JPH0125978B2 - - Google Patents

Info

Publication number
JPH0125978B2
JPH0125978B2 JP56048945A JP4894581A JPH0125978B2 JP H0125978 B2 JPH0125978 B2 JP H0125978B2 JP 56048945 A JP56048945 A JP 56048945A JP 4894581 A JP4894581 A JP 4894581A JP H0125978 B2 JPH0125978 B2 JP H0125978B2
Authority
JP
Japan
Prior art keywords
hot water
water storage
heating
mode
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56048945A
Other languages
Japanese (ja)
Other versions
JPS57164243A (en
Inventor
Katsuyuki Yamaguchi
Tsugunori Hata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP56048945A priority Critical patent/JPS57164243A/en
Publication of JPS57164243A publication Critical patent/JPS57164243A/en
Publication of JPH0125978B2 publication Critical patent/JPH0125978B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D11/00Central heating systems using heat accumulated in storage masses
    • F24D11/02Central heating systems using heat accumulated in storage masses using heat pumps
    • F24D11/0214Central heating systems using heat accumulated in storage masses using heat pumps water heating system
    • F24D11/0235Central heating systems using heat accumulated in storage masses using heat pumps water heating system with recuperation of waste energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/70Hybrid systems, e.g. uninterruptible or back-up power supplies integrating renewable energies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/12Hot water central heating systems using heat pumps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/52Heat recovery pumps, i.e. heat pump based systems or units able to transfer the thermal energy from one area of the premises or part of the facilities to a different one, improving the overall efficiency

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Other Air-Conditioning Systems (AREA)

Description

【発明の詳細な説明】 この発明は、冷房回路の冷媒を圧縮するコンプ
レツサをエンジンで駆動し、このエンジンの排熱
を暖房用及び貯湯用の熱源に利用できるようにし
て、エンジンに供給される燃料のエネルギーを有
効に括用した経済的運転を行うようにした主とし
て一般家庭用に用いるヒートポンプに関するもの
であつて、特に冬期における朝の貯湯と暖房運転
を便利に行えるようにしたものである。
Detailed Description of the Invention This invention enables an engine to drive a compressor that compresses refrigerant in a cooling circuit, and enables exhaust heat from the engine to be used as a heat source for heating and hot water storage, and is supplied to the engine. The present invention relates to a heat pump mainly used for general household use, which is designed to perform economical operation by effectively utilizing fuel energy, and to conveniently perform morning hot water storage and heating operation, especially in winter.

以下本発明の実施例を図面に基づいて説明す
る。
Embodiments of the present invention will be described below based on the drawings.

第1図は全体の回路構成を示し、図中の符号1
はガス燃料で運転される水冷式の2サイクルエン
ジン、2はこのエンジン1によつて駆動される冷
媒圧縮用のコンプレツサ、3は冷媒が流動される
室外熱交換器、4は冷媒用の空気熱交換器、5は
受液器、6は膨張弁、7は気液分離用アツキユム
レータ、8は冷媒流路切換え用の4ポート式電磁
バルブ、9……は流路開閉用の電磁弁であり、前
記室外内の冷媒用熱交換器3,4は後述する運転
モードの切換えによつて凝縮器又は蒸発器として
機能するものである。又、10はエンジン1の排
気管、11はエンジン冷却水を分岐流動させて排
気管10を通るエンジン排気で加熱する排熱回収
用の熱交換器、12は消音器、13は空気と燃料
ガスを混合してエンジン1に供給する混合器、1
4はエンジン冷却水の膨張タンク、15はエンジ
ン冷却水の圧送ポンプである。又、16はエンジ
ン冷却水の室外熱交換器、17はエンジン冷却水
の室内熱交換器であり、冷媒の室外内熱交換器3
及び4と夫々並設されている。又、18は貯湯
槽、19はこの貯湯槽内に設けらたエンジン冷却
水流通用の熱交換パイプ、20は圧縮冷媒流通用
の熱交換パイプ、21……はエンジン冷却水の流
路切換え用の電磁開閉弁である。
Figure 1 shows the overall circuit configuration, with reference numeral 1 in the figure.
1 is a water-cooled two-stroke engine operated with gas fuel, 2 is a compressor for compressing refrigerant driven by this engine 1, 3 is an outdoor heat exchanger through which the refrigerant flows, and 4 is an air heat exchanger for the refrigerant. Exchanger, 5 is a liquid receiver, 6 is an expansion valve, 7 is an accumulator for gas-liquid separation, 8 is a 4-port electromagnetic valve for switching the refrigerant flow path, 9 is a solenoid valve for opening and closing the flow path, The indoor/outdoor refrigerant heat exchangers 3, 4 function as a condenser or an evaporator by switching the operation mode, which will be described later. Further, 10 is an exhaust pipe of the engine 1, 11 is a heat exchanger for recovering exhaust heat that branches the engine cooling water and heats it with the engine exhaust gas passing through the exhaust pipe 10, 12 is a silencer, and 13 is air and fuel gas. a mixer 1 that mixes and supplies the mixture to the engine 1;
4 is an expansion tank for engine cooling water, and 15 is a pressure pump for engine cooling water. Further, 16 is an outdoor heat exchanger for engine cooling water, 17 is an indoor heat exchanger for engine cooling water, and 17 is an indoor heat exchanger for refrigerant.
and 4 are installed in parallel. Further, 18 is a hot water storage tank, 19 is a heat exchange pipe for distributing engine cooling water provided in the hot water storage tank, 20 is a heat exchange pipe for distributing compressed refrigerant, and 21... is for switching the flow path of engine cooling water. It is an electromagnetic on-off valve.

そして、室内熱交換器4,17は電動モータ2
2で駆動されるフアン23と共に室内機24に組
込まれ、これ以外の諸機構は室外機25に組込ま
れており、第2図に室外機25の構成が示され
る。この室外機25は上下三室26,27,28
に区画されていて、上部室26には熱交換器3,
16が電動モータ29によつて駆動されるフアン
30と共に収容され、中間室27にはエンジン
1、コンプレツサ2、各種電磁バルブ類、電気制
御回路ユニツト等が収容され、更に下部室28に
は貯湯槽18が設けられている。
The indoor heat exchangers 4 and 17 are connected to the electric motor 2.
2 is incorporated into an indoor unit 24 together with a fan 23 driven by a fan 23, and other mechanisms are incorporated into an outdoor unit 25, and the configuration of the outdoor unit 25 is shown in FIG. This outdoor unit 25 has three upper and lower chambers 26, 27, 28
The upper chamber 26 has a heat exchanger 3,
16 is housed together with a fan 30 driven by an electric motor 29, an intermediate chamber 27 houses the engine 1, a compressor 2, various electromagnetic valves, an electric control circuit unit, etc., and a lower chamber 28 houses a hot water storage tank. 18 are provided.

上記構成の装置によると冷暖房並びに貯湯が可
能であり、以下各種の運転モードについて説明す
る。
The device configured as described above is capable of heating and cooling as well as storing hot water, and various operating modes will be explained below.

Γ 冷房モード(a)……(第3図参照) これは貯湯槽18の水温が低い(例えば40℃以
下)場合の冷房運転及び貯湯を行うモードであつ
て、コンプレツサ2で加圧された冷媒を貯湯槽1
8の熱交換パイプ20に供給し、圧縮熱を放出し
て貯留水を加温する。放熱によつて凝縮液化され
た冷媒は受液器5を通つたのち蒸発器として機能
する室内熱交換器4に送られ、冷媒の気化蒸発作
用にて室内空気が冷却される。熱交換器4を出た
冷媒はアツキユムレータ7を経てコンプレツサ2
に環流されて冷媒サイクルが完了する。
Γ Cooling mode (a)... (see Figure 3) This is a mode for cooling operation and hot water storage when the water temperature in the hot water storage tank 18 is low (for example, 40°C or less), and the refrigerant pressurized by the compressor 2 Hot water tank 1
The compressed water is supplied to the heat exchange pipe 20 of No. 8, and heat of compression is released to warm the stored water. The refrigerant condensed and liquefied by heat radiation passes through the receiver 5 and then is sent to the indoor heat exchanger 4 which functions as an evaporator, and the indoor air is cooled by the evaporation action of the refrigerant. The refrigerant that exits the heat exchanger 4 passes through the accumulator 7 and is transferred to the compressor 2.
The refrigerant cycle is completed.

又、高温のエンジン冷却水は貯湯槽18の熱交
換パイプ19に供給されて貯留水を加熱する。
Further, the high temperature engine cooling water is supplied to the heat exchange pipe 19 of the hot water storage tank 18 to heat the stored water.

Γ 冷房モード(b)……(第4図参照) 貯湯温度が上がつて(40℃を越える)熱交換パ
イプ20での冷媒凝縮能力が低下すると、加圧冷
媒を室外熱交換器3に供給し、ここでの放熱によ
つて凝縮したのちは上記冷房モード(a)と同じ径路
で環流する。又、エンジン排熱を用いた貯湯は冷
房モード(a)と同様に行われる。
Γ Cooling mode (b)... (See Figure 4) When the stored hot water temperature rises (over 40°C) and the refrigerant condensing capacity in the heat exchange pipe 20 decreases, pressurized refrigerant is supplied to the outdoor heat exchanger 3. However, after being condensed by heat dissipation here, it is circulated through the same path as in the cooling mode (a) above. Also, hot water storage using engine exhaust heat is performed in the same way as in cooling mode (a).

Γ 冷房モード(c)……(第5図参照) 貯湯温度が更に上がると(80℃以上)、冷媒サ
イクルは冷房モード(b)と同じであるが、エンジン
冷却水を室外熱交換器16に送つて放熱冷却す
る。
Γ Cooling mode (c)... (see Figure 5) When the stored hot water temperature rises further (80℃ or higher), the refrigerant cycle is the same as in cooling mode (b), but the engine cooling water is transferred to the outdoor heat exchanger 16. It is sent and cooled by heat radiation.

Γ 冷湿モード(a)……(第3図参照) 梅雨時における除湿運転及び貯湯を行うモード
で、且つ貯湯温度が低い(40℃以下)場合のモー
ドであつて、前記した冷房モード(a)の冷媒サイク
ルで冷房運転しながら、図中の破線で示すように
エンジン冷却水の一部を室内熱交換器17に供給
して冷却除湿された室内空気を適当に加温する。
Γ Cooling/humidity mode (a)...(See Figure 3) This is a mode for dehumidifying operation and hot water storage during the rainy season, and is a mode when the hot water storage temperature is low (40℃ or less), and is the cooling mode (a) described above. ) During cooling operation using the refrigerant cycle, a portion of the engine cooling water is supplied to the indoor heat exchanger 17 as shown by the broken line in the figure to appropriately warm the cooled and dehumidified indoor air.

Γ 除湿モード(b)……(第4図参照) 貯湯温度が40℃以上80℃以下の場合には、冷房
モード(b)の冷媒サイクルで冷房運転しながら図中
の破線で示すようにエンジン冷却水の一部を室内
熱交換器17に供給する。
Γ Dehumidification mode (b)... (See Figure 4) When the stored hot water temperature is above 40℃ and below 80℃, the engine is operated in the cooling mode (b) refrigerant cycle as shown by the broken line in the figure. A portion of the cooling water is supplied to the indoor heat exchanger 17.

Γ 除湿モード(c)……(第5図参照) 貯湯温度が80℃を越えると、冷房モード(b)の冷
媒サイクルで冷媒運転しながら図中の破線で示す
ようにエンジン冷却水を室内熱交換器17と室外
熱交換器16に適当比率で分配供給する。
Γ Dehumidification mode (c)... (See Figure 5) When the stored hot water temperature exceeds 80℃, the engine cooling water is dehumidified from indoor heat as shown by the broken line in the diagram while operating the refrigerant in the cooling mode (b) refrigerant cycle. It is distributed and supplied to the exchanger 17 and the outdoor heat exchanger 16 at an appropriate ratio.

Γ 暖房モード(a)……(第6図参照) 暖房負荷の小さい場合の暖房運転及び貯湯を行
うモードであつて、コンプレツサ2で加圧された
冷媒を室内熱交換器(この場合凝縮器として作用
する)4に直接供給し、ここでの放熱凝縮作用で
室内空気を加温する。凝縮した冷媒は室外熱交換
器(ここでは蒸発器として作用する)3に送つて
気化蒸発させたのちコンプレツサ2に環流させ
る。又、これと同時にエンジン冷却水による貯湯
加熱を行う。
Γ Heating mode (a)... (see Figure 6) A mode for heating operation and hot water storage when the heating load is small, in which the refrigerant pressurized by the compressor 2 is transferred to the indoor heat exchanger (in this case, as a condenser). 4), and the indoor air is heated by the heat dissipation and condensation action here. The condensed refrigerant is sent to an outdoor heat exchanger (acting here as an evaporator) 3 where it is evaporated and then returned to the compressor 2. At the same time, the engine coolant is used to heat the stored hot water.

Γ 暖房モード(b)……(第7図参照) 暖房負荷が大きいときにはエンジン冷却水を室
内熱交換器17に供給し、エンジン冷却水と冷媒
からの放熱による暖房を行う。
Γ Heating mode (b) (see Fig. 7) When the heating load is large, engine cooling water is supplied to the indoor heat exchanger 17, and heating is performed by heat radiation from the engine cooling water and refrigerant.

Γ 暖房・除霜モード……(第7図参照) 冬期での暖房運転中に冷媒の蒸発器として作用
する室外熱交換器3に着霜が発生して熱交換効率
が低下すると、図中の破線で示すようにエンジン
冷却水を室外熱交換器16に切換え供給し、この
エンジン冷却水からの放出熱で熱交換器3の除霜
を行う。
Γ Heating/defrosting mode... (see Figure 7) If frost forms on the outdoor heat exchanger 3, which acts as a refrigerant evaporator, during heating operation in winter and the heat exchange efficiency decreases, the As shown by the broken line, engine cooling water is switched and supplied to the outdoor heat exchanger 16, and the heat exchanger 3 is defrosted using the heat released from the engine cooling water.

Γ 貯湯モード……(第8図参照) コンプレツサ2で加圧された冷媒を貯湯槽18
の熱交換パイプ20に供給して凝縮放熱作用で貯
留水を加温するとともに、エンジン冷却水を貯湯
槽18の熱交換パイプ19に送つて加熱貯湯を行
う。
Γ Hot water storage mode... (see Figure 8) The refrigerant pressurized by the compressor 2 is transferred to the hot water storage tank 18.
The engine cooling water is supplied to the heat exchange pipe 20 of the hot water storage tank 18 to heat the stored water by condensation and heat dissipation, and the engine cooling water is sent to the heat exchange pipe 19 of the hot water storage tank 18 to perform heated hot water storage.

上記冷房モード、暖房モード及び除湿モードは
電気制御回路31に接続した空調選択用のスイツ
チ機構32を切換え操作することによつて任意に
選択可能であるとともに、貯湯槽18に設けた貯
湯完了検出センサとしての温度センサ33の検出
結果によつても自動的に切換えられる。又、冷房
モード及び暖房モードにおいては設定器34によ
つて室内温度の設定を行い、室内機24に設けた
温度検出センサ35の検出結果に基づいて各種バ
ルブ8,9……,21……、フアン駆動用モータ
22、等の制御を行つて、室内機24の熱交換能
力の調節を行い、もつて室内温度を設定範囲内に
維持するよう構成されている。
The above-mentioned cooling mode, heating mode, and dehumidification mode can be arbitrarily selected by switching an air conditioning selection switch mechanism 32 connected to an electric control circuit 31, and a hot water storage completion detection sensor provided in the hot water storage tank 18. It can also be automatically switched based on the detection result of the temperature sensor 33. In the cooling mode and the heating mode, the indoor temperature is set by the setting device 34 , and various valves 8, 9..., 21..., The fan drive motor 22 and the like are controlled to adjust the heat exchange capacity of the indoor unit 24 , thereby maintaining the indoor temperature within a set range.

又、貯湯モードは前記空調選択用のスイツチ機
構32とは別に設けたスイツチ機構37の入切操
作によつて優先運転可能に構成されている。
Further, the hot water storage mode can be preferentially operated by turning on/off a switch mechanism 37 provided separately from the switch mechanism 32 for selecting the air conditioner.

つまり、スイツチ機構32によつて暖房モード
が選択され、スイツチ機構37が切られていると
きには暖房負荷に応じた伝熱流体サイクルで暖房
運転が優先となり、室内機24に設けられた温度
検出センサ35により、室内温度は設定値に保た
れ、その余熱で貯湯が行われる。
That is, when the heating mode is selected by the switch mechanism 32 and the switch mechanism 37 is turned off, priority is given to heating operation using the heat transfer fluid cycle according to the heating load, and the temperature detection sensor 35 provided in the indoor unit 24 This keeps the indoor temperature at a set value, and the residual heat is used to store hot water.

又、スイツチ機構32で暖房モードが選択さ
れ、さらにスイツチ機構37が入れられると貯湯
運転が優先され、貯湯槽18に設けられた貯湯完
了検出センサとしての温度センサ33により、貯
湯の完了を検出したのちは自動的に暖房運転に切
換わるようにプログラムされている。従つて、冬
期の朝などにおいては、貯湯優先の暖房モードを
選択して、且つ比較的時間のかかる貯湯を優先し
たのちに起床前に暖房運転に切換わるようにタイ
マーセツトしておくことによつて、起床時には給
湯が可能で且つ暖房もきいている状態が得られる
のである。
Further, when the heating mode is selected by the switch mechanism 32 and the switch mechanism 37 is turned on, priority is given to the hot water storage operation, and the completion of hot water storage is detected by the temperature sensor 33 as a hot water storage completion detection sensor provided in the hot water storage tank 18. It is programmed to automatically switch to heating mode afterwards. Therefore, on mornings in winter, you can select the heating mode that prioritizes hot water storage, and set a timer to switch to heating mode before you wake up after giving priority to hot water storage, which takes a relatively long time. Therefore, when you wake up, you can have hot water and the heating on.

尚、冷房時にはスイツチ機構37の入切に関係
なく冷房貯湯運転が行われる。又、貯湯運転のみ
の場合は貯湯温度が設定になるとエンジン1は自
動停止される。
Note that during cooling, the cooling hot water storage operation is performed regardless of whether the switch mechanism 37 is turned on or off. Further, in the case of only hot water storage operation, the engine 1 is automatically stopped when the hot water storage temperature reaches the set temperature.

以上実施例で詳述したように、本発明によるヒ
ートポンプは、冷媒圧縮用のコンプレツサをエン
ジンで駆動することによつてエンジン排熱をも暖
房及び貯湯用の熱源にも利用した経済性の高い空
調及び貯湯を行えるものであるが、特に冷房運転
又は暖房運転を切換える空調モード選択用のスイ
ツチ機構とは別に独立に入切操作可能な貯湯モー
ド選択用のスイツチ機構を装備し、このスイツチ
機構で貯湯モードが選択された状態での暖房モー
ドにおいては、貯湯槽に設けられた貯湯完了検出
センサでの検出結果に基づいて、貯湯完了までは
暖房運転に優先して貯湯運転が行われ、かつ、貯
湯が完了したのちに自動的に暖房運転に切換わ
り、暖房モードのみがスイツチ機構で選択された
ときには、室内器に設けた温度検出センサでの検
出結果に基づいて、暖房運転の余熱で貯湯運転が
行われるように構成してあるので、暖房運転優先
の貯湯及び貯湯運転優先の暖房が選択でき、後者
の運転を利用して冬期の朝の貯湯・暖房を極力短
時間で能率よく行うことが可能となつた。
As described in detail in the embodiments above, the heat pump according to the present invention is a highly economical air conditioner that uses engine exhaust heat as a heat source for heating and hot water storage by driving a refrigerant compressor with an engine. In addition to the switch mechanism for selecting the air conditioning mode that switches between cooling operation or heating operation, it is equipped with a switch mechanism for selecting hot water storage mode that can be turned on and off independently. In the heating mode when the mode is selected, based on the detection result of the hot water storage completion detection sensor installed in the hot water storage tank, the hot water storage operation is given priority over the heating operation until the hot water storage is completed, and the hot water storage After the heating operation is completed, the system automatically switches to heating operation, and when only heating mode is selected by the switch mechanism, hot water storage operation is started using residual heat from heating operation based on the detection result of the temperature detection sensor installed in the indoor unit. Since it is configured so that hot water storage with priority given to heating operation or heating with priority given to hot water storage operation can be selected, the latter operation can be used to store hot water and heat in the morning in winter as efficiently as possible in the shortest possible time. It became.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明に係るエンジン駆動型ヒートポン
プの実施の態様を例示し、第1図は全体の回路構
成図、第2図は室外機の縦断正面図、第3図乃至
第8図は各種運転モードにおける伝達流体の流動
サイクルを示す回路図、第9図は電気制御機構の
概略ブロツク図である。 1……エンジン、2……コンプレツサ、4……
熱交換器、17……熱交換器、18……貯湯槽、
19……熱交換パイプ、24……室内機、32…
…スイツチ機構、33……貯湯完了検出センサ、
35……温度検出センサ、37……スイツチ機
構。
The drawings illustrate embodiments of the engine-driven heat pump according to the present invention, in which Fig. 1 is an overall circuit configuration diagram, Fig. 2 is a longitudinal sectional front view of the outdoor unit, and Figs. 3 to 8 show various operating modes. FIG. 9 is a schematic block diagram of the electric control mechanism. 1...Engine, 2...Compressor, 4...
Heat exchanger, 17... Heat exchanger, 18... Hot water storage tank,
19...Heat exchange pipe, 24 ...Indoor unit, 32...
...Switch mechanism, 33...Hot water storage completion detection sensor,
35... Temperature detection sensor, 37... Switch mechanism.

Claims (1)

【特許請求の範囲】[Claims] 1 エンジン1で駆動されるコンプレツサ2で加
圧され凝縮行程で放熱された冷媒を室内の第1の
熱交換器4に供給し、この冷媒の気化蒸発作用に
て室内空気を冷却する冷房モードと、前記コンプ
レツサ2で加圧された冷媒を前記第1の熱交換器
4に供給して冷媒の凝縮作用にて室内空気を加温
し、かつその凝縮冷媒を蒸発行程を経て前記コン
プレツサ2に環流させる暖房モードとに切替え可
能に構成した冷媒利用の冷暖房回路と、前記暖房
モードにおいて、コンプレツサ駆動用の前記エン
ジン1の排熱により加熱された流体を室内の第2
の熱交換器17に供給可能なエンジン排熱利用の
暖房回路とエンジン排熱により加熱された流体を
貯湯槽18の熱交換パイプ19に供給可能な貯湯
加熱用回路とを装備したヒートポンプにおいて、
冷房運転又は暖房運転を切換える空調モード選択
用のスイツチ機構32とは別に独立に入切操作可
能な貯湯モード選択用のスイツチ機構37を装備
し、このスイツチ機構37で貯湯モードが選択さ
れた状態での暖房モードにおいては、貯湯槽18
に設けられた貯湯完了検出センサ33での検出結
果に基づいて、貯湯完了までは暖房運転に優先し
て貯湯運転が行われ、かつ、貯湯が完了したのち
に自動的に暖房運転に切換わり、暖房モードのみ
がスイツチ機構32で選択されたときには、室内
機24に設けた温度検出センサ35での検出結果
に基づいて、暖房運転の余熱で貯湯運転が行われ
るように構成してあることを特徴とするエンジン
駆動型ヒートポンプ。
1 A cooling mode in which the refrigerant pressurized by the compressor 2 driven by the engine 1 and heat radiated in the condensing process is supplied to the first heat exchanger 4 in the room, and the indoor air is cooled by the evaporation action of this refrigerant. , the refrigerant pressurized by the compressor 2 is supplied to the first heat exchanger 4, the indoor air is heated by the condensation action of the refrigerant, and the condensed refrigerant is circulated to the compressor 2 through an evaporation process. In the heating mode, the fluid heated by the exhaust heat of the engine 1 for driving the compressor is transferred to the second indoor heating and cooling circuit.
In a heat pump equipped with a heating circuit that uses engine exhaust heat that can be supplied to the heat exchanger 17 of the engine and a hot water heating circuit that can supply fluid heated by the engine exhaust heat to the heat exchange pipe 19 of the hot water storage tank 18,
In addition to the switch mechanism 32 for selecting an air conditioning mode for switching between cooling operation or heating operation, a switch mechanism 37 for selecting a hot water storage mode that can be turned on and off independently is provided, and when the hot water storage mode is selected with this switch mechanism 37, In the heating mode, the hot water tank 18
Based on the detection result of the hot water storage completion detection sensor 33 provided at the hot water storage completion sensor 33, the hot water storage operation is performed with priority over the heating operation until the hot water storage is completed, and after the hot water storage is completed, the hot water storage operation is automatically switched to the heating operation, When only the heating mode is selected by the switch mechanism 32, the hot water storage operation is performed using residual heat from the heating operation based on the detection result of the temperature detection sensor 35 provided in the indoor unit 24. Engine-driven heat pump.
JP56048945A 1981-03-31 1981-03-31 Engine driven type heat pump Granted JPS57164243A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56048945A JPS57164243A (en) 1981-03-31 1981-03-31 Engine driven type heat pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56048945A JPS57164243A (en) 1981-03-31 1981-03-31 Engine driven type heat pump

Publications (2)

Publication Number Publication Date
JPS57164243A JPS57164243A (en) 1982-10-08
JPH0125978B2 true JPH0125978B2 (en) 1989-05-22

Family

ID=12817408

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56048945A Granted JPS57164243A (en) 1981-03-31 1981-03-31 Engine driven type heat pump

Country Status (1)

Country Link
JP (1) JPS57164243A (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2572169B1 (en) * 1984-10-18 1987-01-02 Armines THERMOELECTRIC MICROCENTRAL
JPS6291767A (en) * 1985-10-15 1987-04-27 三菱電機株式会社 Engine drive type air-conditioning hot-water supply device
JPH0689939B2 (en) * 1987-12-25 1994-11-14 リンナイ株式会社 Hot air heater
US5263892A (en) * 1991-07-03 1993-11-23 Kool-Fire Research & Development High efficiency heat exchanger system with glycol and refrigerant loops
JP2002130743A (en) * 2000-10-30 2002-05-09 Mitsubishi Heavy Ind Ltd Outdoor heat exchanger unit structure, outdoor unit, and gas heat pump type air conditioner
JP2006010090A (en) * 2004-05-27 2006-01-12 Aisin Seiki Co Ltd Engine driven air conditioner
KR100579577B1 (en) * 2004-08-17 2006-05-15 엘지전자 주식회사 Electric generation air condition system having speed heater
KR100644826B1 (en) * 2004-12-10 2006-11-10 엘지전자 주식회사 Steam supply and power generation system

Also Published As

Publication number Publication date
JPS57164243A (en) 1982-10-08

Similar Documents

Publication Publication Date Title
JP3485379B2 (en) Vehicle air conditioner
US7392655B2 (en) Vapor compression refrigerating device
KR930002429B1 (en) Refrigerating cycle apparatus
US20090095005A1 (en) Air-Conditioning System
KR200390333Y1 (en) Heat pump type air conditioning and heating system
JPH0125978B2 (en)
JPS5844299Y2 (en) Air conditioner refrigeration cycle
JP2005098586A (en) Air conditioner
JPS6220459B2 (en)
JPH0914801A (en) Frosting preventive device in engine waste heat recovering type gas engine driving heat pump
JPH074777A (en) Engine waste heat recovery device
EP0077414B1 (en) Air temperature conditioning system
JPH05330331A (en) Air conditioner for electric vehicle
JPS6255063B2 (en)
JP3723402B2 (en) Air conditioner
JP2976431B2 (en) Heat pump type air conditioner
JPS637289B2 (en)
JPS6256426B2 (en)
JPS5849006Y2 (en) Hot water supply and cooling equipment
JPS6220460B2 (en)
JP2002154317A (en) Vehicular air-conditioning device
JPH06272964A (en) Heat pump hot-water apparatus
JPS5922421Y2 (en) air conditioner
JPH0735768Y2 (en) Vehicle air conditioner
JPS6360305B2 (en)