JPH031745Y2 - - Google Patents

Info

Publication number
JPH031745Y2
JPH031745Y2 JP3986081U JP3986081U JPH031745Y2 JP H031745 Y2 JPH031745 Y2 JP H031745Y2 JP 3986081 U JP3986081 U JP 3986081U JP 3986081 U JP3986081 U JP 3986081U JP H031745 Y2 JPH031745 Y2 JP H031745Y2
Authority
JP
Japan
Prior art keywords
valve
hot water
heat exchanger
water
solenoid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3986081U
Other languages
Japanese (ja)
Other versions
JPS57152575U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP3986081U priority Critical patent/JPH031745Y2/ja
Publication of JPS57152575U publication Critical patent/JPS57152575U/ja
Application granted granted Critical
Publication of JPH031745Y2 publication Critical patent/JPH031745Y2/ja
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/52Heat recovery pumps, i.e. heat pump based systems or units able to transfer the thermal energy from one area of the premises or part of the facilities to a different one, improving the overall efficiency

Description

【考案の詳細な説明】 本考案は、通常、環境試験室の如く空調条件を
一定条件下で安定するように制御する空気調和装
置の改良に関するもので、特に暖房運転時、水冷
式凝縮器から排出される排熱エネルギーを温水用
熱交換器で回収し、加温用補助熱源として有効に
利用するととも、冷房運転時、特に低温空調条件
下における前記温水用熱交換器系内の水を排除し
凍結による弊害を防止することを目的の一つとす
るものである。
[Detailed description of the invention] The present invention relates to the improvement of air conditioning equipment that normally controls air conditioning conditions to be stable under certain conditions, such as in environmental test chambers. The exhausted waste heat energy is recovered in the hot water heat exchanger and effectively used as an auxiliary heat source for heating, and water in the hot water heat exchanger system is eliminated during cooling operation, especially under low temperature air conditioning conditions. One of the purposes is to prevent the harmful effects of freezing.

従来、環境試験室等の空気調和機は、一般に空
調条件に関係なく運転される冷凍サイクルの冷却
機能と空調条件を制御する加温用ヒータおよび加
湿器により構成されている。かかる構成におい
て、空調条件を目的とする条件に昇温若しくは暖
房用として空調制御する場合、冷房用の冷凍サイ
クルは一定としたまま運転し、ヒータ入力を増大
せしめ、冷却能力に勝るヒータ加温能力により制
御することにより所定の空調条件に設定してい
た。一方、水冷式凝縮器から排出する排熱水はそ
のまま外部に排水されるか若しくはクーリングタ
ワーにより再び使用しているため省エネルギー化
の観点から有効ではなかつた。また、この排熱回
収に温水用熱交換器を用いたものについては冷房
運転時、低温空調条件において温水用熱交換器系
の水が凍結して温水用熱交換器等を破壊するとい
う欠点を有していた。
BACKGROUND ART Conventionally, air conditioners in environmental test chambers and the like are generally configured with a cooling function of a refrigeration cycle that is operated regardless of air conditioning conditions, a warming heater that controls air conditioning conditions, and a humidifier. In such a configuration, when controlling the air conditioning to raise the temperature to the desired condition or for heating, the refrigeration cycle for cooling is operated at a constant rate, the heater input is increased, and the heating capacity of the heater exceeds the cooling capacity. The predetermined air conditioning conditions were set by controlling the air conditioner. On the other hand, the hot water discharged from the water-cooled condenser is either directly discharged to the outside or is reused in a cooling tower, which is not effective in terms of energy saving. In addition, when a hot water heat exchanger is used for waste heat recovery, there is a drawback that during cooling operation, the water in the hot water heat exchanger system freezes under low temperature air conditioning conditions and destroys the hot water heat exchanger. had.

本考案は、上記従来の点に鑑みて、環境試験室
等の空調制御用として制御を行う空気調和装置に
おいて、暖房運転により空調制御する場合、水冷
式凝縮器の排熱水を加温用の温水ヒータとして空
調制御用に有効に利用するとともに、冷却能力を
小ならしめ、冷房運転時は、低温空調条件になる
と温水用熱交換器系内の水を排除し、凍結による
弊害をを防止する空気調和装置を提供するもので
ある。
In view of the above-mentioned conventional points, the present invention was developed in an air conditioner that controls the air conditioning of an environmental test room, etc., when controlling the air conditioning by heating operation, the waste hot water of the water-cooled condenser is used for heating. In addition to being effectively used as a hot water heater for air conditioning control, the cooling capacity is reduced, and during cooling operation, water in the hot water heat exchanger system is removed when low-temperature air conditioning conditions are reached, preventing harmful effects caused by freezing. The present invention provides an air conditioner.

以下、本考案をの一実施例を示す添付図面を参
考に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to the accompanying drawings showing an embodiment of the present invention.

第1図において、1は圧縮機、2は水冷式凝縮
器、3は膨張弁、4は蒸発器、5はアキユムレー
タで、これらは順次環状に連結され、周知の冷凍
サイクルを構成している。6は膨張弁3と蒸発器
4の間に設けられた冷媒用切換弁で、その一端は
蒸発器4の一部に連結するバイパス回路6aを構
成している。また水冷式凝縮器2の入口側水路配
管2aには、冷却水流量を大流量とする第1電磁
開閉弁7、中流量とする第2電磁開閉弁8、小流
量とする第3電磁開閉弁9が並列に接続され、手
動により暖房用負荷の大きさに応じて切換えられ
る。10は前記水冷式凝縮器2の出口側水路配管
2bに設けられた冷却水用電磁開閉弁で、この冷
却水用電磁開閉弁10と並列に暖房時、作動し排
熱回収して補助ヒータとなる温水用電磁開閉弁1
1と温水用熱交換器12が直列に接続されてい
る。こられはバイパス回路2cを構成している。
また前記蒸発器4と温水用熱交換器12は同一通
風回路内に設けられている。13は低圧エアー配
管で、冷房運転時、吸込空気温度が所定温度に低
下した時、低圧エアー用電磁開閉弁14を開放
し、温水用熱交換器12系の水を凍結から防止す
るため排出するものである。15は排水用切換弁
で、前記低圧エアー用電磁開閉弁14と連動す
る。16は逆止弁で、前記排出した水が熱交換器
系へ再び流入しないようにしている。
In FIG. 1, 1 is a compressor, 2 is a water-cooled condenser, 3 is an expansion valve, 4 is an evaporator, and 5 is an accumulator, which are sequentially connected in a ring to form a well-known refrigeration cycle. A refrigerant switching valve 6 is provided between the expansion valve 3 and the evaporator 4, and one end thereof constitutes a bypass circuit 6a connected to a part of the evaporator 4. In addition, the inlet water pipe 2a of the water-cooled condenser 2 includes a first electromagnetic on-off valve 7 for a large flow rate of cooling water, a second electromagnetic on-off valve 8 for a medium flow rate, and a third electromagnetic on-off valve for a small flow rate. 9 are connected in parallel and manually switched according to the size of the heating load. Reference numeral 10 denotes a cooling water electromagnetic on-off valve installed in the outlet side water pipe 2b of the water-cooled condenser 2, which operates in parallel with the cooling water electromagnetic on-off valve 10 during heating to recover waste heat and use it as an auxiliary heater. Solenoid open/close valve for hot water 1
1 and a hot water heat exchanger 12 are connected in series. These constitute a bypass circuit 2c.
Further, the evaporator 4 and the hot water heat exchanger 12 are provided in the same ventilation circuit. Reference numeral 13 denotes a low-pressure air pipe, which opens the low-pressure air electromagnetic on-off valve 14 when the intake air temperature drops to a predetermined temperature during cooling operation, and discharges water from the hot water heat exchanger system 12 to prevent it from freezing. It is something. Reference numeral 15 denotes a drainage switching valve, which is interlocked with the low-pressure air electromagnetic on-off valve 14. A check valve 16 prevents the discharged water from flowing into the heat exchanger system again.

また、前記通風回路には負荷に応じて空調制御
可能な加熱ヒータ17、加湿器18が内蔵され、
フアンモートル19、フアン20とともに空気調
和装置21を構成している。
Further, the ventilation circuit includes a built-in heater 17 and a humidifier 18 that can be air-conditioned according to the load.
The fan motor 19 and the fan 20 constitute an air conditioner 21.

次に、第2図により電気回路について説明す
る。ここで、第1図と同一のものについては同一
の番号を付して説明を省略する。
Next, the electric circuit will be explained with reference to FIG. Here, the same numbers as those in FIG. 1 are given the same numbers, and the description thereof will be omitted.

同図において、22aは電源、22は源スイツ
チ、23は冷暖切換スイツチで、空調負荷条件に
応じて冷房用にはX側へ、暖房用にはY側へ切換
わる。24は冷房運転時通電する電磁コイルで、
接点25を開閉する。26は暖房時、負荷に応じ
て冷却水流量を切換える主スイツチで、大流量用
の第1電磁開閉弁7のスイツチ27、小流量用の
第3電磁開閉弁9のスイツチ29を具備し、いず
れかのスイツチが閉回路となるよう構成されてい
る。30は空調制御用加熱ヒータ17のサーモス
タツトで、負荷に応じて開閉動作を行う。31は
冷暖切換スイツチ23と連動して、暖房運転時、
閉となり冷媒をバイパス回路に導き、冷却能力を
小ならしめる。32は暖房運転時通電する電磁コ
イルで、接点33を閉じ、温水用電磁開閉弁11
を開放する。34は排水用サーモスタツトで、空
気調和装置21の吸込空気温度が所定温度以下に
なつたとき、第1タイマー35を作動させ、所定
時間(約5秒)第1タイマー35の接点35a,
35bを閉じ、低圧エアー用電磁開閉弁14を開
放させ、排出水用電磁開閉弁15を排出側に切換
える。これにより、温水用熱交換器系の水を外部
へ排出するものである。
In the figure, 22a is a power supply, 22 is a source switch, and 23 is a heating/cooling switch, which switches to the X side for cooling and to the Y side for heating depending on the air conditioning load conditions. 24 is an electromagnetic coil that is energized during cooling operation;
The contact 25 is opened and closed. 26 is a main switch that changes the flow rate of cooling water according to the load during heating, and includes a switch 27 for the first electromagnetic on-off valve 7 for large flow and a switch 29 for the third electromagnetic on-off valve 9 for small flow. The switch is configured to form a closed circuit. 30 is a thermostat for the air conditioning control heater 17, which opens and closes depending on the load. 31 is interlocked with the cooling/heating changeover switch 23, during heating operation,
It closes and directs the refrigerant to the bypass circuit, reducing the cooling capacity. 32 is an electromagnetic coil that is energized during heating operation, closes the contact 33, and closes the hot water electromagnetic on-off valve 11.
to open. 34 is a drainage thermostat which operates a first timer 35 when the intake air temperature of the air conditioner 21 falls below a predetermined temperature, and for a predetermined period of time (approximately 5 seconds) contacts 35a of the first timer 35,
35b is closed, the low-pressure air electromagnetic on-off valve 14 is opened, and the discharge water electromagnetic on-off valve 15 is switched to the discharge side. This allows water in the hot water heat exchanger system to be discharged to the outside.

次に、上記構成からなる空気調和装置の動作を
冷房運転、暖房運転における暖房能力を小能力、
中能力、大能力に分けて、第3図の負荷状況に応
じて開閉する電磁弁の作動状況を示すタイミング
チヤートとともに説明する。まず、冷房運転を行
う場合は、電源スイツチ22を投入し、冷暖切換
スイツチ23を冷房用のX側の接点に投入すれ
ば、電磁コイル24が接点25を閉じる。その結
果、第1電磁開閉弁7が冷房運転が行われるよう
に作動する。そして所定の空調条件まで達した
ら、加熱ヒータ17のサーモスタツト30が作動
し、ヒータ17の入力制御により設定空調条件が
確保される。また、空気調和装置21の吸込空気
温度が所定温度以下に低下した時、低圧エアー用
電磁開閉弁14を開放し、一定時間低圧エアーに
より温水用熱交換器12系の水を排出する。これ
により、凍結による配管系の破壊、循環不良が防
止できる。
Next, the operation of the air conditioner with the above configuration will be described as cooling operation, heating capacity in heating operation as low capacity,
The explanation will be given with reference to a timing chart showing the operating status of the solenoid valve that opens and closes depending on the load status shown in Fig. 3, divided into medium capacity and large capacity. First, when performing cooling operation, the power switch 22 is turned on, and the cooling/heating changeover switch 23 is turned on to the cooling X-side contact, and the electromagnetic coil 24 closes the contact 25. As a result, the first electromagnetic on-off valve 7 operates to perform the cooling operation. When a predetermined air conditioning condition is reached, the thermostat 30 of the heater 17 is activated, and the set air conditioning condition is ensured by input control of the heater 17. Furthermore, when the temperature of the intake air of the air conditioner 21 falls below a predetermined temperature, the low-pressure air electromagnetic on-off valve 14 is opened, and the water in the hot water heat exchanger 12 system is discharged by low-pressure air for a certain period of time. This can prevent damage to the piping system and poor circulation due to freezing.

次に、暖房運転時において「小」能力の場合
は、冷暖切換スイツチ23を暖房用のY側の接点
に投入し、大流量用の第1電磁開閉弁用スイツチ
26を閉じればよい。
Next, in the case of "low" capacity during heating operation, the cooling/heating changeover switch 23 may be turned on to the Y side contact for heating, and the first electromagnetic on-off valve switch 26 for large flow rate may be closed.

一方冷暖切換スイツチ23をY側の接点に切換
えたため、冷却水用電磁弁10は閉となると同時
に前記温水用電磁開閉弁11が開き、冷却水は水
冷式凝縮器2の出口から温水用電磁開閉弁11を
経て、温水用熱交換器12を通るバイパス回路2
cを通り、同時に冷媒用切換弁6により冷媒を冷
媒用バイパス回路6aを通る方向に流す。そのた
め、冷媒は蒸発器4の一部分を通り、熱交換され
てアキユムレータ5、圧縮機1へと循環される。
このように水冷式凝縮器2から排熱される熱源を
加温用の補助ヒータとして有効に利用できるとと
もに、冷房能力を小ならしめる冷媒用バイパス回
路6aを有するため、より有効な暖房が行える。
On the other hand, since the cooling/heating changeover switch 23 is switched to the Y side contact, the cooling water solenoid valve 10 is closed and at the same time the hot water solenoid valve 11 is opened, and the cooling water is supplied from the outlet of the water-cooled condenser 2 to the hot water solenoid valve 11. Bypass circuit 2 passing through valve 11 and through hot water heat exchanger 12
c, and at the same time, the refrigerant switching valve 6 causes the refrigerant to flow in the direction passing through the refrigerant bypass circuit 6a. Therefore, the refrigerant passes through a portion of the evaporator 4, undergoes heat exchange, and is circulated to the accumulator 5 and the compressor 1.
In this way, the heat source exhausted from the water-cooled condenser 2 can be effectively used as an auxiliary heater for heating, and since the refrigerant bypass circuit 6a is provided to reduce the cooling capacity, more effective heating can be performed.

また、暖房運転時において「中」能力の場合
は、同様に冷暖切換スイツチ23を暖房用のY側
に投入し、中流量用の第2電磁開閉スイツチ28
を閉じればよい。
In addition, when the capacity is "medium" during heating operation, the cooling/heating changeover switch 23 is similarly turned on to the Y side for heating, and the second electromagnetic opening/closing switch 28 for medium flow is turned on.
Just close it.

この場合、先の暖房「小」能力の場合より冷却
水量が減少するため、水冷式凝縮器2からの冷却
水出口温度は高くなり、温水用熱交換器12の暖
房能力を高めるとともに、高圧圧力の上昇に伴な
う圧縮比の増大が、冷却能力を減少せしめ、暖房
「小」能力時に比べて暖房能力が大きくなる。
In this case, since the amount of cooling water is reduced compared to the case of "small" heating capacity, the outlet temperature of the cooling water from the water-cooled condenser 2 becomes higher, increasing the heating capacity of the hot water heat exchanger 12, and increasing the pressure The increase in the compression ratio accompanying the rise in , reduces the cooling capacity, and the heating capacity becomes larger than when the heating capacity is "small".

次に、暖房運転時において「大」能力の場合は
同様に、冷暖切換スイツチ23を暖房用のY側に
投入し、小流量用の第3電磁開閉弁用スイツチ2
9を閉じればよい。したがつて、前記と同様に、
暖房「中」能力の場合に比べてさらに暖房能力が
大きくなる。
Next, in the case of "high" capacity during heating operation, similarly, turn on the cooling/heating changeover switch 23 to the Y side for heating, and turn on the third electromagnetic on-off valve switch 2 for small flow.
Just close 9. Therefore, similar to the above,
The heating capacity is further increased compared to the case of "medium" heating capacity.

なお、本実施例においては水冷式凝縮器2の入
口側水路配管2aに流量可変手段である複数の電
磁開閉弁7,8,9を設けけが、連続的に流量制
御可能な弁装置を組込んでも有効に暖房能力が制
御できることはいうまでもない。
In this embodiment, a plurality of electromagnetic on-off valves 7, 8, and 9, which are flow rate variable means, are provided in the inlet water pipe 2a of the water-cooled condenser 2, and a valve device that can continuously control the flow rate is incorporated. However, it goes without saying that heating capacity can be effectively controlled.

上記実施例より明らかなように、本考案の空気
調和装置は、水冷式凝縮器を具備した冷凍サイク
ル回路の膨張弁と蒸発器の間に、冷媒用切換弁を
有しかつ蒸発器の一部に連結する冷媒用バイパス
回路を構成する一方、水冷式凝縮器の入口側水路
配管に流量可変手段を有する弁装置を設け、また
出口側水路配管に冷却水用電磁開閉弁をを設け、
前記冷却水用電磁開閉弁と並列に、温水用電磁開
閉弁、温水用熱交換器からなるバイパス回路を設
け、前記蒸発器と温水用熱交換器を同一通風回路
に設けるとともに、前記温水用熱交換器と温水用
電磁開閉弁の間の入口側水配管へ低圧エアー用電
磁開閉弁を有する低圧エアー配管を連通せしめ、
また出口側温水配管に排出水用切換弁を設け、冷
却運転時、吸込空気温度が所定温度以下になつた
時、前記低圧エアー用電磁開閉弁と排出水用切換
弁を開放して、温水用熱交換器系の残留水を排出
するようにしたもので、特に低温空調条件下にお
ける温水用熱交換器系内の凍結による配管等の破
壊、循環不良等の弊害が防止でき、また、暖房運
転時、膨張弁を出た冷媒はバイパス回路に流れる
ため、蒸発器の冷却能力が減少し、一方、水冷式
凝縮器を出た排熱水は加温用の熱源として有効に
利用でき、負荷条件に応じて暖房能力が制御でき
るなど、種々の利点を有するものである。
As is clear from the above embodiments, the air conditioner of the present invention has a refrigerant switching valve between the expansion valve and the evaporator of a refrigeration cycle circuit equipped with a water-cooled condenser, and a part of the evaporator. while configuring a refrigerant bypass circuit connected to the water-cooled condenser, a valve device having a flow rate variable means is provided in the inlet side waterway piping of the water-cooled condenser, and a cooling water electromagnetic on-off valve is provided in the outlet side waterway piping,
A bypass circuit consisting of a hot water solenoid on-off valve and a hot water heat exchanger is provided in parallel with the cooling water solenoid on-off valve, and the evaporator and the hot water heat exchanger are provided in the same ventilation circuit. A low-pressure air pipe with a low-pressure air solenoid on-off valve is connected to the inlet water pipe between the exchanger and the hot water solenoid on-off valve,
In addition, a discharge water switching valve is installed in the hot water piping on the outlet side, and when the intake air temperature falls below a predetermined temperature during cooling operation, the low-pressure air solenoid on-off valve and the discharge water switching valve are opened, and the hot water switching valve is opened. This system is designed to discharge residual water from the heat exchanger system, which prevents damage such as damage to piping and poor circulation due to freezing in the hot water heat exchanger system, especially under low-temperature air conditioning conditions, and also prevents problems such as poor circulation. At this time, the refrigerant that exits the expansion valve flows into the bypass circuit, reducing the cooling capacity of the evaporator.On the other hand, the waste hot water that exits the water-cooled condenser can be effectively used as a heat source for heating, and under load conditions. It has various advantages, such as being able to control the heating capacity depending on the situation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案の一実施例を示す空気調和装置
の構成図、第2図は同空気調和装置の電気回路
図、第3図は同空気調和装置における冷房運転
時、暖房運転時の弁等の開閉を示すタイミングチ
ヤート図である。 1……圧縮機、2……水冷式凝縮器、2a……
入口側水路配管、2b……出口側水路配管、2c
……バイパス回路、3……膨張弁、4……蒸発
器、5……アキユムレータ、6……冷媒用切換
弁、6a……バイパス回路、10……冷却水用電
磁開閉弁、11……温水用電磁開閉弁、12……
温水用熱交換器、13……低圧エアー配管、14
……低圧エアー用電磁開閉弁。
Fig. 1 is a configuration diagram of an air conditioner showing an embodiment of the present invention, Fig. 2 is an electric circuit diagram of the air conditioner, and Fig. 3 is a valve valve during cooling operation and heating operation in the air conditioner. It is a timing chart diagram showing the opening and closing of etc. 1...Compressor, 2...Water-cooled condenser, 2a...
Inlet side waterway piping, 2b...Outlet side waterway piping, 2c
... Bypass circuit, 3 ... Expansion valve, 4 ... Evaporator, 5 ... Accumulator, 6 ... Refrigerant switching valve, 6a ... Bypass circuit, 10 ... Solenoid on-off valve for cooling water, 11 ... Hot water Solenoid on/off valve for 12...
Hot water heat exchanger, 13...Low pressure air piping, 14
...Solenoid on-off valve for low pressure air.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 圧縮機、水冷式凝縮器、膨張弁、蒸発器および
アキユムレータを順次冷媒配管により接続し、前
記膨張弁と蒸発器の間に冷媒用切換弁を設け、蒸
発器の途中に連連結する冷媒用バイパス回路を構
成し、前記水冷式凝縮器の入口側水路配管に流量
可変弁装置を設け、さらに出口側水路配管に冷却
水用電磁開閉弁を設け、前記冷却水用電磁開閉弁
と並列に、暖房時作動する温水用電磁開閉弁、温
水熱交換器を直列に接続したバイパス回路を設
け、前記蒸発器と温水熱交換器を同一通風路に設
け、前記温水熱交換器入口と温水用電磁開閉弁の
間の温水配管へ低圧エアー用電磁開閉弁を有する
低圧エアー配管を連通せしめ、前記温水熱交換器
出口と書口側水路配管の間の温水配管へ排出水用
切換弁を設け、冷房運転時、吸込空気温度が所定
温度以下になつたことを温度検知手段により検知
した時、前記低圧エアー用電磁開閉弁を開放し、
排出水用切換弁を切換えて、温水熱交換器内の残
留水を排除する空気調和装置。
A compressor, a water-cooled condenser, an expansion valve, an evaporator, and an accumulator are sequentially connected by refrigerant piping, and a refrigerant switching valve is provided between the expansion valve and the evaporator, and a refrigerant bypass is connected in the middle of the evaporator. The circuit is configured such that a variable flow rate valve device is provided in the inlet side waterway piping of the water-cooled condenser, and a cooling water solenoid on-off valve is provided on the outlet side waterway piping, and a heating valve is provided in parallel with the cooling water solenoid on-off valve. A hot water solenoid on-off valve that operates when the hot water heat exchanger is activated, a bypass circuit in which the hot water heat exchanger is connected in series, and the evaporator and the hot water heat exchanger are provided in the same ventilation path, and the hot water heat exchanger inlet and the hot water solenoid on-off valve are provided. A low-pressure air pipe with a solenoid on-off valve for low-pressure air is connected to the hot water pipe between the hot water pipes, and a discharge water switching valve is provided to the hot water pipe between the hot water heat exchanger outlet and the writing side water pipe. , when the temperature detection means detects that the intake air temperature has become below a predetermined temperature, the low-pressure air electromagnetic on-off valve is opened;
An air conditioner that removes residual water from the hot water heat exchanger by switching the discharge water switching valve.
JP3986081U 1981-03-19 1981-03-19 Expired JPH031745Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3986081U JPH031745Y2 (en) 1981-03-19 1981-03-19

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3986081U JPH031745Y2 (en) 1981-03-19 1981-03-19

Publications (2)

Publication Number Publication Date
JPS57152575U JPS57152575U (en) 1982-09-25
JPH031745Y2 true JPH031745Y2 (en) 1991-01-18

Family

ID=29836979

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3986081U Expired JPH031745Y2 (en) 1981-03-19 1981-03-19

Country Status (1)

Country Link
JP (1) JPH031745Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010196915A (en) * 2009-02-23 2010-09-09 Mitsubishi Heavy Ind Ltd Refrigerating cycle system and method of controlling the refrigerating cycle system

Also Published As

Publication number Publication date
JPS57152575U (en) 1982-09-25

Similar Documents

Publication Publication Date Title
JP3485379B2 (en) Vehicle air conditioner
JPH11344263A (en) Refrigerating cycle with bypass tube
JP2901911B2 (en) Air conditioning unit
JPH031745Y2 (en)
JP3646401B2 (en) Air conditioner
JPH031744Y2 (en)
KR100643689B1 (en) Heat pump air-conditioner
JPS6023740A (en) Operation control device for air-conditioning machine
JPS5849006Y2 (en) Hot water supply and cooling equipment
JPH02290476A (en) Air-conditioning and hot water feeding system equipment
JPS59229118A (en) Operation controller for air conditioner
JP2822769B2 (en) Heat pump system
JP3744763B2 (en) Air conditioner
JP3723402B2 (en) Air conditioner
JPH09138024A (en) Air conditioner
JPH07151420A (en) Air conditioner with water heater
JPH05340641A (en) Heat pump
JPS5922437Y2 (en) Air conditioning/heating water heater
JPH0727437A (en) Air conditioner
JPS6036844Y2 (en) Heat pump refrigeration equipment
JPH0123089Y2 (en)
JPS5826512B2 (en) Air conditioning/heating water heater
JPS6251370B2 (en)
JP2000179985A (en) Multifunction heat pump system
JP2000121104A (en) Air-conditioning device