JPH0849936A - Regenerative air-conditioner - Google Patents

Regenerative air-conditioner

Info

Publication number
JPH0849936A
JPH0849936A JP6182279A JP18227994A JPH0849936A JP H0849936 A JPH0849936 A JP H0849936A JP 6182279 A JP6182279 A JP 6182279A JP 18227994 A JP18227994 A JP 18227994A JP H0849936 A JPH0849936 A JP H0849936A
Authority
JP
Japan
Prior art keywords
heat exchanger
heat
heat storage
defrost
expansion valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6182279A
Other languages
Japanese (ja)
Inventor
Kazuhiko Machida
和彦 町田
Shigeo Aoyama
繁男 青山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Refrigeration Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Refrigeration Co filed Critical Matsushita Refrigeration Co
Priority to JP6182279A priority Critical patent/JPH0849936A/en
Publication of JPH0849936A publication Critical patent/JPH0849936A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

PURPOSE:To prevent an excessive rise of a suction pressure of a compressor and prevent an excessive rise of a discharge pressure of the compressor by opening or closing a first expansion valve as a bypass valve of a heat exchanger for heat storage in accordance with the discharge pressure of the compressor on the occasion of a defrosting operation of a reverse cycle system of a heat- source-side heat exchanger at the time of a night heat-storing operation. CONSTITUTION:A night heat-storing operation mode wherein hot water is stored in a heat storage tank STR by using a heat exchanger 8a for heat storage is detected by a heat-storing operation mode detecting means 18. When a request for defrosting of a heat-source-side heat exchanger 4 is detected by a defrosting detecting means 19 on the occasion, a reverse-cycle defrosting operation wherein a first four-way valve 3a is made to function so that the heat exchanger 8a for heat storage be made an evaporator and the heat-source-side heat exchanger 4 a condenser is executed by a reverse-cycle defrosting drive means 22. In the case when a discharge pressure of a compressor 2 is higher than a prescribed one, during the reverse-cycle defrosting operation, a first expansion valve 5a is opened to a specified opening by a first expansion valve driving means 21.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、空気を熱源とする空気
調和機において、夜間電力を利用するための蓄熱・放熱
機能、及びその制御機能を備えた蓄熱式空気調和機に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air conditioner using air as a heat source, and a heat storage type air conditioner having a heat storage / radiation function for utilizing nighttime electric power and a control function thereof.

【0002】[0002]

【従来の技術】蓄熱式空気調和機については、既にさま
ざまな開発がなされており、例えば、特開平3−144
236号公報に示されているような蓄熱式空気調和機が
ある。
2. Description of the Related Art Various developments have already been made for a heat storage type air conditioner, for example, JP-A-3-144.
There is a heat storage type air conditioner as shown in Japanese Patent No. 236.

【0003】その基本的な技術について述べると、図7
に示すように、室外機1は、圧縮機2、四方弁3a、熱
源側熱交換器4、第1膨張弁5a、第1切替弁KV1、
第1補助熱交換器7aと第2補助熱交換器7bとからな
る冷媒対冷媒熱交換器HEX、蓄熱用熱交換器8aと放
熱用熱交換器8bとからなる蓄熱槽STRと蓄熱材であ
る水9、冷媒の流路を切替える第2切替弁KV2、冷媒
量調節タンク11及び液冷媒を搬送する液冷媒搬送ポン
プPMとから構成されている。また、複数の室内機13
a,13bは、利用側熱交換器14a,14bから構成
されている。
The basic technique will be described with reference to FIG.
As shown in, the outdoor unit 1 includes a compressor 2, a four-way valve 3a, a heat source side heat exchanger 4, a first expansion valve 5a, a first switching valve KV1,
A refrigerant-to-refrigerant heat exchanger HEX including a first auxiliary heat exchanger 7a and a second auxiliary heat exchanger 7b, a heat storage tank STR including a heat storage heat exchanger 8a and a heat radiation heat exchanger 8b, and a heat storage material. It is composed of water 9, a second switching valve KV2 that switches the flow path of the refrigerant, a refrigerant amount adjustment tank 11, and a liquid refrigerant transfer pump PM that transfers the liquid refrigerant. In addition, a plurality of indoor units 13
a and 13b are composed of utilization side heat exchangers 14a and 14b.

【0004】また、熱源側冷凍サイクルは、圧縮機2、
四方弁3a、熱源側熱交換器4、第1膨張弁5a、第1
切替弁KV1、冷媒対冷媒熱交換器HEXの第1補助熱
交換器7a、蓄熱槽STRの蓄熱用熱交換器8aとから
構成されている。
The refrigeration cycle on the heat source side includes a compressor 2,
Four-way valve 3a, heat source side heat exchanger 4, first expansion valve 5a, first
It is composed of a switching valve KV1, a first auxiliary heat exchanger 7a of the refrigerant-to-refrigerant heat exchanger HEX, and a heat storage heat exchanger 8a of the heat storage tank STR.

【0005】利用側冷凍サイクルは、冷媒対冷媒熱交換
器HEXの第2補助熱交換器7bと蓄熱槽STRの放熱
用熱交換器8b、冷媒の流路を切替える第2切替弁KV
2、冷媒量調節タンク11、液冷媒を搬送する液冷媒搬
送ポンプPM、室内機13a,13bとから構成されて
いる。
The utilization side refrigeration cycle includes a second auxiliary heat exchanger 7b of the refrigerant-refrigerant heat exchanger HEX, a heat radiating heat exchanger 8b of the heat storage tank STR, and a second switching valve KV for switching the refrigerant flow path.
2, a refrigerant amount adjustment tank 11, a liquid refrigerant transfer pump PM that transfers a liquid refrigerant, and indoor units 13a and 13b.

【0006】次に、その冷凍サイクルについて説明す
る。この冷凍サイクルは、暖房時には、夜間に温水を作
る夜間蓄熱運転(冷房時には、製氷する夜間製氷運転)
と、昼間の暖房運転(冷房運転)に大きく分けることが
できる。尚、昼間の運転モ−ドについては、詳細な説明
は割愛し、夜間蓄熱運転について説明する。
Next, the refrigerating cycle will be described. This refrigeration cycle is a night heat storage operation that produces hot water at night during heating (night ice making operation during ice cooling)
And the daytime heating operation (cooling operation). A detailed description of the daytime operation mode will be omitted, and the nighttime heat storage operation will be described.

【0007】四方弁3aのモ−ドについては、圧縮機2
の吐出側と蓄熱槽STRとを、かつ圧縮機2の吸入側と
熱源側熱交換器4とを連通する場合を暖房モ−ドと定義
する。
Regarding the mode of the four-way valve 3a, the compressor 2
The case where the discharge side and the heat storage tank STR and the suction side of the compressor 2 and the heat source side heat exchanger 4 communicate with each other are defined as a heating mode.

【0008】また、第1切替弁KV1については熱源側
冷凍サイクル内にて蓄熱槽STRと第1膨張弁5aとを
連通する設定を第1STR回路と定義する。
With respect to the first switching valve KV1, the setting for connecting the heat storage tank STR and the first expansion valve 5a in the heat source side refrigeration cycle is defined as a first STR circuit.

【0009】熱源側冷凍サイクルにおいて、蓄熱槽ST
Rが作用し、冷媒対冷媒熱交換器HEXは作用しないよ
うに第1切替弁KV1を第1STR回路へ切替える。こ
の時、液冷媒搬送ポンプPMは停止しており、利用側冷
凍サイクルは作用しない。この熱源側冷凍サイクルの作
用について、以下説明する。
In the heat source side refrigeration cycle, the heat storage tank ST
The first switching valve KV1 is switched to the first STR circuit so that R acts and the refrigerant-to-refrigerant heat exchanger HEX does not act. At this time, the liquid refrigerant transfer pump PM is stopped, and the use side refrigeration cycle does not operate. The operation of the heat source side refrigeration cycle will be described below.

【0010】四方弁3aを暖房モ−ド、第1膨張弁5a
を所定の開度、第1切替弁KV1を第1STR回路とす
る。この時、圧縮機2から送られる高温高圧の冷媒は、
蓄熱槽STRの蓄熱用熱交換器8a内にて凝縮し、蓄熱
材である水9を加熱する。その後、第1膨張弁5aで減
圧されて液あるいは二相状態となり、熱源側熱交換器4
にて蒸発し、圧縮機2へ戻る。この様な作用により、蓄
熱槽STR内の水が温水となり、蓄熱されていく。
The four-way valve 3a is a heating mode, and the first expansion valve 5a.
Is a predetermined opening degree, and the first switching valve KV1 is a first STR circuit. At this time, the high-temperature and high-pressure refrigerant sent from the compressor 2 is
It condenses in the heat storage heat exchanger 8a of the heat storage tank STR and heats the water 9, which is a heat storage material. After that, the pressure is reduced by the first expansion valve 5a to become a liquid or two-phase state, and the heat source side heat exchanger 4
Then, it evaporates and returns to the compressor 2. By such an action, the water in the heat storage tank STR becomes hot water and heat is stored.

【0011】以上のように、夜間の余剰電力エネルギー
を熱に変換して蓄熱しておき、昼間にその熱エネルギ−
を利用することにより、熱源機の設備容量を低減でき、
かつ電力利用の平準化が図れる。
As described above, the surplus power energy at night is converted into heat and stored, and the heat energy
By using, the installed capacity of the heat source machine can be reduced,
In addition, power usage can be leveled.

【0012】[0012]

【発明が解決しようとする課題】しかしながら、前述の
従来例では、夜間蓄熱運転モ−ドでの熱源側熱交換器4
のデフロスト(除霜)において、蓄熱用熱交換器8aを
蒸発器に、且つ熱源側熱交換器4を凝縮器に作用させて
除霜する逆サイクル方式を用いた場合、蓄熱槽STR内
の水温が高い場合には、蒸発圧力が蓄熱槽STR内の水
温によって過昇することで圧縮機2の吐出圧力が過昇す
るため圧縮機2が高圧カットに至り正常な運転ができな
くなりシステムの信頼性低下となる問題が生じる。一
方、蒸発圧力を上げることで除霜するという順サイクル
方式を用いた場合には、デフロスト時間が長くなり運転
効率が低下するという問題が生じ、熱源側熱交換器4の
デフロストとして一長一短であり最適な制御がないとう
欠点を有していた。
However, in the above-mentioned conventional example, the heat source side heat exchanger 4 in the night heat storage operation mode is used.
In the defrosting (defrosting), when the reverse cycle method of defrosting by using the heat storage heat exchanger 8a as an evaporator and the heat source side heat exchanger 4 as a condenser, the water temperature in the heat storage tank STR is When the value is high, the evaporating pressure rises excessively due to the water temperature in the heat storage tank STR, and the discharge pressure of the compressor 2 rises excessively. There is a problem of reduction. On the other hand, when the forward cycle method of defrosting by increasing the evaporation pressure is used, there is a problem that the defrost time becomes long and the operation efficiency decreases, and there are advantages and disadvantages as the defrost of the heat source side heat exchanger 4 It had the drawback of lacking proper control.

【0013】そこで、本発明は上記欠点を鑑み、夜間蓄
熱運転モ−ドでの熱源側熱交換器4のデフロストにて正
常な制御をし得る蓄熱式空気調和機を提供することを目
的とするものである。
In view of the above drawbacks, the present invention has an object to provide a heat storage type air conditioner capable of performing normal control by defrosting the heat source side heat exchanger 4 in the night heat storage operation mode. It is a thing.

【0014】[0014]

【課題を解決するための手段】上記課題を解決する本発
明の技術的手段は、圧縮機と、第1四方弁と、熱源側熱
交換器と、第1補助熱交換器と第2補助熱交換器とから
なる冷媒対冷媒熱交換器の第1補助熱交換と、第1膨張
弁、かつ第2膨張弁及び蓄熱用熱交換器と放熱用熱交換
器と蓄熱材とからなる蓄熱槽の蓄熱用熱交換器とを前記
冷媒対冷媒熱交換器の第1補助熱交換器と前記第1膨張
弁と並列に接続してなる熱源側冷凍サイクルと、液冷媒
搬送ポンプと第2四方弁と冷媒タンクからなるポンプユ
ニットと、利用側熱交換器と室内流量弁と室内ファンと
からなる複数の室内ユニットとを接続し、かつ第1流量
弁と第2補助熱交換器、及び第2流量弁と前記放熱用熱
交換器と二方弁を並列に接続してなる利用側冷凍サイク
ルとからなり、前記蓄熱用熱交換器を用いて前記蓄熱槽
内に温水を蓄える夜間蓄熱運転モ−ドであることを検知
する蓄熱運転モ−ド検知手段と、前記熱源側熱交換器の
除霜要求を検知する除霜検知手段と、前記圧縮機の吐出
圧力を検知する圧縮機吐出圧力検知手段と、前記圧縮機
吐出圧力検知手段により得られた情報に基づいて前記第
1膨張弁を駆動する第1膨張弁駆動手段と、前記除霜検
知手段にて除霜要求を検知した時に前記蓄熱用熱交換器
を蒸発器に、且つ前記熱源側熱交換器を凝縮器になるよ
うに前記第1四方弁を作用させる逆サイクルデフロスト
駆動手段とから構成された第1制御装置とを備えたもの
である。
The technical means of the present invention for solving the above-mentioned problems is to provide a compressor, a first four-way valve, a heat source side heat exchanger, a first auxiliary heat exchanger and a second auxiliary heat. A first auxiliary heat exchange of the refrigerant-to-refrigerant heat exchanger, which comprises an exchanger, and a first expansion valve, a second expansion valve, a heat storage heat exchanger, a heat radiating heat exchanger, and a heat storage tank. A heat source side refrigeration cycle in which a heat storage heat exchanger is connected in parallel with the first auxiliary heat exchanger of the refrigerant-refrigerant heat exchanger and the first expansion valve, a liquid refrigerant transfer pump, and a second four-way valve. A pump unit including a refrigerant tank, a plurality of indoor units including a use-side heat exchanger, an indoor flow valve, and an indoor fan are connected to each other, and a first flow valve, a second auxiliary heat exchanger, and a second flow valve. And a heat-sink for heat dissipation and a user-side refrigeration cycle in which a two-way valve is connected in parallel, A heat storage operation mode detecting means for detecting that it is a nighttime heat storage operation mode for storing hot water in the heat storage tank by using a heat storage heat exchanger, and a defrosting request for the heat source side heat exchanger is detected. Defrost detecting means, compressor discharge pressure detecting means for detecting discharge pressure of the compressor, and first expansion valve for driving the first expansion valve based on information obtained by the compressor discharge pressure detecting means. When the defrosting request is detected by the driving means and the defrosting detecting means, the first four-way valve acts so that the heat storage heat exchanger serves as an evaporator and the heat source side heat exchanger serves as a condenser. And a first control device composed of a reverse cycle defrost driving means.

【0015】また、前記蓄熱用熱交換器を用いて前記蓄
熱槽内に温水を蓄える夜間蓄熱運転モ−ドであることを
検知する蓄熱運転モ−ド検知手段と、前記熱源側熱交換
器の除霜要求を検知する除霜検知手段と、前記蓄熱槽内
の水温を検知する蓄熱槽水温検知手段と、前記水温に基
づいて順サイクルデフロスト方式か逆サイクルデフロス
ト方式かを判断するデフロストモ−ド判別手段と、前記
蓄熱用熱交換器を蒸発器に、且つ前記熱源側熱交換器を
凝縮器に作用させる逆サイクルデフロスト駆動手段と、
前記蓄熱用熱交換器を凝縮器に、且つ前記熱源側熱交換
器を蒸発器に作用させる順サイクルデフロスト駆動手段
とから構成された第2制御装置とを備えたものである。
Further, a heat storage operation mode detecting means for detecting the night heat storage operation mode for storing hot water in the heat storage tank by using the heat storage heat exchanger, and the heat source side heat exchanger. Defrost detection means for detecting a defrost request, heat storage tank water temperature detection means for detecting the water temperature in the heat storage tank, and defrost mode determination for judging whether the cycle is a forward cycle defrost method or a reverse cycle defrost method based on the water temperature. Means, and a reverse cycle defrost driving means for causing the heat storage heat exchanger to act on an evaporator and the heat source side heat exchanger to act on a condenser,
A second control device comprising a forward cycle defrost driving means for causing the heat storage heat exchanger to act as a condenser and the heat source side heat exchanger to act as an evaporator.

【0016】[0016]

【作用】本発明の蓄熱式空気調和機は、前記蓄熱運転モ
−ド検知手段によって前記蓄熱用熱交換器を用いて前記
蓄熱槽内に温水を蓄える前記夜間蓄熱運転モ−ドを検知
し、且つ前記除霜検知手段によって前記熱源側熱交換器
の除霜要求を検知した場合に、前記逆サイクルデフロス
ト駆動手段によって前記蓄熱用熱交換器を蒸発器に、且
つ前記熱源側熱交換器を凝縮器になるように前記第1四
方弁を作用させて除霜する逆サイクルデフロスト運転を
行う。
The heat storage type air conditioner of the present invention detects the nighttime heat storage operation mode in which hot water is stored in the heat storage tank by using the heat storage heat exchanger by the heat storage operation mode detection means, And, when the defrosting request of the heat source side heat exchanger is detected by the defrosting detecting means, the heat storage side heat exchanger is condensed by the reverse cycle defrost driving means, and the heat source side heat exchanger is condensed. Reverse cycle defrost operation is performed in which the first four-way valve is actuated so as to function as a container and defrosting is performed.

【0017】前記圧縮機吐出圧力検知手段によって検知
された前記圧縮機の吐出圧力が所定圧力より高い場合に
は、前記第1膨張弁駆動手段によって前記熱源側熱交換
器の除霜要求が無くなるまで前記第1膨張弁を所定開度
まで開く。
When the discharge pressure of the compressor detected by the compressor discharge pressure detecting means is higher than a predetermined pressure, until the defrosting request of the heat source side heat exchanger is canceled by the first expansion valve driving means. The first expansion valve is opened to a predetermined opening.

【0018】以上の様な操作により、夜間蓄熱運転時熱
源側熱交換器の逆サイクル方式デフロスト運転の際、前
記第1膨張弁を蓄熱用熱交換器のバイパス弁として圧縮
機吐出圧力に応じて開閉するため、圧縮機吸入圧力の過
昇を阻止でき圧縮機吐出圧力の過昇を防止できる。
According to the above operation, during the reverse cycle defrost operation of the heat source side heat exchanger during night heat storage operation, the first expansion valve is used as a bypass valve of the heat storage heat exchanger according to the compressor discharge pressure. Since it is opened and closed, it is possible to prevent an excessive rise in the compressor suction pressure and prevent an excessive rise in the compressor discharge pressure.

【0019】従って、圧縮機高圧カットを防止するため
正常なデフロスト運転となり、システムの信頼性を確保
できる効果がある。
Therefore, normal defrosting operation is performed to prevent high pressure cut of the compressor, and there is an effect that system reliability can be secured.

【0020】また、前記蓄熱運転モ−ド検知手段によっ
て前記夜間蓄熱運転モ−ドを検知し、且つ前記除霜検知
手段によって前記熱源側熱交換器の前記除霜要求を検知
する。
Further, the heat storage operation mode detection means detects the nighttime heat storage operation mode, and the defrost detection means detects the defrosting request of the heat source side heat exchanger.

【0021】前記除霜要求を検知した場合に、前記デフ
ロストモ−ド判別手段によって、前記水温が所定温度よ
りも低い場合には、逆サイクルデフロスト駆動手段によ
り逆サイクルデフロスト運転を前記除霜要求が無くなる
まで実施し、前記水温が所定温度よりも高い場合は、順
サイクルデフロスト駆動手段により順サイクルデフロス
ト運転を前記除霜要求が無くなるまで実施する。
When the defrost mode determination means detects the defrosting request and the water temperature is lower than the predetermined temperature, the reverse cycle defrosting driving means eliminates the defrosting request for the reverse cycle defrosting operation. When the water temperature is higher than the predetermined temperature, the forward cycle defrost driving means carries out the forward cycle defrost operation until the defrosting request disappears.

【0022】従って、前記水温が高い時には順サイクル
デフロスト方式を用いているので圧縮機の高圧カットと
いう問題が無くなりシステムの信頼性向上が得られ、且
つ前記水温が低い時には逆サイクルデフロスト方式を用
いているのでデフロスト時間が短くて済み暖房運転効率
が向上する効果がある。
Therefore, when the water temperature is high, the forward cycle defrost system is used, so that the problem of high pressure cut of the compressor is eliminated and the reliability of the system is improved, and when the water temperature is low, the reverse cycle defrost system is used. Therefore, the defrost time is short and the heating operation efficiency is improved.

【0023】[0023]

【実施例】以下、本発明の実施例を添付図面に基づいて
説明を行うが、従来と同一構成については同一符号を付
し、その詳細な説明を省略する。
Embodiments of the present invention will be described below with reference to the accompanying drawings. The same components as those in the prior art will be designated by the same reference numerals and detailed description thereof will be omitted.

【0024】図1は本発明の第1の実施例の冷凍サイク
ル図である。本実施例の蓄熱式空気調和機は室外ユニッ
ト1’と、蓄熱槽STRと、ポンプユニットPUと、室
内ユニット13a,13bとから構成されている。
FIG. 1 is a refrigeration cycle diagram of the first embodiment of the present invention. The heat storage type air conditioner of the present embodiment includes an outdoor unit 1 ', a heat storage tank STR, a pump unit PU, and indoor units 13a and 13b.

【0025】室外ユニット1’は、圧縮機2、第1四方
弁3a、熱源側熱交換器4、第1膨張弁5a、第2膨張
弁5b、室外ファン6、第1補助熱交換器7aと第2補
助熱交換器7bとからなる冷媒対冷媒熱交換器HEX、
第2補助熱交換器7b用の第1流量弁RV1、蓄熱槽S
TRの放熱用熱交換器8b用の第2流量弁RV2から構
成されている。
The outdoor unit 1'includes a compressor 2, a first four-way valve 3a, a heat source side heat exchanger 4, a first expansion valve 5a, a second expansion valve 5b, an outdoor fan 6, and a first auxiliary heat exchanger 7a. A refrigerant-to-refrigerant heat exchanger HEX including a second auxiliary heat exchanger 7b,
First flow valve RV1 for second auxiliary heat exchanger 7b, heat storage tank S
It is composed of a second flow valve RV2 for the heat radiating heat exchanger 8b of TR.

【0026】蓄熱槽STRは、蓄熱材である水9と蓄熱
用熱交換器8a、放熱用熱交換器8bからなり、ポンプ
ユニットPUは冷媒タンク11、液冷媒搬送ポンプP
M、及び第2四方弁3bとからなり、室内ユニット13
a,13bは、利用側交換器14a,14b、室内流量
弁15a,15bとから構成されている。
The heat storage tank STR comprises water 9 as a heat storage material, a heat storage heat exchanger 8a, and a heat radiation heat exchanger 8b. The pump unit PU is a refrigerant tank 11 and a liquid refrigerant transfer pump P.
The indoor unit 13 including the M and the second four-way valve 3b.
a and 13b are composed of utilization side exchangers 14a and 14b and indoor flow valves 15a and 15b.

【0027】上記構成において、熱源側冷凍サイクル
は、圧縮機2と、第1四方弁3aと、熱源側熱交換器4
と、第1補助熱交換器7aと第2補助熱交換器7bとか
らなる冷媒対冷媒熱交換器HEXの第1補助熱交換器7
aと、第1膨張弁5a、かつ第2膨張弁5b及び蓄熱用
熱交換器8aと放熱用熱交換器8bと蓄熱材9とからな
る蓄熱槽STRの蓄熱用熱交換器8aを冷媒対冷媒熱交
換器HEXの第1補助熱交換器7aと第1膨張弁5aを
並列に接続してなる。
In the above structure, the heat source side refrigeration cycle includes the compressor 2, the first four-way valve 3a, and the heat source side heat exchanger 4.
And the first auxiliary heat exchanger 7 of the refrigerant-to-refrigerant heat exchanger HEX, which includes the first auxiliary heat exchanger 7a and the second auxiliary heat exchanger 7b.
a, the first expansion valve 5a, the second expansion valve 5b, the heat storage heat exchanger 8a, the heat radiation heat exchanger 8b, and the heat storage material 9, and the heat storage heat exchanger 8a is used as a refrigerant-to-refrigerant. The first auxiliary heat exchanger 7a of the heat exchanger HEX and the first expansion valve 5a are connected in parallel.

【0028】利用側冷凍サイクルは、液冷媒搬送ポンプ
PMと第2四方弁3bと冷媒タンク11と、利用側熱交
換器14a,14bと室内流量弁15a,15bとを接
続し、かつ第1流量弁RV1と第2補助熱交換器7b、
及び第2流量弁RV2と放熱用熱交換器8bと二方弁N
V(好ましくは電磁弁)を並列に接続してなる。
The use side refrigeration cycle connects the liquid refrigerant transfer pump PM, the second four-way valve 3b, the refrigerant tank 11, the use side heat exchangers 14a and 14b and the indoor flow valves 15a and 15b, and the first flow rate. The valve RV1 and the second auxiliary heat exchanger 7b,
And the second flow valve RV2, the heat radiation heat exchanger 8b, and the two-way valve N.
V (preferably solenoid valves) are connected in parallel.

【0029】そして、蓄熱用熱交換器8aを用いて蓄熱
槽STR内に温水を蓄える夜間蓄熱運転モ−ドであるこ
とを検知する蓄熱運転モ−ド検知手段18と、熱源側熱
交換器4の除霜要求を検知する除霜検知手段19と、圧
縮機2の吐出圧力Pd(MPa)を検知する圧縮機吐出圧
力検知手段20と、圧縮機吐出圧力検知手段20により
得られた情報に基づいて第1膨張弁5aを駆動する第1
膨張弁駆動手段21と、除霜検知手段19にて除霜要求
を検知した時に蓄熱用熱交換器8aを蒸発器に、且つ熱
源側熱交換器4を凝縮器になるように第1四方弁3aを
作用させる逆サイクルデフロスト駆動手段22とから構
成された第1制御装置CN1を備えている。
A heat storage operation mode detecting means 18 for detecting the night heat storage operation mode in which hot water is stored in the heat storage tank STR using the heat storage heat exchanger 8a, and the heat source side heat exchanger 4 Based on the information obtained by the defrosting detection means 19 for detecting the defrosting request of the compressor, the compressor discharge pressure detection means 20 for detecting the discharge pressure Pd (MPa) of the compressor 2, and the compressor discharge pressure detection means 20. Drive the first expansion valve 5a
When the expansion valve drive means 21 and the defrosting detection means 19 detect a defrosting request, the heat storage heat exchanger 8a serves as an evaporator, and the heat source side heat exchanger 4 serves as a condenser. The first control device CN1 is composed of a reverse cycle defrost drive means 22 for actuating 3a.

【0030】ここで、圧縮機2の吐出部圧力センサ17
は、圧縮機吐出圧力検知手段20の一具体例として示し
ている。
Here, the discharge portion pressure sensor 17 of the compressor 2
Is shown as a specific example of the compressor discharge pressure detection means 20.

【0031】次に、この第1の実施例の構成における作
用を説明する。ここで、従来例で説明した第1切替弁K
V1の代わりに第1膨張弁5aおよび第2膨張弁5b、
第2切替弁KV2の代わりに第1流量弁RV1および第
2流量弁RV2を用いている。第1STR回路は熱源側
冷凍サイクル内にて蓄熱槽STRと第1膨張弁5aとを
連通する設定とし、第1HEX回路は冷媒対冷媒熱交換
器HEXと第2膨張弁5bとを連通する設定と定義する
ことで、第1制御装置CN1の作用以外は従来例と同一
作用であることから、各運転パタ−ンの作用については
説明を省略する。そして、従来例と異なる第1制御装置
CN1の作用について、図3のフローチャ−トを用いて
説明する。
Next, the operation of the structure of the first embodiment will be described. Here, the first switching valve K described in the conventional example
A first expansion valve 5a and a second expansion valve 5b instead of V1;
The first flow valve RV1 and the second flow valve RV2 are used instead of the second switching valve KV2. The first STR circuit is set to communicate the heat storage tank STR and the first expansion valve 5a in the heat source side refrigeration cycle, and the first HEX circuit is set to communicate the refrigerant-refrigerant heat exchanger HEX and the second expansion valve 5b. By definition, the operation is the same as that of the conventional example except the operation of the first control device CN1, and therefore the description of the operation of each operation pattern is omitted. The operation of the first control device CN1 different from the conventional example will be described with reference to the flowchart of FIG.

【0032】STEP1は、蓄熱運転運転モ−ド検知手
段18によって、夜間蓄熱運転モ−ドであるかどうかを
検知し、夜間蓄熱運転モ−ドであればSTEP2に移行
し、それ以外はル−チンから抜ける。
In STEP 1, the heat storage operation mode detection means 18 detects whether or not it is the night heat storage operation mode. If it is the night heat storage operation mode, the process proceeds to STEP 2, otherwise the routine is executed. Get out of the chin.

【0033】STEP2は、除霜検知手段19によっ
て、熱源側熱交換器4の除霜要求があるかどうかを検知
し、要求があればSTEP3に移行し、それ以外はル−
チンから抜ける。
In STEP 2, the defrosting detection means 19 detects whether or not there is a defrosting request for the heat source side heat exchanger 4, and if there is a request, the process proceeds to STEP 3;
Get out of the chin.

【0034】STEP3は、圧縮機吐出圧力検知手段2
0により圧縮機2の吐出圧力Pd(MPa)を検知し、
Pdが予め決められた所定値P1以上(例えばPd≧
1.8MPa)であればデフロスト時に圧縮機吐出圧力
が高圧カットする危険性があるので蓄熱用熱交換器8a
をバイパスさせる必要有りと判断してSTEP4へ移行
し、それ以外はバイパスさせる必要無しと判断してST
EP5へ移行する。
STEP 3 is compressor discharge pressure detection means 2
0 to detect the discharge pressure Pd (MPa) of the compressor 2,
Pd is a predetermined value P1 or more (for example, Pd ≧
(1.8 MPa), there is a risk that the compressor discharge pressure will be cut off during defrosting, so the heat storage heat exchanger 8a
If it is determined that the bypass is necessary, the process shifts to STEP 4, and otherwise it is determined that the bypass is not necessary, and the process proceeds to ST.
Move to EP5.

【0035】STEP4では、第1膨張弁駆動手段21
により蓄熱用熱交換器8aのバイパスとして第1膨張弁
5aを全開(例えば電子膨張弁の場合2000パルス)
して、STEP5へ移行する。
In STEP 4, the first expansion valve drive means 21
To fully open the first expansion valve 5a as a bypass of the heat storage heat exchanger 8a (for example, 2000 pulses in the case of an electronic expansion valve)
Then, the process proceeds to STEP5.

【0036】STEP3〜STEP4の操作により、逆
サイクル方式デフロスト運転の際、既設の第1膨張弁5
aを蓄熱用熱交換器4のバイパス弁として圧縮機吐出圧
力Pdに応じて開閉するため、圧縮機吸入圧力Psの過
昇を阻止でき圧縮機吐出圧力Pdの過昇を防止できる。
By the operations of STEP3 to STEP4, the existing first expansion valve 5 is operated during the reverse cycle defrost operation.
Since a is used as a bypass valve of the heat storage heat exchanger 4 to open and close according to the compressor discharge pressure Pd, it is possible to prevent the compressor suction pressure Ps from rising excessively and prevent the compressor discharge pressure Pd from rising excessively.

【0037】STEP5〜STEP6は、逆サイクルデ
フロスト運転の操作である。STEP5では、逆サイク
ルデフロスト駆動手段22により第1四方弁3aをOF
F(冷房モ−ド)として、STEP6へ移行する。
STEP 5 to STEP 6 are operations of the reverse cycle defrost operation. At STEP 5, the first four-way valve 3a is turned off by the reverse cycle defrost drive means 22.
As F (cooling mode), the process proceeds to STEP6.

【0038】STEP6では、逆サイクルデフロスト駆
動手段22により室外ファン6を停止してSTEP7に
移行する。
In STEP 6, the outdoor fan 6 is stopped by the reverse cycle defrost driving means 22 and the process proceeds to STEP 7.

【0039】STEP7は、除霜検知手段19によっ
て、熱源側熱交換器4の除霜要求があるかどうかを検知
し、要求があればSTEP3に移行し、それ以外は除霜
終了と判断してSTEP8に移行する。
In STEP 7, the defrosting detection means 19 detects whether or not there is a defrosting request for the heat source side heat exchanger 4, and if there is a request, the process proceeds to STEP 3, otherwise it is determined that defrosting has ended. Move to STEP8.

【0040】STEP8では、元の夜間蓄熱運転モ−ド
に戻るために室外ファン6をONし、STEP9に移行
する。
At STEP 8, the outdoor fan 6 is turned on to return to the original night heat storage operation mode, and the process proceeds to STEP 9.

【0041】STEP9も、STEP8と同様に第1四
方弁3aをON(暖房モ−ド)としSTEP10に移行
する。
Similarly to STEP8, STEP9 also turns ON the first four-way valve 3a (heating mode) and shifts to STEP10.

【0042】STEP10では、先にSTEP4で操作
した第1膨張弁5aを全閉(例えば電子膨張弁の場合0
パルス)にした後、ル−チンから抜ける。
In STEP 10, the first expansion valve 5a previously operated in STEP 4 is fully closed (for example, in the case of an electronic expansion valve, 0).
Pulse) and then exit the routine.

【0043】この様にして、STEP1からSTEP1
0のルーチンを、暖房運転中繰り返す。
In this way, from STEP1 to STEP1
The routine of 0 is repeated during the heating operation.

【0044】以上の様に、上記実施例では蓄熱式空気調
和機において、蓄熱運転モ−ド検知手段18によって蓄
熱用熱交換器8aを用いて蓄熱槽STR内に温水を蓄え
る夜間蓄熱運転モ−ドを検知し、且つ除霜検知手段19
によって熱源側熱交換器4の除霜要求を検知した場合
に、逆サイクルデフロスト駆動手段22によって蓄熱用
熱交換器8aを蒸発器に、且つ熱源側熱交換器4を凝縮
器になるように第1四方弁3aを作用させて除霜する逆
サイクルデフロスト運転を行う。
As described above, in the heat storage type air conditioner of the above embodiment, the heat storage operation mode detecting means 18 uses the heat storage heat exchanger 8a to store hot water in the heat storage tank STR at night. Defrosting and defrost detection means 19
When the defrosting request for the heat source side heat exchanger 4 is detected by the reverse cycle defrost driving means 22, the heat storage side heat exchanger 8a is used as an evaporator and the heat source side heat exchanger 4 is used as a condenser. Reverse cycle defrost operation for defrosting by operating the four-way valve 3a is performed.

【0045】逆サイクルデフロスト運転の間、圧縮機吐
出圧力検知手段20によって検知された圧縮機2の吐出
圧力Pdが所定圧力P1より高い場合には、第1膨張弁
駆動手段21によって熱源側熱交換器4の除霜要求が無
くなるまで第1膨張弁5aを所定開度まで開く。
During the reverse cycle defrost operation, when the discharge pressure Pd of the compressor 2 detected by the compressor discharge pressure detection means 20 is higher than the predetermined pressure P1, the first expansion valve drive means 21 performs heat exchange on the heat source side. The first expansion valve 5a is opened to a predetermined opening until the defrosting request for the container 4 is exhausted.

【0046】以上の様な操作により、夜間蓄熱運転時に
熱源側熱交換器4の逆サイクル方式デフロスト運転の
際、既設の第1膨張弁5aを蓄熱用熱交換器4のバイパ
ス弁として圧縮機吐出圧力Pdに応じて開閉するため、
圧縮機吸入圧力Psの過昇を阻止でき圧縮機吐出圧力P
dの過昇を防止できる。
By the above operation, during the reverse cycle defrosting operation of the heat source side heat exchanger 4 during the nighttime heat storage operation, the existing first expansion valve 5a is used as a bypass valve of the heat storage heat exchanger 4 to discharge the compressor. Since it opens and closes according to the pressure Pd,
Compressor suction pressure Ps can be prevented from rising excessively, and compressor discharge pressure P
It is possible to prevent excessive rise of d.

【0047】従って、圧縮機高圧カットを防止するため
正常なデフロスト運転となり、システムの信頼性を確保
できる効果がある。
Therefore, normal defrosting operation is performed to prevent high pressure cut of the compressor, and there is an effect that the reliability of the system can be secured.

【0048】また、第2の実施例を添付図面に基づいて
説明を行うが、第1の実施例と同一構成については同一
符号を付し、その詳細な説明を省略する。
The second embodiment will be described with reference to the accompanying drawings. The same components as those in the first embodiment will be designated by the same reference numerals and detailed description thereof will be omitted.

【0049】図4は本発明の第2の実施例における冷凍
サイクル図である。第2の実施例における構成は、第1
の実施例における第1制御装置CN1および吐出部圧力
センサ17との代わりに第2制御装置CN2およびサ−
ミスタ23を用いていること以外は第1の実施例と同一
構成であるので、異なる第2制御装置CN2およびサ−
ミスタ23のみ説明する。
FIG. 4 is a refrigeration cycle diagram in the second embodiment of the present invention. The configuration of the second embodiment is the first
In place of the first controller CN1 and the discharge part pressure sensor 17 in the above embodiment, the second controller CN2 and the server CN2.
Since the configuration is the same as that of the first embodiment except that the mister 23 is used, a different second control device CN2 and server are used.
Only the mister 23 will be described.

【0050】第2制御装置CN2は、蓄熱用熱交換器8
aを用いて蓄熱槽STR内に温水を蓄える夜間蓄熱運転
モ−ドであることを検知する蓄熱運転モ−ド検知手段1
8と、熱源側熱交換器4の除霜要求を検知する除霜検知
手段19と、蓄熱槽STR内の水温Twを検知する蓄熱
槽水温検知手段24と、水温Twに基づいて順サイクル
デフロスト方式か逆サイクルデフロスト方式かを判断す
るデフロストモ−ド判別手段25と、蓄熱用熱交換器8
aを蒸発器に、且つ熱源側熱交換器4を凝縮器に作用さ
せる逆サイクルデフロスト駆動手段22と、蓄熱用熱交
換器8aを凝縮器に、且つ熱源側熱交換器4を蒸発器に
作用させる順サイクルデフロスト駆動手段26とから構
成されている。
The second control device CN2 includes a heat storage heat exchanger 8
Heat storage operation mode detection means 1 for detecting that it is a nighttime heat storage operation mode in which hot water is stored in the heat storage tank STR using a.
8, defrost detection means 19 for detecting a defrost request of the heat source side heat exchanger 4, heat storage tank water temperature detection means 24 for detecting the water temperature Tw in the heat storage tank STR, and a forward cycle defrost method based on the water temperature Tw. Defrost mode determining means 25 for determining whether it is a reverse cycle defrost system or a heat storage heat exchanger 8
Reverse cycle defrost drive means 22 for acting a on the evaporator and heat source side heat exchanger 4 on the condenser, heat storage heat exchanger 8a on the condenser, and heat source side heat exchanger 4 on the evaporator. And a forward cycle defrost driving means 26.

【0051】ここで、サ−ミスタ23は、蓄熱槽水温検
知手段24の一具体例として示している。
Here, the thermistor 23 is shown as a specific example of the heat storage tank water temperature detecting means 24.

【0052】次に、この第2の実施例の構成における作
用を説明する。ここで、第2制御装置CN2の作用以外
は第1の実施例と同一作用であることから、各運転パタ
−ンの作用については説明を省略する。そして、第1の
実施例と異なる第2制御装置CN2の作用について、図
6のフローチャ−トを用いて説明する。
Next, the operation of the configuration of the second embodiment will be described. Here, except for the operation of the second control device CN2, the operation is the same as that of the first embodiment, so the description of the operation of each operation pattern is omitted. The operation of the second control device CN2 different from that of the first embodiment will be described with reference to the flow chart of FIG.

【0053】STEP1は、蓄熱運転運転モ−ド検知手
段18によって、夜間蓄熱運転モ−ドであるかどうかを
検知し、夜間蓄熱運転モ−ドであればSTEP2に移行
し、それ以外はル−チンから抜ける。
In STEP 1, the heat storage operation mode detection means 18 detects whether or not the mode is the night heat storage operation mode. If it is the night heat storage operation mode, the process proceeds to STEP 2, otherwise the routine is executed. Get out of the chin.

【0054】STEP2は、除霜検知手段19によっ
て、熱源側熱交換器4の除霜要求があるかどうかを検知
し、要求があればSTEP3に移行し、それ以外はル−
チンから抜ける。
In STEP 2, the defrosting detection means 19 detects whether or not there is a defrosting request for the heat source side heat exchanger 4, and if there is a request, the process proceeds to STEP 3;
Get out of the chin.

【0055】STEP3は、蓄熱槽水温検知手段24に
より蓄熱槽STR内の水温Twを検知し、デフロストモ
−ド判別手段25により、水温Twが予め決められた所
定値T1以下(例えばTw≦45℃)であれば逆サイク
ルデフロスト方式を用いると判断してSTEP4へ移行
し、それ以外は順サイクルデフロスト方式を用いるとし
てSTEP5へ移行する。
In STEP 3, the heat storage tank water temperature detection means 24 detects the water temperature Tw in the heat storage tank STR, and the defrost mode determination means 25 detects the water temperature Tw below a predetermined value T1 (for example, Tw≤45 ° C.). If so, it is determined that the reverse cycle defrost method is used, and the process proceeds to STEP4. Otherwise, it is determined that the forward cycle defrost system is used and the process proceeds to STEP5.

【0056】STEP4では、蓄熱用熱交換器8aのバ
イパスとして第1膨張弁5aを全開(例えば電子膨張弁
の場合2000パルス)して、STEP6へ移行する。
In STEP 4, the first expansion valve 5a is fully opened (for example, 2000 pulses in the case of an electronic expansion valve) as a bypass of the heat storage heat exchanger 8a, and the process proceeds to STEP 6.

【0057】STEP6では、逆サイクルデフロスト駆
動手段22により第1四方弁3aをOFF(冷房モ−
ド)として、STEP7へ移行する。
At STEP 6, the reverse cycle defrost drive means 22 turns off the first four-way valve 3a (cooling mode).
Then, the process proceeds to STEP7.

【0058】STEP7では、逆サイクルデフロスト駆
動手段22により室外ファン6を停止してSTEP8に
移行する。
In STEP 7, the outdoor fan 6 is stopped by the reverse cycle defrost driving means 22 and the process proceeds to STEP 8.

【0059】ここで、STEP4の操作は、逆サイクル
方式デフロスト運転の際、事前に第1膨張弁5aを蓄熱
用熱交換器4のバイパス弁として開けるため、圧縮機吸
入圧力Psの過昇を必要最小限に抑え、圧縮機吐出圧力
Pdの過昇を防止できることを狙ったものである。
Here, in the operation of STEP 4, since the first expansion valve 5a is previously opened as a bypass valve of the heat storage heat exchanger 4 during the reverse cycle defrost operation, it is necessary to excessively raise the compressor suction pressure Ps. The purpose is to minimize and prevent the compressor discharge pressure Pd from rising excessively.

【0060】STEP6〜STEP7は、逆サイクルデ
フロスト運転の操作である。STEP8では、除霜検知
手段19によって、熱源側熱交換器4の除霜要求がある
かどうかを検知し、除霜要求がなくなるまでSTEP8
にて継続運転を行い、除霜要求がなければ除霜終了と判
断してSTEP9に移行する。
STEP 6 to STEP 7 are operations of the reverse cycle defrost operation. In STEP8, the defrosting detection means 19 detects whether or not there is a defrosting request for the heat source side heat exchanger 4, and until the defrosting request is exhausted, STEP8
If the defrosting request is not made, it is determined that the defrosting is completed and the process proceeds to STEP 9.

【0061】STEP9では、元の夜間蓄熱運転モ−ド
に戻るために室外ファン6をONし、STEP9に移行
する。
At STEP 9, the outdoor fan 6 is turned on to return to the original night heat storage operation mode, and the process proceeds to STEP 9.

【0062】STEP10も、STEP9と同様に第1
四方弁3aをON(暖房モ−ド)としSTEP11に移
行する。
STEP10 is the same as STEP9 in the first step.
The four-way valve 3a is turned on (heating mode), and the process proceeds to STEP11.

【0063】STEP11では、先にSTEP4で操作
した第1膨張弁5aを全閉(例えば電子膨張弁の場合0
パルス)にした後、ル−チンから抜ける。
In STEP 11, the first expansion valve 5a previously operated in STEP 4 is fully closed (for example, 0 in the case of an electronic expansion valve).
Pulse) and then exit the routine.

【0064】一方、STEP5では、順サイクルデフロ
スト駆動手段27により、第2膨張弁5bを全開(例え
ば電子膨張弁の場合2000パルス)して、STEP1
2へ移行する。
On the other hand, in STEP 5, the second cycle expansion valve 5b is fully opened (for example, 2000 pulses in the case of an electronic expansion valve) by the forward cycle defrost drive means 27, and STEP 1
Move to 2.

【0065】STEP12では、順サイクルデフロスト
駆動手段27により、室外ファン6を停止してSTEP
13に移行する。
In STEP 12, the outdoor fan 6 is stopped by the forward cycle defrost driving means 27 and STEP is started.
Move to 13.

【0066】STEP13では、除霜検知手段19によ
って、熱源側熱交換器4の除霜要求があるかどうかを検
知し、除霜要求がなくなるまでSTEP13にて継続運
転を行い、除霜要求がなければ除霜終了と判断してST
EP14に移行する。
In STEP 13, the defrost detecting means 19 detects whether or not there is a defrost request for the heat source side heat exchanger 4, and the continuous operation is performed in STEP 13 until the defrost request is exhausted. If it is judged that defrosting has ended, ST
Move to EP14.

【0067】STEP14では、通常の夜間蓄熱運転モ
−ドに戻るために室外ファン6をONし、STEP15
に移行する。
In STEP 14, the outdoor fan 6 is turned on to return to the normal night heat storage operation mode, and STEP 15
Move to

【0068】STEP15も、STEP14と同様に第
2膨張弁5bを全閉(例えば電子膨張弁の場合0パル
ス)にした後、ル−チンから抜ける。
Similarly to STEP 14, STEP 15 also completely closes the second expansion valve 5b (for example, 0 pulse in the case of an electronic expansion valve), and then exits the routine.

【0069】この様にして、STEP1からSTEP1
5のルーチンを、暖房運転中繰り返す。
In this way, from STEP 1 to STEP 1
The routine of 5 is repeated during the heating operation.

【0070】以上の様に、上記実施例では蓄熱式空気調
和機において、蓄熱運転モ−ド検知手段18によって夜
間蓄熱運転モ−ドを検知し、且つ除霜検知手段19によ
って熱源側熱交換器4の除霜要求を検知した場合に、デ
フロストモ−ド判別手段25によって、蓄熱槽STR内
水温Twが所定温度T1よりも低い場合には、逆サイク
ルデフロスト駆動手段22により逆サイクルデフロスト
運転を前記除霜要求が無くなるまで実施し、水温Twが
所定温度よりも高い場合は、順サイクルデフロスト駆動
手段26により順サイクルデフロスト運転を前記除霜要
求が無くなるまで実施する。
As described above, in the above embodiment, in the heat storage type air conditioner, the heat storage operation mode detection means 18 detects the nighttime heat storage operation mode, and the defrost detection means 19 causes the heat source side heat exchanger. If the defrost mode determination means 25 detects the defrosting request of No. 4 and the water temperature Tw in the heat storage tank STR is lower than the predetermined temperature T1, the reverse cycle defrost drive means 22 performs the reverse cycle defrost operation. When the water temperature Tw is higher than the predetermined temperature, the forward cycle defrost driving means 26 performs the forward cycle defrost operation until the defrost request is eliminated.

【0071】従って、水温Twが高い時には順サイクル
デフロスト方式を用いているので圧縮機の高圧カットと
いう問題が無くなりシステムの信頼性向上が得られ、且
つ水温Twが低い時には逆サイクルデフロスト方式を用
いているのでデフロスト時間が短くて済み暖房運転効率
が向上する効果がある。
Therefore, when the water temperature Tw is high, the forward cycle defrost system is used, so that the problem of high pressure cut of the compressor is eliminated and the system reliability is improved, and when the water temperature Tw is low, the reverse cycle defrost system is used. Therefore, the defrost time is short and the heating operation efficiency is improved.

【0072】[0072]

【発明の効果】以上のように本発明は、蓄熱槽を介して
熱源側冷凍サイクルと、利用側冷凍サイクルとからなる
蓄熱式空気調和機において、蓄熱運転モ−ド検知手段に
よって蓄熱用熱交換器を用いて蓄熱槽内に温水を蓄える
夜間蓄熱運転モ−ドを検知し、且つ除霜検知手段によっ
て熱源側熱交換器の除霜要求を検知した場合に、逆サイ
クルデフロスト駆動手段によって前記蓄熱用熱交換器を
蒸発器に、且つ前記熱源側熱交換器を凝縮器になるよう
に第1四方弁を作用させて除霜する逆サイクルデフロス
ト運転を行う。
As described above, the present invention is a heat storage type air conditioner comprising a heat source side refrigeration cycle and a utilization side refrigeration cycle through a heat storage tank, and heat storage heat exchange by heat storage operation mode detection means. When the night heat storage operation mode for storing hot water in the heat storage tank is detected using the heat exchanger, and the defrosting request of the heat source side heat exchanger is detected by the defrosting detecting means, the heat storage by the reverse cycle defrost driving means is performed. Reverse cycle defrost operation is performed in which the first four-way valve is operated so that the heat exchanger for use as an evaporator and the heat exchanger on the heat source side as a condenser act to defrost.

【0073】前記逆サイクルデフロスト運転中に圧縮機
吐出圧力検知手段によって検知された圧縮機の吐出圧力
が所定圧力より高い場合には、第1膨張弁駆動手段によ
って前記熱源側熱交換器の除霜要求が無くなるまで第1
膨張弁を所定開度まで開く。
When the discharge pressure of the compressor detected by the compressor discharge pressure detecting means is higher than the predetermined pressure during the reverse cycle defrost operation, the first expansion valve driving means defrosts the heat source side heat exchanger. First until demand is exhausted
Open the expansion valve to the specified opening.

【0074】以上の様な操作により、夜間蓄熱運転時熱
源側熱交換器の逆サイクル方式デフロスト運転の際、前
記第1膨張弁を前記蓄熱用熱交換器のバイパス弁として
前記圧縮機の吐出圧力に応じて開閉するため、圧縮機吸
入圧力の過昇を阻止でき前記圧縮機吐出圧力の過昇を防
止できる。
By the above operation, during the reverse cycle defrost operation of the heat source side heat exchanger during night heat storage operation, the first expansion valve serves as a bypass valve of the heat storage heat exchanger and the discharge pressure of the compressor. Therefore, the compressor suction pressure can be prevented from rising excessively, and the compressor discharge pressure can be prevented from rising excessively.

【0075】従って、前記圧縮機高圧カットを防止する
ため正常なデフロスト運転となり、システムの信頼性を
確保できるという効果がある。
Therefore, since the compressor high pressure cut is prevented, the normal defrost operation is performed, and the system reliability can be secured.

【0076】また、前記蓄熱運転モ−ド検知手段によっ
て前記夜間蓄熱運転モ−ドを検知し、且つ前記除霜検知
手段によって前記熱源側熱交換器の前記除霜要求を検知
した場合に、前記デフロストモ−ド判別手段によって、
前記水温が所定温度よりも低い場合には、前記逆サイク
ルデフロスト駆動手段により逆サイクルデフロスト運転
を前記除霜要求が無くなるまで実施し、前記水温が所定
温度よりも高い場合は、順サイクルデフロスト駆動手段
により順サイクルデフロスト運転を前記除霜要求が無く
なるまで実施する。
When the heat storage operation mode detection means detects the night heat storage operation mode and the defrost detection means detects the defrosting request of the heat source side heat exchanger, By the defrost mode discrimination means,
When the water temperature is lower than the predetermined temperature, the reverse cycle defrost driving means carries out the reverse cycle defrost operation until the defrosting request disappears, and when the water temperature is higher than the predetermined temperature, the forward cycle defrost driving means. Thus, the forward cycle defrost operation is performed until the defrosting request disappears.

【0077】従って、前記水温が高い時には順サイクル
デフロスト方式を用いているので圧縮機の高圧カットと
いう問題が無くなりシステムの信頼性向上が得られ、且
つ前記水温が低い時には逆サイクルデフロスト方式を用
いているのでデフロスト時間が短くて済み暖房運転効率
が向上する効果がある。
Therefore, when the water temperature is high, the forward cycle defrost method is used, so that the problem of high pressure cut of the compressor is eliminated and the reliability of the system is improved, and when the water temperature is low, the reverse cycle defrost method is used. Therefore, the defrost time is short and the heating operation efficiency is improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例による蓄熱式空気調和機
の冷凍システム図
FIG. 1 is a refrigeration system diagram of a heat storage type air conditioner according to a first embodiment of the present invention.

【図2】同実施例における制御装置についてのブロック
FIG. 2 is a block diagram of a control device in the embodiment.

【図3】同実施例の冷暖房装置の動作フローチャートFIG. 3 is an operation flowchart of the cooling and heating device of the same embodiment.

【図4】本発明の第2の実施例における蓄熱式空気調和
機の冷凍システム図
FIG. 4 is a refrigeration system diagram of a heat storage type air conditioner in a second embodiment of the present invention.

【図5】同実施例における制御装置についてのブロック
FIG. 5 is a block diagram of a control device in the embodiment.

【図6】同実施例の冷暖房装置の動作フローチャートFIG. 6 is an operation flowchart of the cooling and heating apparatus of the embodiment.

【図7】 従来例を示す蓄熱式空気調和機の冷凍シス
テム図
FIG. 7 is a refrigeration system diagram of a heat storage type air conditioner showing a conventional example.

【符号の説明】[Explanation of symbols]

2 圧縮機 3a 第1四方弁 3b 第2四方弁 4 熱源側熱交換器 5a 第1膨張弁 5b 第2膨張弁 7a 冷媒対冷媒熱交換器の第1補助熱交換器 7b 冷媒対冷媒熱交換器の第2補助熱交換器 8a 蓄熱槽の蓄熱用熱交換器 8b 蓄熱槽の放熱用熱交換器 13a,13b 室内ユニット STR 蓄熱槽 HEX 冷媒対冷媒熱交換器 PM 液冷媒搬送ポンプ RV1 第1流量弁 RV2 第2流量弁 NV 2方弁 CN1 第1制御装置 2 Compressor 3a First four-way valve 3b Second four-way valve 4 Heat source side heat exchanger 5a First expansion valve 5b Second expansion valve 7a Refrigerant-refrigerant heat exchanger first auxiliary heat exchanger 7b Refrigerant-refrigerant heat exchanger Second auxiliary heat exchanger 8a Heat storage heat exchanger for heat storage tank 8b Heat dissipation heat exchanger for heat storage tank 13a, 13b Indoor unit STR Heat storage tank HEX Refrigerant-refrigerant heat exchanger PM Liquid refrigerant transfer pump RV1 First flow valve RV2 2nd flow valve NV 2 way valve CN1 1st control device

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 圧縮機と、第1四方弁と、熱源側熱交換
器と、第1補助熱交換器と第2補助熱交換器とからなる
冷媒対冷媒熱交換器の第1補助熱交換器と、第1膨張
弁、かつ第2膨張弁及び蓄熱用熱交換器と放熱用熱交換
器と蓄熱材とからなる蓄熱槽の蓄熱用熱交換器とを前記
冷媒対冷媒熱交換器の第1補助熱交換器と前記第1膨張
弁と並列に接続してなる熱源側冷凍サイクルと、 冷媒搬送ポンプと第2四方弁と冷媒タンクからなるポン
プユニットと、利用側熱交換器と室内流量弁とからなる
複数の室内ユニットとを接続し、かつ第1流量弁と第2
補助熱交換器、及び第2流量弁と前記放熱用熱交換器を
並列に接続してなる利用側冷凍サイクルとからなり、 前記蓄熱用熱交換器を用いて前記蓄熱槽内に温水を蓄え
る夜間蓄熱運転モ−ドであることを検知する蓄熱運転モ
−ド検知手段と、前記熱源側熱交換器の除霜要求を検知
する除霜検知手段と、前記圧縮機の吐出圧力を検知する
圧縮機吐出圧力検知手段と、前記圧縮機吐出圧力検知手
段により得られた情報に基づいて前記第1膨張弁を駆動
する第1膨張弁駆動手段と、前記除霜検知手段にて除霜
要求を検知した時に前記蓄熱用熱交換器を蒸発器に、且
つ前記熱源側熱交換器を凝縮器になるように前記第1四
方弁を作用させる逆サイクルデフロスト駆動手段とから
構成された第1制御装置とを有し、 前記第1制御装置は、前記蓄熱運転モ−ド検知手段によ
って前記蓄熱用熱交換器を用いて前記蓄熱槽内に温水を
蓄える前記夜間蓄熱運転モ−ドを検知し、且つ前記除霜
検知手段によって前記熱源側熱交換器の除霜要求を検知
した場合に、前記逆サイクルデフロスト駆動手段によっ
て前記蓄熱用熱交換器を蒸発器に且つ、前記熱源側熱交
換器を凝縮器になるように前記第1四方弁を作用させる
逆サイクルデフロスト運転を行い、前記圧縮機吐出圧力
検知手段によって検知された前記圧縮機の吐出圧力が所
定圧力より高い場合には、前記第1膨張弁駆動手段によ
って前記熱源側熱交換器の除霜要求が無くなるまで前記
第1膨張弁を所定開度まで開くということを特徴とする
蓄熱式空気調和機。
1. A first auxiliary heat exchange of a refrigerant-refrigerant heat exchanger comprising a compressor, a first four-way valve, a heat source side heat exchanger, a first auxiliary heat exchanger and a second auxiliary heat exchanger. A first expansion valve, a second expansion valve, a second expansion valve, a heat storage heat exchanger, a heat radiation heat exchanger, and a heat storage heat exchanger of a heat storage tank comprising a heat storage material. 1 A heat source side refrigeration cycle connected in parallel with the auxiliary heat exchanger and the first expansion valve, a pump unit including a refrigerant transfer pump, a second four-way valve and a refrigerant tank, a heat exchanger on the use side and an indoor flow valve And a plurality of indoor units consisting of
It consists of an auxiliary heat exchanger and a utilization-side refrigeration cycle in which a second flow valve and the heat radiation heat exchanger are connected in parallel, and hot water is stored in the heat storage tank using the heat storage heat exchanger at night. Heat storage operation mode detection means for detecting heat storage operation mode, defrost detection means for detecting a defrost request of the heat source side heat exchanger, and compressor for detecting the discharge pressure of the compressor A defrost request is detected by the discharge pressure detection means, the first expansion valve drive means for driving the first expansion valve based on the information obtained by the compressor discharge pressure detection means, and the defrost detection means. And a first control device comprising reverse cycle defrost drive means for operating the first four-way valve so that the heat storage heat exchanger serves as an evaporator and the heat source side heat exchanger serves as a condenser. The first control device has the heat storage operation mode. The night heat storage operation mode in which hot water is stored in the heat storage tank by using the heat storage heat exchanger by the deodorization detection means, and the defrosting request of the heat source side heat exchanger by the defrosting detection means. When detected, reverse cycle defrost operation is performed in which the first four-way valve acts so that the heat storage heat exchanger serves as an evaporator and the heat source side heat exchanger serves as a condenser by the reverse cycle defrost driving means. When the discharge pressure of the compressor detected by the compressor discharge pressure detecting means is higher than a predetermined pressure, the first expansion valve driving means continues until the defrosting request of the heat source side heat exchanger is eliminated. A heat storage type air conditioner characterized by opening the first expansion valve to a predetermined opening.
【請求項2】 圧縮機と、第1四方弁と、熱源側熱交換
器と、第1補助熱交換器と第2補助熱交換器とからなる
冷媒対冷媒熱交換器の第1補助熱交換器と、第1膨張
弁、かつ第2膨張弁及び蓄熱用熱交換器と放熱用熱交換
器と蓄熱材とからなる蓄熱槽の蓄熱用熱交換器とを前記
冷媒対冷媒熱交換器の第1補助熱交換器と前記第1膨張
弁と並列に接続してなる熱源側冷凍サイクルと、 冷媒搬送ポンプと第2四方弁と冷媒タンクからなるポン
プユニットと、利用側熱交換器と室内流量弁とからなる
複数の室内ユニットとを接続し、かつ第1流量弁と第2
補助熱交換器、及び第2流量弁と前記放熱用熱交換器を
並列に接続してなる利用側冷凍サイクルとからなり、 前記蓄熱用熱交換器を用いて前記蓄熱槽内に温水を蓄え
る夜間蓄熱運転モ−ドであることを検知する蓄熱運転モ
−ド検知手段と、前記熱源側熱交換器の除霜要求を検知
する除霜検知手段と、前記蓄熱槽内の水温を検知する蓄
熱槽水温検知手段と、前記水温に基づいて順サイクルデ
フロスト方式か逆サイクルデフロスト方式かを判断する
デフロストモ−ド判別手段と、前記蓄熱用熱交換器を蒸
発器に、且つ前記熱源側熱交換器を凝縮器に作用させる
逆サイクルデフロスト駆動手段と、前記蓄熱用熱交換器
を凝縮器に、且つ前記熱源側熱交換器を蒸発器に作用さ
せる順サイクルデフロスト駆動手段とから構成された第
2制御装置とを有し、 前記第2制御装置は、前記蓄熱運転モ−ド検知手段によ
って前記蓄熱用熱交換器を用いて前記蓄熱槽内に温水を
蓄える前記夜間蓄熱運転モ−ドを検知し、且つ前記除霜
検知手段によって前記熱源側熱交換器の前記除霜要求を
検知した場合に、 前記デフロストモ−ド判別手段によって、前記水温が所
定温度よりも低い場合には、逆サイクルデフロスト駆動
手段により逆サイクルデフロスト運転を前記除霜要求が
無くなるまで実施し、前記水温が所定温度よりも高い場
合は、順サイクルデフロスト駆動手段により順サイクル
デフロスト運転を前記除霜要求が無くなるまで実施する
ことを特徴とする蓄熱式空気調和機。
2. A first auxiliary heat exchange of a refrigerant-refrigerant heat exchanger comprising a compressor, a first four-way valve, a heat source side heat exchanger, a first auxiliary heat exchanger and a second auxiliary heat exchanger. A first expansion valve, a second expansion valve, a second expansion valve, a heat storage heat exchanger, a heat radiation heat exchanger, and a heat storage heat exchanger of a heat storage tank comprising a heat storage material. 1 A heat source side refrigeration cycle connected in parallel with the auxiliary heat exchanger and the first expansion valve, a pump unit including a refrigerant transfer pump, a second four-way valve and a refrigerant tank, a heat exchanger on the use side and an indoor flow valve And a plurality of indoor units consisting of
It consists of an auxiliary heat exchanger and a utilization-side refrigeration cycle in which a second flow valve and the heat radiation heat exchanger are connected in parallel, and hot water is stored in the heat storage tank using the heat storage heat exchanger at night. Heat storage operation mode detection means for detecting that it is in heat storage operation mode, defrost detection means for detecting a defrost request of the heat source side heat exchanger, and heat storage tank for detecting the water temperature in the heat storage tank A water temperature detecting means, a defrost mode determining means for judging whether the system is a forward cycle defrost system or a reverse cycle defrost system based on the water temperature, a heat storage heat exchanger as an evaporator, and a heat source side heat exchanger as a condenser. Cycle defrost driving means for operating the heat storage side heat exchanger on the condenser and forward cycle defrost driving means for operating the heat source side heat exchanger on the evaporator. Have The second control device detects the nighttime heat storage operation mode in which hot water is stored in the heat storage tank using the heat storage heat exchanger by the heat storage operation mode detection means, and the defrosting detection is performed. When the defrosting request of the heat source side heat exchanger is detected by means, the defrost mode determination means, if the water temperature is lower than a predetermined temperature, reverse cycle defrost drive means to perform reverse cycle defrost operation. It is carried out until the defrosting request disappears, and when the water temperature is higher than a predetermined temperature, a forward cycle defrosting operation is carried out by the forward cycle defrosting driving means until the defrosting request disappears. Machine.
JP6182279A 1994-08-03 1994-08-03 Regenerative air-conditioner Pending JPH0849936A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6182279A JPH0849936A (en) 1994-08-03 1994-08-03 Regenerative air-conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6182279A JPH0849936A (en) 1994-08-03 1994-08-03 Regenerative air-conditioner

Publications (1)

Publication Number Publication Date
JPH0849936A true JPH0849936A (en) 1996-02-20

Family

ID=16115498

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6182279A Pending JPH0849936A (en) 1994-08-03 1994-08-03 Regenerative air-conditioner

Country Status (1)

Country Link
JP (1) JPH0849936A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007059710A1 (en) * 2005-11-25 2007-05-31 Gree Electric Appliances Inc. Of Zhuhai An intelligent defrosting control method for an air conditioner
WO2010128551A1 (en) * 2009-05-08 2010-11-11 三菱電機株式会社 Air conditioner
CN102401450A (en) * 2010-09-08 2012-04-04 三星电子株式会社 Air conditioner and control method thereof
CN106765617A (en) * 2017-02-21 2017-05-31 广东美的暖通设备有限公司 Air injection enthalpy-increasing heat pump type air conditioning system, control method, control device and air-conditioner
CN111102661A (en) * 2020-01-10 2020-05-05 同济大学 Energy-saving type variable dehumidification heat pump type rotary wheel dehumidification unit and control method thereof
JP2021012010A (en) * 2019-07-09 2021-02-04 ダイキン工業株式会社 Refrigeration cycle device
CN112781180A (en) * 2021-02-09 2021-05-11 珠海格力电器股份有限公司 Heat exchange device, air conditioner and control method of heat exchange device
US11927356B2 (en) 2019-04-18 2024-03-12 Mitsubishi Electric Corporation Controller of air conditioning apparatus, outdoor unit, branch unit, heat source unit, and air conditioning apparatus

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007059710A1 (en) * 2005-11-25 2007-05-31 Gree Electric Appliances Inc. Of Zhuhai An intelligent defrosting control method for an air conditioner
US8616017B2 (en) 2009-05-08 2013-12-31 Mitsubishi Electric Corporation Air conditioning apparatus
WO2010128551A1 (en) * 2009-05-08 2010-11-11 三菱電機株式会社 Air conditioner
JP5172012B2 (en) * 2009-05-08 2013-03-27 三菱電機株式会社 Air conditioner
CN102401450B (en) * 2010-09-08 2016-03-30 三星电子株式会社 Air-conditioning and control method thereof
KR101505856B1 (en) * 2010-09-08 2015-03-25 삼성전자 주식회사 Air conditioner and control method for the same
CN102401450A (en) * 2010-09-08 2012-04-04 三星电子株式会社 Air conditioner and control method thereof
CN106765617A (en) * 2017-02-21 2017-05-31 广东美的暖通设备有限公司 Air injection enthalpy-increasing heat pump type air conditioning system, control method, control device and air-conditioner
CN106765617B (en) * 2017-02-21 2019-08-30 广东美的暖通设备有限公司 Air injection enthalpy-increasing heat pump air conditioning system, control method, control device and air conditioner
US11927356B2 (en) 2019-04-18 2024-03-12 Mitsubishi Electric Corporation Controller of air conditioning apparatus, outdoor unit, branch unit, heat source unit, and air conditioning apparatus
JP2021012010A (en) * 2019-07-09 2021-02-04 ダイキン工業株式会社 Refrigeration cycle device
CN111102661A (en) * 2020-01-10 2020-05-05 同济大学 Energy-saving type variable dehumidification heat pump type rotary wheel dehumidification unit and control method thereof
CN111102661B (en) * 2020-01-10 2023-11-24 同济大学 Energy-saving variable-dehumidification-capacity heat pump type rotary dehumidifier unit and control method thereof
CN112781180A (en) * 2021-02-09 2021-05-11 珠海格力电器股份有限公司 Heat exchange device, air conditioner and control method of heat exchange device
CN112781180B (en) * 2021-02-09 2021-11-16 珠海格力电器股份有限公司 Heat exchange device, air conditioner and control method of heat exchange device

Similar Documents

Publication Publication Date Title
US4798059A (en) Air conditioner with heat regeneration cycle
US20070144187A1 (en) Defrosting method of air conditioner
EP2522934A2 (en) Heat storing apparatus having cascade cycle and control process of the same
JP4304832B2 (en) Air conditioner
JP2011080733A (en) Air conditioner
JPH0849936A (en) Regenerative air-conditioner
JP4650086B2 (en) Thermal storage heat recovery device
JP2001263848A (en) Air conditioner
JP2503660B2 (en) Heat storage type air conditioner
JPH07190534A (en) Heat storage type air conditioning equipment
JPH06257868A (en) Heat pump type ice heat accumulating device for air conditioning
JP3781340B2 (en) Thermal storage refrigeration air conditioner
JP3457697B2 (en) Air conditioner
JP3164079B2 (en) Refrigeration equipment
JPS58124138A (en) Controlling method of driving auxiliary heat source in regenerative air conditioner
JP2003222416A (en) Heat storage type air conditioner
JP2906508B2 (en) Heat pump water heater
JP2518412B2 (en) Air conditioner
JP2842471B2 (en) Thermal storage type air conditioner
JP2839457B2 (en) Thermal storage type air conditioner
JPH0849901A (en) Heat storage air-conditioner
JP2863474B2 (en) Thermal storage type air conditioner
JPS63187042A (en) Air conditioner
JPH06337152A (en) Multiroom cooling/heating device
JPH0849938A (en) Regenerative air-conditioner