JP3840914B2 - Heat pump bath water supply system - Google Patents

Heat pump bath water supply system Download PDF

Info

Publication number
JP3840914B2
JP3840914B2 JP2001142780A JP2001142780A JP3840914B2 JP 3840914 B2 JP3840914 B2 JP 3840914B2 JP 2001142780 A JP2001142780 A JP 2001142780A JP 2001142780 A JP2001142780 A JP 2001142780A JP 3840914 B2 JP3840914 B2 JP 3840914B2
Authority
JP
Japan
Prior art keywords
hot water
water supply
heat
bath
heat recovery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001142780A
Other languages
Japanese (ja)
Other versions
JP2002333208A (en
Inventor
松本  聡
昌宏 尾浜
竹司 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2001142780A priority Critical patent/JP3840914B2/en
Publication of JP2002333208A publication Critical patent/JP2002333208A/en
Application granted granted Critical
Publication of JP3840914B2 publication Critical patent/JP3840914B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers

Description

【0001】
【発明の属する技術分野】
本発明は、ヒートポンプ式風呂給湯システムに関するものである。
【0002】
【従来の技術】
従来、この種のヒートポンプシステムとしては、特開平7−71839号公報に記載されているようなものがあった。以下、従来の技術について図面を用いて説明する。図7は従来のヒートポンプシステムの構成図である。図7において、1は圧縮機、2は凝縮器、3は第1の減圧手段、4は大気熱を集熱する蒸発器、50aは開閉弁であり、これらを順次接続して自然熱利用冷媒回路5を構成するとともに、蒸発器4および開閉弁50aと並列した位置に、第2の減圧手段6と熱回収熱交換器7と開閉弁50bとを設置し、同様に圧縮機1および凝縮器2と順次接続して熱回収冷媒回路8を構成している。そして、開閉弁50a、50bの切り替えにより、大気熱等の自然熱利用給湯運転と浴槽廃熱を回収利用した熱回収給湯運転の切り替えがおこなわれる。例えば、自然熱利用給湯運転時は、開閉弁50bを閉塞した状態で開閉弁50aを開放し、蒸発器4を介して大気から吸熱し、凝縮器2で水を加熱して貯湯漕9に貯える。また、熱回収給湯運転時は、開閉弁50aを閉塞した状態で開閉弁50bを開放し、熱回収熱交換器7を介して浴槽13の湯から吸熱し、凝縮器2で水を加熱して貯湯漕9に貯える。
【0003】
【発明が解決しようとする課題】
しかしながら、前記従来の構成では、自然熱利用給湯運転と熱回収給湯運転の流路切り替えに開閉弁50aと50bが、各々の冷媒流量制御に第1および第2の減圧手段3および6が必要となり、システムの構成およびその制御が複雑となる。
【0004】
また、熱回収給湯運転を行うとき、凝縮器2より流出した高圧の液冷媒は第1の減圧手段3で低圧の二相冷媒となり、さらに第2の減圧手段6を通って熱回収熱交換器7に流入することになるため、冷媒流量がかなり絞られ、所定の冷媒流量が得られず、圧縮機1の吸入冷媒ガスは高温の過熱ガスとなり、圧縮機1の信頼性確保が課題となる。
【0005】
さらに、冷媒流量の低下により、熱回収熱交換器7での採熱量が少なくなるため高効率化が得られない。それを防止するには第1および第2の減圧手段3および6は流量制御範囲が非常に大きなものが必須となる。また、その場合には熱回収熱交換器7に流入する湯温は大気よりも高温であるため、圧縮機1の低圧がかなり上昇し、採熱量増加にともなって凝縮器2が大きくなるという課題を有していた。
【0006】
本発明は、前記従来の課題を解決するもので、構成の簡略化により部品点数の削減を図るとともに、圧縮機等の信頼性向上と熱回収給湯運転時の高効率化を実現するヒートポンプ式風呂給湯システムを提供することを目的とする。
【0007】
【課題を解決するための手段】
前記従来の課題を解決するために、本発明のヒートポンプ式風呂給湯システムは、圧縮機と凝縮器に対して、第1の減圧手段および大気熱あるいは太陽熱を集熱する蒸発器と第2の減圧手段および熱回収熱交換器とを並列に配置し、さらに、前記第1の減圧手段または前記第2の減圧手段の閉塞動作を行い、前記熱回収冷媒回路または前記自然熱利用冷媒回路による給湯運転を行う運転制御手段とを備えたものである。
【0008】
これによって、自然熱利用と浴槽廃熱回収の各給湯運転の流路切り替えを、第1および
第2の減圧手段だけの簡単な構成で行うことができるとともに、給湯運転時の冷媒流量制御が、自然熱利用の場合は第1の減圧手段、浴槽廃熱回収利用の場合は第2の減圧手段により、それぞれ単独で行うことができる。
【0009】
【発明の実施の形態】
請求項1に記載の発明は、圧縮機、凝縮器、第1の減圧手段、大気熱あるいは太陽熱を集熱する蒸発器を順次接続した自然熱利用冷媒回路と、前記圧縮機、前記凝縮器、前記第1の減圧手段および前記蒸発器と並列に設けた第2の減圧手段および熱回収熱交換器を順次接続した熱回収冷媒回路と、貯湯漕、循環ポンプ、前記凝縮器と熱交換関係を有する給湯熱交換器を順次接続した給湯回路と、浴槽、風呂ポンプ、前記熱回収熱交換器と熱交換関係を有する風呂熱交換器を順次接続した風呂回路と、前記第1の減圧手段または前記第2の減圧手段の閉塞動作を行い、前記熱回収冷媒回路または前記自然熱利用冷媒回路による給湯運転を行う運転制御手段と、浴槽の残湯を検出する残湯検出手段とを備え、前記残湯検出手段により浴槽の残湯が検出されたときのみ、前記運転制御手段が前記第1の減圧手段の閉塞動作を行い、前記熱回収冷媒回路による給湯運転を行うことを特徴とするヒートポンプ式風呂給湯システムである。
【0010】
これによって、自然熱利用と浴槽廃熱回収の各給湯運転の流路切り替えを、第1および第2の減圧手段だけの簡単な構成で行うことができるため、部品点数の削減とシステム制御の簡素化が図られる。また、給湯運転時の冷媒流量制御を、自然熱利用の場合は第1の減圧手段、浴槽廃熱回収利用の場合は第2の減圧手段により、それぞれ単独で行うことができる。よって、熱回収給湯運転を行うとき、凝縮器より流出した高圧の液冷媒は、第2の減圧手段のみを通って熱回収熱交換器に流入することになるため、冷媒流量低下による圧縮機の吸入冷媒ガスの高温過熱ガス化や、熱回収熱交換器での採熱量不足による効率の低下が防止され、圧縮機等の信頼性向上と熱回収給湯運転時の高効率化を実現することができる。また、浴槽に残湯がないときの風呂ポンプの空転や熱回収熱交換器への吸熱量低下に伴う給湯能力の低下が防止され、システムの高信頼化が図れる。
【0011】
請求項2に記載の発明は、特に、請求項1に記載の構成に加えて、風呂回路の水温を検出する風呂温度検出手段を備え、前記風呂温度検出手段の検出温度が所定の設定値より大きいときのみ、運転制御手段が第1の減圧手段の閉塞動作を行い、熱回収冷媒回路による給湯運転を行うものであり、浴槽の残湯温度が極めて低い場合も風呂回路の凍結が防止され、さらにシステムの高信頼化が図れる。
【0012】
請求項3に記載の発明は、特に、請求項1または2に記載の構成に加えて、風呂回路の水温を検出する風呂温度検出手段と、外気温を検出する外気温度検出手段とを備え、前記風呂温度検出手段と前記外気温度検出手段の検出温度の差が所定の設定値よりも大きいときのみ、運転制御手段が第1の減圧手段の閉塞動作を行い、熱回収冷媒回路による給湯運転を行うものであり、簡単な構成で自然熱利用または浴槽廃熱回収の効率の良い方の給湯運転を選択でき、システムの高効率化が図れる。
【0013】
請求項4に記載の発明は、特に、請求項3に記載の構成において、風呂ポンプを運転させた後、風呂温度検出手段により風呂回路の水温を検出するものであり、風呂回路の放熱等の条件によらず、浴槽の残湯温度を精度良く検出できるため、システムの高信頼化が図れる。
【0014】
請求項5に記載の発明は、特に、請求項1〜4に記載の構成に加えて、ユーザによって操作されて熱回収給湯運転指令信号を出力する熱回収給湯運転スイッチを備え、前記熱回収給湯運転指令信号がある場合のみ、運転制御手段が第1の減圧手段の閉塞動作を行い、熱回収冷媒回路による給湯運転を行うものであり、浴槽廃熱回収給湯運転時に生じる残湯
温度の低下をユーザーの判断で行え、不測の浴槽の冷却が防止できる。
【0015】
請求項6に記載の発明は、特に、請求項1〜5に記載の構成に加えて、時刻を計測するタイマーを備え、前記タイマーの計測時刻が時間別電力料金制度の深夜時間帯である場合のみ、運転制御手段が第1の減圧手段の閉塞動作を行い、熱回収冷媒回路による給湯運転を行うものであり、熱回収給湯運転が電力料金の安い深夜時間帯に制限され、給湯運転に伴うランニングコストの低減が図れる。
【0016】
【実施例】
以下、本発明の実施例について図面を用いて説明する。
【0017】
(実施例1)
図1は、本発明の実施例1におけるヒートポンプ式風呂給湯システムの構成図を示すものである。図1において、1は圧縮機、2は凝縮器、3は第1の減圧手段、4は大気熱あるいは太陽熱を集熱する蒸発器であり、これらを順次接続して自然熱利用冷媒回路5を構成する。さらに、第1の減圧手段3および蒸発器4と並列した位置に、第2の減圧手段6および熱回収熱交換器7を設置し、同様に圧縮機1および凝縮器2と順次接続して熱回収冷媒回路8を構成する。また、9は貯湯漕、10は循環ポンプ、11は凝縮器2と熱交換関係を有する給湯熱交換器であり、これらを順次接続して給湯回路12を構成する。また、13は浴槽、14は風呂ポンプ、15は熱回収熱交換器7と熱交換関係を有する風呂熱交換器であり、これらを順次接続して風呂回路16を構成する。さらに、17は運転制御手段であり、第1の減圧手段3または第2の減圧手段6の閉塞動作を行い、熱回収冷媒回路8または自然熱利用冷媒回路5による給湯運転の切り替えを行うものである。ここで、第1および第2の減圧手段3および6は、例えば電子制御式のニードル弁であり、冷媒流量の制御および流路の閉塞動作が可能なものである。
【0018】
以上のように構成されたヒートポンプ式風呂給湯システムについて、以下その動作を説明する。まず、浴槽廃熱回収の給湯運転において、圧縮機1から吐出した高温高圧のガス冷媒は凝縮器2に流入する。一方、貯湯槽9の水は循環ポンプ10によって給湯熱交換器11に流入し、ここで、冷媒の凝縮熱によって加熱され貯湯槽9に流入する。凝縮器2で凝縮液化した冷媒は、第2の減圧手段6で減圧されて熱回収熱交換器7に流入する。一方、浴槽13の残湯は風呂ポンプ14によって風呂熱交換器15に流入し、ここで熱回収熱交換器7を流れる冷媒を加熱し蒸発ガス化する。このとき、運転制御手段17は第1の減圧手段3の閉塞動作を行い、熱回収冷媒回路8単独による給湯運転を可能にしている。
【0019】
自然熱利用の給湯運転においても同様に、圧縮機1から吐出した高温高圧のガス冷媒は凝縮器2に流入する。一方、貯湯槽9の水は循環ポンプ10によって給湯熱交換器11に流入し、ここで、冷媒の凝縮熱によって加熱され貯湯槽9に流入する。凝縮器2で凝縮液化した冷媒は、第1の減圧手段3で減圧されて蒸発器4に流入する。この蒸発器4は、送風ファンや集熱パネル等により大気熱あるいは太陽熱を集熱するものであり、その熱により蒸発器7内部を流れる冷媒を蒸発ガス化する。このとき、運転制御手段17は第2の減圧手段6の閉塞動作を行い、自然熱利用冷媒回路5単独による給湯運転を可能にしている。
【0020】
したがって、自然熱利用と浴槽廃熱回収の各給湯運転の流路切り替えを、第1および第2の減圧手段3および6だけの簡単な構成で行うことができるため、部品点数の削減とシステム制御の簡素化が図られる。また、給湯運転時の冷媒流量制御を、自然熱利用の場合は第1の減圧手段3、浴槽廃熱回収利用の場合は第2の減圧手段6により、それぞれ単独で行うことができる。よって、熱回収給湯運転を行うとき、凝縮器2より流出した高圧の液冷媒は、第2の減圧手段6のみを通って熱回収熱交換器7に流入することになるため、
冷媒流量低下による圧縮機1の吸入冷媒ガスの高温過熱ガス化や、熱回収熱交換器7での採熱量不足による効率の低下が防止され、圧縮機1等の信頼性向上と熱回収給湯運転時の高効率化を実現することができる。
【0021】
なお、浴槽廃熱回収給湯運転中に、自然熱利用給湯運転への流路切り替えを行う場合は、第2の減圧手段6の閉塞動作に先立ち、第1の減圧手段3の開放動作を行えば、冷媒回路中の冷媒が滞ることなく流動するため、圧縮機1の吐出側の過度の圧力上昇が防止され、圧縮機1並びにシステムの信頼性を確保することができる。自然熱利用給湯運転中の浴槽廃熱回収給湯運転への流路切り替えの場合も同様である。
【0022】
(実施例2)
図2は、本発明の実施例2におけるヒートポンプ式風呂給湯システムの構成図を示すものである。本発明は、特に、実施例1に記載の構成に加えて、浴槽13の残湯を検出する残湯検出手段18を備え、この残湯検出手段18により浴槽13の残湯が検出されたときのみ、運転制御手段17が第1の減圧手段3の閉塞動作を行い、熱回収冷媒回路8による給湯運転を行うものである。残湯検出手段18としては、例えば、風呂回路16中に水流の有無によりオンオフ動作を行うフロースイッチや水流量を計測する流量計を設置したり、浴槽13の水位を検出する水位センサ等、残湯の有無を検出するものであればいかなるものでも構わない。
【0023】
浴槽廃熱回収給湯運転を行う場合、浴槽13に残湯がないと、風呂ポンプ14の空転による耐久劣化や、熱回収熱交換器7への吸熱量低下に伴う給湯能力低下が生じる。これは、例えば熱回収給湯運転中に浴槽13底部の排水口(図示せず)から残湯が漏洩し、残湯がなくなってしまうような場合が想定される。本実施例は、残湯検出手段18により浴槽13の残湯が検出されたときのみ、熱回収冷媒回路8による給湯運転を行うものであり、システムの高信頼化が図れる。さらに、残湯検出手段18により浴槽13の残湯が検出されない場合、第2の減圧手段6の閉塞動作を行い、第1の減圧手段3で流量制御を行う自然熱利用冷媒回路5による給湯運転を行うことも容易に可能である。このようにすれば、給湯運転が間断なく行え、システムの性能向上を実現することができる。
【0024】
(実施例3)
図3は、本発明の実施例3におけるヒートポンプ式風呂給湯システムの構成図を示すものである。本発明は、特に、実施例1〜2に記載の構成に加えて、風呂回路8の水温を検出する風呂温度検出手段19を備え、風呂温度検出手段19の検出温度が所定の設定値より大きいときのみ、運転制御手段17が第1の減圧手段3の閉塞動作を行い、熱回収冷媒回路8による給湯運転を行うものである。風呂温度検出手段19としては、例えば、風呂熱交換器15の入口または出口の風呂回路16中にサーミスタ等を挿入したものが挙げられる。
【0025】
浴槽廃熱回収給湯運転を行う場合、風呂回路16を流れる残湯は風呂熱交換器15において熱回収熱交換器7側に吸熱され、その温度は低下する。浴槽13の残湯温度が極めて低い場合、風呂熱交換器15内の残湯が凍結・膨張し、風呂熱交換器15を破損する可能性がある。本実施例は、風呂温度検出手段19の検出温度が所定の設定値より大きいときのみ、熱回収冷媒回路8による給湯運転を行うものであり、さらにシステムの高信頼化が図れる。
【0026】
なお、前記した所定の設定値は、圧縮機1や熱回収熱交換器7および風呂熱交換器15の能力や風呂ポンプ14の搬送能力等から、水が凍結する0℃以上の任意に温度(例えば5℃)に設定すればよい。
【0027】
また、風呂温度検出手段19の検出温度が所定の設定値を下回った場合、第2の減圧手段6の閉塞動作を行って熱回収冷媒回路8による給湯運転を停止するとともに、第1の減圧手段3で流量制御を行う自然熱利用冷媒回路5による給湯運転に切り替えることも容易に可能である。このようにすれば、給湯運転が間断なく行え、システムの性能向上を実現することができる。
【0028】
(実施例4)
図4は、本発明の実施例4におけるヒートポンプ式風呂給湯システムの構成図を示すものである。本発明は、特に、実施例1〜3に記載の構成に加えて、風呂回路8の水温を検出する風呂温度検出手段19と、外気温を検出する外気温度検出手段20とを備え、風呂温度検出手段19と外気温度検出手段20の検出温度の差が所定の設定値よりも大きいときのみ、運転制御手段17が第1の減圧手段3の閉塞動作を行い、熱回収冷媒回路8による給湯運転を行うものである。外気温度検出手段20としては、例えば、大気熱を蒸発器4に集熱する送風ファンや太陽熱を蒸発器4に集熱する集熱パネルの近傍に、サーミスタを設置したものが挙げられる。
【0029】
実施例1に示すようなシステムで給湯運転を行う場合、省エネルギーの観点から、自然熱利用または浴槽廃熱回収のどちらか効率の良い方を選択し、システムとしての高効率化を図り、経済的な運転を行う必要がある。例えば、浴槽13の残湯温度は一般に外気温度よりも高い場合が多く、熱回収冷媒回路8による給湯運転を行った方が効率は良くなる。但し、放熱等により残湯温度が低下し、外気温度よりも下回った場合、必ずしも熱回収冷媒回路8による給湯運転を行った方が効率は良いとは限らない。本実施例は、風呂温度検出手段19と外気温度検出手段20の検出温度の差が所定の設定値よりも大きいときのみ、熱回収冷媒回路8による給湯運転を行うものであり、簡単な構成で自然熱利用または浴槽廃熱回収の効率の良い方の給湯運転を選択でき、システムの高効率化が図れる。
【0030】
なお、前記した所定の設定値は、自然熱利用給湯運転の効率を決める蒸発器4や送風ファン、集熱パネル等の能力、浴槽廃熱回収給湯運転の効率を決める熱回収熱交換器7および風呂熱交換器15の能力や風呂ポンプ14の搬送能力等から、任意の温度に設定すればよい。
【0031】
また、風呂温度検出手段19と外気温度検出手段20の検出温度の差が所定の設定値を下回った場合、第2の減圧手段6の閉塞動作を行って熱回収冷媒回路8による給湯運転を停止するとともに、第1の減圧手段3で流量制御を行う自然熱利用冷媒回路5による給湯運転に切り替えることも容易に可能である。このようにすれば、給湯運転が間断なく行え、システムの性能向上を実現することができる。
【0032】
(実施例5)
本発明の実施例5は、特に、実施例3〜4に記載の構成において、風呂ポンプ14を運転させた後、風呂温度検出手段19により風呂回路8の水温を検出するものである。風呂回路8の水温は例えば冬季に放置しておくと放熱により著しく低下する。浴槽廃熱回収給湯運転の効率を決めるのは浴槽13の残湯温度であり、本実施例は、あらかじめ風呂ポンプ14により風呂回路8内に静止していた残湯を循環させるため、浴槽13の残湯温度を精度良く検出でき、システムの高信頼化が図れる。
【0033】
(実施例6)
図5は、本発明の実施例6におけるヒートポンプ式風呂給湯システムの構成図を示すものである。本発明は、特に、実施例1〜5に記載の構成に加えて、ユーザによって操作されて熱回収給湯運転指令信号を出力する熱回収給湯運転スイッチ21を備え、ここからの熱回収給湯運転指令信号がある場合のみ、運転制御手段17が第1の減圧手段3の閉塞動
作を行い、熱回収冷媒回路8による給湯運転を行うものである。
【0034】
本システムのような貯湯式の給湯システムは、十分な貯湯量を確保するのに要する給湯運転時間が長いため、自動的に給湯運転を行うのが一般である。しかしながら、浴槽廃熱回収給湯運転を自動化すると、浴槽13の残湯温度が低下するため、入浴時に所望の湯温が得られなくなる可能性がある。本実施例は、ユーザによって熱回収給湯運転スイッチ21が操作された場合のみ、すなわち熱回収冷媒回路8による給湯運転をユーザーの判断で行うものであるため、不測の浴槽13の残湯冷却が防止できる。
【0035】
(実施例7)
図6は、本発明の実施例7におけるヒートポンプ式風呂給湯システムの構成図を示すものである。本発明は、特に、実施例1〜6に記載の構成に加えて、時刻を計測するタイマー22を備え、タイマー22の計測時刻が時間別電力料金制度の深夜時間帯である場合のみ、運転制御手段17が第1の減圧手段3の閉塞動作を行い、熱回収冷媒回路8による給湯運転を行うものである。
【0036】
これによれば、浴槽廃熱回収給湯運転が電力料金の安い深夜時間帯に制限され、給湯運転に伴うランニングコストの低減が図れる。
【0037】
【発明の効果】
以上説明したように、請求項1〜7に記載の発明によれば、構成の簡略化により部品点数の削減を図るとともに、圧縮機等の信頼性向上と浴槽廃熱回収給湯運転時の高効率化を実現するヒートポンプ式風呂給湯システムを提供することができる。
【図面の簡単な説明】
【図1】 本発明の実施例1のヒートポンプ式風呂給湯システムの構成図
【図2】 本発明の実施例2のヒートポンプ式風呂給湯システムの構成図
【図3】 本発明の実施例3のヒートポンプ式風呂給湯システムの構成図
【図4】 本発明の実施例4のヒートポンプ式風呂給湯システムの構成図
【図5】 本発明の実施例6のヒートポンプ式風呂給湯システムの構成図
【図6】 本発明の実施例7のヒートポンプ式風呂給湯システムの構成図
【図7】 従来のヒートポンプシステムの構成図
【符号の説明】
1 圧縮機
2 凝縮器
3 第1の減圧手段
4 蒸発器
5 自然熱利用冷媒回路
6 第2の減圧手段
7 熱回収熱交換器
8 熱回収冷媒回路
9 貯湯漕
10 循環ポンプ
11 給湯熱交換器
12 給湯回路
13 浴槽
14 風呂ポンプ
15 風呂熱交換器
16 風呂回路
17 運転制御手段
18 残湯検出手段
19 風呂温度検出手段
20 外気温度検出手段
21 熱回収給湯運転スイッチ
22 タイマー
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a heat pump bath hot water supply system.
[0002]
[Prior art]
Conventionally, this type of heat pump system has been described in JP-A-7-71839. Hereinafter, conventional techniques will be described with reference to the drawings. FIG. 7 is a configuration diagram of a conventional heat pump system. In FIG. 7, 1 is a compressor, 2 is a condenser, 3 is first decompression means, 4 is an evaporator that collects atmospheric heat, and 50a is an on-off valve. The second decompression means 6, the heat recovery heat exchanger 7 and the on-off valve 50b are installed at a position in parallel with the evaporator 4 and the on-off valve 50a, which constitutes the circuit 5, and similarly the compressor 1 and the condenser 2 is sequentially connected to constitute a heat recovery refrigerant circuit 8. Then, switching between the on-off valves 50a and 50b switches between a hot water supply operation using natural heat such as atmospheric heat and a heat recovery hot water supply operation using recovered waste heat from the bathtub. For example, during a hot water supply operation using natural heat, the on-off valve 50a is opened with the on-off valve 50b closed, heat is absorbed from the atmosphere via the evaporator 4, and water is heated by the condenser 2 and stored in the hot water tank 9. . Further, during the heat recovery hot water supply operation, the on / off valve 50b is opened while the on / off valve 50a is closed, heat is absorbed from the hot water in the bathtub 13 through the heat recovery heat exchanger 7, and water is heated by the condenser 2. Store in hot water tank 9.
[0003]
[Problems to be solved by the invention]
However, in the conventional configuration, the on-off valves 50a and 50b are required for switching the flow path between the natural heat utilizing hot water supply operation and the heat recovery hot water supply operation, and the first and second decompression means 3 and 6 are required for the respective refrigerant flow control. The system configuration and its control become complicated.
[0004]
Further, when the heat recovery hot water supply operation is performed, the high-pressure liquid refrigerant flowing out of the condenser 2 becomes a low-pressure two-phase refrigerant in the first decompression means 3, and further passes through the second decompression means 6 to be a heat recovery heat exchanger. 7, the refrigerant flow rate is considerably reduced, the predetermined refrigerant flow rate cannot be obtained, the refrigerant gas sucked into the compressor 1 becomes a high-temperature superheated gas, and ensuring the reliability of the compressor 1 becomes a problem. .
[0005]
Furthermore, since the amount of heat collected in the heat recovery heat exchanger 7 is reduced due to a decrease in the refrigerant flow rate, high efficiency cannot be obtained. In order to prevent this, it is essential that the first and second decompression means 3 and 6 have a very large flow rate control range. In that case, since the temperature of the hot water flowing into the heat recovery heat exchanger 7 is higher than that of the atmosphere, the low pressure of the compressor 1 rises considerably, and the condenser 2 becomes larger as the amount of heat collected increases. Had.
[0006]
The present invention solves the above-described conventional problems, and aims to reduce the number of parts by simplifying the configuration, and to improve the reliability of the compressor and the like and to achieve high efficiency during the heat recovery hot water supply operation An object is to provide a hot water supply system.
[0007]
[Means for Solving the Problems]
In order to solve the above-described conventional problems, the heat pump bath water heating system of the present invention includes a first decompression means, an evaporator for collecting atmospheric heat or solar heat, and a second decompression, with respect to the compressor and the condenser. And the heat recovery heat exchanger are arranged in parallel, and further, the first pressure reduction means or the second pressure reduction means is closed, and the hot water supply operation by the heat recovery refrigerant circuit or the natural heat utilization refrigerant circuit And an operation control means for performing.
[0008]
As a result, the flow path switching of each hot water supply operation for natural heat utilization and bathtub waste heat recovery can be performed with a simple configuration using only the first and second decompression means, and the refrigerant flow rate control during the hot water supply operation is performed. In the case of using natural heat, the first pressure reducing means can be used alone, and in the case of using the waste heat recovery from the bathtub, the second pressure reducing means can be used independently.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
The invention according to claim 1 includes a compressor, a condenser, a first decompression unit, a natural heat utilization refrigerant circuit in which an evaporator for collecting atmospheric heat or solar heat is sequentially connected, the compressor, the condenser, A heat recovery refrigerant circuit in which a second pressure reduction means and a heat recovery heat exchanger provided in parallel with the first pressure reduction means and the evaporator are sequentially connected, a hot water tank, a circulation pump, and the condenser for heat exchange relationship. A hot water supply circuit in which the hot water supply heat exchangers are sequentially connected, a bathtub, a bath pump, a bath circuit in which bath heat exchangers having a heat exchange relationship with the heat recovery heat exchanger are sequentially connected, the first decompression means or the An operation control means for performing a closing operation of the second decompression means and performing a hot water supply operation by the heat recovery refrigerant circuit or the natural heat utilization refrigerant circuit, and a remaining hot water detection means for detecting the remaining hot water in the bathtub, The hot water detection means When issued only performs a closing operation of said operation control means is said first pressure reducing means, a heat pump bath hot water supply system which is characterized in that the hot water supply operation by the heat recovery refrigerant circuit.
[0010]
As a result, it is possible to switch the flow path of each hot water supply operation for use of natural heat and recovery of bathtub waste heat with a simple configuration using only the first and second decompression means, thereby reducing the number of parts and simplifying system control. Is achieved. In addition, the refrigerant flow rate control during the hot water supply operation can be performed independently by the first decompression means in the case of using natural heat and by the second decompression means in the case of using the waste heat recovery from the bathtub. Therefore, when performing the heat recovery hot water supply operation, the high-pressure liquid refrigerant that has flowed out of the condenser flows into the heat recovery heat exchanger only through the second decompression means. Efficiency reduction due to high-temperature superheated gasification of suction refrigerant gas and insufficient heat collection in the heat recovery heat exchanger can be prevented, improving the reliability of compressors etc. and increasing efficiency during heat recovery hot water supply operation it can. Further, the hot water supply capacity is prevented from being lowered due to idling of the bath pump when there is no remaining hot water in the bathtub or a decrease in the amount of heat absorbed by the heat recovery heat exchanger, and the system can be made highly reliable.
[0011]
The invention according to claim 2 is provided with bath temperature detecting means for detecting the water temperature of the bath circuit in addition to the configuration according to claim 1 , and the detected temperature of the bath temperature detecting means is more than a predetermined set value. Only when it is large, the operation control means performs the closing operation of the first decompression means and performs the hot water supply operation by the heat recovery refrigerant circuit, and the bath circuit is prevented from freezing even when the remaining hot water temperature of the bathtub is extremely low, Furthermore, high reliability of the system can be achieved.
[0012]
The invention described in claim 3 particularly includes a bath temperature detecting means for detecting the water temperature of the bath circuit, and an outside air temperature detecting means for detecting the outside air temperature, in addition to the configuration described in claim 1 or 2 . Only when the difference between the detected temperatures of the bath temperature detecting means and the outside air temperature detecting means is larger than a predetermined set value, the operation control means performs the closing operation of the first pressure reducing means and performs the hot water supply operation by the heat recovery refrigerant circuit. The hot water supply operation can be selected with a simple structure and the efficiency of using natural heat or recovering waste heat from the bathtub, and the efficiency of the system can be improved.
[0013]
The invention described in claim 4 is the one in which the water temperature of the bath circuit is detected by the bath temperature detecting means after the bath pump is operated, in particular, in the configuration of claim 3 , such as heat dissipation of the bath circuit. Regardless of the conditions, the temperature of the remaining hot water in the bathtub can be detected with high accuracy, so that the system can be highly reliable.
[0014]
The invention according to claim 5 is provided with a heat recovery hot water supply operation switch that is operated by a user and outputs a heat recovery hot water supply operation command signal, in addition to the configuration according to claims 1 to 4 , and the heat recovery hot water supply. Only when there is an operation command signal, the operation control means performs the closing operation of the first decompression means and performs the hot water supply operation by the heat recovery refrigerant circuit, and reduces the remaining hot water temperature that occurs during the bathtub waste heat recovery hot water supply operation. This can be done at the user's discretion and can prevent unexpected cooling of the bathtub.
[0015]
The invention according to claim 6 is particularly provided with a timer for measuring time in addition to the configuration according to claims 1 to 5 , and the time measured by the timer is in the midnight time zone of the hourly power rate system Only the operation control means performs the closing operation of the first decompression means and performs the hot water supply operation by the heat recovery refrigerant circuit, and the heat recovery hot water supply operation is limited to the midnight time zone when the power rate is low and is accompanied by the hot water supply operation. Running costs can be reduced.
[0016]
【Example】
Embodiments of the present invention will be described below with reference to the drawings.
[0017]
Example 1
FIG. 1 shows a configuration diagram of a heat pump bath water heating system in Embodiment 1 of the present invention. In FIG. 1, 1 is a compressor, 2 is a condenser, 3 is a first decompression means, 4 is an evaporator that collects atmospheric heat or solar heat, and these are sequentially connected to form a natural heat utilization refrigerant circuit 5. Constitute. Further, a second decompression means 6 and a heat recovery heat exchanger 7 are installed at a position in parallel with the first decompression means 3 and the evaporator 4, and similarly connected to the compressor 1 and the condenser 2 in succession, A recovered refrigerant circuit 8 is configured. Further, 9 is a hot water storage tank, 10 is a circulation pump, and 11 is a hot water supply heat exchanger having a heat exchange relationship with the condenser 2, and these are sequentially connected to constitute a hot water supply circuit 12. Further, 13 is a bathtub, 14 is a bath pump, and 15 is a bath heat exchanger having a heat exchange relationship with the heat recovery heat exchanger 7. These are sequentially connected to constitute a bath circuit 16. Furthermore, 17 is an operation control means, which performs the closing operation of the first decompression means 3 or the second decompression means 6 and switches the hot water supply operation by the heat recovery refrigerant circuit 8 or the natural heat utilization refrigerant circuit 5. is there. Here, the first and second decompression means 3 and 6 are, for example, electronically controlled needle valves, and are capable of controlling the refrigerant flow rate and closing the flow path.
[0018]
The operation of the heat pump type hot water supply system configured as described above will be described below. First, in the hot water supply operation for recovery of waste heat from the bathtub, the high-temperature and high-pressure gas refrigerant discharged from the compressor 1 flows into the condenser 2. On the other hand, the water in the hot water tank 9 flows into the hot water supply heat exchanger 11 by the circulation pump 10, where it is heated by the heat of condensation of the refrigerant and flows into the hot water tank 9. The refrigerant condensed and liquefied by the condenser 2 is decompressed by the second decompression means 6 and flows into the heat recovery heat exchanger 7. On the other hand, the remaining hot water in the bathtub 13 flows into the bath heat exchanger 15 by the bath pump 14, where the refrigerant flowing in the heat recovery heat exchanger 7 is heated and evaporated. At this time, the operation control means 17 performs the closing operation of the first decompression means 3 to enable the hot water supply operation by the heat recovery refrigerant circuit 8 alone.
[0019]
Similarly, in the hot water supply operation using natural heat, the high-temperature and high-pressure gas refrigerant discharged from the compressor 1 flows into the condenser 2. On the other hand, the water in the hot water tank 9 flows into the hot water supply heat exchanger 11 by the circulation pump 10, where it is heated by the heat of condensation of the refrigerant and flows into the hot water tank 9. The refrigerant condensed and liquefied by the condenser 2 is decompressed by the first decompression means 3 and flows into the evaporator 4. The evaporator 4 collects atmospheric heat or solar heat by a blower fan, a heat collecting panel, or the like, and evaporates and converts the refrigerant flowing inside the evaporator 7 by the heat. At this time, the operation control means 17 performs the closing operation of the second decompression means 6 to enable the hot water supply operation by the natural heat utilization refrigerant circuit 5 alone.
[0020]
Accordingly, the flow path switching for each hot water supply operation for use of natural heat and recovery of bathtub waste heat can be performed with a simple configuration of only the first and second decompression means 3 and 6, thereby reducing the number of components and system control. Is simplified. Further, the refrigerant flow rate control during the hot water supply operation can be performed independently by the first decompression means 3 in the case of using natural heat and by the second decompression means 6 in the case of using the waste heat recovery from the bathtub. Therefore, when performing the heat recovery hot water supply operation, the high-pressure liquid refrigerant flowing out of the condenser 2 flows into the heat recovery heat exchanger 7 only through the second decompression means 6,
The high-temperature superheated gas of the refrigerant gas sucked into the compressor 1 due to a decrease in the refrigerant flow rate and the decrease in efficiency due to insufficient heat collection in the heat recovery heat exchanger 7 are prevented, and the reliability of the compressor 1 etc. is improved and the heat recovery hot water supply operation High efficiency can be achieved.
[0021]
In addition, when switching the flow path to the natural heat utilizing hot water supply operation during the bathtub waste heat recovery hot water supply operation, the opening operation of the first pressure reducing means 3 is performed prior to the closing operation of the second pressure reducing means 6. Since the refrigerant in the refrigerant circuit flows without stagnation, an excessive pressure rise on the discharge side of the compressor 1 is prevented, and the reliability of the compressor 1 and the system can be ensured. The same applies to the flow path switching to the bathtub waste heat recovery hot water supply operation during the hot water supply operation using natural heat.
[0022]
(Example 2)
FIG. 2 shows a configuration diagram of a heat pump bath hot water supply system according to Embodiment 2 of the present invention. In particular, the present invention includes a remaining hot water detection means 18 for detecting the remaining hot water in the bathtub 13 in addition to the configuration described in the first embodiment, and when the remaining hot water in the bathtub 13 is detected by the remaining hot water detection means 18. Only the operation control means 17 performs the closing operation of the first decompression means 3 and performs the hot water supply operation by the heat recovery refrigerant circuit 8. As the remaining hot water detection means 18, for example, a flow switch that performs an on / off operation depending on the presence or absence of a water flow, a flow meter that measures the water flow rate, a water level sensor that detects the water level of the bathtub 13, etc. Any device that detects the presence or absence of hot water may be used.
[0023]
When the bathtub waste heat recovery hot water supply operation is performed, if there is no remaining hot water in the bathtub 13, durability deterioration due to idling of the bath pump 14 and a decrease in hot water supply capacity due to a decrease in the heat absorption amount to the heat recovery heat exchanger 7 occur. For example, a case where residual hot water leaks from a drain outlet (not shown) at the bottom of the bathtub 13 during the heat recovery hot water supply operation and the residual hot water disappears is assumed. In the present embodiment, the hot water supply operation by the heat recovery refrigerant circuit 8 is performed only when the remaining hot water in the bathtub 13 is detected by the remaining hot water detection means 18, and the system can be highly reliable. Further, when the remaining hot water in the bathtub 13 is not detected by the remaining hot water detection means 18, the hot water supply operation by the natural heat utilization refrigerant circuit 5 that performs the closing operation of the second pressure reducing means 6 and controls the flow rate by the first pressure reducing means 3. Can also be easily performed. In this way, the hot water supply operation can be performed without interruption, and the system performance can be improved.
[0024]
Example 3
FIG. 3 shows a configuration diagram of a heat pump bath hot water supply system according to Embodiment 3 of the present invention. In particular, the present invention includes a bath temperature detecting means 19 for detecting the water temperature of the bath circuit 8 in addition to the configurations described in the first and second embodiments, and the detected temperature of the bath temperature detecting means 19 is greater than a predetermined set value. Only when the operation control means 17 performs the closing operation of the first decompression means 3, the hot water supply operation by the heat recovery refrigerant circuit 8 is performed. Examples of the bath temperature detecting means 19 include those in which a thermistor or the like is inserted into the bath circuit 16 at the entrance or exit of the bath heat exchanger 15.
[0025]
When the bathtub waste heat recovery hot water supply operation is performed, the remaining hot water flowing through the bath circuit 16 is absorbed into the heat recovery heat exchanger 7 side in the bath heat exchanger 15, and the temperature thereof decreases. When the remaining hot water temperature in the bathtub 13 is extremely low, the remaining hot water in the bath heat exchanger 15 may freeze and expand, and the bath heat exchanger 15 may be damaged. In the present embodiment, the hot water supply operation by the heat recovery refrigerant circuit 8 is performed only when the detected temperature of the bath temperature detecting means 19 is higher than a predetermined set value, and further high system reliability can be achieved.
[0026]
In addition, the above-mentioned predetermined set value is arbitrarily set to a temperature (0 ° C. or higher) at which water is frozen from the capacity of the compressor 1, the heat recovery heat exchanger 7 and the bath heat exchanger 15, the transport capacity of the bath pump 14, and the like. For example, it may be set to 5 ° C.
[0027]
When the detected temperature of the bath temperature detecting means 19 falls below a predetermined set value, the second pressure reducing means 6 is closed to stop the hot water supply operation by the heat recovery refrigerant circuit 8 and the first pressure reducing means. It is also possible to easily switch to hot water supply operation by the natural heat utilization refrigerant circuit 5 that performs flow rate control at 3. In this way, the hot water supply operation can be performed without interruption, and the system performance can be improved.
[0028]
Example 4
FIG. 4 shows a configuration diagram of a heat pump bath hot water supply system according to Embodiment 4 of the present invention. In particular, the present invention includes a bath temperature detecting means 19 for detecting the water temperature of the bath circuit 8 and an outside air temperature detecting means 20 for detecting the outside air temperature in addition to the configurations described in the first to third embodiments. Only when the difference between the detection temperatures of the detection means 19 and the outside air temperature detection means 20 is larger than a predetermined set value, the operation control means 17 performs the closing operation of the first decompression means 3, and the hot water supply operation by the heat recovery refrigerant circuit 8 is performed. Is to do. As the outside air temperature detecting means 20, for example, a thermistor is installed in the vicinity of a blower fan that collects atmospheric heat into the evaporator 4 or a heat collecting panel that collects solar heat into the evaporator 4.
[0029]
When performing hot water supply operation with the system as shown in Example 1, from the viewpoint of energy saving, either natural heat utilization or bathtub waste heat recovery is selected, whichever is more efficient, and the efficiency of the system is improved. Need to drive. For example, the remaining hot water temperature in the bathtub 13 is generally higher than the outside air temperature, and the efficiency is improved when the hot water supply operation by the heat recovery refrigerant circuit 8 is performed. However, when the remaining hot water temperature decreases due to heat dissipation or the like and falls below the outside air temperature, it is not always efficient to perform the hot water supply operation using the heat recovery refrigerant circuit 8. In the present embodiment, the hot water supply operation by the heat recovery refrigerant circuit 8 is performed only when the difference between the detected temperatures of the bath temperature detecting means 19 and the outside air temperature detecting means 20 is larger than a predetermined set value, and with a simple configuration. The hot water supply operation that is more efficient in using natural heat or recovering waste heat from the bathtub can be selected, and the efficiency of the system can be improved.
[0030]
In addition, the above-mentioned predetermined set value is the heat recovery heat exchanger 7 that determines the efficiency of the evaporator 4, the blower fan, the heat collecting panel, and the like that determines the efficiency of the natural heat utilizing hot water supply operation, the efficiency of the bathtub waste heat recovery hot water supply operation, and What is necessary is just to set to arbitrary temperature from the capability of the bath heat exchanger 15, the conveyance capability of the bath pump 14, etc.
[0031]
When the difference between the detected temperatures of the bath temperature detecting means 19 and the outside air temperature detecting means 20 falls below a predetermined set value, the second pressure reducing means 6 is closed and the hot water supply operation by the heat recovery refrigerant circuit 8 is stopped. In addition, it is possible to easily switch to the hot water supply operation by the natural heat utilization refrigerant circuit 5 in which the flow rate is controlled by the first decompression means 3. In this way, the hot water supply operation can be performed without interruption, and the system performance can be improved.
[0032]
(Example 5)
In the fifth embodiment of the present invention, in particular, the water temperature of the bath circuit 8 is detected by the bath temperature detecting means 19 after the bath pump 14 is operated in the configurations described in the third to fourth embodiments. If the water temperature of the bath circuit 8 is left in the winter, for example, it will be significantly reduced by heat dissipation. The efficiency of the bathtub waste heat recovery hot water supply operation is determined by the remaining hot water temperature of the bathtub 13. In this embodiment, the remaining hot water that has been stationary in the bath circuit 8 by the bath pump 14 is circulated in advance. The remaining hot water temperature can be detected with high accuracy, and the system can be made highly reliable.
[0033]
(Example 6)
FIG. 5: shows the block diagram of the heat pump type hot-water supply system in Example 6 of this invention. In particular, the present invention includes a heat recovery hot water supply operation switch 21 that is operated by a user and outputs a heat recovery hot water supply operation command signal in addition to the configurations described in the first to fifth embodiments. Only when there is a signal, the operation control means 17 performs the closing operation of the first decompression means 3 and performs the hot water supply operation by the heat recovery refrigerant circuit 8.
[0034]
In a hot water storage type hot water supply system such as this system, since the hot water supply operation time required to ensure a sufficient amount of stored hot water is long, the hot water supply operation is generally performed automatically. However, if the bathtub waste heat recovery hot water supply operation is automated, the remaining hot water temperature of the bathtub 13 is lowered, so that a desired hot water temperature may not be obtained during bathing. In this embodiment, only when the heat recovery hot water supply operation switch 21 is operated by the user, that is, the hot water supply operation by the heat recovery refrigerant circuit 8 is performed by the user's judgment, so that unexpected cooling of the remaining hot water in the bathtub 13 is prevented. it can.
[0035]
(Example 7)
FIG. 6 shows a block diagram of a heat pump type hot water supply system in Embodiment 7 of the present invention. In particular, the present invention includes a timer 22 for measuring time in addition to the configurations described in the first to sixth embodiments, and only when the measurement time of the timer 22 is in the midnight time zone of the hourly power rate system. The means 17 performs the closing operation of the first decompression means 3 and performs the hot water supply operation by the heat recovery refrigerant circuit 8.
[0036]
According to this, the bathtub waste heat recovery hot water supply operation is limited to a midnight time zone where the electric power rate is low, and the running cost associated with the hot water supply operation can be reduced.
[0037]
【The invention's effect】
As described above, according to the inventions described in claims 1 to 7, while reducing the number of parts by simplifying the configuration, improving the reliability of the compressor and the like and high efficiency during the bathtub waste heat recovery hot water supply operation It is possible to provide a heat pump type hot water supply system that realizes the system.
[Brief description of the drawings]
FIG. 1 is a block diagram of a heat pump bath water heating system according to a first embodiment of the present invention. FIG. 2 is a block diagram of a heat pump bath water heating system according to a second embodiment of the present invention. FIG. 4 is a block diagram of a heat pump type bath water heating system according to a fourth embodiment of the present invention. FIG. 5 is a block diagram of a heat pump type bath water heating system according to a sixth embodiment of the present invention. Fig. 7 is a block diagram of a heat pump type hot water supply system according to a seventh embodiment of the invention. Fig. 7 is a block diagram of a conventional heat pump system.
DESCRIPTION OF SYMBOLS 1 Compressor 2 Condenser 3 1st pressure reduction means 4 Evaporator 5 Natural heat utilization refrigerant circuit 6 2nd pressure reduction means 7 Heat recovery heat exchanger 8 Heat recovery refrigerant circuit 9 Hot water storage tank 10 Circulation pump 11 Hot water supply heat exchanger 12 Hot water supply circuit 13 Bath 14 Bath pump 15 Bath heat exchanger 16 Bath circuit 17 Operation control means 18 Remaining hot water detection means 19 Bath temperature detection means 20 Outside air temperature detection means 21 Heat recovery hot water supply operation switch 22 Timer

Claims (6)

圧縮機、凝縮器、第1の減圧手段、大気熱あるいは太陽熱を集熱する蒸発器を順次接続した自然熱利用冷媒回路と、前記圧縮機、前記凝縮器、前記第1の減圧手段および前記蒸発器と並列に設けた第2の減圧手段および熱回収熱交換器を順次接続した熱回収冷媒回路と、貯湯漕、循環ポンプ、前記凝縮器と熱交換関係を有する給湯熱交換器を順次接続した給湯回路と、浴槽、風呂ポンプ、前記熱回収熱交換器と熱交換関係を有する風呂熱交換器を順次接続した風呂回路と、前記第1の減圧手段または前記第2の減圧手段の閉塞動作を行い、前記熱回収冷媒回路または前記自然熱利用冷媒回路による給湯運転を行う運転制御手段と、浴槽の残湯を検出する残湯検出手段とを備え、前記残湯検出手段により浴槽の残湯が検出されたときのみ、前記運転制御手段が前記第1の減圧手段の閉塞動作を行い、前記熱回収冷媒回路による給湯運転を行うことを特徴とするヒートポンプ式風呂給湯システム。Compressor, condenser, first decompression means, natural heat utilization refrigerant circuit sequentially connected to an evaporator for collecting atmospheric heat or solar heat, the compressor, the condenser, the first decompression means, and the evaporation A heat recovery refrigerant circuit in which a second decompression means and a heat recovery heat exchanger provided in parallel with the heater are sequentially connected, a hot water storage tank, a circulation pump, and a hot water supply heat exchanger having a heat exchange relationship with the condenser are sequentially connected. A hot water supply circuit, a bathtub, a bath pump, a bath circuit in which bath heat exchangers having a heat exchange relationship with the heat recovery heat exchanger are sequentially connected, and a closing operation of the first decompression means or the second decompression means. Operation control means for performing hot water supply operation by the heat recovery refrigerant circuit or the natural heat utilization refrigerant circuit , and remaining hot water detection means for detecting remaining hot water in the bathtub, and the remaining hot water in the bathtub is detected by the remaining hot water detection means. Only when it is detected Rolling control means performs a closing operation of said first pressure reducing means, heat pump bath hot water supply system which is characterized in that the hot water supply operation by the heat recovery refrigerant circuit. 風呂回路の水温を検出する風呂温度検出手段を備え、前記風呂温度検出手段の検出温度が所定の設定値より大きいときのみ、運転制御手段が第1の減圧手段の閉塞動作を行い、熱回収冷媒回路による給湯運転を行う請求項1に記載のヒートポンプ式風呂給湯システム。Bath temperature detection means for detecting the water temperature of the bath circuit is provided, and the operation control means performs the closing operation of the first decompression means only when the detected temperature of the bath temperature detection means is larger than a predetermined set value, and the heat recovery refrigerant The heat pump type hot water supply system according to claim 1, wherein the hot water supply operation is performed by a circuit. 風呂回路の水温を検出する風呂温度検出手段と、外気温を検出する外気温度検出手段とを備え、前記風呂温度検出手段と前記外気温度検出手段の検出温度の差が所定の設定値よりも大きいときのみ、運転制御手段が第1の減圧手段の閉塞動作を行い、熱回収冷媒回路による給湯運転を行う請求項1または2のいずれか1項に記載のヒートポンプ式風呂給湯システム。A bath temperature detecting means for detecting the water temperature of the bath circuit; and an outside air temperature detecting means for detecting the outside air temperature, wherein a difference between detected temperatures of the bath temperature detecting means and the outside air temperature detecting means is larger than a predetermined set value. 3. The heat pump hot water supply system according to claim 1 , wherein only when the operation control means performs the closing operation of the first decompression means and performs the hot water supply operation by the heat recovery refrigerant circuit. 風呂ポンプを運転させた後、風呂温度検出手段により風呂回路の水温を検出する請求項3に記載のヒートポンプ式風呂給湯システム。The heat pump type hot water supply system according to claim 3 , wherein the water temperature of the bath circuit is detected by the bath temperature detecting means after the bath pump is operated. ユーザによって操作されて熱回収給湯運転指令信号を出力する熱回収給湯運転スイッチを備え、前記熱回収給湯運転指令信号がある場合のみ、運転制御手段が第1の減圧手段の閉塞動作を行い、熱回収冷媒回路による給湯運転を行う請求項1〜4のいずれか1項に記載のヒートポンプ式風呂給湯システム。A heat recovery hot water supply operation switch that is operated by a user to output a heat recovery hot water supply operation command signal is provided, and only when there is the heat recovery hot water supply operation command signal, the operation control means performs the closing operation of the first pressure reducing means, The heat pump bath hot water supply system according to any one of claims 1 to 4 , wherein a hot water supply operation is performed by a recovered refrigerant circuit. 時刻を計測するタイマーを備え、前記タイマーの計測時刻が時間別電力料金制度の深夜時間帯である場合のみ、運転制御手段が第1の減圧手段の閉塞動作を行い
、熱回収冷媒回路による給湯運転を行う請求項1〜5のいずれか1項に記載のヒートポンプ式風呂給湯システム。
A timer for measuring time is provided, and only when the time measured by the timer is in the midnight time zone of the hourly power rate system, the operation control means performs the closing operation of the first decompression means, and the hot water supply operation by the heat recovery refrigerant circuit The heat pump type hot water supply system according to any one of claims 1 to 5 .
JP2001142780A 2001-05-14 2001-05-14 Heat pump bath water supply system Expired - Fee Related JP3840914B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001142780A JP3840914B2 (en) 2001-05-14 2001-05-14 Heat pump bath water supply system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001142780A JP3840914B2 (en) 2001-05-14 2001-05-14 Heat pump bath water supply system

Publications (2)

Publication Number Publication Date
JP2002333208A JP2002333208A (en) 2002-11-22
JP3840914B2 true JP3840914B2 (en) 2006-11-01

Family

ID=18989017

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001142780A Expired - Fee Related JP3840914B2 (en) 2001-05-14 2001-05-14 Heat pump bath water supply system

Country Status (1)

Country Link
JP (1) JP3840914B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100424459C (en) * 2004-08-28 2008-10-08 许志治 Method and apparatus for hot-water boiler with waste energy as energy
KR100569779B1 (en) 2004-12-27 2006-04-11 주식회사 동양에스코 Heat pump device using wasted heat for cold and hot water
KR101175451B1 (en) * 2010-05-28 2012-08-20 엘지전자 주식회사 Hot water supply device associated with heat pump
CN102914107B (en) * 2011-08-04 2014-12-17 特灵空调系统(中国)有限公司 Heat energy recovery control method for refrigeration system
KR101322894B1 (en) 2011-10-21 2013-10-29 주식회사 스노우폴 An Non-freezing Hot-water Generating Device preventing a low temperature evaporation
CN102865671A (en) * 2012-09-26 2013-01-09 西安交通大学 Variable-flow sewage-source heat pump water heating system utilizing solar energy
JP6200706B2 (en) * 2013-06-28 2017-09-20 株式会社長府製作所 Heat supply equipment

Also Published As

Publication number Publication date
JP2002333208A (en) 2002-11-22

Similar Documents

Publication Publication Date Title
EP2395302B1 (en) Heat pump-type hot-water supply and air-conditioning device
CN102378881B (en) Refrigeration cycle device
KR100821728B1 (en) Air conditioning system
JP2003075009A (en) Heat pump system
CN101476774A (en) Double-heat source heat pump water heater with air source and water source
JP4317793B2 (en) Cooling system
JP4691138B2 (en) Heat pump water heater
WO2006114983A1 (en) Refrigeration cycle device
JP3840914B2 (en) Heat pump bath water supply system
JP3663828B2 (en) Heat pump bath water supply system
JP3855695B2 (en) Heat pump water heater
JP2557415B2 (en) Heat storage refrigeration cycle device
JP3632306B2 (en) Heat pump bath water supply system
JP6465332B2 (en) Heat pump hot water supply system
US20220235945A1 (en) Hot water supply apparatus
JP5287820B2 (en) Air conditioner
CN213178884U (en) Multi-split system capable of adopting ground source water during low-temperature heating
JP3632401B2 (en) Heat pump bath water supply system
JP2012083066A (en) Air conditioning apparatus
CN218820762U (en) Two ally oneself with confession air conditioners
KR101670233B1 (en) Unified Freezing and Refrigerating System for Space Application
JP3588948B2 (en) Heat pump type bath hot water supply system
JP2005077051A (en) Heat pump type water heater
JP3841051B2 (en) Heat pump water heater
KR20140097858A (en) Heat pump

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040818

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050701

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060509

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060622

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060718

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060731

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090818

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100818

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110818

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110818

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120818

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees