JPS6346336B2 - - Google Patents

Info

Publication number
JPS6346336B2
JPS6346336B2 JP59127069A JP12706984A JPS6346336B2 JP S6346336 B2 JPS6346336 B2 JP S6346336B2 JP 59127069 A JP59127069 A JP 59127069A JP 12706984 A JP12706984 A JP 12706984A JP S6346336 B2 JPS6346336 B2 JP S6346336B2
Authority
JP
Japan
Prior art keywords
water
heat
heat exchanger
outdoor
blower
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP59127069A
Other languages
Japanese (ja)
Other versions
JPS6023740A (en
Inventor
Akira Taguchi
Hisao Oochi
Kunitake Sakai
Juji Mori
Shigeru Ooshiro
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP59127069A priority Critical patent/JPS6023740A/en
Publication of JPS6023740A publication Critical patent/JPS6023740A/en
Publication of JPS6346336B2 publication Critical patent/JPS6346336B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • Y02A30/274Relating to heating, ventilation or air conditioning [HVAC] technologies using waste energy, e.g. from internal combustion engine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/52Heat recovery pumps, i.e. heat pump based systems or units able to transfer the thermal energy from one area of the premises or part of the facilities to a different one, improving the overall efficiency

Landscapes

  • Other Air-Conditioning Systems (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Air Conditioning Control Device (AREA)

Description

【発明の詳細な説明】 本発明は、圧縮機、四方切換弁、室内熱交換
器、減圧機構、室外空気熱交換器、室外送風機、
室外水冷式熱交換器を有するヒートポンプ式空気
調和機の室外熱源を暖房運転の低外気温におい
て、一般に使い道がないとされている生活用雑排
水(例えば風呂の水、調理するときの水、湯沸器
から出た湯水等)太陽から得られる熱、排熱空気
(例えば換気するときの排熱、調理場からの排熱
空気)を蓄熱タンクに蓄熱させ、室内の必要負荷
能力に応じて室外水冷式熱交換器に与え、それで
も足りない場合は加熱器あるいは水道水を加えて
蓄熱させることにより熱効率のよい安定した暖房
能力が得られることを目的としたものである。
Detailed Description of the Invention The present invention provides a compressor, a four-way switching valve, an indoor heat exchanger, a pressure reduction mechanism, an outdoor air heat exchanger, an outdoor blower,
When the outdoor heat source of a heat pump type air conditioner with an outdoor water-cooled heat exchanger is used for heating operation at low outdoor temperatures, it can be used to collect domestic gray water (e.g., bath water, cooking water, hot water), which is generally considered to have no use. Heat obtained from the sun (e.g., hot water from a boiler, etc.) and waste heat air (e.g., waste heat from ventilation, waste heat air from a cooking area) are stored in a heat storage tank, and the heat is stored outdoors according to the required indoor load capacity. The purpose is to provide stable heating capacity with high thermal efficiency by supplying heat to a water-cooled heat exchanger, and if that is insufficient, adding heat to a heater or tap water to store heat.

従来、暖房時室外の熱源としては空気、水道
水、井戸水等を使用していたが、空気熱源の場合
は一般に低外気温になると、室内の必要負荷能力
に対して室内空気熱交換器の放熱量が不足し、さ
らに室外空気熱交換器には霜が付着し、よつて暖
房サイクルを冷房サイクルに切換えて室外空気熱
交換器に付着した霜を取り除く除霜操作を必要と
していたので、除霜時には室内の暖房能力が得ら
れず熱効率が低下していた。また水道水、井戸水
を単独に使用すると水道水はコスト、井戸水は井
戸がかれる等の問題が生じてくるという欠点が有
り、何らかの対策が必要であつた。
Conventionally, air, tap water, well water, etc. have been used as an outdoor heat source for heating, but in the case of air heat sources, when the outside temperature is low, the indoor air heat exchanger's discharge capacity is generally lower than the required indoor load capacity. There was a shortage of heat, and frost had adhered to the outdoor air heat exchanger, making it necessary to switch from the heating cycle to the cooling cycle and perform a defrosting operation to remove the frost that had adhered to the outdoor air heat exchanger. In some cases, indoor heating capacity could not be obtained, resulting in a decline in thermal efficiency. Furthermore, when tap water and well water are used alone, there are disadvantages such as the cost of tap water and the problems of draining wells when using well water, so some kind of countermeasure has been required.

本発明は前記従来の空気調和機に見られる欠点
を解消するものである。
The present invention eliminates the drawbacks found in the conventional air conditioners.

以下、本発明をその実施例を示す添付図面の第
1図〜第3図を参考に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to FIGS. 1 to 3 of the accompanying drawings showing embodiments thereof.

同図において、1は圧縮機、2は四方切換弁、
3は室内空気熱交換器、4は前記室内空気熱交換
器3の室内送風機、5は減圧器、6は室外空気熱
交換器、7は前記室外空気熱交換器6の室外送風
機、8は前記減圧器5と前記室外空気熱交換器6
の間に設けた三方切換弁、9は前記四方切換弁2
と前記室外空気熱交換器6との間に設けた三方切
換弁、10は前記室外空気熱交換器6と並列に設
けてなる室外水冷式熱交換器で前記三方切換弁
8,9に接続している。11は外気温度を検出す
る外気サーモスタツトである。
In the figure, 1 is a compressor, 2 is a four-way switching valve,
3 is an indoor air heat exchanger, 4 is an indoor blower of the indoor air heat exchanger 3, 5 is a pressure reducer, 6 is an outdoor air heat exchanger, 7 is an outdoor blower of the outdoor air heat exchanger 6, 8 is the above-mentioned Pressure reducer 5 and the outdoor air heat exchanger 6
A three-way switching valve 9 is provided between the four-way switching valve 2.
and the outdoor air heat exchanger 6, and 10 is an outdoor water-cooled heat exchanger provided in parallel with the outdoor air heat exchanger 6 and connected to the three-way switching valves 8 and 9. ing. 11 is an outside air thermostat that detects outside air temperature.

次に前記室外水冷式熱交換器10の水回路にお
いて、12は熱を蓄熱する蓄熱タンク、13は蓄
熱タンク内に溜つた水を前記室外水冷式熱交換器
10へ送る第1のポンプ、14は生活用雑排水、
(例えば風呂の水、調理するときの水、湯沸器か
ら出る湯水等、15は前記生活用雑排水を通す排
水管で、前記蓄熱タンク12へ直結している。1
6は太陽エネルギー、17は太陽エネルギー16
を吸熱する熱媒体を入れたコレクター、18は前
記コレクター17で吸熱された熱媒体を放熱する
太陽放熱器で、前記蓄熱タンクへ放熱する。19
は前記コレクター17で吸熱した熱媒体を前記コ
レクター17および前記太陽放熱器18へ環状に
回す第2のポンプ、20は前記コレクター17の
温度を検出するコレクターサーモスタツト、21
は調理場および換気から得られる排熱空気、22
は前記排熱空気21を放熱する排熱交換器、23
は前記排熱空気21を前記排熱交換器22へ送る
排熱送風機、24は前記排熱空気21を送る排熱
ダクトで、前記排熱交換器22と前記排熱送風機
23と連結している。25は前記排熱空気21を
検出する排熱サーモスタツト、26は前記蓄熱タ
ンク12に接続した水道配管、27は前記水道配
管26に設けた水を制御する水道開閉弁、28は
前記蓄熱タンク12の水位を検出するフロートス
イツチ、29は前記蓄熱タンク12を加熱する加
熱器、30は前記蓄熱タンク12の水温を検出す
る蓄熱サーモスタツトである。
Next, in the water circuit of the outdoor water-cooled heat exchanger 10, 12 is a heat storage tank that stores heat, 13 is a first pump that sends water accumulated in the heat storage tank to the outdoor water-cooled heat exchanger 10, and 14 is domestic gray water,
(For example, water for bathing, water for cooking, hot water from a water heater, etc.) 15 is a drain pipe through which the domestic gray water passes, and is directly connected to the heat storage tank 12.1
6 is solar energy, 17 is solar energy 16
A collector 18 containing a heat medium that absorbs heat is a solar radiator that radiates heat from the heat medium absorbed by the collector 17, and radiates heat to the heat storage tank. 19
20 is a second pump that circularly circulates the heat medium absorbed by the collector 17 to the collector 17 and the solar radiator 18; 20 is a collector thermostat that detects the temperature of the collector 17; 21;
is the waste heat air obtained from the kitchen and ventilation, 22
23 is an exhaust heat exchanger that radiates heat from the exhaust heat air 21;
24 is a waste heat blower that sends the waste heat air 21 to the waste heat exchanger 22; 24 is a waste heat duct that sends the waste heat air 21, and is connected to the waste heat exchanger 22 and the waste heat blower 23. . 25 is an exhaust heat thermostat that detects the exhaust heat air 21; 26 is a water pipe connected to the heat storage tank 12; 27 is a water supply shut-off valve provided in the water pipe 26 to control water; 28 is the heat storage tank 12. 29 is a heater that heats the heat storage tank 12, and 30 is a heat storage thermostat that detects the water temperature of the heat storage tank 12.

なお、図中、実線矢印は冷房運転時の冷媒の流
れを示し、点線矢印は暖房運転時の冷媒の流れを
示し、一点鎖線矢印は水の流れを示し、二点鎖線
矢印は太陽エネルギーから得た熱媒体の流れを示
し、三点鎖線矢印は排熱空気の流れを示すもので
ある。
In the figure, solid arrows indicate the flow of refrigerant during cooling operation, dotted arrows indicate the flow of refrigerant during heating operation, dashed-dotted arrows indicate the flow of water, and dashed-dotted arrows indicate the flow of refrigerant obtained from solar energy. The three-dot chain arrow indicates the flow of exhaust heat air.

第2図は前記構成からなる空気調和機の概略電
気回路図である。同図において、2aは前記四方
切換弁2の電磁コイル、8a,9aは前記三方切
換弁8,9の電磁コイル、11aは前記外気サー
モスタツト11の接点、20aはコレクターサー
モスタツト20の接点、25aは排熱サーモスタ
ツト25の接点、28aはフロートスイツチ28
の接点、30aは前記蓄熱サーモスタツト30の
接点、31a,31bはそれぞれ前記コレクター
サーモスタツト20の接点20aと前記排熱サー
モスタツト25の接点25aと直列に接続したコ
イル、31cは前記コイル31a,31bの接
点、32は前記加熱器29を制御するタイマー、
32aは前記タイマー32と連動した接点、33
aは前記室外送風機7の運転を制御する室外送風
機制御リレーコイル、33bは前記室外送風機制
御リレーコイル33aと連動した接点である。
FIG. 2 is a schematic electrical circuit diagram of the air conditioner constructed as described above. In the figure, 2a is the electromagnetic coil of the four-way switching valve 2, 8a and 9a are the electromagnetic coils of the three-way switching valves 8 and 9, 11a is a contact of the outside air thermostat 11, 20a is a contact of the collector thermostat 20, and 25a is a contact of the outside air thermostat 11. 28a is the contact point of the exhaust heat thermostat 25, and 28a is the float switch 28.
30a is a contact of the heat storage thermostat 30, 31a and 31b are coils connected in series with the contact 20a of the collector thermostat 20 and the contact 25a of the heat exhaust thermostat 25, respectively; 31c is the coil 31a and 31b. 32 is a timer for controlling the heater 29;
32a is a contact point linked to the timer 32; 33
Reference character a is an outdoor blower control relay coil that controls the operation of the outdoor blower 7, and 33b is a contact that is interlocked with the outdoor blower control relay coil 33a.

ここで、蓄熱サーモスタツトは30は、本発明
の蓄熱タンク水温制御装置に相当し、排熱サーモ
スタツト25は、排熱送風制御装置に、コレクタ
ーサーモスタツト20は、第2のポンプ制御装置
に、タイマー32は、タイマー手段にそれぞれ相
当し、また外気サーモスタツト11は、本発明の
負荷検出手段と、制御手段と、ポンプ制御手段の
三者の機能を兼ね、また電磁コイル8a,9a
は、本発明の切換弁制御手段に相当し、室外送風
機制御リレーコイル19aとその接点19bは、
本発明の送風機停止手段に相当している。
Here, the heat storage thermostat 30 corresponds to the heat storage tank water temperature control device of the present invention, the exhaust heat thermostat 25 corresponds to the exhaust heat blowing control device, and the collector thermostat 20 corresponds to the second pump control device. The timers 32 each correspond to timer means, and the outside air thermostat 11 also serves as the load detection means, control means, and pump control means of the present invention, and the electromagnetic coils 8a, 9a
corresponds to the switching valve control means of the present invention, and the outdoor blower control relay coil 19a and its contacts 19b are:
This corresponds to the blower stopping means of the present invention.

なお、これらの制御回路は、マイクロコンピユ
ータ等によつても実現可能である。
Note that these control circuits can also be realized by a microcomputer or the like.

前記構成において、冷房運転時は、圧縮機1か
ら吐出された冷媒は、四方切換弁2、三方切換弁
9、室外空気熱交換器6、三方切換弁8、減圧器
5、室内空気熱交換器3、四方切換弁2を通り圧
縮機1へ戻る冷凍サイクルを構成する。
In the above configuration, during cooling operation, the refrigerant discharged from the compressor 1 is transferred to the four-way switching valve 2, the three-way switching valve 9, the outdoor air heat exchanger 6, the three-way switching valve 8, the pressure reducer 5, and the indoor air heat exchanger. 3. Construct a refrigeration cycle that passes through the four-way switching valve 2 and returns to the compressor 1.

次に蓄熱タンク12へは、生活用雑排水14が
排水管15を通つて集まり、さらに暖房運転で蓄
熱タンク12の水温が一定水温より下つて、蓄熱
サーモスタツト30の接点30aが閉じた場合、
コレクター17の温度が設定温度より高くてコレ
クターサーモスタツト20の接点20aが閉じて
いたならば、第2のポンプ19が運転し太陽エネ
ルギーから得た熱を太陽放熱器18で放熱し、さ
らに排熱空気21の温度が設定温度より高くて排
熱サーモスタツト25の接点25aが閉じていた
ならば、排熱送風機23が運転し排熱空気の熱を
排熱ダクト24を通して排熱交換器22で放熱す
る。またコレクター17の温度と排熱空気21の
温度が設定温度より低くて、コイル31a,31
bが通電されない場合、接点31cが閉じて加熱
器29が運転される。あるいは、第2のポンプ1
9および排熱送風機23のどちらか一方もしくは
両方が運転しているにもかかわらず蓄熱サーモス
タツト30の接点30aが所定時間経過後開かな
ければ、タイマー32の接点32aを閉じて加熱
器29を運転し、蓄熱タンク12内に溜つた水温
を上昇させる。さらに蓄熱タンク12内の水位が
設定水位以下になるとフロートスイツチ28の接
点28aが閉じ水道開閉弁27のコイル27aに
通電され水道配管26から水を設定水位になるま
で放水する。
Next, domestic gray water 14 collects in the heat storage tank 12 through the drain pipe 15, and when the water temperature in the heat storage tank 12 falls below a certain water temperature during heating operation and the contact 30a of the heat storage thermostat 30 closes,
If the temperature of the collector 17 is higher than the set temperature and the contact 20a of the collector thermostat 20 is closed, the second pump 19 is operated and the heat obtained from solar energy is radiated by the solar radiator 18, and the heat is further exhausted. If the temperature of the air 21 is higher than the set temperature and the contact 25a of the exhaust heat thermostat 25 is closed, the exhaust heat blower 23 is operated and the heat of the exhaust air is radiated through the exhaust heat duct 24 and the exhaust heat exchanger 22. do. Also, if the temperature of the collector 17 and the temperature of the exhaust heat air 21 are lower than the set temperature, the coils 31a, 31
When b is not energized, contact 31c is closed and heater 29 is operated. Alternatively, the second pump 1
If the contact 30a of the heat storage thermostat 30 does not open after a predetermined period of time even though either or both of the heat storage thermostat 9 and the exhaust heat blower 23 are operating, the contact 32a of the timer 32 is closed and the heater 29 is operated. The temperature of the water accumulated in the heat storage tank 12 is increased. Furthermore, when the water level in the heat storage tank 12 falls below the set water level, the contact 28a of the float switch 28 is closed, and the coil 27a of the water supply on/off valve 27 is energized to discharge water from the water pipe 26 until the water level reaches the set water level.

次に暖房運転で室外熱源を空気で使用していて
も室内の必要負荷能力に対して、室内空気熱交換
器3の放熱量がある場合(例えば外気温度が0℃
以上)は外気サーモスタツト11の接点11aが
開き、圧縮機1から吐出された冷媒は、四方切換
弁2を通り室内空気熱交換器3、減圧器5、三方
切換弁8、室外空気熱交換器6、三方切換弁9、
四方切換弁2を通り圧縮機1へ戻る冷凍サイクル
を構成する。
Next, even if air is used as the outdoor heat source in heating operation, if the amount of heat released by the indoor air heat exchanger 3 is large enough for the required indoor load capacity (for example, when the outside air temperature is 0°C
In the above), the contact 11a of the outside air thermostat 11 opens, and the refrigerant discharged from the compressor 1 passes through the four-way switching valve 2, the indoor air heat exchanger 3, the pressure reducer 5, the three-way switching valve 8, and the outdoor air heat exchanger. 6, three-way switching valve 9,
A refrigeration cycle is configured that passes through the four-way switching valve 2 and returns to the compressor 1.

また暖房運転で室外熱源が空気で使用していて
も室内の必要負荷能力に対して、室内空気熱交換
器3の放熱量が不足する場合(例えば外気温度が
0℃以下)は外気サーモスタツト11の接点11
aが閉じ、三方切換弁8,9が切換わり室外空気
熱交換器6には冷媒が流れず室外水冷式熱交換器
10の方へ冷媒が流れ、室外送風機制御リレーコ
イル33aが通電されて、室外送風機制御リレー
の接点33bが開いて室外送風機7が停止し、同
時に第1のポンプ13が作動し蓄熱タンク12の
中に溜つた水を室外水冷式熱交換器10へ流し
て、水から得られる熱源でもつて熱交換する。
In addition, even if air is used as the outdoor heat source during heating operation, if the amount of heat released by the indoor air heat exchanger 3 is insufficient for the required indoor load capacity (for example, the outside air temperature is below 0°C), the outside air thermostat 11 Contact 11
a is closed, the three-way switching valves 8 and 9 are switched, the refrigerant does not flow into the outdoor air heat exchanger 6, and the refrigerant flows toward the outdoor water-cooled heat exchanger 10, and the outdoor blower control relay coil 33a is energized. Contact 33b of the outdoor blower control relay opens to stop the outdoor blower 7, and at the same time, the first pump 13 is activated to flow the water accumulated in the heat storage tank 12 to the outdoor water-cooled heat exchanger 10, thereby removing the water obtained from the water. It also exchanges heat with the heat source.

このように室外熱源を空気および蓄熱タンクの
両方から室内の必要負荷能力に応じて室外空気熱
交換器、室外水冷式熱交換器へ供給することによ
り安定した暖房能力が得られる。
In this way, stable heating capacity can be obtained by supplying the outdoor heat source from both the air and the heat storage tank to the outdoor air heat exchanger and the outdoor water-cooled heat exchanger according to the required indoor load capacity.

なお、本実施例の外気サーモスタツト11を、
冷凍サイクル中の圧力を検出する圧力スイツチあ
るいは冷凍サイクル中の温度を検出するサーモス
タツトとしてもよく、また太陽エネルギーを吸熱
する熱媒体は環状に回さないで蓄熱タンク12へ
放出してもよく、コレクターサーモスタツト20
を太陽熱吸収装置中の圧力を検出してもよい。さ
らに三方切換弁8,9は第3図に示すような二方
切換弁36,37,38としてもよい。
Note that the outside air thermostat 11 of this embodiment is
It may be a pressure switch that detects the pressure during the refrigeration cycle or a thermostat that detects the temperature during the refrigeration cycle, and the heat medium that absorbs solar energy may be discharged to the heat storage tank 12 without turning it in an annular manner. collector thermostat 20
The pressure in the solar heat absorption device may be detected. Furthermore, the three-way switching valves 8, 9 may be replaced by two-way switching valves 36, 37, 38 as shown in FIG.

前記実施例より明らかなように、本発明におけ
る空気調和機の運転制御装置は、圧縮機、四方切
換弁、室内空気熱交換器、減圧機構、室外空気熱
交換器および前記室外空気熱交換器と並列にバイ
パスさせた室外水冷式熱交換器をそれぞれ連結し
てヒートポンプ式冷凍サイクルを構成し、この冷
凍サイクルにおける前記室内空気熱交換器および
前記室外空気熱交換器にはそれぞれ室内送風機、
室外送風機を設け、さらに前記室外空気熱交換器
と前記室外水冷式熱交換器のそれぞれどちらか一
方へ冷媒の流れを切換える切換弁を設け、前記室
外水冷式熱交換器の水回路へは、蓄熱タンク、第
1のポンプを連結し、前記蓄熱タンクには生活用
雑排水を流す排水管、水道配管、太陽エネルギー
から得られた熱を放熱する太陽放熱器(もしくは
太陽エネルギーによつて得られた温水を放出する
太陽温水排水管)、排熱空気を放熱する排熱交換
器さらに前記蓄熱タンクを加熱する加熱器とをそ
れぞれ設け、前記排水管には、前記生活用雑排水
が集められるように接続し、前記水道配管には水
道開閉弁を設けけ、前記太陽放熱器にはコレクタ
ーと第2のポンプを環状に連結して太陽熱吸収装
置を構成し、前記排熱交換器には排熱送風機と排
熱ダクトを連結し、さらに前記室外空気熱交換器
と前記室外水冷式熱交換器を切り換える前記切換
弁の開閉制御を行なう空気・水切換制御装置、前
記空気・水切換制御装置と連動して前記室外送風
機の運転を制御する室外送風制御装置、前記水道
開閉弁の開閉制御を行なう水道開閉制御装置、前
記蓄熱タンクの水温を制御する蓄熱タンク水温制
御装置、前記第2のポンプを制御する第2のポン
プ制御装置、前記排熱送風機を制御する排熱送風
機制御装置、前記加熱器を制御する加熱制御装置
をそれぞれ設け、前記蓄熱タンクの水温が設定温
度以下であれば前記第2のポンプ、前記排熱送風
機のどちらか一方もしくは両方が運転もしくは停
止した状態となり、前記第2のポンプ、前記排熱
送風機のどちらか一方もしくは両方が運転されて
いる状態で、所定時間経過後、前記蓄熱タンクの
水温が設定温度以上でなければ前記加熱器が運転
され、また前記蓄熱タンクの水温が設定温度より
低くて、前記第2のポンプ、前記排熱送風機の両
方が停止している状態では前記加熱器が運転さ
れ、さらに前記蓄熱タンクの水位が設定水位より
低ければ前記水道開閉弁が設定水位に上昇するま
で開き、さらに外気温度もしくは冷凍サイクル中
の温度、圧力が設定値以下になると室外送風機が
停止し、前記切換弁を前記室外水冷式熱交換器へ
流れるように切換え、前記第1のポンプを運転す
るもので、室外熱源を空気および蓄熱タンクの両
方から室内の必要負荷能力に応じて室外空気熱交
換器、室外水冷式熱交換器へ供給することにより
安定した暖房能力が得られ、さらに蓄熱タンクへ
溜める熱を生活用雑排水、太陽エネルギー、排熱
空気というコストのかからない熱源を使用するこ
とにより、暖房運転での低外気温時において、熱
効率の良い高暖房能力が得られ、かつ室外空気熱
交換器に霜が付着する前に室外水冷式熱交換器を
使用するので霜除去操作を必要とせず、よつて暖
房能力の低下がないことやさらに生活用雑排水、
太陽エネルギー、排熱空気の熱源が不足すれば、
加熱器、水道水を加えることにより常に安定した
暖房能力が得られ、またあらかじめ蓄熱タンクに
溜つた水を常に安定した熱源として保つているの
で、低外気温時での暖房の立上りが良く、かつ蓄
熱タンクの水温が一定水温より下れば、蓄熱サー
モスタツト30の接点30aが閉じて太陽エネル
ギーおよび排熱空気の熱により蓄熱タンクに溜つ
た水の凍結を防止し、さらに太陽エネルギー、排
熱空気から得られなければ加熱器により熱を与え
凍結を防止し、またコレクターおよび排熱空気の
温度が設定温度以下になつた時、第2のポンプお
よび排熱送風機が停止しているので、蓄熱タンク
内の水温が逆に吸熱されて、水温が下ることがな
いなどきわめて実用的効果の大なるものである。
As is clear from the above embodiments, the air conditioner operation control device of the present invention includes a compressor, a four-way switching valve, an indoor air heat exchanger, a pressure reduction mechanism, an outdoor air heat exchanger, and the outdoor air heat exchanger. A heat pump refrigeration cycle is constructed by connecting outdoor water-cooled heat exchangers that are bypassed in parallel, and each of the indoor air heat exchanger and the outdoor air heat exchanger in this refrigeration cycle is provided with an indoor blower,
An outdoor blower is provided, and a switching valve is provided to switch the flow of refrigerant to either the outdoor air heat exchanger or the outdoor water-cooled heat exchanger, and the water circuit of the outdoor water-cooled heat exchanger is provided with a heat storage A tank and a first pump are connected, and the heat storage tank is equipped with a drain pipe for discharging domestic gray water, a water pipe, and a solar radiator for dissipating heat obtained from solar energy (or a solar radiator for dissipating heat obtained from solar energy). A solar hot water drain pipe for discharging hot water, a waste heat exchanger for dissipating heat from the waste heat air, and a heater for heating the heat storage tank are respectively provided, and the drain pipe is configured to collect the domestic waste water. a water supply shut-off valve is provided in the water pipe; a collector and a second pump are connected in an annular manner to the solar radiator to form a solar heat absorption device; and the waste heat exchanger is provided with a waste heat blower. and an air/water switching control device that connects the air/water cooling duct and controls the opening/closing of the switching valve that switches between the outdoor air heat exchanger and the outdoor water-cooled heat exchanger; an outdoor blower control device that controls the operation of the outdoor blower, a water supply opening/closing control device that controls the opening and closing of the water supply opening/closing valve, a heat storage tank water temperature control device that controls the water temperature of the heat storage tank, and the second pump. A second pump control device, a waste heat blower control device that controls the waste heat blower, and a heating control device that controls the heater are provided, and if the water temperature of the heat storage tank is equal to or lower than a set temperature, the second pump , either or both of the exhaust heat blowers are in a state of operation or stop, and after a predetermined period of time has elapsed with either or both of the second pump and the exhaust heat blower being operated, If the water temperature in the tank is not higher than the set temperature, the heater is operated, and if the water temperature in the heat storage tank is lower than the set temperature and both the second pump and the exhaust heat blower are stopped, the heater is operated. When the heater is operated and the water level in the thermal storage tank is lower than the set water level, the water supply shut-off valve is opened until the water level rises to the set water level, and when the outside air temperature or the temperature or pressure in the refrigeration cycle falls below the set value, the outdoor blower is turned off. is stopped, the switching valve is switched to allow the flow to flow to the outdoor water-cooled heat exchanger, and the first pump is operated. Stable heating capacity is achieved by supplying the heat to the outdoor air heat exchanger and outdoor water-cooled heat exchanger, and the heat stored in the heat storage tank uses inexpensive heat sources such as gray water, solar energy, and waste heat air. By doing so, a high heating capacity with good thermal efficiency can be obtained when the outside temperature is low during heating operation, and since the outdoor water-cooled heat exchanger is used before frost builds up on the outdoor air heat exchanger, the defrost removal operation can be performed. There is no need for heating, and there is no reduction in heating capacity.
If there is a lack of heat sources such as solar energy or waste heat air,
By adding a heater and tap water, stable heating capacity can be obtained at all times, and since the water stored in the heat storage tank is always maintained as a stable heat source, heating starts quickly even at low outside temperatures. When the water temperature in the heat storage tank falls below a certain water temperature, the contact 30a of the heat storage thermostat 30 closes to prevent the water accumulated in the heat storage tank from freezing due to the heat of solar energy and exhaust heat air. If the temperature cannot be obtained from the heat storage tank, the heater will apply heat to prevent freezing, and when the temperature of the collector and exhaust heat air falls below the set temperature, the second pump and exhaust heat blower are stopped, so the heat storage tank This has extremely practical effects, as the water temperature inside the tank absorbs heat and the water temperature does not drop.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例における運転制御装置
を具備した空気調和機のヒートポンプ式冷凍サイ
クル図、第2図は同運転制御装置における電気制
御回路図、第3図は他の実施例を示す空気調和機
のヒートポンプ式冷凍サイクル図である。 1……圧縮機、2……四方切換弁、3……室内
空気熱交換器、4……室内送風機、5……減圧
器、6……室外空気熱交換器、7……室外送風
機、8……第1の三方切換弁、9……第2の三方
切換弁、10……室外水冷式熱交換器、11……
外気サーモスタツト、12……蓄熱タンク、13
……第1のポンプ、14……生活用雑排水、15
……排水管、16……太陽エネルギー、17……
コレクター、18……太陽熱放熱器、19……第
2のポンプ、20……コレクターサーモスタツ
ト、21……排熱空気、22……排熱交換器、2
3……排熱送風機、24……排熱ダクト、25…
…排熱サーモスタツト、26……水道配管、27
……水道開閉弁、28……フロートスイツチ、2
9……加熱器、30……蓄熱サーモスタツト。
Fig. 1 shows a heat pump refrigeration cycle diagram of an air conditioner equipped with an operation control device according to an embodiment of the present invention, Fig. 2 shows an electric control circuit diagram of the same operation control device, and Fig. 3 shows another embodiment. It is a heat pump type refrigeration cycle diagram of an air conditioner. 1... Compressor, 2... Four-way switching valve, 3... Indoor air heat exchanger, 4... Indoor blower, 5... Pressure reducer, 6... Outdoor air heat exchanger, 7... Outdoor blower, 8 ...First three-way switching valve, 9... Second three-way switching valve, 10... Outdoor water-cooled heat exchanger, 11...
Outside air thermostat, 12... Heat storage tank, 13
...First pump, 14...Domestic gray water, 15
...Drainage pipe, 16...Solar energy, 17...
Collector, 18...Solar heat radiator, 19...Second pump, 20...Collector thermostat, 21...Exhaust heat air, 22...Exhaust heat exchanger, 2
3...Exhaust heat blower, 24...Exhaust heat duct, 25...
...Exhaust heat thermostat, 26...Water piping, 27
...Water supply on/off valve, 28...Float switch, 2
9... Heater, 30... Heat storage thermostat.

Claims (1)

【特許請求の範囲】[Claims] 1 圧縮機、四方切換弁、室内空気熱交換器、減
圧機構、室外空気熱交換器および前記室外空気熱
交換器と並列にバイパスさせた室外水冷式熱交換
器をそれぞれ連結してヒートポンプ式冷凍サイク
ルを構成し、この冷凍サイクルにおける前記室内
空気熱交換器および前記室外空気熱交換器にはそ
れぞれ室内送風機、室外送風機を設け、さらに前
記室外空気熱交換器と前記室外水冷式熱交換器の
それぞれどちらか一方へ冷媒の流れを切換える切
換弁を設け、前記室外水冷式熱交換器の水回路へ
は、蓄熱タンク、第1のポンプを連結し、前記蓄
熱タンクには生活用雑排水を流す排水管、水道配
管、太陽エネルギーから得られた熱を放熱する太
陽放熱器(もしくは太陽エネルギーによつて得ら
れた温水を放出する太陽温水排出管)、排熱空気
を放熱する排熱交換器、さらに前記蓄熱タンクを
加熱する加熱器をそれぞれ設け、前記排水管に
は、前記生活用雑排水が集められるように接続
し、前記水道配管には水道開閉弁を設け、前記太
陽放熱器にはコレクターと第2のポンプを環状に
連結して太陽熱吸収装置を構成し、前記排熱交換
器には排熱送風機と排熱ダクトを連結し、さら
に、排熱ダクト内の温度が設定値以上であるとき
に、前記排熱送風機の運転を可能にする排熱送風
機制御手段と、前記太陽放熱器のコレクターの温
度が設定値以上であるときに、前記第2のポンプ
の運転を可能にする第2のポンプ制御装置と、所
定時間経過後に前記加熱器を加熱動作させるタイ
マー手段と、前記蓄熱タンクの水温を検出し、そ
の検出温度が設定値以下であるときに、前記排熱
送風機制御装置、第2のポンプ制御装置、タイマ
ー手段へそれぞれ通電する蓄熱タンク水温制御装
置を設け、さらに前記切換弁の切換制御を行う切
換制御装置を、外気温度あるいは冷凍サイクル中
の温度あるいは圧力などの負荷を検出する負荷検
出手段と、この負荷検出手段による検出量が設定
値以下であるときに切換信号を出力する制御手段
と、この制御手段の切換信号により、前記室外送
風機の運転を停止する送風機停止手段と、前記切
換弁を駆動して前記冷凍サイクルの冷媒の流れを
室外空水冷式熱交換器側へ切換える切換弁制御手
段と、前記第1のポンプを運転するポンプ制御手
段とより構成し、さらに前記蓄熱タンクの水位が
設定水位より低い場合に前記水道開閉弁を開動作
させる水道開閉制御装置を設けた空気調和機の運
転制御装置。
1. A heat pump refrigeration cycle is constructed by connecting a compressor, a four-way switching valve, an indoor air heat exchanger, a pressure reducing mechanism, an outdoor air heat exchanger, and an outdoor water-cooled heat exchanger that is bypassed in parallel with the outdoor air heat exchanger. The indoor air heat exchanger and the outdoor air heat exchanger in this refrigeration cycle are each provided with an indoor blower and an outdoor blower, and each of the outdoor air heat exchanger and the outdoor water-cooled heat exchanger is provided with an indoor blower and an outdoor blower, respectively. A switching valve is provided to switch the flow of refrigerant to one side, a heat storage tank and a first pump are connected to the water circuit of the outdoor water-cooled heat exchanger, and a drain pipe through which domestic wastewater flows into the heat storage tank. , water piping, a solar radiator that radiates heat obtained from solar energy (or a solar hot water discharge pipe that radiates hot water obtained from solar energy), an exhaust heat exchanger that radiates heat from waste heat air, and the above-mentioned A heater for heating the heat storage tank is provided respectively, the drain pipe is connected to collect the domestic gray water, the water pipe is provided with a water shut-off valve, and the solar radiator is provided with a collector and a drain pipe. A solar heat absorption device is constructed by connecting two pumps in a ring, and an exhaust heat blower and an exhaust heat duct are connected to the exhaust heat exchanger. , an exhaust heat blower control means that enables the operation of the exhaust heat blower, and a second pump that enables the operation of the second pump when the temperature of the collector of the solar radiator is equal to or higher than a set value. a control device; a timer means for heating the heater after a predetermined period of time has elapsed; A heat storage tank water temperature control device is provided that supplies power to the pump control device and the timer means, respectively, and the switching control device that controls switching of the switching valve is equipped with a load detection device that detects loads such as outside air temperature or temperature or pressure during the refrigeration cycle. means, a control means for outputting a switching signal when the amount detected by the load detection means is below a set value, a blower stopping means for stopping the operation of the outdoor blower in response to a switching signal of the control means, and a switching means for stopping the operation of the outdoor blower. It is composed of a switching valve control means for driving a valve to switch the flow of refrigerant in the refrigeration cycle to the outdoor air/water cooled heat exchanger side, and a pump control means for operating the first pump, and further includes a switching valve control means for driving the first pump. An operation control device for an air conditioner including a water supply opening/closing control device that opens the water supply opening/closing valve when the water level is lower than a set water level.
JP59127069A 1984-06-20 1984-06-20 Operation control device for air-conditioning machine Granted JPS6023740A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59127069A JPS6023740A (en) 1984-06-20 1984-06-20 Operation control device for air-conditioning machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59127069A JPS6023740A (en) 1984-06-20 1984-06-20 Operation control device for air-conditioning machine

Publications (2)

Publication Number Publication Date
JPS6023740A JPS6023740A (en) 1985-02-06
JPS6346336B2 true JPS6346336B2 (en) 1988-09-14

Family

ID=14950809

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59127069A Granted JPS6023740A (en) 1984-06-20 1984-06-20 Operation control device for air-conditioning machine

Country Status (1)

Country Link
JP (1) JPS6023740A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0784969B2 (en) * 1986-11-20 1995-09-13 東京都 Heat pump with auxiliary heater
JPH0229562A (en) * 1988-07-18 1990-01-31 Mitsubishi Heavy Ind Ltd Plate-type heat exchanger
JP4730905B2 (en) * 2006-03-17 2011-07-20 国立大学法人 東京大学 Magnetic material and memory and sensor using the same
JP2009168256A (en) * 2008-01-10 2009-07-30 Kimura Kohki Co Ltd Combination type air conditioning system
JP5550841B2 (en) * 2009-02-24 2014-07-16 株式会社大川原製作所 Drying system with heat pump unit
JP6345088B2 (en) * 2014-04-07 2018-06-20 積水化学工業株式会社 Air conditioning system and building

Also Published As

Publication number Publication date
JPS6023740A (en) 1985-02-06

Similar Documents

Publication Publication Date Title
US4314456A (en) Refrigerant condensing system
JP2006090689A (en) Solar hot water supply system with heat pump heat source unit
JPS6346336B2 (en)
JP3404133B2 (en) Thermal storage type air conditioner
CN201463434U (en) Control circuit for hot water air conditioner
JP2001235252A (en) Air-conditioning and hot water feeding system
JP3840914B2 (en) Heat pump bath water supply system
JP4236542B2 (en) Heat pump water heater
JPS59229118A (en) Operation controller for air conditioner
JP3654017B2 (en) Multi-function heat pump system
JPS6342187B2 (en)
JP3692813B2 (en) Heat pump water heater
JP6327499B2 (en) Heat pump water heater
JPS5849006Y2 (en) Hot water supply and cooling equipment
JPS6237302B2 (en)
JPS5932767A (en) Air-conditioning hot-water supply device
JP3588948B2 (en) Heat pump type bath hot water supply system
JP2737543B2 (en) Heat pump water heater
JPH031745Y2 (en)
JPS5818123Y2 (en) Air conditioning/heating water heater
JP2001343152A (en) Combined hot water supplier
JPS5810896Y2 (en) heating device
JPS6018895B2 (en) Solar heat pump air conditioner
JPS58130913A (en) Air conditioning and hot water supplying apparatus
JP2001091049A (en) Heating device