JPH031744Y2 - - Google Patents
Info
- Publication number
- JPH031744Y2 JPH031744Y2 JP3970081U JP3970081U JPH031744Y2 JP H031744 Y2 JPH031744 Y2 JP H031744Y2 JP 3970081 U JP3970081 U JP 3970081U JP 3970081 U JP3970081 U JP 3970081U JP H031744 Y2 JPH031744 Y2 JP H031744Y2
- Authority
- JP
- Japan
- Prior art keywords
- valve
- cooling
- hot water
- water
- evaporator
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 21
- 239000000498 cooling water Substances 0.000 claims description 14
- 239000003507 refrigerant Substances 0.000 claims description 10
- 238000009423 ventilation Methods 0.000 claims description 4
- 238000010438 heat treatment Methods 0.000 description 38
- 238000001816 cooling Methods 0.000 description 23
- 238000004378 air conditioning Methods 0.000 description 13
- 238000010586 diagram Methods 0.000 description 3
- 230000007613 environmental effect Effects 0.000 description 3
- 238000005057 refrigeration Methods 0.000 description 3
- 239000002918 waste heat Substances 0.000 description 2
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 239000002351 wastewater Substances 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B30/00—Energy efficient heating, ventilation or air conditioning [HVAC]
- Y02B30/52—Heat recovery pumps, i.e. heat pump based systems or units able to transfer the thermal energy from one area of the premises or part of the facilities to a different one, improving the overall efficiency
Landscapes
- Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
Description
【考案の詳細な説明】
本考案は、通常、環境試験室の如く0℃以上の
空調条件を一定条件下で安定するように制御する
空気調和装置の改良に関するもので、特に暖房運
転時、水冷式凝縮器から排出される排熱エネルギ
ーを回収し、加温用補助熱源として有効に利用す
ることを目的の一つとするものである。[Detailed description of the invention] The present invention relates to the improvement of air conditioning equipment that normally controls air conditioning conditions above 0℃ under certain conditions, such as in environmental test chambers. One of the purposes is to recover waste heat energy discharged from the type condenser and use it effectively as an auxiliary heat source for heating.
従来、環境試験室等の空気調和機は、一般に空
調条件に関係なく運転される冷凍機サイクルの冷
却機能と空調条件を制御する加温用ヒータおよび
加湿器により構成されている。かかる構成におい
て、空調条件を目的とする条件に昇温若しくは暖
房用として空調制御する場合、冷房用の冷凍サイ
クルは一定としたまま運転し、ヒータ入力を増大
せしめ、冷却能力に勝るヒータ加温能力により制
御することにより空調条件の精度を維持してい
た。また、水冷式凝縮器から排出する排熱水はそ
のまま外部に排水されるか若しくはクーリングタ
ワーにより冷却して再び使用しているため省エネ
ルギー化の観点から有効ではなかつた。 BACKGROUND ART Conventionally, air conditioners in environmental test chambers and the like are generally configured with a cooling function of a refrigerator cycle that is operated regardless of air conditioning conditions, a warming heater that controls air conditioning conditions, and a humidifier. In such a configuration, when controlling the air conditioning to raise the temperature to the desired condition or for heating, the refrigeration cycle for cooling is operated at a constant rate, the heater input is increased, and the heating capacity of the heater exceeds the cooling capacity. The accuracy of air conditioning conditions was maintained by controlling the air conditioner. Furthermore, the hot water discharged from the water-cooled condenser is either directly discharged to the outside or is cooled by a cooling tower and used again, which is not effective from the viewpoint of energy saving.
本考案は、上記従来の点に鑑みて、環境試験室
等の空調制御用として制御を行う空気調和装置に
おいて、暖房運転により空調制御する場合、水冷
式凝縮器の排熱水を加温用の温水ヒータとして空
調制御用に有効に利用するとともに、冷却能力を
小ならしめる空気調和装置を提供することにあ
る。 In view of the above-mentioned conventional points, the present invention was developed in an air conditioner that controls the air conditioning of an environmental test room, etc., when controlling the air conditioning by heating operation, the waste hot water of the water-cooled condenser is used for heating. It is an object of the present invention to provide an air conditioner that can be effectively used as a hot water heater for air conditioning control and that can reduce its cooling capacity.
以下、本考案をその一実施例を示す添付図面を
参考に説明する。 Hereinafter, the present invention will be described with reference to the accompanying drawings showing one embodiment thereof.
第1図において、1は圧縮機、2は水冷式凝縮
器、3は膨張弁、4は蒸発器、5はアキユムレー
タで、これらは順次環状に連結され、周知の冷凍
サイクルを構成している。6は膨張弁3と蒸発器
4の間に設けられた切換弁で、その一端は蒸発器
4の一部に連結するバイパス回路6aを構成して
いる。また水冷式凝縮器2の入口側水路配管2a
には冷却水流量を大流量とする第1電磁開閉弁
7、中流量とする第2電磁開閉弁8、小流量とす
る第3電磁開閉弁9が並列に接続され、手動によ
り暖房用負荷の大きさに応じて切換えられる。1
0は前記水冷式凝縮器2の出口側水路配管2bに
設けられた冷却水用電磁開閉弁で、この冷却水用
電磁開閉弁10と並列に暖房時作動し排熱回収し
て補助ヒータとなる温水用電磁開閉弁11と温水
用熱交換器12が直列に接続されている。これら
はバイパス回路2cを構成している。また蒸発器
4と温水用熱交換器12は同一通風回路内に設け
られている。さらに前記通風回路には、負荷に応
じて空調制御可能な加熱ヒータ13、加湿器14
が内蔵され、フアンモータ15、フアン16とと
もに空気調和機17を構成している。 In FIG. 1, 1 is a compressor, 2 is a water-cooled condenser, 3 is an expansion valve, 4 is an evaporator, and 5 is an accumulator, which are sequentially connected in a ring to form a well-known refrigeration cycle. A switching valve 6 is provided between the expansion valve 3 and the evaporator 4, and one end thereof constitutes a bypass circuit 6a connected to a part of the evaporator 4. In addition, the inlet side waterway piping 2a of the water-cooled condenser 2
A first electromagnetic on-off valve 7 for a large flow rate of cooling water, a second electromagnetic on-off valve 8 for a medium flow rate, and a third electromagnetic on-off valve 9 for a small flow rate are connected in parallel, and the heating load can be controlled manually. It can be switched depending on the size. 1
Reference numeral 0 designates a cooling water electromagnetic on-off valve provided on the outlet side water pipe 2b of the water-cooled condenser 2, which operates in parallel with the cooling water electromagnetic on-off valve 10 during heating to recover waste heat and serve as an auxiliary heater. A hot water electromagnetic on-off valve 11 and a hot water heat exchanger 12 are connected in series. These constitute a bypass circuit 2c. Further, the evaporator 4 and the hot water heat exchanger 12 are provided in the same ventilation circuit. Further, the ventilation circuit includes a heater 13 and a humidifier 14, which can be air-conditioned according to the load.
is built in, and constitutes an air conditioner 17 together with a fan motor 15 and a fan 16.
次に、第2図により電気回路について説明す
る。ここで、第1図と同一のものについては同一
の番号を付して説明を省略する。 Next, the electric circuit will be explained with reference to FIG. Here, the same numbers as those in FIG. 1 are given the same numbers, and the description thereof will be omitted.
同図において、17は電源スイツチ、17aは
電源、18は冷暖切換スイツチで、空調負荷条件
に応じて、冷房用にはX側へ、暖房用にはY側へ
切換わる。19は冷房運転時通電する電磁コイル
で、接点20を開閉する。21は暖房時、負荷に
応じて冷却水流量を切換える主スイツチで、大流
量用の第1電磁開閉弁7のスイツチ22、中流量
用の第2電磁開閉弁8のスイツチ23、小流量用
の第3電磁開閉弁9のスイツチ23を具備し、い
ずれかのスイツチが閉回路となるよう構成されて
いる。25は空調制御用の加熱ヒータ13のサー
モスタツトで、負荷に応じて開閉動作を行う。2
6は冷暖切換スイツチ18と連動して暖房運転
時、閉となり冷媒をバイパス回路6aに導き、冷
却能力を小ならしめる。 In the figure, 17 is a power switch, 17a is a power supply, and 18 is a heating/cooling switch, which is switched to the X side for cooling and to the Y side for heating, depending on the air conditioning load conditions. Reference numeral 19 denotes an electromagnetic coil that is energized during cooling operation, and opens and closes the contacts 20. 21 is a main switch that changes the cooling water flow rate according to the load during heating, including a switch 22 for the first electromagnetic on-off valve 7 for large flow, a switch 23 for the second electromagnetic on-off valve 8 for medium flow, and a switch 23 for small flow. A switch 23 of the third electromagnetic on-off valve 9 is provided, and any one of the switches is configured to form a closed circuit. 25 is a thermostat for the heater 13 for air conditioning control, which opens and closes depending on the load. 2
6 is closed during heating operation in conjunction with the cooling/heating changeover switch 18 to guide the refrigerant to the bypass circuit 6a and reduce the cooling capacity.
次に、上記構成からなる空気調和装置の動作を
冷房運転、暖房運転における暖房能力を小能力、
中能力、大能力に分けて、第3図の負荷状況に応
じて開閉する電磁弁の作動状況を示すタイミング
チヤートとともに説明する。 Next, the operation of the air conditioner with the above configuration is set to cooling operation, heating operation to small heating capacity,
A description will be given of medium capacity and large capacity, with reference to a timing chart shown in FIG. 3 showing the operating status of the solenoid valve that opens and closes depending on the load status.
まず、冷房運転を行う場合は、電源スイツチ1
7を投入し、冷暖切換スイツチ18を冷房用のX
側の接点に投入すれば、電磁コイル19が接点2
0を閉じる。そのため、第1電磁開閉弁7が開き
冷房運転が行われる。そして冷却能力が大きすぎ
所定の空調条件まで達したら、加熱ヒータ13の
サーモスタツト25が作動し、ヒータ13の入力
制御により設定空調条件が確保される。 First, when performing cooling operation, turn on power switch 1.
7 and turn the cooling/heating switch 18 to
When the electromagnetic coil 19 is connected to the contact 2 on the side, the electromagnetic coil 19
Close 0. Therefore, the first electromagnetic on-off valve 7 is opened and cooling operation is performed. When the cooling capacity is too large and reaches a predetermined air conditioning condition, the thermostat 25 of the heater 13 is activated, and the input control of the heater 13 ensures the set air conditioning condition.
次に、暖房運転時において「小」能力の場合
は、冷暖切換スイツチ18を暖房用のY側の接点
に投入し、大電量用の第1電磁開閉弁用スイツチ
22を閉じればよい。 Next, in the case of "low" capacity during heating operation, the cooling/heating changeover switch 18 may be turned on to the contact on the Y side for heating, and the first electromagnetic on-off valve switch 22 for large electricity consumption may be closed.
一方冷暖切換スイツチ18をY側の接点に切換
えたため、冷却水用電磁弁10は閉となると同時
に前記温水用電磁開閉弁11が開き、冷却水は水
冷式凝縮器2の出口から温水用電磁開閉弁11を
経て、温水用熱交換器12を通るバイパス回路2
cを通り、同時に切換弁6により冷媒が冷媒用バ
イパス回路6aを通る方向に流す。そのため、冷
媒は蒸発器4の一部分を通り、熱交換されてアキ
ユムレータ5、圧縮機1へと循環される。 On the other hand, since the cooling/heating changeover switch 18 is switched to the Y side contact, the cooling water solenoid valve 10 is closed and at the same time the hot water solenoid valve 11 is opened, and the cooling water is passed from the outlet of the water-cooled condenser 2 to the hot water solenoid valve 11. Bypass circuit 2 passing through valve 11 and through hot water heat exchanger 12
At the same time, the switching valve 6 causes the refrigerant to flow in the direction through the refrigerant bypass circuit 6a. Therefore, the refrigerant passes through a portion of the evaporator 4, undergoes heat exchange, and is circulated to the accumulator 5 and the compressor 1.
このように、水冷式凝縮器2から排熱される熱
源を加温用の補助ヒータとして有効に利用できる
とともに冷房能力を小ならしめる冷媒用バイパス
回路6aを有するため、より有効な暖房が行え
る。 In this way, the heat source exhausted from the water-cooled condenser 2 can be effectively used as an auxiliary heater for heating, and since the refrigerant bypass circuit 6a is provided to reduce the cooling capacity, more effective heating can be performed.
また、暖房運転時において「中」能力の場合
は、同様に、冷暖切換スイツチ18を暖房用のY
側に投入し、中流量用の第2電磁開閉スイツチ2
3を閉じればよい。この場合、先り暖房「小」能
力の場合より冷却水量が減少するため、水冷式凝
縮器2からの冷却水出口温度は高くなり、温水用
熱交換器12の暖房能力を高めるとともに、高圧
圧力の上昇に伴なう圧縮比の増大が、冷却能力を
減少せしめ、暖房「小」能力時に比べて暖房能力
が大きくなる。 In addition, when the capacity is "medium" during heating operation, similarly, the cooling/heating changeover switch 18 is set to Y for heating.
2nd electromagnetic switch 2 for medium flow rate
Just close 3. In this case, since the amount of cooling water is reduced compared to the case of "small" heating capacity, the temperature of the cooling water outlet from the water-cooled condenser 2 becomes higher, increasing the heating capacity of the hot water heat exchanger 12, and increasing the pressure The increase in the compression ratio accompanying the rise in , reduces the cooling capacity, and the heating capacity becomes larger than when the heating capacity is "small".
次に、暖房運転時において「大」能力の場合
は、同様に、冷暖切換スイツチ18を暖房用のY
側に投入し、小流量用の第3電磁開閉弁用スイツ
チ24を閉じればよい。したがつて、前記と同様
に、暖房「中」能力の場合に比べてさらに暖房能
力が大きくなる。 Next, in the case of "high" capacity during heating operation, similarly switch the cooling/heating changeover switch 18 to Y for heating.
The third electromagnetic on-off valve switch 24 for small flow rate may be closed. Therefore, similarly to the above, the heating capacity is further increased compared to the case of the "medium" heating capacity.
なお、本実施例においては水冷式凝縮器2の入
口側水路配管2aに流量可変手段である複数の電
磁開閉弁7,8,9を設けたが、連続的に流量制
御可能な弁装置を組込んでも有効に暖房能力が制
御できる。 In this embodiment, a plurality of electromagnetic on-off valves 7, 8, and 9, which are flow rate variable means, are provided in the inlet side waterway pipe 2a of the water-cooled condenser 2, but a valve device that can continuously control the flow rate is installed. The heating capacity can be effectively controlled even when the temperature is high.
上記実施例より明らかなように、本考案の空気
調和装置は、水冷式凝縮器を具備した冷凍サイク
ル回路の膨張弁と蒸発器の間に、切換弁を有しか
つ蒸発器の一部に連結する冷媒用バイパス回路を
構成する一方、水冷式凝縮器の入口側水路配管に
流量可変手段を有する弁装置を設け、また出口側
水路配管に冷却水用電磁開閉弁を設け、前記冷却
水用電磁開閉弁と並列に、温水用電磁開閉弁、温
水用熱交換器からなるバイパス回を設け、前記蒸
発器とと温水用熱交換器を同一通風回路に設け、
前記温水用電磁開閉弁の開放時に冷媒用バイパス
回路を開くようにしたもので、暖房運転時、膨張
弁を出た冷媒はバイパス回路へ流れるため、蒸発
器の冷却能力が減少し、一方、水冷式凝縮器を出
た排熱水は加温用の熱源として有効に利用され、
負荷条件に応じて暖房能力が制御できるなど、
種々の利点を有するものである。 As is clear from the above embodiments, the air conditioner of the present invention has a switching valve between the expansion valve and the evaporator of a refrigeration cycle circuit equipped with a water-cooled condenser, and is connected to a part of the evaporator. On the other hand, a valve device having a flow rate variable means is provided in the inlet side waterway piping of the water-cooled condenser, and a cooling water solenoid on-off valve is provided in the outlet side waterway piping, so that the cooling water solenoid A bypass circuit consisting of an electromagnetic on-off valve for hot water and a heat exchanger for hot water is provided in parallel with the on-off valve, and the evaporator and the heat exchanger for hot water are provided in the same ventilation circuit,
The refrigerant bypass circuit is opened when the hot water electromagnetic on-off valve is opened. During heating operation, the refrigerant that exits the expansion valve flows to the bypass circuit, reducing the cooling capacity of the evaporator. The waste water from the type condenser is effectively used as a heat source for heating.
Heating capacity can be controlled according to load conditions, etc.
It has various advantages.
第1図は本考案の一実施例を示す空気調和装置
の構成図、第2図は同空気調和装置の電気回路
図、第3図は同空気調和装置における冷房運転
時、暖房運転時の弁等の開閉を示すタイミングチ
ヤート図である。
1……圧縮機、2……水冷式凝縮器、2a……
入口側水路配管、2b……出口側水路配管、2c
……バイパス回路、3……膨張弁、4……蒸発
器、5……アキユムレータ、6……切換弁、6a
……バイパス回路、10……冷却水用電磁開閉
弁、11……温水用電磁開閉弁、12……温水用
熱交換器。
Fig. 1 is a configuration diagram of an air conditioner showing an embodiment of the present invention, Fig. 2 is an electric circuit diagram of the air conditioner, and Fig. 3 is a valve valve during cooling operation and heating operation in the air conditioner. It is a timing chart diagram showing the opening and closing of etc. 1...Compressor, 2...Water-cooled condenser, 2a...
Inlet side waterway piping, 2b...Outlet side waterway piping, 2c
... Bypass circuit, 3 ... Expansion valve, 4 ... Evaporator, 5 ... Accumulator, 6 ... Switching valve, 6a
...Bypass circuit, 10... Solenoid on-off valve for cooling water, 11... Solenoid on-off valve for hot water, 12... Heat exchanger for hot water.
Claims (1)
アキユムレータを順次冷媒配管により接続し、前
記膨張弁と蒸発器の間に切換弁を設け、蒸発器の
途中に連結する冷媒用バイパス回路を構成し、前
記水冷式凝縮器の入口側水路配管に流量可変手段
を有する弁装置を設け、出口側水路配管に冷却水
用電磁開閉弁を設け、この冷却水用電磁開閉弁と
並列に、暖房時作動する温水用電磁開閉弁、温水
熱交換器を直列に接続したバイパス回路を設け、
前記蒸発器と温水熱交換器を同一通風路に設け、
前記冷却水用電磁開閉弁を閉じ、かつ温水用電磁
開閉弁を開放した時に、冷媒用バイパス回路を開
くようにした空気調和装置。 A compressor, a water-cooled condenser, an expansion valve, an evaporator, and an accumulator are sequentially connected by refrigerant piping, and a switching valve is provided between the expansion valve and the evaporator to form a refrigerant bypass circuit connected to the middle of the evaporator. A valve device having a flow rate variable means is provided in the inlet side waterway piping of the water-cooled condenser, and a cooling water electromagnetic on-off valve is provided on the outlet side waterway piping, and in parallel with this cooling water electromagnetic on-off valve, the A bypass circuit is installed in which an operating electromagnetic on-off valve for hot water and a hot water heat exchanger are connected in series.
The evaporator and the hot water heat exchanger are provided in the same ventilation path,
An air conditioner configured to open a refrigerant bypass circuit when the cooling water solenoid on-off valve is closed and the hot water solenoid on-off valve is opened.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3970081U JPH031744Y2 (en) | 1981-03-20 | 1981-03-20 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3970081U JPH031744Y2 (en) | 1981-03-20 | 1981-03-20 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS57152574U JPS57152574U (en) | 1982-09-25 |
JPH031744Y2 true JPH031744Y2 (en) | 1991-01-18 |
Family
ID=29836822
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3970081U Expired JPH031744Y2 (en) | 1981-03-20 | 1981-03-20 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH031744Y2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59189238A (en) * | 1983-04-12 | 1984-10-26 | Konishiroku Photo Ind Co Ltd | Air conditioning and apparatus therefor |
-
1981
- 1981-03-20 JP JP3970081U patent/JPH031744Y2/ja not_active Expired
Also Published As
Publication number | Publication date |
---|---|
JPS57152574U (en) | 1982-09-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0842938A (en) | Dehumidifying device and method of air conditioner | |
CN111023414B (en) | Air conditioning system and dehumidification control method | |
JPH031744Y2 (en) | ||
JP3646401B2 (en) | Air conditioner | |
JPS5844299Y2 (en) | Air conditioner refrigeration cycle | |
KR102257544B1 (en) | Energy enhanced air-conditioning system and control method thereof | |
JPH031745Y2 (en) | ||
JPH02169968A (en) | Heat pump type room cooler/heater hot water supply apparatus | |
JPH02290476A (en) | Air-conditioning and hot water feeding system equipment | |
CN217383113U (en) | Air conditioner | |
JPS5849006Y2 (en) | Hot water supply and cooling equipment | |
JP3265842B2 (en) | Heat pump air conditioner dehumidifier for electric vehicles | |
JPS59229118A (en) | Operation controller for air conditioner | |
JPH11304272A (en) | Compression type cooling device | |
KR100303680B1 (en) | Cooling and heating of air conditioner | |
JPS5826512B2 (en) | Air conditioning/heating water heater | |
JPH0861703A (en) | Central heat source type air conditioning system | |
JPS6237302B2 (en) | ||
JPS596349Y2 (en) | air conditioner | |
KR940010661B1 (en) | Air conditioner mounting apparatus | |
JPS60596Y2 (en) | air conditioner | |
JP2000121104A (en) | Air-conditioning device | |
JPS5933943Y2 (en) | air conditioner | |
JPH08313097A (en) | Air conditioner | |
JPS6024370B2 (en) | Air conditioning equipment |