JPS61101770A - Heat pump type air-conditioning hot-water supply machine - Google Patents

Heat pump type air-conditioning hot-water supply machine

Info

Publication number
JPS61101770A
JPS61101770A JP59224774A JP22477484A JPS61101770A JP S61101770 A JPS61101770 A JP S61101770A JP 59224774 A JP59224774 A JP 59224774A JP 22477484 A JP22477484 A JP 22477484A JP S61101770 A JPS61101770 A JP S61101770A
Authority
JP
Japan
Prior art keywords
hot water
air
contact
air conditioning
conditioning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59224774A
Other languages
Japanese (ja)
Inventor
正美 今西
秀一 谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP59224774A priority Critical patent/JPS61101770A/en
Publication of JPS61101770A publication Critical patent/JPS61101770A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、空調用冷凍サイクルが暖房時は、採熱側水
温全部くし、かつ冷房時は採熱側水温を比較的低くセッ
トして、それを切換ヌイツチで選択できるようにバック
アップガ;(軸制御するようにしたヒートポンプ式冷暖
房@湯促に関する。
[Detailed Description of the Invention] [Industrial Application Field] This invention is characterized in that when the air conditioning refrigeration cycle is heating, the water temperature on the heat collecting side is completely combed, and during cooling, the water temperature on the heat collecting side is set to a relatively low temperature. Backup function so that you can select it with the switch switch;

〔従来の技術〕[Conventional technology]

従来の空気熱諒ヒートポンプ式給湯機の例を第4図に示
す。この第4図において1は給湯用圧縮機、2は給湯用
凝縮器、3は膨張級樽、4は送風機5を備えた蒸発器で
ちり、これらをj・n仄冷媒配管で連結してヒートポン
プ回路を()1を成している。
An example of a conventional air heat pump water heater is shown in FIG. In Fig. 4, 1 is a compressor for hot water supply, 2 is a condenser for hot water supply, 3 is an expansion class barrel, and 4 is an evaporator equipped with a blower 5, and these are connected with a J/N refrigerant pipe to form a heat pump. The circuit consists of ()1.

そして、実線矢印は冷媒の流れ2革ず。The solid arrows indicate the flow of refrigerant.

また、6は貯湯タンクであり、この貯湯タン、り6の下
部給水ロアが設けられており一給水ロアは減圧逆止弁9
を介して市水配管8に連結きれている。
In addition, 6 is a hot water storage tank, and this hot water storage tank is provided with a lower water supply lower part of the tank 6, and one water supply lower is provided with a pressure reducing check valve 9.
It is connected to the city water pipe 8 via.

貯湯タンク6の下部には、循環水取出口13が設けられ
ており、この循環水取出口13は循環ポンプ15、給湯
用凝縮器2.および循環水返し口14を介して貯湯タン
ク6の上部に連結されている。
A circulating water outlet 13 is provided at the lower part of the hot water storage tank 6, and this circulating water outlet 13 is connected to a circulation pump 15, a hot water supply condenser 2. and is connected to the upper part of the hot water storage tank 6 via a circulating water return port 14.

さらに、貯湯タンク16の下部には電気ヒータ16が設
けられている。貯湯タンク6内の水温はサーモスタット
19で検知されるようになっており、サーモスタット2
0にエリ、ヒートポンプ運転からヒータ運転への切換動
作を行うようになっている。
Further, an electric heater 16 is provided at the bottom of the hot water storage tank 16. The water temperature in the hot water storage tank 6 is detected by a thermostat 19, and a thermostat 2
0, a switching operation is performed from heat pump operation to heater operation.

第5図は第4図の各部の運転制御回路の一例を示す回路
図である。この第4図において、交流電源Eの一方の電
極は給湯運転スイッチ18.上記サーモスタット19を
介してサーモスタット20の可動接点に接続されている
FIG. 5 is a circuit diagram showing an example of the operation control circuit of each part in FIG. 4. In FIG. 4, one electrode of the AC power source E is connected to the hot water supply operation switch 18. It is connected to a movable contact of a thermostat 20 via the thermostat 19 described above.

サーモスタット20は固定接点a、bを有し、固定接点
aはヒータ16に相当するヒータ回路21を介して交流
電源Eの他方の電極に接続されており、また、サーモス
タット20の固定接点すは給湯用圧縮機1に相当する給
湯用圧縮機モータ回路22、送風機5に相当する送風機
モータ回路23、循環ポンプ15に相当するポンプモー
タ回路24の並列回路を介して交流電源Eの他方の電極
に接続されている。
The thermostat 20 has fixed contacts a and b, the fixed contact a is connected to the other electrode of the AC power source E via a heater circuit 21 corresponding to the heater 16, and the fixed contact of the thermostat 20 is connected to the hot water supply. Connected to the other electrode of the AC power supply E through a parallel circuit of a hot water supply compressor motor circuit 22 corresponding to the water compressor 1, a blower motor circuit 23 corresponding to the blower 5, and a pump motor circuit 24 corresponding to the circulation pump 15. has been done.

次に、動作について説明する。まず給湯運転スイッチ1
8を閉接し、サーモスタツ)19が閉成し、サーモスタ
ツ)20が第5図に示すように固定接点す側に接点接続
していると、すなわち貯湯タンク6の水温が所定値以下
の場合、給湯用圧縮機モータ回路22、送風機モータ回
路23、およびポンプモータ回路24が作動し、ヒート
ポンプ運転を行なう。
Next, the operation will be explained. First, hot water supply operation switch 1
8 is closed, thermostat 19 is closed, and thermostat 20 is connected to the fixed contact side as shown in FIG. The compressor motor circuit 22, the blower motor circuit 23, and the pump motor circuit 24 operate to perform heat pump operation.

これにより、給湯用圧縮機1から吐出された高温高圧冷
媒ガス(フロン12)は給湯用凝縮器2において、貯湯
タンク6の下部から循環ポンプ15によって送られる給
湯水と熱交換器し、給湯水を加熱し、自らは、凝縮液化
し、膨張機構3で減圧され蒸発器4にて、空気より採熱
し、蒸発し、給湯用圧縮機1にもどる冷凍サイクルを形
成する。
As a result, the high-temperature, high-pressure refrigerant gas (Freon 12) discharged from the hot water supply compressor 1 is heat exchanged with the hot water supplied by the circulation pump 15 from the lower part of the hot water storage tank 6 in the hot water condenser 2, and the hot water is heated, condenses and liquefies itself, is depressurized by the expansion mechanism 3, takes heat from the air in the evaporator 4, is evaporated, and returns to the hot water supply compressor 1, forming a refrigeration cycle.

一方、給湯水側は市水配管8.減圧逆止弁9を通り給水
ロアより給水される。
On the other hand, on the hot water side, city water pipe 8. Water is supplied from the water supply lower through the pressure reducing check valve 9.

また、貯湯タンク6を満している給湯水は、循環水取出
口18より循41ポンプ15によって給湯用凝縮器2に
送られ、加熱され循環水返し口14を経て貯湯タンク6
にもどり、循環される。
The hot water filling the hot water storage tank 6 is sent from the circulating water outlet 18 to the hot water condenser 2 by the circulation 41 pump 15, heated, and passed through the circulating water return port 14 to the hot water storage tank 6.
It returns and is circulated.

このようにして、貯湯タンク6内の給湯水は順次循環加
熱され、昇温されていく。このとき、貯湯タンク6内は
給湯水の循環にエリ均一な温度分布になっている。
In this way, the hot water in the hot water storage tank 6 is sequentially circulated and heated to raise its temperature. At this time, the inside of the hot water storage tank 6 has a uniform temperature distribution as the hot water is circulated.

こうして昇温を続け、貯湯タンク6内の給湯水が所定温
反以上になると、サーモスタット20の可動接点は固定
接点す側より固定接点a側に切り侯わり、給湯用圧縮機
モータ回路22、送風機上 。
When the temperature continues to rise in this way and the hot water in the hot water storage tank 6 reaches a predetermined temperature or higher, the movable contact of the thermostat 20 switches from the fixed contact side to the fixed contact a side, and the hot water supply compressor motor circuit 22 and the blower Up .

−タ回路23、ポンプモータ回路24は停止する。- motor circuit 23 and pump motor circuit 24 are stopped.

同時に、ヒータ回路21が作動し、ヒータ16に)I!
!電される。貯湯タンク6内の給湯水が所定の温+Lと
なると、サーモスタット19は開成し、ヒータ回路21
が停止する。
At the same time, the heater circuit 21 is activated and the heater 16)I!
! Powered up. When the hot water in the hot water storage tank 6 reaches a predetermined temperature +L, the thermostat 19 opens and the heater circuit 21
stops.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

以上のように従来の空気熱源ヒートポンプ式給湯機は、
構成されていた。したがって、外気温度が低い冬期(た
とえば0′C,以下)では空気からの採熱量が少ないた
め、蒸発圧力が低くなり給湯能力が小さかった。
As mentioned above, conventional air source heat pump water heaters
It was configured. Therefore, in winter when the outside air temperature is low (for example, below 0'C), the amount of heat extracted from the air is small, so the evaporation pressure is low and the hot water supply capacity is small.

また、高温給湯水を得ようとすれば凝縮圧力が上昇し、
給湯用圧縮機1の圧縮比(=凝縮圧カ/   ゛蒸発圧
力)が8以上となり、かつ給湯用圧縮機1の吐出冷媒ガ
ス温か上昇しくたとえば130℃以上)給湯用圧縮機1
の信頼性および寿命に犬さな影響を与えるため、給湯用
圧縮機1の運転を停止させ、その代替として、補助熱源
(たとえば電気ヒータ)によって昇温するなどの手段が
とられていた。
In addition, when trying to obtain high-temperature hot water, the condensation pressure increases,
The compression ratio (=condensing pressure/evaporation pressure) of the hot water supply compressor 1 is 8 or more, and the temperature of the refrigerant gas discharged from the hot water supply compressor 1 increases, for example, 130°C or more).
Since the reliability and lifespan of the hot water supply compressor 1 is seriously affected, measures have been taken to stop the operation of the hot water supply compressor 1 and, as an alternative, raise the temperature using an auxiliary heat source (for example, an electric heater).

しかし、これは機器の効率(成績係数)を悪くしていた
However, this worsened the efficiency (coefficient of performance) of the equipment.

また、空気熱源ヒートポンプ式であるため、夏期外気温
が高い場合、給湯能力が大きく、冬期外気温が低い場合
には給湯能力が小さくなる。これは給湯負荷とは全たく
逆の傾向であり、負荷は、外気温が高い夏期には小さく
、外気温の低い冬期には犬尊くなる。
Furthermore, since it is an air source heat pump type, the hot water supply capacity is large when the outside temperature is high in the summer, and the hot water supply capacity is small when the outside temperature is low in the winter. This trend is completely opposite to the hot water supply load; the load is small in the summer when the outside temperature is high, and increases in the winter when the outside temperature is low.

したがって、機器の特性と負荷とのバランスがとれず、
機種選定においては、かなり大きな容量の機器が必要で
あった。
Therefore, the characteristics of the equipment and the load cannot be balanced,
When selecting a model, we needed equipment with a fairly large capacity.

この発明は、かかる問題点を解決するためになされたも
ので、補助熱源装置(たとえば電気ヒータ)なしで、効
率よく、高温出湯を可能とし、あわせて、冷暖房をも可
能とするヒートポンプ式冷暖房給湯機を得ることを目的
とする。
This invention was made in order to solve such problems, and is a heat pump-type air-conditioning/heating hot-water supply system that enables efficient hot water dispensing without an auxiliary heat source device (for example, an electric heater), and also enables air-conditioning/heating. The purpose is to obtain an opportunity.

〔間@虚を解決するための手段〕[Meaning @ Means to solve the imaginary]

この発明に係るヒートポンプ式冷暖房給湯機は、空気熱
αヒートポンプ回路と水熱源ヒートポンプ回路の蒸発器
を熱的に接触するとともに、冷暖房切換スイッチを設け
たものである。
A heat pump type air-conditioning/heating water heater according to the present invention has an air-heat α heat pump circuit and a water-source heat pump circuit's evaporators in thermal contact with each other, and is provided with an air-conditioning/heating changeover switch.

〔作 用〕[For production]

この発明においては、空調用冷凍サイクルが暖房時は冷
暖房切換スイッチにより採熱側水温を高くしかつ冷房時
には採熱側水温を比較的低くセットするように選択的に
切り換えて、バックアップ運転制御する。
In this invention, backup operation is controlled by selectively switching the air-conditioning refrigeration cycle to set the heat-collecting side water temperature to a high temperature using an air-conditioning/heating changeover switch during heating, and to set the heat-collecting side water temperature to a relatively low temperature during cooling.

〔実施例〕〔Example〕

以下、この発明のヒートポンプ式冷暖房給湯機の実施例
について図面に基づき説明するが、具体的な実施例の説
明に先立ち、まず、単段冷凍サイクルと二元冷凍方式に
ついて概述する。
Embodiments of the heat pump type air-conditioning/heating/water heater of the present invention will be described below with reference to the drawings. Prior to describing the specific embodiments, first, a single-stage refrigeration cycle and a dual refrigeration system will be briefly described.

通常、単段の冷凍サイクルでは、凝縮温度と蒸発温度の
差が大きくなると、特に給湯水温度が高くなると、冷凍
サイクルの成績係M(C,00P)は悪くなる。これは
圧縮機の圧縮比が大きくなり。
Normally, in a single-stage refrigeration cycle, when the difference between the condensing temperature and the evaporation temperature increases, especially when the hot water temperature increases, the performance coefficient M(C, 00P) of the refrigeration cycle deteriorates. This increases the compression ratio of the compressor.

体積効率が低下するためである。This is because the volumetric efficiency decreases.

たとえば、給湯水温度67℃、外気O℃の場合について
、単段圧縮の空気熱源ヒートポンプチラーの場合と、二
元冷drl、すなわち低段flll+に空気熱源ヒート
ポンプチラー、高段側水熱源ヒートポンプ給湯機を設け
、低段側の凝縮熱を高段側の採熱量とした場合の圧縮機
の体積効率を比較してみる。
For example, in the case where the hot water temperature is 67℃ and the outside air is 0℃, there is a case of a single-stage compression air heat source heat pump chiller, and a dual cooling drl, that is, an air heat source heat pump chiller on the lower stage FLL+, and a water heat source heat pump water heater on the higher stage. Let's compare the volumetric efficiency of the compressor when the heat of condensation on the low stage side is taken as the amount of heat collected on the high stage side.

第3図にレシプロ圧縮機の圧縮比と体積効率との関係、
および、それぞれの方式の運転特性を表わすモリエル線
図を示す。
Figure 3 shows the relationship between the compression ratio and volumetric efficiency of a reciprocating compressor.
A Mollier diagram showing the operating characteristics of each method is also shown.

単段方式の場合(冷媒フロン22使用)、高圧82 K
g/crIa b s低圧4 K9/ad a b s
圧縮比8となり、体積効率は42にである。
In the case of single-stage system (using Freon 22 refrigerant), high pressure 82 K
g/crIa b s low pressure 4 K9/ad a b s
The compression ratio is 8, and the volumetric efficiency is 42.

二元冷凍方式の場合、低段側(冷媒R−22使用)、茜
圧14 Kg/crl a b s、低圧4 Kz/f
fl a b s、圧縮比3.5となり、体積効率72
%、高段側(冷媒フロン12使用)、高圧20 K9’
/cna b 8、低圧6、6 h/crl a b 
s、圧縮比3となり、体積効率は75%である。
In the case of binary refrigeration system, low stage side (using refrigerant R-22), madder pressure 14 Kg/crl a b s, low pressure 4 Kz/f
fl a b s, compression ratio is 3.5, volumetric efficiency is 72
%, high stage side (using refrigerant Freon 12), high pressure 20 K9'
/cna b 8, low pressure 6, 6 h/crl a b
s, the compression ratio is 3, and the volumetric efficiency is 75%.

これらの内払効率をもとに、それぞれのモリエル線図上
からみた論理加熱C,O,Pは、単段方式では、3,2
.二元冷凍方式では4を9え、二元冷凍方式の方が効率
がよい。
Based on these internal disbursement efficiencies, the theoretical heating C, O, and P seen from the respective Mollier diagrams are 3, 2 in the single stage system.
.. In the binary refrigeration system, 4 is compared to 9, and the binary refrigeration system is more efficient.

次に、この発明によるヒートポンプ式冷暖房給湯機の一
実施例を第1図により説明する。この第1図において、
符号1〜3.6〜13,15.19で示す部分は第4図
と同株であり、それ以外の部分はこの発明によって新た
に付加された部分で、この発明の特徴をなす部分である
Next, an embodiment of a heat pump type air-conditioning/heating water heater according to the present invention will be described with reference to FIG. In this Figure 1,
The parts indicated by numerals 1 to 3.6 to 13 and 15.19 are the same as those in Fig. 4, and the other parts are newly added parts according to this invention, and are the parts that are characteristic of this invention. .

すなわち、25は空調用冷凍サイクルと水回路を共用し
て空調用の冷温水をつくる水側熱交換器。
That is, 25 is a water side heat exchanger that shares the air conditioning refrigeration cycle and the water circuit to produce cold and hot water for air conditioning.

26は7−+ニームレータであり、これらを順次配管で
連結して水熱源ヒートポンプ回路を構成している。
Reference numeral 26 denotes a 7-+ neemerator, which are successively connected through piping to form a water heat source heat pump circuit.

給湯用圧縮機lにクランクケースヒータ27が取り付け
られ、アキュームレータ26にクランクケースヒータ2
8が取り付けられている。そして実線矢印は冷媒の流れ
を示す7 一方、空調用圧縮機29.四方弁30.膨張機構31.
送風機33を備えた空気側熱交換器32と、上記水側熱
交換器25を1llQ次冷媒配管で連結して空気熱源ヒ
ートポンプ回路を構成している。
A crankcase heater 27 is attached to the hot water supply compressor l, and a crankcase heater 2 is attached to the accumulator 26.
8 is attached. The solid arrow indicates the flow of refrigerant 7 On the other hand, the air conditioning compressor 29. Four-way valve 30. Expansion mechanism 31.
An air-side heat exchanger 32 equipped with a blower 33 and the water-side heat exchanger 25 are connected by 1llQ order refrigerant piping to form an air source heat pump circuit.

そして実線矢印は暖房時、破線矢印は冷房時の冷媒の流
れを示す。
The solid arrows indicate the flow of refrigerant during heating, and the dashed arrows indicate the flow of refrigerant during cooling.

また、空調用循環ポンプ34.三方弁36を備えた放熱
器85と水側熱交換器25を順次水配管で連結して、空
調用水回路を構成している。そして白抜き矢印は冷温水
の流れを示す。
In addition, the air conditioning circulation pump 34. A radiator 85 equipped with a three-way valve 36 and a water-side heat exchanger 25 are successively connected through water piping to form an air conditioning water circuit. The white arrows indicate the flow of cold and hot water.

次に、第1図に示した各描成隈器の運転制御回路の一実
施例を第2図に示す。この)鳥2図においで、J8は給
湯運転スイッチ、191″iA@湯タンク6内の水温を
検出し、所定温度に達すると接点を開成するサーモスタ
ット、22は給湯用圧縮機1に相当する給湯用圧縮機モ
ータ回路、24は循環ポンプ15に相当するポンプモー
タ回路、87はgIIにの運転時間を制御するタイマ、
38はタイマ37の出力接点、39は補助リレー、40
al。
Next, FIG. 2 shows an embodiment of the operation control circuit for each drawing machine shown in FIG. 1. In this) bird 2 diagram, J8 is a hot water supply operation switch, 191"iA@ is a thermostat that detects the water temperature in the hot water tank 6 and opens a contact when it reaches a predetermined temperature, and 22 is a hot water supply corresponding to the hot water compressor 1. 24 is a pump motor circuit corresponding to the circulation pump 15, 87 is a timer for controlling the operating time of gII,
38 is the output contact of the timer 37, 39 is the auxiliary relay, 40
al.

40a2は補助リレー39の出力接点、41は暖房運転
時に空調用温水の温度を検出し、所定値以上で閉成し、
給湯用圧縮機モータ22を制御するサーモスタット、4
2は補助リレー、43は補助リレー42の出力接点であ
る。
40a2 is an output contact of the auxiliary relay 39, 41 detects the temperature of hot water for air conditioning during heating operation, and closes when it exceeds a predetermined value;
a thermostat that controls the hot water supply compressor motor 22;
2 is an auxiliary relay, and 43 is an output contact of the auxiliary relay 42.

また、45は空調用水回路の水温を感知し、空調用水回
路の加熱運転を制御するサーモスタット、46はサーモ
スタット45より設定値が高く、空調用水回路の水温を
感知し空調用水回路の加熱運転を制御するサーモスタッ
ト、47は補助リレー、48al、48a2,49bl
、49b2は補助リレー47の出力接点、50は遅延タ
イマ、51は遅勉タイマ50の出力限時接点である。
Further, 45 is a thermostat that senses the water temperature of the air conditioning water circuit and controls the heating operation of the air conditioning water circuit, and 46 has a higher set value than the thermostat 45 and senses the water temperature of the air conditioning water circuit and controls the heating operation of the air conditioning water circuit. Thermostat, 47 is auxiliary relay, 48al, 48a2, 49bl
, 49b2 is an output contact of the auxiliary relay 47, 50 is a delay timer, and 51 is an output time limit contact of the slow study timer 50.

52は空調運転スイッチ、53は補助リレーであり、5
4al、54a2,55.56は補助リレー53の出力
接点、補助リレー57は出力58を有している。
52 is an air conditioning operation switch, 53 is an auxiliary relay, and 5
4al, 54a2, 55.56 are output contacts of the auxiliary relay 53, and the auxiliary relay 57 has an output 58.

59は冷暖房切換スイッチ、60は補助リレーであり、
出力接A61 a ]、61a2,68C1゜63C2
を有している。
59 is an air conditioning/heating selector switch, 60 is an auxiliary relay,
Output connection A61 a], 61a2, 68C1゜63C2
have.

また、凍結防止サーモスタット64はサーモスタット4
5.1:り設定値の低い、かつ空調用冷媒回路の冷媒温
を検出し、冷房運転時のみ作用するようになっている。
In addition, the antifreeze thermostat 64 is the same as the thermostat 4.
5.1: Detects the refrigerant temperature in the air conditioning refrigerant circuit with a low setting value, and is activated only during cooling operation.

補助リレー65は出力接点66を有しており。The auxiliary relay 65 has an output contact 66.

67は空調用循環ポンプ34に相当するポンプモータ回
路、68は空調用冷水温度を検出し、冷房運転を制御す
るサーモスタットであり、サーモスタット45より設定
値が高い。
67 is a pump motor circuit corresponding to the air conditioning circulation pump 34, and 68 is a thermostat that detects the temperature of the air conditioning cold water and controls the cooling operation, and has a higher set value than the thermostat 45.

69は空調用温水に度を検出し、暖房運転を制御するサ
ーモスタットであり、サーモスタット41より設定値が
高い。70は空調用圧縮機29に相当する空調用圧縮機
モータ回路、71は送風機33に相当する送風機モータ
回路、72は四方弁30のコイルである。
A thermostat 69 detects the temperature of the air conditioning hot water and controls the heating operation, and has a higher set value than the thermostat 41. 70 is an air conditioning compressor motor circuit corresponding to the air conditioning compressor 29, 71 is a blower motor circuit corresponding to the blower 33, and 72 is a coil of the four-way valve 30.

なお、27.28は第1図に示したそれぞれクランクケ
ースヒータであり、59は冷暖房切換スイッチである。
Note that 27 and 28 are crankcase heaters shown in FIG. 1, and 59 is a heating/cooling changeover switch.

次に動作について説明する。まず、給湯運転スイッチ1
8が閉成され、空調運転スイッチ52が切1itlIに
接点接1跣されている場合、すなわち、貯湯加熱運転モ
ードについて説明する。
Next, the operation will be explained. First, hot water supply operation switch 1
8 is closed and the air conditioning operation switch 52 is in the OFF position, that is, the hot water storage heating operation mode will be described.

貯湯加熱運転時間帯になると、タイマ370作用により
、接点38が閉成する。このとき、貯湯タンク6内が所
定水温以下の場合は、サーモスタット19は閉成してお
り、補助リレー39が励磁さ7し、接点40a1が閉成
され、ポンプモータ回路24が作動する。
When the hot water storage heating operation period comes, the contact 38 is closed by the action of the timer 370. At this time, if the water temperature in the hot water storage tank 6 is below the predetermined water temperature, the thermostat 19 is closed, the auxiliary relay 39 is energized, the contact 40a1 is closed, and the pump motor circuit 24 is activated.

補助リレー65は4源投入と同時に、励磁きれ、接点6
6が閉成される。また、補助リレー39が励・7会され
、14点41) a 2が閉成されることで、補助りし
′−53が励磁され、接点54al、54a2は閉成、
接点55は開成、接点56がa側に接点接続され、接点
54a2て冷房用凍結防止サーモスタット64を短絡し
ている。
The auxiliary relay 65 is energized at the same time as the 4 sources are turned on, and the contact 6
6 is closed. In addition, the auxiliary relay 39 is energized and 14 points 41) a2 are closed, so that the auxiliary relay 53 is energized, and the contacts 54al and 54a2 are closed.
The contact 55 is open, the contact 56 is connected to the a side, and the contact 54a2 short-circuits the cooling antifreeze thermostat 64.

また、接点55が開成しているので、空調用圧縮機モー
タ回路70.送風機モータ回路71の運転制御は接点4
8a1の開閉により制御される。
Also, since the contact point 55 is open, the air conditioning compressor motor circuit 70. The operation of the blower motor circuit 71 is controlled by contact 4.
Controlled by opening and closing of 8a1.

このときに、冷暖切換スイッチ59が暖器接点に接続し
ている場合は、補助リレー60が励磁され。
At this time, if the cooling/heating changeover switch 59 is connected to the warmer contact, the auxiliary relay 60 is energized.

接点61al、61a2が閉成接点63cl、68c2
がa側に接点接続され、接点61a1で冷房用凍結防止
サーモスタット64を短絡している。
Contacts 61al and 61a2 are closed contacts 63cl and 68c2
is connected to the a side, and the cooling antifreeze thermostat 64 is short-circuited at the contact 61a1.

接点54a1が閉成されると、補助リレー57が励磁さ
れ、接点58がa側に接点接続され、空調用循環ポンプ
モータ回路67が作動する。
When the contact 54a1 is closed, the auxiliary relay 57 is excited, the contact 58 is connected to the a side, and the air conditioning circulation pump motor circuit 67 is activated.

一方、補助リレー47が非励磁の場合、接点49blは
閉成されており、給湯用圧縮機モータ回路22が作動し
、貯湯加熱運転を開始し、また補助リレー42が励磁を
れ、接点43が開成し、それまで給湯用圧縮機モータ回
路22が停止している間通型されていたクランクケース
ヒータ27゜28が非迫屯となる。そして給湯用圧縮機
1より送られた高温高圧冷媒は給湯用凝縮器2において
、貯湯タンク6の下部から循環ポンプ15によって送ら
れてきた給湯水と熱交換し、加熱し、自らは放熱凝縮し
、膨張機構3で減圧され、水側熱交換器25で空調用循
環ポンプ34によって送られて亡た冷水と熱交換し、冷
却し、自らは採熱蒸発し、アキュームレータ26を経て
、給湯用圧縮機1へもどる冷凍サイクルを形成する。
On the other hand, when the auxiliary relay 47 is de-energized, the contact 49bl is closed, the hot water supply compressor motor circuit 22 is operated, and the hot water storage heating operation is started, and the auxiliary relay 42 is energized and the contact 43 is closed. The crankcase heaters 27 and 28, which had been open until then when the hot water supply compressor motor circuit 22 was stopped, are now inactive. The high-temperature, high-pressure refrigerant sent from the hot water supply compressor 1 exchanges heat with the hot water supply water sent from the lower part of the hot water storage tank 6 by the circulation pump 15 in the hot water supply condenser 2, heats it, and condenses itself by heat radiation. The pressure is reduced by the expansion mechanism 3, and the water-side heat exchanger 25 exchanges heat with the dead cold water sent by the air conditioning circulation pump 34, cools it, collects heat, evaporates, and passes through the accumulator 26 to compress it for hot water supply. A refrigeration cycle is formed that returns to machine 1.

一方、給湯水は市水配管8、減圧逆止弁9を通り給水ロ
アより給水され、貯湯タンク6を満している給湯水は、
循環水取出口13より循環ポンプ15によって給湯用凝
縮器2に送られ、加熱され、循環水返し口14を経て貯
湯タンク6にもどるように循環される。
On the other hand, the hot water is supplied from the water supply lower through the city water pipe 8 and the pressure reducing check valve 9, and the hot water filling the hot water storage tank 6 is
The circulating water is sent from the circulating water outlet 13 to the hot water supply condenser 2 by the circulating pump 15, heated, and circulated back to the hot water storage tank 6 via the circulating water return port 14.

このようにして、貯湯タンク6内の水は順次循、5  
  項加熱さ1・昇温さ1″・また給湯(i11117
)冷凍71クルにとっては熱源水回路の空調用水回路は
、空調用循環ポンプ34により水側熱交換器25に送ら
れ、水側熱交換器25で冷却されて、三方弁36へ送ら
nる。
In this way, the water in the hot water storage tank 6 is sequentially circulated.
Item heating 1, temperature rising 1'', hot water supply (i11117
) For the refrigeration unit 71, the air conditioning water circuit of the heat source water circuit is sent to the water side heat exchanger 25 by the air conditioning circulation pump 34, cooled by the water side heat exchanger 25, and sent to the three-way valve 36.

呈調負荷乃・ある場合(」1、三方弁36.’)ジノ杯
(にLつで放熱器35へ送られ、空調負荷がない85合
は三方弁36の切換によって放熱器35をバ・rパスし
、空調用循環ポンプ84にもどる。空調9荷が水側熱−
9S換器25での冷却能力を下回ると、空調用水回路の
水温、徒、シていに低下していくつ冷暖房切換スイッチ
59が暖器接点に接秋、シ、ているときに空調用水回路
の水温が給湯開離く東−リイクルの採熱により所定の水
温以下になると、サーモスタット46が閉成し、補助リ
レー47.遅延タイマ50が励磁される。
When there is a conditioning load (1, 3-way valve 36.'), the radiator 35 is sent to the radiator 35 by L, and when there is no air conditioning load, the radiator 35 is switched to the radiator 35 by switching the 3-way valve 36. R pass and return to the air conditioning circulation pump 84.The air conditioner 9 load receives water side heat.
If the cooling capacity of the 9S converter 25 is exceeded, the water temperature in the air conditioning water circuit will drop rapidly, and when the heating/cooling selector switch 59 is connected to the warmer contact, the water temperature in the air conditioning water circuit will drop. When the water temperature reaches a predetermined level or lower due to the heat collection of the recycle, the thermostat 46 closes and the auxiliary relay 47. Delay timer 50 is excited.

冷暖房切換スイッチ59が冷側接点に接続しているとき
に、72調用水回路の水音が給湯ψ11冷凍サイクルの
採熱により所定の水温以下になるこ、サーモスタット4
5が閉成し、補助リレー47.遅延タイマ50が励磁さ
れる。
When the air conditioning/heating selector switch 59 is connected to the cold side contact, the water sound in the conditioning water circuit 72 may drop below the predetermined water temperature due to the heat taken by the hot water supply ψ11 refrigeration cycle, and the thermostat 4
5 is closed, and the auxiliary relay 47. Delay timer 50 is excited.

つまり、暖房運転モードの場合は、サーモスタット45
に比べて設定イ直の高いサーモスタット46で回路を形
成し、冷房運転モードの場酋v′i設屋値)低いサーモ
スタット45で回路を形成する。
In other words, in heating operation mode, thermostat 45
A circuit is formed by the thermostat 46 which has a higher setting value than that of the air conditioner, and a circuit is formed by the thermostat 45 which has a lower setting value in the cooling operation mode.

補助リレー47が励磁されると、接点49blが開成し
、給湯用圧縮機モータ回路22が停止し、一旦貯湯加熱
コ1転を停止させる。また補助リレー42が非励磁にな
り、接点43が閉成し、クランクケースヒータ27.2
8に通電されるう一方、接点48a1が閉成することで
、空調用圧縮機モータ回路70と送風機モータ回路71
が動作する。このとき、接点48a2が閉成し、接点4
9b2が開成することで、四方弁30のコイル72は非
通11の状態になってから、一定時間後に遅延タイマ5
0の接点51が閉成し、四方弁80のコイル72が通電
される。
When the auxiliary relay 47 is energized, the contact 49bl is opened, the hot water supply compressor motor circuit 22 is stopped, and the hot water storage heating circuit is temporarily stopped. Additionally, the auxiliary relay 42 becomes de-energized, the contact 43 closes, and the crankcase heater 27.2
On the other hand, the contact 48a1 is closed, so that the air conditioning compressor motor circuit 70 and the blower motor circuit 71 are energized.
works. At this time, contact 48a2 is closed and contact 48a2 is closed.
9b2 is opened, the coil 72 of the four-way valve 30 is in the non-conducting state 11, and then the delay timer 5 is activated after a certain period of time.
0 contact 51 is closed, and the coil 72 of the four-way valve 80 is energized.

これによって空調用冷C東サイクルは一定時間、冷房運
転した後暖房運転、す々わち給a側冷凍す −イクルの
熱源水のバックアップ加熱運転に入る。
As a result, the air conditioning cold C east cycle performs cooling operation for a certain period of time, then enters heating operation, and then enters back-up heating operation of the heat source water of the supply A-side refrigeration cycle.

冷房運転時は空調用圧縮機29より送られた高温高圧冷
媒は四方弁30によって破線矢印の示す方向に切り俣え
られ、空気側熱交換器32へ送られ凝縮し、膨張機構3
1′t?城圧され、水側熱交換器25へ送られ蒸発し、
四方弁80を経て空調用圧縮機29へもどり、空刺用冷
凍サイクルを形成する。
During cooling operation, the high-temperature, high-pressure refrigerant sent from the air conditioning compressor 29 is cut in the direction indicated by the broken arrow by the four-way valve 30, sent to the air-side heat exchanger 32, condensed, and then transferred to the expansion mechanism 3.
1′t? It is compressed, sent to the water side heat exchanger 25, and evaporated.
The air returns to the air conditioning compressor 29 via the four-way valve 80, forming a refrigerating cycle for air conditioning.

一定時間の冷房運転後、バックアップ加熱運転時は四方
弁30の切換により空調用圧縮機29より送られた品温
高圧冷媒ガスは四方弁30をJ11!′1つて実線矢印
の示す方向に送られ、水側熱交換器25で、空調用循環
ポンプ34で送られてきた冷温水と熱交換し、加熱し、
自らは放熱凝縮して、膨張機構31で減圧され、空気側
熱交換器32で採熱蒸発し、四方弁30を経て空調用圧
に機29へもどる。
After a certain period of cooling operation, during backup heating operation, the four-way valve 30 is switched to transfer the high-temperature, high-pressure refrigerant gas sent from the air conditioning compressor 29 to the four-way valve 30 J11! '1 is sent in the direction indicated by the solid line arrow, and in the water side heat exchanger 25, it exchanges heat with the cold and hot water sent by the air conditioning circulation pump 34 and heats it.
It radiates heat and condenses itself, is depressurized by the expansion mechanism 31, takes heat and evaporates in the air side heat exchanger 32, and returns to the air conditioning pressure through the four-way valve 30 to the machine 29.

このバックアップ加熱運転によって空調用水回路の水温
が一ヒ昇し、冷暖房切換スイッチ59が冷側接点に接続
されている場合は、サーモスタット45が開成する温度
まで上昇すると、補助リレー47、遅延タイマ50の励
磁がとけて、接点48a1が開成し、空調用圧11)1
.ζモータ回路70と送風機モータ回路71が動作を停
止し、ツクツクアップ加熱運転が終了する。
This backup heating operation causes the water temperature in the air conditioning water circuit to rise, and if the heating/cooling selector switch 59 is connected to the cold side contact, when the temperature rises to the point at which the thermostat 45 opens, the auxiliary relay 47 and delay timer 50 are activated. The excitation is removed, the contact 48a1 is opened, and the air conditioning pressure 11)1
.. The ζ motor circuit 70 and the blower motor circuit 71 stop operating, and the pull-up heating operation ends.

一方、接点49blが閉成することで、給湯用圧縮機モ
ータ回路22が動作し、再び貯湯加熱運転を開始し、補
助リレー42が励磁されて、接点43が開成し、クラン
クケースヒータ27とクランクケースヒータ28が非通
電になる9また冷暖房切換スイッチ59が暖器接点に接
続さjている場合はサーモスタット46が開成する温/
、Itまで空調用水回路の水温が上昇すると、補助リレ
ー47、迩延タイマ50の励磁がとけて、接点48a1
が開成し、空調用圧縮機モータ回路70と送風機モータ
回路71め動作が停止し、パックアンプ加熱運転が終了
する。
On the other hand, when the contact 49bl is closed, the hot water supply compressor motor circuit 22 is operated and the hot water storage heating operation is started again, the auxiliary relay 42 is energized, the contact 43 is opened, and the crankcase heater 27 and the crank If the case heater 28 is de-energized and the heating/cooling selector switch 59 is connected to the warmer contact, the thermostat 46 is turned off.
, When the water temperature in the air conditioning water circuit rises to It, the auxiliary relay 47 and the extension timer 50 are de-energized, and the contact 48a1
is opened, the air conditioning compressor motor circuit 70 and the blower motor circuit 71 stop operating, and the pack amplifier heating operation ends.

一方、接点49blが閉成することで、給湯用圧縮機モ
ータ回路22が動作し、再び貯湯加熱運転を開始し、ク
ランクケースヒータ27とクランクケースヒータ28が
非動、玩になる。
On the other hand, when the contact point 49bl is closed, the hot water supply compressor motor circuit 22 is operated and the hot water storage heating operation is started again, and the crankcase heater 27 and the crankcase heater 28 become inactive and idle.

このようにして、貯湯加熱運転によって貯湯タンク6内
の水温が所定の温度以上となり、サーモスタット19が
開成するか、あるいは貯湯加熱運転時間帯が終了し、タ
イマ37の動作により接点38が開成すると、補助リレ
ー39の励磁がとけ、接点4C1al、40a2が開成
する。
In this way, when the water temperature in the hot water storage tank 6 rises to a predetermined temperature or higher due to the hot water storage heating operation and the thermostat 19 is opened, or when the hot water storage heating operation period ends and the contact 38 is opened due to the operation of the timer 37, The auxiliary relay 39 is de-energized and the contacts 4C1al and 40a2 are opened.

接点40alが開成することで、ポンプモータ回路24
が停止し、給湯用圧縮機モータ回路22が停止し、補助
リレー42の励磁がとけて、接点43が閉成し、クラン
クケースヒータ27.クランクケースヒータ28が通電
される。
When the contact 40al opens, the pump motor circuit 24
stops, hot water supply compressor motor circuit 22 stops, auxiliary relay 42 is de-energized, contacts 43 close, and crankcase heater 27. Crankcase heater 28 is energized.

一方、接点40a2が開成することで、補助リレー58
の励磁がとけて、接点54al、54a2が開成し、接
点56がb側接点に接続され、接点54alが開成する
ことで、補助リレー57の励磁がとけて、接点58がb
側接点に接続され、空調用循環ポンプモータ回路67が
停止し、貯湯加熱運転が終了する。
On the other hand, by opening the contact 40a2, the auxiliary relay 58
The excitation of the auxiliary relay 57 is removed, contacts 54a1 and 54a2 are opened, the contact 56 is connected to the b side contact, and the contact 54al is opened, and the auxiliary relay 57 is deenergized and the contact 58 is connected to the b side contact.
It is connected to the side contact, the air conditioning circulation pump motor circuit 67 stops, and the hot water storage heating operation ends.

次に、給湯運転スイッチ18が閉成され、空調運転スイ
ッチ52が入側接点に接続されており、冷暖房切換スイ
ッチ59がB i:l’l接点に接続されている場合、
つまり貯湯加熱運転と暖房運転を同時に行なう場合につ
いて説明する。
Next, when the hot water supply operation switch 18 is closed, the air conditioning operation switch 52 is connected to the inlet side contact, and the air conditioning/heating changeover switch 59 is connected to the B i:l'l contact,
In other words, a case will be described in which the hot water storage heating operation and the heating operation are performed simultaneously.

電諒が投入されると、補助リレー65が励磁され、接点
66が閉成される。空調運転スイッチ52が入側接点に
接続されると、補助リレー57が励磁され接点58がa
側接点に接続される。
When the power is turned on, the auxiliary relay 65 is energized and the contacts 66 are closed. When the air conditioning operation switch 52 is connected to the inlet contact, the auxiliary relay 57 is energized and the contact 58 is set to a.
Connected to the side contact.

また、冷暖房切換スイッチ59が暖器接点に接続される
と、補助リレー60が励磁し、接点61al。
Moreover, when the air-conditioning/heating changeover switch 59 is connected to the warm-up contact, the auxiliary relay 60 is energized and the contact 61al is activated.

61a2が閉成し、接点6acl、63c2がそれぞれ
a側接点に接続される。接点61alが閉成することで
、凍結防止サーモスタット64を短絡させる。
61a2 is closed, and contacts 6acl and 63c2 are connected to the a-side contact, respectively. By closing the contact 61al, the antifreeze thermostat 64 is short-circuited.

接点58が8側抜点に接続することで、空調用循環ポン
プモータ回路67が゛動作し、補助リレー53が非励磁
であるので、接点55が閉成されており、接点63C2
がa側接点に接続されているので、空調用水回路の冷温
水が所定の水温以下の場合はサーモスタントロ9が閉成
されて空調用圧′ 縮機モータ回路7oと送風機モータ
回路が動作する。
When the contact 58 connects to the 8-side disconnection point, the air conditioning circulation pump motor circuit 67 operates, and the auxiliary relay 53 is de-energized, so the contact 55 is closed and the contact 63C2
is connected to the A side contact, so when the cold/hot water in the air conditioning water circuit is below a predetermined water temperature, the thermostat 9 is closed and the air conditioning compressor motor circuit 7o and the blower motor circuit operate. .

また、接点61a2が閉成されて、四方弁3゜コイル7
2が通+4され、暖房運転を行なう。空調用圧縮f凌2
9を出た品温高圧の冷媒ガスは四方弁30で実線矢印の
方向に切り換えられて、水側熱交換器25に送られ、こ
こで、空調用循環ポンプ34から送られた空調用冷温水
と熱交換し、加熱させ、自らは放熱凝縮し、膨張機構3
1で減圧され、空気側熱交換器32で大気より採熱し、
蒸発して四方弁30を経て空調用圧縮機29にもどり、
冷凍サイクルを形成する。
Also, the contact 61a2 is closed, and the four-way valve 3° coil 7
2 is passed +4 and heating operation is performed. Compression f-2 for air conditioning
The high-temperature, high-pressure refrigerant gas that exits the air conditioner 9 is switched in the direction of the solid arrow by the four-way valve 30 and sent to the water-side heat exchanger 25, where it is sent to the water-side heat exchanger 25, where it is fed with cold and hot water for air conditioning sent from the air-conditioning circulation pump 34. It exchanges heat with and heats up, and it radiates heat and condenses itself, expanding mechanism 3.
The pressure is reduced at 1, and heat is collected from the atmosphere at the air side heat exchanger 32.
It evaporates and returns to the air conditioning compressor 29 via the four-way valve 30,
Form a refrigeration cycle.

空調用循環ポンプ34から送られた空調用冷温水は水側
熱交換器25で加熱され、三方弁36へ送られ、三方弁
36により空調負萌のある場合は放熱器85へ送られ、
空調負荷のない場合は放熱器85をバイパスし、空調用
循環ポンプ34へもどる。
The cold/hot water for air conditioning sent from the air conditioning circulation pump 34 is heated by the water side heat exchanger 25 and sent to the three-way valve 36, and if there is an air conditioning failure, the three-way valve 36 sends it to the radiator 85.
When there is no air conditioning load, the radiator 85 is bypassed and the flow returns to the air conditioning circulation pump 34.

空調用水回路の冷温水が所定の水温以上になると、サー
モスタット69が開成されて空調用圧縮機モータ回路7
0と送風機モータ回路71が停止し、暖房運転を停止す
る。
When the cold and hot water in the air conditioning water circuit reaches a predetermined water temperature or higher, the thermostat 69 is opened and the air conditioning compressor motor circuit 7
0 and the blower motor circuit 71 stops, stopping the heating operation.

このように、暖房運転の運転制御はサーモスタット69
にて行なう。この暖房運転を行なっているときに、同時
に貯湯加熱運転を行なうみ合は、給湯運転スイッチ18
が閉成され、貯湯加熱運転時間帯になるとタイマ37の
動作により接点38が閉成し、貯湯タンク6内の貯湯水
温が所定の温度以下であると、サーモスタット19が閉
成して補助リレー39が励磁される。
In this way, the heating operation is controlled by the thermostat 69.
I'll do it at When this heating operation is being performed, if the hot water storage heating operation is to be performed at the same time, the hot water supply operation switch 18
is closed, and when the hot water storage heating operation period begins, the contact 38 is closed by the operation of the timer 37, and when the hot water temperature in the hot water storage tank 6 is below a predetermined temperature, the thermostat 19 is closed and the auxiliary relay 39 is closed. is excited.

これにより、接点40alが閉成され、ポンプモータ回
路24が動作する。接点49b1が閉成し、接点63C
1がa側接点に接続され、接点56がb側接点に接続さ
れ、空調用水回路の冷温水が所定の温朋以下の場合はサ
ーモスタット41が開成し、給湯用圧縮機モータ回路2
2は動作せず。
As a result, the contact 40al is closed and the pump motor circuit 24 is operated. Contact 49b1 closes, contact 63C
1 is connected to the a-side contact, and the contact 56 is connected to the b-side contact, and when the cold/hot water in the air conditioning water circuit is below a predetermined temperature, the thermostat 41 is opened, and the hot water supply compressor motor circuit 2
2 does not work.

すなわち、貯湯加熱運転は停止され、空調用水回路の冷
温水がPjr冗の温度以上の場合はサーモスタット41
が閉成し、給湯用圧縮機モータ回路22が動作し、貯湯
加熱運転を行なうつ また、給湯用圧縮機モータ回路22が動作しているとき
は補助リレー42が励磁され、接点48□I が開成し、クランクケースヒータ27とクランクケース
ヒータ28は非通電になる。このようにして貯湯加熱運
転と暖房運転を同時に行なう。
In other words, the hot water storage heating operation is stopped, and if the cold/hot water in the air conditioning water circuit is at a temperature higher than Pjr, the thermostat 41 is turned off.
is closed, the hot water supply compressor motor circuit 22 operates, and hot water storage heating operation is performed.Also, when the hot water supply compressor motor circuit 22 is operating, the auxiliary relay 42 is energized, and the contact 48□I is turned on. The crankcase heater 27 and the crankcase heater 28 are de-energized. In this way, hot water storage heating operation and heating operation are performed simultaneously.

次に、給湯運転スイッチ18が閉成され、空調運転スイ
ッチ52が入i)l’l =>点に接続されていて、冷
暖房切換スイッチ59が/君側接点に接続している場合
、つ1り貯湯加熱運転と冷房運転を同時に行なう場合に
ついて説明する。
Next, when the hot water supply operation switch 18 is closed, the air conditioning operation switch 52 is connected to the on point i) l'l =>, and the air conditioning changeover switch 59 is connected to the contact on the side of A case will be described in which hot water storage heating operation and cooling operation are performed simultaneously.

電源が投入されると、補助リレー65が励磁され、接点
66が閉成される。空調運転スイッチ52が入側接点に
接続されると、補助リレー57が励磁さn、接点58が
a III接点に接続される。
When the power is turned on, the auxiliary relay 65 is energized and the contacts 66 are closed. When the air conditioning operation switch 52 is connected to the inlet contact, the auxiliary relay 57 is energized and the contact 58 is connected to the a III contact.

また、冷暖房切換スイッチが冷側接点に接続されると、
補助リレー60の励磁はとけ、接点61a!、61a2
が開成し、接点63cl、63c2がそれぞれb側接点
に接続される。
Also, when the heating/cooling selector switch is connected to the cold side contact,
The excitation of the auxiliary relay 60 melts, and the contact 61a! ,61a2
is opened, and the contacts 63cl and 63c2 are connected to the b-side contact, respectively.

接点58がa側接点に接続することで空調用循環ポンプ
モータ回路67が動作し、補助リレー58が非励磁であ
るので、接点55が閉成されており、接点63C2がb
側接点に接戊されているので、空調用水回路の冷温水が
H1定の水温以上の場合はサーモスタット68が閉成さ
れていると、空調用圧縮機モータ回路70と送風機モー
タ回路71が動作する。
The air conditioning circulation pump motor circuit 67 operates when the contact 58 is connected to the a side contact, and since the auxiliary relay 58 is de-energized, the contact 55 is closed and the contact 63C2 is connected to the b side contact.
Since it is connected to the side contact, when the cold/hot water in the air conditioning water circuit has a temperature higher than the H1 constant and the thermostat 68 is closed, the air conditioning compressor motor circuit 70 and the blower motor circuit 71 operate. .

また、接点61a2が開成されて四方弁80のコイル7
2が非通電になり、冷房運転を行なう。
Also, the contact 61a2 is opened and the coil 7 of the four-way valve 80 is opened.
2 becomes de-energized and performs cooling operation.

空調用圧縮機29を出た高温高圧の冷媒ガスは四方弁3
0で破線矢印の方向に切り換えられて、空気側熱交換器
32で大気へ放熱し、膨張機構31で減圧され、水側熱
交換器25に送られ、ここで空調用循環ポンプ34がら
送られた空調用冷温水と熱交換し、冷却し、自らは採熱
し、蒸光して四方弁30を経て空調用圧hiiぜ芝29
にもどり、冷凍サイクルを形成する。
The high-temperature, high-pressure refrigerant gas that exits the air conditioning compressor 29 is passed through the four-way valve 3.
At 0, the heat is switched in the direction of the dashed arrow, the air side heat exchanger 32 radiates heat to the atmosphere, the expansion mechanism 31 reduces the pressure, and the water side heat exchanger 25, where it is sent to the air conditioning circulation pump 34. It exchanges heat with the hot and cold water for air conditioning, cools it, collects heat, evaporates, and passes through the four-way valve 30 to the air conditioning pressure water 29.
Return to form a refrigeration cycle.

空調用循環ポンプ34から送られた望調用冷温水は水側
熱交換器25で冷却され、三方弁36へ送られ、三方弁
36により空調負荷のある場合は放熱器35へ込られ、
空調負荷のない場合は放熱器35をバイパスし、空調用
循環ポンプ34へもどる。
The hot and cold water for monitoring sent from the air conditioning circulation pump 34 is cooled by the water side heat exchanger 25 and sent to the three-way valve 36, and when there is an air conditioning load, the three-way valve 36 directs it to the radiator 35.
When there is no air conditioning load, the radiator 35 is bypassed and the flow returns to the air conditioning circulation pump 34.

空調用水回路の冷温水が所定の水温以下になると、サー
モスタット68が開成されて空調用圧縮機モータ回路7
0と送)4(機モータ回路71が停止し、冷房運転を停
止する。このように冷房運転の運転制御はサーモスタッ
ト68にて行なう。
When the cold and hot water in the air conditioning water circuit falls below a predetermined water temperature, the thermostat 68 is opened and the air conditioning compressor motor circuit 7
0 and feed) 4 (The machine motor circuit 71 stops and the cooling operation is stopped. In this way, the operation control of the cooling operation is performed by the thermostat 68.

この冷房運転を行なっているときに、同時に貯湯加熱運
転を行なう場合は、給湯運転スイッチ18が閉成され、
貯湯加熱運転時間帯になると、タイマ87の動作により
接点38が閉成し、貯湯タンク6内の貯湯水温が所定の
温度以下であると、サーモスタット19が閉成して補助
リレー39が励磁される。
When performing this cooling operation, if the hot water storage heating operation is to be performed at the same time, the hot water supply operation switch 18 is closed.
When the hot water storage heating operation period comes, the contact 38 is closed by the operation of the timer 87, and when the temperature of the hot water stored in the hot water storage tank 6 is below a predetermined temperature, the thermostat 19 is closed and the auxiliary relay 39 is energized. .

これにより、接点40alが閉成され、ポンプモータ回
路24が動作する。接点49b1が閉成されると、接点
68C1がb側接点に接続されており、給湯用圧m機モ
ータ回路22が動作し、貯湯加熱運転を行なう。
As a result, the contact 40al is closed and the pump motor circuit 24 is operated. When the contact 49b1 is closed, the contact 68C1 is connected to the b-side contact, and the hot water supply pressure m machine motor circuit 22 is operated to perform hot water storage heating operation.

貯湯加熱運転時は補助リレー42が励磁され、接点43
が開成し、クランクケースヒータ27とクランクケース
ヒータ28が非通電になる、空調負荷が少なく、冷房運
転がサーモスタット68の開成により停止し、なお給湯
側冷凍サイクルの採熱により空調用水回路の冷温水温度
が下がりつづけた出合、冷暖房切換スイッチ59が冷側
接点に接続されているため、空調用水回路の冷温水温度
がPar定の温度以下になると、サーモスタット45が
閉成し、補助リレー47と遅延タイマ50が励磁する。
During hot water storage heating operation, the auxiliary relay 42 is energized and the contact 43
is opened, the crankcase heater 27 and crankcase heater 28 are de-energized, the air conditioning load is small, the cooling operation is stopped when the thermostat 68 is opened, and the cold and hot water in the air conditioning water circuit is turned off due to the heat taken by the refrigeration cycle on the hot water supply side. If the temperature continues to drop, the air conditioning/heating selector switch 59 is connected to the cold side contact, so when the temperature of the cold/hot water in the air conditioning water circuit falls below the Par constant, the thermostat 45 closes, and the auxiliary relay 47 and delay are activated. Timer 50 is energized.

これにより、接点49b1が開成し、給湯用圧縮機モー
タ回路22が停止し、一旦貯湯加熱運転が停止する。同
時に補助り°シー42が非励磁になり、接点43が閉成
し、クランクケースヒータ27とクランクケースヒータ
28にM%される。
As a result, the contact 49b1 is opened, the hot water supply compressor motor circuit 22 is stopped, and the hot water storage heating operation is temporarily stopped. At the same time, the auxiliary valve 42 becomes de-energized, the contact 43 closes, and the power is applied to the crankcase heater 27 and the crankcase heater 28 by M%.

一方、接点48a1が閉成することで空調用圧縮機モー
タ回路70と送風機モータ回路71が動作する。
On the other hand, when the contact 48a1 is closed, the air conditioning compressor motor circuit 70 and the blower motor circuit 71 operate.

また、接点48a2が閉成し、接点49b2が開成し、
四方弁30のコイル72は非通電の状態になってから、
一定時間後に遅妙タイマ50の接点51が閉成し、四方
弁30のコイル72が通電される。
Further, the contact 48a2 is closed, the contact 49b2 is opened,
After the coil 72 of the four-way valve 30 is de-energized,
After a certain period of time, the contact 51 of the delay timer 50 is closed, and the coil 72 of the four-way valve 30 is energized.

これによって、空詞用冷凍サイクルは一定時間、冷房運
転した後暖房運転、すなわち給湯開離(3tjサイクル
の熱諒水のバックアップ加熱運転に入る。
As a result, the blank refrigeration cycle performs cooling operation for a certain period of time and then enters heating operation, that is, hot water supply disconnection (3tj cycle hot water backup heating operation).

このバックアップ加熱運転によって空調用水回路の冷温
水温度が上昇し、サーモスタット45が開成する温度ま
で上昇すると、補助リレー47、遅延タイマ50の励磁
がとけて接点48a2が開成し、四方弁30のコイル7
2が非通電になり、バックアップ加熱運転が終了し、接
点48alが開成され、サーモスタット68によって空
調用圧縮機モータ回路70と送風機モータ回路71の動
作が制御される冷房運転を行なう。
As a result of this backup heating operation, the temperature of cold and hot water in the air conditioning water circuit rises to a temperature at which the thermostat 45 opens, the auxiliary relay 47 and the delay timer 50 are de-energized, the contact 48a2 is opened, and the coil 7 of the four-way valve 30 is opened.
2 is de-energized, the backup heating operation is completed, the contact 48al is opened, and the cooling operation is performed in which the operations of the air conditioning compressor motor circuit 70 and the blower motor circuit 71 are controlled by the thermostat 68.

また、接点49blが閉成し、給湯用圧縮機モータ回路
22が動作し、再び貯湯加熱運転を開始し、補助リレー
42が励磁されて、接点43が開成し、クランクケース
ヒータ27とクランクケースヒータ28が非通電になる
In addition, the contact 49bl is closed, the hot water supply compressor motor circuit 22 is operated, and the hot water storage heating operation is started again, the auxiliary relay 42 is energized, the contact 43 is opened, and the crankcase heater 27 and the crankcase heater 28 becomes de-energized.

〔発明の効果〕〔Effect of the invention〕

この発明は以上説明したとおり、給湯用冷凍サイクル運
転時に給湯用冷凍サイクルの採熱により、空調用冷温水
温度が所定の温度以下になった場合に空調用冷凍サイク
ルが行なうバックアップ加熱運転の制御を、暖房時は比
較的設定値の高い空調用水回路のサーモスタットで行な
い、冷房時は比較的設定値の低い空調用水回路のサーモ
スタットで行なうように、冷暖房切換スイッチにより電
気回路を切り挨えることによって、外気温に応じて給湯
用冷凍サイクルの採熱源でちる空調用冷温水温度を制御
し、給湯負荷が大きい比較的外気温の低い暖房運転条件
の場合には採熱源の空調用冷温水温を挨を比佼的高くし
て給湯能力を大きくすることがoT能であり、また、給
湯9荷か小さい比較的外気1黒の旨い冷m運転売件の場
合には採熱源の空調用冷71富水i孟度を比較的低くし
て給湯能力を小さく抑えることが可能となる。すなわち
、給湯負荷に応じた給湯化力を機器が拶供することを可
能とし、−!た冷房時期と暖房時期に応じて効率よく採
熱源の空調用圧縮機を昇温することが可能となる。
As explained above, this invention controls the backup heating operation performed by the air conditioning refrigeration cycle when the temperature of cold/hot water for air conditioning falls below a predetermined temperature due to heat collection of the refrigeration cycle for hot water supply during operation of the refrigeration cycle for hot water supply. By switching off the electric circuit using the air conditioning/heating selector switch, heating is performed by the air conditioning water circuit thermostat with a relatively high setting value, and cooling is performed with the air conditioning water circuit thermostat having a relatively low setting value. The temperature of the cold/hot water for air conditioning is controlled by the heat source of the refrigeration cycle for hot water supply according to the outside temperature, and the temperature of the cold/hot water for air conditioning from the heat source is controlled when the hot water supply load is large and the outside temperature is relatively low. Increasing the hot water supply capacity by increasing the temperature comparatively is OT function, and in the case of hot water supply 9 loads or relatively small and relatively cold operation with outside air 1 black, it is possible to increase the hot water supply capacity by increasing the hot water supply capacity. It is possible to keep the hot water supply capacity small by making the i-temperature relatively low. In other words, it enables the equipment to provide hot water supply power according to the hot water supply load, and -! It becomes possible to efficiently raise the temperature of the air conditioning compressor, which is a heat collection source, according to the cooling period and heating period.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明のヒートポンプ式冷暖房給湯役の一犬
施例を示すシステム図、第2図はこの発明のヒートポン
プ式冷暖房給湯(大ジの一実施例の電気回路図、第3図
はレシプロ圧縮機の圧縮比と体積効率の関係を示す図、
第4図は従来の空気熱源ヒートポンプ式給湯機のシステ
ム図、第5図は従来の空り、v!源ヒートポンプ式給湯
機の電気回路図である。 1・・・・・給湯用圧縮機、2・・・・・給湯用凝縮器
、3.81・・・・・膨張機(19,6・・・・・貯湯
タンク。 15・・・・・循環ポンプ、25・・・・・水側熱交換
器、26・・・・・アキュームレータ、27.28・・
・・・クランクケースヒータ、29・・・・・空調用圧
縮機、30・・・・・四方弁、32・・・・・空気側熱
交換器、34・・・・・空調用循涜ポンプ、35・・・
・・放熱器、36・・・・−三方弁、41,45,46
,68.69・・・・・サーモスタット、50・・・・
・遅延タイマ、59・・・・・冷暖房切換スイッチ、7
2・・・・・四方弁のコイル。 なお1図中同一符号は同一または相当部分を示すものと
する。 代理人 大 岩 増 雄(ほか2名) 第6図 手続補正書(自発) 事件の表示   待〃(1昭 59−224774号発
明の名称   ヒートポンプ式冷暖房給湯機補正をする
者 事件との関係 特許出願人 住 所     東京都千代田区丸の内二丁目2番3号
名 称  (601)三菱電機株式会社代表者片山仁八
Fig. 1 is a system diagram showing an embodiment of the heat pump type air-conditioning/heating/hot-water supply function of the present invention, Fig. 2 is an electric circuit diagram of an embodiment of the heat pump type air-conditioning/heating/hot-water supply (large scale) of the present invention, and Fig. 3 is a reciprocating system diagram. Diagram showing the relationship between compressor compression ratio and volumetric efficiency,
Figure 4 is a system diagram of a conventional air source heat pump type water heater, and Figure 5 is a conventional air source, v! FIG. 2 is an electrical circuit diagram of a heat pump water heater. 1... Compressor for hot water supply, 2... Condenser for hot water supply, 3.81... Expander (19, 6... Hot water storage tank. 15... Circulation pump, 25...Water side heat exchanger, 26...Accumulator, 27.28...
... Crankcase heater, 29 ... Compressor for air conditioning, 30 ... Four-way valve, 32 ... Air side heat exchanger, 34 ... Circulation pump for air conditioning , 35...
...Radiator, 36...-Three-way valve, 41, 45, 46
,68.69...Thermostat,50...
・Delay timer, 59...Heating/cooling selector switch, 7
2...Four-way valve coil. Note that the same reference numerals in each figure indicate the same or corresponding parts. Agent Masuo Oiwa (and 2 others) Figure 6 Procedural amendment (voluntary) Display of case Wait (1985-59-224774 Title of invention Relationship with the case of person who amends a heat pump type air-conditioning/heating/water heater Patent application Address 2-2-3 Marunouchi, Chiyoda-ku, Tokyo Name (601) Mitsubishi Electric Corporation Representative Hitoshi Katayama

Claims (1)

【特許請求の範囲】[Claims]  圧縮機、給湯用凝縮器、膨張機構および蒸発器として
作用する水側熱交換器を順次冷媒配管接続して構成され
る給湯用冷凍サイクルと給湯用循環ポンプにて上記給湯
用凝縮器に流通された貯湯タンク内の給湯水と熱交換関
係をなす給湯水回路と、圧縮機、四方弁、非利用側熱交
換器、膨張機構および水側熱交換器を順次冷媒配管接続
して構成される空調用冷凍サイクルと空調用循環ポンプ
により上記水側熱交換器を通り負荷側へ流通される空調
用冷温水回路とを備え、上記水側熱交換器にて、給湯用
冷凍サイクルと冷温水を介して熱交換関係に空調用冷凍
サイクルを配設するとともに上記空調用冷凍サイクルの
加熱運転時、上記空調用冷凍サイクルの冷暖房切換スイ
ツチが冷側の場台、空調用水回路の低温用サーモスタツ
トにより、また、暖側の場合空調用水回路の高温用サー
モスタツトにより上記空詞用冷凍サイクルの運転を制御
するようにしたことを特徴とするヒートポンプ式冷暖房
給湯機。
A compressor, a hot water condenser, an expansion mechanism, and a water side heat exchanger that acts as an evaporator are sequentially connected to the refrigerant piping, and the water is distributed to the hot water condenser through a hot water refrigeration cycle and a hot water circulation pump. An air conditioner consisting of a hot water supply circuit that has a heat exchange relationship with the hot water in a hot water storage tank, a compressor, a four-way valve, a heat exchanger on the non-use side, an expansion mechanism, and a heat exchanger on the water side, which are sequentially connected through refrigerant piping. A refrigeration cycle for air conditioning and an air conditioning cold/hot water circuit that is distributed to the load side through the water side heat exchanger by an air conditioning circulation pump, and the water supply refrigeration cycle An air-conditioning refrigeration cycle is installed in a heat exchange relationship, and when the air-conditioning refrigeration cycle is in heating operation, when the air-conditioning refrigeration switch of the air-conditioning refrigeration cycle is on the cold side, the low-temperature thermostat of the air-conditioning water circuit Further, a heat pump type air-conditioning/heating water heater characterized in that the operation of the air-conditioning refrigeration cycle is controlled by a high-temperature thermostat of the air-conditioning water circuit when the temperature is on the warm side.
JP59224774A 1984-10-23 1984-10-23 Heat pump type air-conditioning hot-water supply machine Pending JPS61101770A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59224774A JPS61101770A (en) 1984-10-23 1984-10-23 Heat pump type air-conditioning hot-water supply machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59224774A JPS61101770A (en) 1984-10-23 1984-10-23 Heat pump type air-conditioning hot-water supply machine

Publications (1)

Publication Number Publication Date
JPS61101770A true JPS61101770A (en) 1986-05-20

Family

ID=16819001

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59224774A Pending JPS61101770A (en) 1984-10-23 1984-10-23 Heat pump type air-conditioning hot-water supply machine

Country Status (1)

Country Link
JP (1) JPS61101770A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010175151A (en) * 2009-01-29 2010-08-12 Rinnai Corp Heating device
JP2014055753A (en) * 2012-09-14 2014-03-27 Hitachi Appliances Inc Binary refrigeration device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010175151A (en) * 2009-01-29 2010-08-12 Rinnai Corp Heating device
JP2014055753A (en) * 2012-09-14 2014-03-27 Hitachi Appliances Inc Binary refrigeration device

Similar Documents

Publication Publication Date Title
JP2021037931A (en) Heat pump system for vehicles
KR102170462B1 (en) Heat pump system for vehicle
JPS6155018B2 (en)
KR102039163B1 (en) Heat Pump For a Vehicle
JPS61101771A (en) Heat pump type air-conditioning hot-water supply machine
JPH0432669A (en) Heat pump system controlling method therefor
JPS61101770A (en) Heat pump type air-conditioning hot-water supply machine
KR102456828B1 (en) Heat pump system for vehicle
JPS61101769A (en) Heat pump type air-conditioning hot-water supply machine
JPH0432307B2 (en)
JP2004251557A (en) Refrigeration device using carbon dioxide as refrigerant
JP7057129B2 (en) Vehicle waste heat recovery device
JPS58124138A (en) Controlling method of driving auxiliary heat source in regenerative air conditioner
JPS60248963A (en) Heat pump type air-conditioning hot-water supply machine
JP2555197Y2 (en) Automotive air conditioners
JPS60248965A (en) Heat pump type air-conditioning hot-water supply machine
JPH0219389B2 (en)
JPS60248961A (en) Heat pump type air-conditioning hot-water supply machine
JP2720996B2 (en) Engine heat pump defroster
JPS60248967A (en) Heat pump type air-conditioning hot-water supply machine
JPH03125856A (en) Heat pump hot water feeder
JPS60248969A (en) Heat pump type air-conditioning hot-water supply machine
JPS62202965A (en) Refrigeration cycle
JPS60248970A (en) Heat pump type air-conditioning hot-water supply machine
JPS60248966A (en) Heat pump type air-conditioning hot-water supply machine