsonic Corp Controller for variable capacity swash plate type compressor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63150477A (en) * 1986-12-16 1988-06-23 Calsonic Corp Controller for variable capacity swash plate type compressor

Similar Documents

Publication Publication Date Title
JP5860700B2 (en) System for providing a vapor compression cycle and method for controlling a vapor compression cycle
JPS6325471A (en) Air conditioner
JPS61101771A (en) Heat pump type air-conditioning hot-water supply machine
JPS60248967A (en) Heat pump type air-conditioning hot-water supply machine
JPS61101769A (en) Heat pump type air-conditioning hot-water supply machine
JPS5986846A (en) Hot water supply device of heat pump type
JPS60248964A (en) Heat pump type air-conditioning hot-water supply machine
JPS60248963A (en) Heat pump type air-conditioning hot-water supply machine
JPS60248968A (en) Heat pump type air-conditioning hot-water supply machine
JPS60248965A (en) Heat pump type air-conditioning hot-water supply machine
JPS60248966A (en) Heat pump type air-conditioning hot-water supply machine
JPS61101770A (en) Heat pump type air-conditioning hot-water supply machine
JPS58124138A (en) Controlling method of driving auxiliary heat source in regenerative air conditioner
JPS60248962A (en) Heat pump type air-conditioning hot-water supply machine
JPS6346336B2 (en)
JPS60248970A (en) Heat pump type air-conditioning hot-water supply machine
JPS60248969A (en) Heat pump type air-conditioning hot-water supply machine
JP2001296055A (en) Hot water storage type hot water heater source device
JPS60248961A (en) Heat pump type air-conditioning hot-water supply machine
JPS59217460A (en) Refrigeration cycle of air conditioner
JPH0233104Y2 (en)
JPS611967A (en) Air-conditioning and hot-water supply heat pump device
JP2002295908A (en) Heating medium circulating type heating equipment
JP3448897B2 (en) Heat pump type heating and cooling water heater
JPS6018895B2 (en) Solar heat pump air conditioner