JPH0363443A - Operation controller for regenerative air conditioner - Google Patents

Operation controller for regenerative air conditioner

Info

Publication number
JPH0363443A
JPH0363443A JP1201073A JP20107389A JPH0363443A JP H0363443 A JPH0363443 A JP H0363443A JP 1201073 A JP1201073 A JP 1201073A JP 20107389 A JP20107389 A JP 20107389A JP H0363443 A JPH0363443 A JP H0363443A
Authority
JP
Japan
Prior art keywords
heat
heat storage
control unit
storage
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1201073A
Other languages
Japanese (ja)
Other versions
JPH0781731B2 (en
Inventor
Morikuni Natsume
夏目 守邦
Masaharu Sogabe
正晴 曽我部
Kiyoshi Shima
島 喜芳
Akira Horikawa
堀川 昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP1201073A priority Critical patent/JPH0781731B2/en
Publication of JPH0363443A publication Critical patent/JPH0363443A/en
Publication of JPH0781731B2 publication Critical patent/JPH0781731B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To miniaturize the whole device and faciliate the magnification of an operation range by installing a regenerative control unit controlling operationally a regenerative unit as a control unit separated from an outdoor control unit. CONSTITUTION:When an operation change switch 75 for reserved heat of a generative unit 70 is changed to the parallel operation of space heating and heat reserve at the time of space heating operation, the unit 70 reserves heat at a heat accumulator 11. Accordingly, when the unit 70 controlling operationally a regenerative unit Y is installed as a control unit separated from an outdoor control unit 50, the capacity of the unit 50 can be reduced and further, the control range of the unit Y can be magnified and the magnification of an operation range can be coped with.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、蓄暖熱操作手段を備えた蓄熱式空気調和装置
において、蓄熱運転を制御する運転制御装置に係るもの
である。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to an operation control device for controlling heat storage operation in a heat storage type air conditioner equipped with a heat storage operation means.

(従来の技術) 一般に、蓄熱式空気調和装置には、特開昭61−125
554号公報に開示されているように、室外ユニットと
室内ユニットとを接続して冷媒回路が構成される一方、
蓄熱可能な蓄熱媒体を貯溜する蓄熱槽を備えた蓄暖熱操
作手段が上記室外ユニットに設けられ、上記蓄熱槽内の
熱交換コイルと冷媒回路とがバイパス路で接続され、該
バイパス路と冷媒回路とを切換え接続するように構成さ
れているものがある。そして、上記熱交換コイルにおい
て冷媒と蓄熱媒体との熱交換を行うことにより、通常冷
暖房運転、蓄冷熱運転、蓄暖熱運転などを行うようにし
ている。
(Prior art) In general, heat storage type air conditioners are
As disclosed in Publication No. 554, while a refrigerant circuit is constructed by connecting an outdoor unit and an indoor unit,
A heat storage operation means including a heat storage tank for storing a heat storage medium capable of storing heat is provided in the outdoor unit, and a heat exchange coil in the heat storage tank and a refrigerant circuit are connected by a bypass path, and the bypass path and the refrigerant Some devices are configured to switch and connect to the circuit. By exchanging heat between the refrigerant and the heat storage medium in the heat exchange coil, normal cooling/heating operation, cold storage heat operation, heating heat storage operation, etc. are performed.

(発明が解決しようとする課題) 上述した蓄熱式空気調和装置において、各種の運転制御
を行う場合、例えば、実開昭61−54129号公報に
開示されるように、室外制御ユニットと室内制御ユニッ
トとの間で制御信号を授受して行うことが考えられる。
(Problems to be Solved by the Invention) When performing various operational controls in the above-mentioned regenerative air conditioner, for example, as disclosed in Japanese Utility Model Application Publication No. 61-54129, an outdoor control unit and an indoor control unit are used. It is conceivable that this could be done by sending and receiving control signals between the two.

しかしながら、これでは蓄暖熱操作手段を運転制御する
各種の制御データ、例えば、切換弁の制御データを室外
制御ユニットが処理しなければならず、室外制御ユニッ
トの容量が大きくなるという問題がある。特に、上記蓄
暖熱操作手段は頻繁に使用されないものであり、この蓄
暖熱操作手段の制御エリア等を室外制御ユニットに設け
ることになり、該室外制御ユニットが大容量となり、大
型化するなどの問題がある。
However, in this case, the outdoor control unit has to process various control data for controlling the operation of the heat storage operation means, for example, control data for the switching valve, and there is a problem that the capacity of the outdoor control unit becomes large. In particular, the heat storage operation means described above is not used frequently, and the control area for the heat storage operation means is provided in the outdoor control unit, which increases the capacity and size of the outdoor control unit. There is a problem.

更に、上述した各種の運転の他に、通常冷房と蓄冷熱と
を同時に行う冷房蓄熱同時運転などを行うようにして運
転範囲の拡大が図れつつある。その際、使用頻度の小さ
い蓄暖熱操作手段の制御データが増加することになり、
室外制御ユニットの容量が増々大きくなるという問題が
ある。
Furthermore, in addition to the above-mentioned various operations, the range of operation is being expanded by carrying out simultaneous cooling and heat storage operation in which normal cooling and cold storage heat are performed at the same time. At that time, the control data for the heating operation means that is used infrequently will increase.
There is a problem that the capacity of the outdoor control unit becomes larger and larger.

本発明は、斯かる点に鑑みてなされもので、室外制御ユ
ニットの容量を少なくして、該室外制御ユニットの小型
化等を図ることを目的とするものである。
The present invention has been made in view of the above, and an object of the present invention is to reduce the capacity of an outdoor control unit and thereby downsize the outdoor control unit.

(課題を解決するための手段) 上記目的を達成するために、本発明が講じた手段は、蓄
暖熱操作手段を制御する蓄熱制御ユニットを別個に設け
るようにするものである。
(Means for Solving the Problems) In order to achieve the above object, the means taken by the present invention is to separately provide a heat storage control unit that controls the heat storage operation means.

具体的に、第1図に示すように、請求項(1)に係る発
明が講じた手段は、先ず、室外ユニット(X)と室内ユ
ニット(A)とが冷媒配管(9)によって接続されると
共に、蓄熱可能な蓄熱媒体を備えた蓄暖熱操作手段(Y
)が冷媒配管(9)によって接続されて主冷媒回路(1
0)が形成され、該主冷媒回路(10)は少なくとも冷
房運転時に通常冷房を行う通常冷房運転と上記蓄暖熱操
作手段(Y)に冷熱を蓄える蓄冷熱運転とを行うように
冷媒流通方向の切換可能に構成されている。更に、上記
室外ユニット(X)を運転制御する室外制御ユニット(
50)と、該室外制御ユニット(50)との間で制御信
号を授受して上記室内ユニット(A)を運転制御する室
内制御ユニット(60)と、上記蓄熱ユニット (Y)
を運転制御する蓄熱制御ユニット (70)と、該蓄熱
制御ユニット(70)に制御信号を出力する蓄熱コント
ローラ(80)とが設けられた蓄熱式空気調和装置の運
転制御装置を対象としている。そして、上記蓄熱コント
ローラ(80)には、蓄熱制御ユニット(70)に蓄冷
熱運転及び停止の指令信号を出力する運転指令手段(8
l b)が設けられている。加えて、上記蓄熱制御ユニ
ット(70)には、上記運転指令手段(81b)の指令
信号を受けて上記室外制御ユニット (50)に蓄冷熱
運転の運転信号及び停止信号を出力すると共に、蓄冷熱
運転時に上記室外制御ユニット(50)との間で制御信
号を授受して上記蓄熱ユニット (Y)を運転制御する
蓄冷熱操作手段(71a)が設けられている。その上、
上記室外制御ユニット(50)には、上記蓄冷熱操作手
段(71a)の運転信号及び停止信号を受けると共に、
該蓄冷熱操作手段(71a)との間で制御信号を授受し
て上記室外ユニット(X)を運転制御する運転操作手段
(54a)が設けられた構成としている。
Specifically, as shown in FIG. 1, the means taken by the invention according to claim (1) is that first, the outdoor unit (X) and the indoor unit (A) are connected by a refrigerant pipe (9). In addition, a heat storage operation means (Y
) is connected by the refrigerant pipe (9) to the main refrigerant circuit (1
0) is formed, and the main refrigerant circuit (10) is arranged in a refrigerant flow direction so as to perform at least a normal cooling operation in which normal cooling is performed during cooling operation, and a cold storage heat operation in which cold heat is stored in the heating heat storage operation means (Y). It is configured to be switchable. Furthermore, an outdoor control unit (
50), an indoor control unit (60) that controls the operation of the indoor unit (A) by transmitting and receiving control signals to and from the outdoor control unit (50), and the heat storage unit (Y).
The present invention is directed to an operation control device for a heat storage type air conditioner, which is provided with a heat storage control unit (70) that controls the operation of the heat storage control unit (70), and a heat storage controller (80) that outputs a control signal to the heat storage control unit (70). The heat storage controller (80) includes an operation command means (8) that outputs a command signal for cold storage heat operation and stop to the heat storage control unit (70).
lb) is provided. In addition, the heat storage control unit (70) outputs an operation signal and a stop signal for the cold storage heat operation to the outdoor control unit (50) upon receiving the command signal from the operation command means (81b), and outputs a cold storage heat operation operation signal and a stop signal to the outdoor control unit (50). A cold storage heat operating means (71a) is provided which controls the operation of the heat storage unit (Y) by transmitting and receiving control signals to and from the outdoor control unit (50) during operation. On top of that,
The outdoor control unit (50) receives an operation signal and a stop signal from the cold storage heat operation means (71a), and
The configuration includes an operation operation means (54a) for controlling the operation of the outdoor unit (X) by transmitting and receiving control signals to and from the cold storage heat operation means (71a).

また、請求項(21に係る発明が講じた手段は、上記請
求項(1)記載の発明において、主冷媒回路(10)は
、蓄冷熱運転時に冷媒を室外ユニット(X)から蓄暖熱
操作手段(Y)のみに流して蓄冷熱のみを行う蓄冷熱専
用運転と、冷媒を室外ユニット(X)から蓄暖熱操作手
段(Y)及び室内ユニット(A)に流して蓄冷熱及び冷
房を同時に行う冷房蓄熱同時運転とに冷媒流通方向の切
換可能に構成される一方、蓄熱制御ユニット(70)に
は、蓄冷熱専用運転と冷房蓄熱同時運転とを切換えるよ
うに専用運転信号及び同時運転信号を蓄冷熱操作手段(
71a)に出力する蓄冷熱運転切換手段(74)が設け
られた構成としている。
Further, the means taken by the invention according to claim (21) is that in the invention according to claim (1), the main refrigerant circuit (10) operates to store refrigerant from the outdoor unit (X) during the cold storage heat operation. A cold storage heat dedicated operation in which only the cold storage heat is carried out by flowing only through the means (Y), and a cold storage heat dedicated operation in which the refrigerant is flowed from the outdoor unit (X) to the heating heat storage operation means (Y) and the indoor unit (A) to simultaneously store cold heat and air cooling. The heat storage control unit (70) is configured to be able to switch the direction of refrigerant flow between the cooling heat storage simultaneous operation and the cooling heat storage simultaneous operation, and the heat storage control unit (70) is configured to send a dedicated operation signal and a simultaneous operation signal to switch between the cold storage heat dedicated operation and the cooling heat storage simultaneous operation. Cold storage heat operation means (
71a) is provided with a cold storage heat operation switching means (74) that outputs the output to 71a).

また、請求項G)に係る発明が講じた手段は、上記請求
項(1)又は(2)記載の発明において、主冷媒回路(
10)は、冷房運転と暖房運転とに可逆運転可能に構成
されると共に、該暖房運転時に通常暖房を行う通常暖房
運転と暖房を行うと同時に蓄暖熱操作手段(Y)に暖熱
を蓄える暖房蓄熱同時運転とを行うように冷媒流通方向
の切換可能に構成される一方、蓄熱制御ユニット(70
)には、通常暖房運転と暖房蓄熱同時運転とを切換える
蓄暖熱運転切換手段(75)と、該蓄暖熱運転切換手段
(75)の切換信号を受けて蓄暖熱操作手段(Y)を運
転制御する蓄冷熱操作手段(71 b)とが設けられた
構成としている。
Moreover, the means taken by the invention according to claim G) is the main refrigerant circuit (
10) is configured to be capable of reversible operation between cooling operation and heating operation, and stores warm heat in the heating heat storage operating means (Y) at the same time as performing normal heating operation and heating during the heating operation. The heat storage control unit (70
) includes a heating heat storage operation switching means (75) for switching between normal heating operation and heating heat storage simultaneous operation, and a heating heat storage operation means (Y) in response to a switching signal from the heating heat storage operation switching means (75). The structure includes a cold storage heat operation means (71b) for controlling the operation.

また、請求項(4)に係る発明が講じた手段は、上記請
求項(1)、 (2)又は(3)記載の発明において、
蓄熱コントローラ(80)には、運転指令手段(81b
)が設定時間に対応して運転指令信号及び停止指令信号
を出力するように蓄暖熱操作手段(Y)の蓄冷熱運転時
間を設定する運転時間設定手段(81a)が設けられた
構成としている。
In addition, the measures taken by the invention according to claim (4) are, in the invention according to claim (1), (2) or (3),
The heat storage controller (80) includes an operation command means (81b
) is provided with operation time setting means (81a) for setting the cold storage heat operation time of the heating and heat storage operation means (Y) so that the operation command signal and the stop command signal are outputted in accordance with the set time. .

(作用) 上記構成により、請求項(1)に係る発明では、室外制
御ユニット(50)が室外ユニット(X)を、室内制御
ユニット(60)が室内ユニット(A)を、蓄熱制御ユ
ニット (70)が蓄暖熱操作手段(Y)をそれぞれ運
転制御しており、通常冷房運転時には室外制御ユニット
(50)と室内制御ユニット(60)との間で制御信号
を授受し、室外ユニット(X)における圧縮機(1)の
容量制御などを行う。
(Function) With the above configuration, in the invention according to claim (1), the outdoor control unit (50) controls the outdoor unit (X), the indoor control unit (60) controls the indoor unit (A), and the heat storage control unit (70 ) respectively control the operation of the heating heat storage operation means (Y), and during normal cooling operation, control signals are exchanged between the outdoor control unit (50) and the indoor control unit (60), and the outdoor unit (X) Controls the capacity of the compressor (1), etc.

一方、蓄冷熱運転時においては、蓄熱コントローラ(8
0)の運転指令手段(81b)が運転指令信号を出力し
、具体的には請求項(4)に係る発明では、運転時間設
定手段(81a)に運転時間が設定され、該運転時間設
定手段(81a)の設定時間に対応して上記運転指令手
段(81b)が蓄熱制御ユニット(70)に運転指令信
号又は停止指令信号を出力する。そして、該蓄熱制御ユ
ニット(70)は上記各指令信号に対応して蓄冷熱操作
手段(71a)が室外制御ユニツ) (50)に運転信
号又は停止信号を出力し、該室外制御ユニット (50
)が圧縮機(1)などを駆動制御すると共に、蓄熱制御
ユニット(70)が蓄暖熱操作手段(Y)の電動膨張弁
(14)などを制御し、該蓄暖熱操作手段(Y)に冷熱
を蓄える。
On the other hand, during cold storage heat operation, the heat storage controller (8
Specifically, in the invention according to claim (4), the driving time setting means (81a) sets the driving time, and the driving time setting means (81a) outputs a driving command signal. The operation command means (81b) outputs an operation command signal or a stop command signal to the heat storage control unit (70) in response to the set time of (81a). Then, in the heat storage control unit (70), the cold storage heat operation means (71a) outputs an operation signal or a stop signal to the outdoor control unit (50) in response to each of the above-mentioned command signals.
) drives and controls the compressor (1), etc., and the heat storage control unit (70) controls the electric expansion valve (14), etc. of the heat storage operation means (Y), and controls the operation of the heat storage operation means (Y). stores cold energy.

また、請求項(2)に係る発明では、蓄冷熱運転切換手
段(74)を蓄冷熱専用運転に切換えると、蓄熱制御ユ
ニット(70)の蓄冷熱操作手段(71a)は蓄冷熱運
転のみを行うように室外制御ユニット(50)に制御信
号を出力し、また、冷房蓄熱同時運転に切換えると、室
内冷房と蓄冷熱とを同時に行うように蓄冷熱操作手段(
(71a)が室外制御ユニット(50)に制御信号を出
力して蓄暖熱操作手段(Y)を運転制御する。
Further, in the invention according to claim (2), when the cold storage heat operation switching means (74) is switched to the cold storage heat exclusive operation, the cold storage heat operation means (71a) of the heat storage control unit (70) performs only the cold storage heat operation. When a control signal is output to the outdoor control unit (50) and the cooling and heat storage simultaneous operation is switched, the cold storage and heat operation means (
(71a) outputs a control signal to the outdoor control unit (50) to control the operation of the heating operation means (Y).

また、請求項(3)に係る発明では、暖房運転時に蓄冷
熱運転時換スイッチ(75)を暖房蓄熱同時運転に切換
えると、蓄冷熱操作手段(71 b)が蓄暖熱操作手段
(Y)の電動膨張弁(14)などを制御し、室内暖房の
余剰能力で暖熱を蓄える。
Further, in the invention according to claim (3), when the cold storage heat operation time switching switch (75) is switched to the heating and heat storage simultaneous operation during heating operation, the cold storage heat operation means (71 b) switches to the warm storage heat operation means (Y). control the electric expansion valve (14), etc., and store warm heat using the excess indoor heating capacity.

(発明の効果) 従って、請求項(1)に係る発明によれば、蓄暖熱操作
手段(Y)を運転制御する蓄熱制御ユニット(70)を
室外制御ユニット(50)と別個に専用の制御ユニット
として設けたために、室外制御ユニット(50)の容量
を小さくすることができるので、装置全体の小型化を図
ることができると共に、室外制御ユニット (50)と
室内制御ユニット(60)との間の信号授受を容易に行
うことができる。
(Effect of the invention) Therefore, according to the invention according to claim (1), the heat storage control unit (70) that controls the operation of the heating operation means (Y) is controlled separately from the outdoor control unit (50). Since the outdoor control unit (50) is provided as a unit, the capacity of the outdoor control unit (50) can be reduced, and the entire device can be made smaller. It is possible to easily send and receive signals.

更に、蓄暖熱操作手段(Y)の運転範囲が拡大しても室
外制御ユニット(50)の容量が拡大することが少ない
ので、運転範囲の拡大に容易に対応することができる。
Furthermore, even if the operating range of the heat storage operating means (Y) is expanded, the capacity of the outdoor control unit (50) is unlikely to be increased, so it is possible to easily cope with the expansion of the operating range.

また、請求項(2に係る発明によれば、蓄冷熱専用運転
と冷房蓄熱同時運転とに切換えることができるようにし
たので、運転範囲の拡大を図ることができる。
Moreover, according to the invention according to claim 2, since it is possible to switch between the cold storage heat exclusive operation and the cooling heat storage simultaneous operation, it is possible to expand the operating range.

また、請求項(3)に係る発明によれば、暖房運転時に
暖房蓄熱同時運転に切換えることができるので、余剰の
暖房能力を有効に利用することができる。
Moreover, according to the invention according to claim (3), since the heating operation can be switched to the heating heat storage simultaneous operation during the heating operation, the surplus heating capacity can be effectively utilized.

また、請求項(4)に係る発明によれば、運転時間設定
手段(81a)を設けたために、設定時間になると自動
的に蓄冷熱運転を開始及び停止することができるので、
操作性の向上を図ることができる。
Further, according to the invention according to claim (4), since the operation time setting means (81a) is provided, the cold storage heat operation can be automatically started and stopped when the set time comes.
It is possible to improve operability.

(実施例) 以下、本発明の実施例について、図面に基づき詳細に説
明する。
(Example) Hereinafter, an example of the present invention will be described in detail based on the drawings.

第2図は蓄熱式空気調和装置における冷媒系統の全体構
成を示し、室外ユニット(X)に対して、複数の室内ユ
ニット(A)、(B)、・・・が接続されたいわゆるマ
ルチ形空気調和装置である。
Figure 2 shows the overall configuration of the refrigerant system in a regenerative air conditioner, and shows the so-called multi-type air conditioner in which multiple indoor units (A), (B),... are connected to an outdoor unit (X). It is a harmonizing device.

上記室外ユニット(X)において、(1)は圧縮機、(
2)は冷房運転時には図中実線のごとく切換わり、暖房
運転時には図中破線のごとく切換わる四路切換弁、(3
)は冷房運転時には凝縮器として、暖房運転時には蒸発
器として機能する室外熱交換器、(4)は冷房運転時に
は冷媒流量を調節し、暖房運転時には冷媒を減圧する室
外電動膨張弁、(5)は凝縮された液冷媒を貯溜するた
めのレシーバ、(8)は吸入冷媒中の液成分を除去する
ためのアキュムレータである。
In the above outdoor unit (X), (1) is a compressor, (
2) is a four-way switching valve that switches as shown in the solid line in the figure during cooling operation and as shown in the broken line in the figure during heating operation;
) is an outdoor heat exchanger that functions as a condenser during cooling operation and as an evaporator during heating operation; (4) is an outdoor electric expansion valve that adjusts the refrigerant flow rate during cooling operation and reduces the pressure of the refrigerant during heating operation; (5) (8) is a receiver for storing condensed liquid refrigerant, and (8) is an accumulator for removing liquid components in the suction refrigerant.

一方、各室内ユニット(A)、(B)、・・・は同一構
成を有し、(6)は冷房運転時には減圧機構として機能
し、暖房運転時には冷媒流量を調節する室内電動膨張弁
、(7)は冷房運転時には蒸発器として、暖房運転時に
は凝縮器として機能する室内熱交換器である。
On the other hand, each indoor unit (A), (B), ... has the same configuration, and (6) is an indoor electric expansion valve that functions as a pressure reduction mechanism during cooling operation and adjusts the refrigerant flow rate during heating operation; 7) is an indoor heat exchanger that functions as an evaporator during cooling operation and as a condenser during heating operation.

そして、上記各機器(1)〜(8)は冷媒配管(9)に
より冷媒の流通可能に順次接続されていて、室外空気と
の熱交換により得た熱を室内空気に放出するヒートポン
プ作用を有する主冷媒回路(10)が構成されている。
The above-mentioned devices (1) to (8) are sequentially connected through refrigerant piping (9) so that refrigerant can flow therethrough, and have a heat pump effect that releases heat obtained through heat exchange with outdoor air to indoor air. A main refrigerant circuit (10) is configured.

また、上記主冷媒回路(10)には冷媒との熱交換によ
り蓄冷熱、蓄暖熱をし、或いはその蓄冷熱、蓄暖熱の利
用をするための蓄暖熱操作手段(Y)が接続されている
。該蓄暖熱操作手段(Y)において、(11)は冷熱及
び暖熱の蓄熱可能な蓄熱媒体たる水(W)を貯溜した蓄
熱槽、(12)は該蓄熱槽(11)内に配置され、水(
W)と冷媒との熱交換を行うための蓄熱熱交換器であっ
て、該蓄熱熱交換器(12)は主冷媒回路(10)の上
記室外電動膨張弁(4)と室内電動膨張弁(6)との間
の液ライン(9a)に、第1バイパス路(13a)及び
第2バイパス路(13b)によって冷媒の流通可能に接
続されている。そして、上記第1バイパス路(13a)
には、水(W)に冷熱を蓄えるときに冷媒を減圧する蓄
熱電動膨張弁(14)が介設され、上記第2バイパス路
(13b)には、第2バイパス路(13b)を開閉する
第1開閉弁(15)が介設されている。
Further, a heating heat storage operating means (Y) is connected to the main refrigerant circuit (10) to store cold heat and warm heat through heat exchange with the refrigerant, or to utilize the stored cold heat and warm heat. has been done. In the heat storage operation means (Y), (11) is a heat storage tank storing water (W) which is a heat storage medium capable of storing cold heat and warm heat, and (12) is arranged in the heat storage tank (11). ,water(
A regenerative heat exchanger for exchanging heat between the refrigerant and the refrigerant, and the regenerative heat exchanger (12) connects the outdoor electric expansion valve (4) and the indoor electric expansion valve ( 6) through a first bypass path (13a) and a second bypass path (13b) so that refrigerant can flow therethrough. And the first bypass path (13a)
A thermal storage electric expansion valve (14) is installed in the second bypass path (13b) to reduce the pressure of the refrigerant when storing cold heat in water (W), and the second bypass path (13b) is configured to open and close the second bypass path (13b). A first on-off valve (15) is provided.

また、第2バイパス路(13a)の上記第1開閉弁(1
5)−蓄熱熱交換器(12)間の途中配管と主冷媒回路
(10)のガスライン(9b)とは第3バイパス路(1
3c)により、冷媒の流通可能に接続されていて、該第
3バイパス路(13C)には、バイパス路(13c)を
開閉する第2開閉弁(16)が介設されている。
Further, the first on-off valve (1) of the second bypass path (13a)
5) The intermediate piping between the storage heat exchanger (12) and the gas line (9b) of the main refrigerant circuit (10) are connected to the third bypass path (1
3c) so that refrigerant can flow therethrough, and a second on-off valve (16) that opens and closes the bypass path (13c) is interposed in the third bypass path (13C).

一方、主冷媒回路(10)の液ライン(9a)における
上記第1.第2バイパス路(13a)。
On the other hand, the above-mentioned first. Second bypass path (13a).

(13b)の2つの接合部間には、冷媒の流量を可変に
調節するための流量制御弁(17)が介設されている。
A flow control valve (17) for variably adjusting the flow rate of the refrigerant is interposed between the two joint parts (13b).

そして、以上の各弁(2)、(4)、(6)(14)、
(15)、(16)、(17)の開閉もしくは開度は後
述する各制御ユニット(50)。
And each of the above valves (2), (4), (6) (14),
The opening/closing or opening degree of (15), (16), and (17) is controlled by each control unit (50), which will be described later.

(60)、(70)によって制御され、上記主冷媒回路
(10)は各運転モードに応じて冷媒の循環経路が切換
えられるように構成され、さらに、流量制御弁(17)
、第1開閉弁(15)及び蓄熱電動膨張弁(14)によ
り、蓄冷熱回収運転時における冷媒の流れを第2バイパ
ス路(13b)側と液ライン(9a)側とに分流するよ
うに構成されている。
(60) and (70), the main refrigerant circuit (10) is configured such that the refrigerant circulation path is switched according to each operation mode, and further includes a flow rate control valve (17).
, the first on-off valve (15) and the electric heat storage expansion valve (14) are configured to divide the flow of refrigerant into the second bypass path (13b) side and the liquid line (9a) side during the cold storage heat recovery operation. has been done.

また、この蓄熱式空気調和装置にはセンサ類が配置され
ていて、(T hw)は上記蓄熱槽(11)の水中に配
置され、水1flTνを検出する水温センサ、(Thl
)は液ライン(9a)の第2バイパス路(13b)との
接合部の冷房運転時における上流側に配置された冷却人
口センサ、(T ho)は液ライン(9a)の第1バイ
パス路(13a)との接合部の冷房運転時における下流
側に配置された冷却出口センサ、(C#)は蓄熱槽(1
1)内の水位を検出する水位センサ、(THI)は各室
内温度を検出する室温センサ、(TH2)および(TH
3)は各々室内熱交換器(12)・・・の液側およびガ
ス側配管における冷媒の温度を検出する室内液温センサ
及び室内ガス温センサ、(T’ H4)は圧縮機(1)
の吐出管温度を検出する吐出管センサ、(TH5)は暖
房運転時に室外熱交換器(6)の出口温度から着霜状態
を検出するデフロストセンサ、(TH6)は室外熱交換
器(6)の空気吸込口に配置され、吸込空気温度を検出
する外気温センサ、(S P)は冷房運転時には冷媒圧
力の低圧つまり蒸発圧力相当飽和温度Teを、暖房運転
時には高圧つまり凝縮圧力相当飽和温度TCを検出する
圧力センサである。
In addition, sensors are arranged in this heat storage type air conditioner, and (Thw) is a water temperature sensor that is arranged in the water of the heat storage tank (11) and detects 1flTν of water;
) is a cooling population sensor disposed upstream of the junction with the second bypass path (13b) of the liquid line (9a) during cooling operation, and (T ho) is the first bypass path (13b) of the liquid line (9a). The cooling outlet sensor (C#) is located downstream of the junction with the heat storage tank (13a) during cooling operation.
1) A water level sensor that detects the water level in each room, (THI) is a room temperature sensor that detects the temperature in each room, (TH2) and (TH
3) is an indoor liquid temperature sensor and an indoor gas temperature sensor that detect the temperature of the refrigerant in the liquid side and gas side piping of the indoor heat exchanger (12), respectively, and (T' H4) is the compressor (1).
(TH5) is a defrost sensor that detects the frosting state from the outlet temperature of the outdoor heat exchanger (6) during heating operation. (TH6) is the discharge pipe sensor that detects the temperature of the outdoor heat exchanger (6). The outside temperature sensor (S P), which is placed at the air intake port and detects the temperature of the intake air, detects the low refrigerant pressure, ie, the saturation temperature Te, equivalent to the evaporation pressure, during cooling operation, and the high pressure, ie, the saturation temperature TC, equivalent to the condensing pressure, during heating operation. It is a pressure sensor for detection.

そして、上記各弁およびセンサ類は、第3図〜第6図に
示すように、室外制御ユニット(50)、室内制御ユニ
ット(60)及び蓄熱制御ユニット(70)に信号線で
接続され、該室外制御ユニット(50)は各室内制御ユ
ニット(60)及び蓄熱制御ユニット(70)に連絡配
線によって制御信号の授受可能に接続されている。そし
て、第3図に示すように、該室内制御ユニット(60)
は複数台類に接続されていて、室外制御ユニット(50
)と複数台の室内制御ユニット(60)と蓄熱制御ユニ
ット(70)とによって1冷媒系統に対応した1制御系
統を構成している。更に、複数の冷媒系統に対応して複
数の制御系統が設けられ、1つの蓄熱制御ユニット(7
0)に蓄熱コントローラ(80)が接続されると共に、
各蓄熱制御ユニット(70)が順に接続されている。
The above-mentioned valves and sensors are connected to the outdoor control unit (50), indoor control unit (60), and heat storage control unit (70) by signal lines, as shown in FIGS. 3 to 6. The outdoor control unit (50) is connected to each indoor control unit (60) and the heat storage control unit (70) by communication wiring so that control signals can be sent and received. Then, as shown in FIG. 3, the indoor control unit (60)
is connected to multiple units, and an outdoor control unit (50
), a plurality of indoor control units (60), and a heat storage control unit (70) constitute one control system corresponding to one refrigerant system. Furthermore, multiple control systems are provided corresponding to multiple refrigerant systems, and one heat storage control unit (7
0) is connected to the heat storage controller (80), and
Each heat storage control unit (70) is connected in sequence.

第4図は上記室外ユニット(x)側に配置される室外制
御ユニット(50)の内部および接続される各機器の配
線関係を示す電気回路図である。
FIG. 4 is an electric circuit diagram showing the interior of the outdoor control unit (50) disposed on the outdoor unit (x) side and the wiring relationship of each connected device.

図中、(MC)はインバータの周波数変換回路(INV
)に接続された圧縮機(1)のモータ、(52C)は周
波数変換回路(INV)を作動させる電磁接触器で、上
記各機器はヒユーズボックス(FS)、漏電ブレーカ(
BRl)を介して交流電源(50a)に接続されるとと
もに、室外制御ユニット(50)が交流電源(50a)
に接続されている。また、(MF)は室外ファンのファ
ンモータ、(52FH)及び(52FL)は該ファンモ
ータ(MF)を作動させる電磁接触器であって、それぞ
れ交流電源(50a)のうちの単相成分に対して並列に
接続され、電磁接触器(52FH)が接続状態になった
ときには室外ファンが強風(標準風量)に、電磁接触器
(52FL)が接続状態になったときには室外ファンが
弱風になるよう択一切換え可能になされている。
In the figure, (MC) is an inverter frequency conversion circuit (INV
) is connected to the compressor (1) motor, (52C) is a magnetic contactor that operates the frequency conversion circuit (INV), and each of the above devices includes a fuse box (FS), earth leakage breaker (
The outdoor control unit (50) is connected to the AC power source (50a) via the AC power source (50a)
It is connected to the. In addition, (MF) is a fan motor of an outdoor fan, and (52FH) and (52FL) are electromagnetic contactors that operate the fan motor (MF), and each corresponds to a single-phase component of the AC power source (50a). When the magnetic contactor (52FH) is connected, the outdoor fan will produce strong airflow (standard airflow), and when the electromagnetic contactor (52FL) is connected, the outdoor fan will produce weak airflow. The options are interchangeable.

次に、室外制御ユニット(50)の内部にあっては、電
磁リレーの常開接点(RY+ )〜(RY4)が交流電
流(50a)に対して並列に接続され、これらは順に、
四路切換弁(2)の電磁リレー (2OS) 、周波数
変換回路(INV)(lt電磁接触器52C)、室外フ
ァン用電磁接触器(52FH)、  (52FL)のコ
イルに直列に接続され、室外制御ユニツ) (50)に
直接又は室内制御ユニット(60)、・・・を介して入
力される各センサ(THI)〜(TH6)の信号に応じ
て開閉されて、上記各電磁接触器あるいは電磁リレーの
接点を開閉させるものである。また、室外制御ユニット
(50)には、室外電動膨張弁(4)の開度を調節する
パルスモータ(EV+ )のコイルが接続されている。
Next, inside the outdoor control unit (50), the normally open contacts (RY+) to (RY4) of the electromagnetic relay are connected in parallel to the alternating current (50a), and these are sequentially connected in parallel to the alternating current (50a).
It is connected in series to the electromagnetic relay (2OS) of the four-way switching valve (2), the frequency conversion circuit (INV) (lt electromagnetic contactor 52C), the outdoor fan electromagnetic contactor (52FH), and the coil of (52FL). Control unit) (50) is opened or closed in response to signals from each sensor (THI) to (TH6) input directly or via the indoor control unit (60), etc. It opens and closes the contacts of a relay. Further, a coil of a pulse motor (EV+) that adjusts the opening degree of the outdoor electric expansion valve (4) is connected to the outdoor control unit (50).

なお、図中右側の回路において、(CH)は圧縮機(1
)のオイルフォーミング防止用ヒータで、それぞれ電磁
接触器(52C)と直列に接続され上記圧縮機(1)の
停止時に電流が流れるようになされている。さらに、(
51C)はモータ(MC)の過電流リレー (53C)
は圧縮機(1)の温度上昇保護用スイッチ、(53H)
は圧縮機(1)の圧力上昇保護用スイッチ、(51F)
はファンモータ(MF)の過電流リレーであって、これ
らは直列に接続されて起動時には電磁リレー(30Fx
)をオン状態にし、故障にはオフ状態にさせる保護回路
を構成している。
In addition, in the circuit on the right side of the figure, (CH) is the compressor (1
) are each connected in series with an electromagnetic contactor (52C) so that a current flows when the compressor (1) is stopped. moreover,(
51C) is the motor (MC) overcurrent relay (53C)
is the compressor (1) temperature rise protection switch, (53H)
is the compressor (1) pressure rise protection switch, (51F)
is an overcurrent relay for the fan motor (MF), and these are connected in series, and at startup, the electromagnetic relay (30Fx
) is turned on, and a protection circuit is configured that turns it off in the event of a failure.

そして、室外制御ユニット(50)にはCPU(54)
が内蔵され、該CPU (54)は各室内制御ユニット
(60)、蓄熱制御ユニット(70)あるいは各センサ
類から入力される信号に応じて各機器の動作を制御する
運転操作手段(54a)が構成されている。
The outdoor control unit (50) includes a CPU (54).
The CPU (54) has a driving operation means (54a) that controls the operation of each device according to signals input from each indoor control unit (60), heat storage control unit (70), or each sensor. It is configured.

次に、第5図は室内制御ユニット(60)の内部および
接続される各機器の主な配線を示す電気回路図である。
Next, FIG. 5 is an electrical circuit diagram showing the interior of the indoor control unit (60) and the main wiring of each connected device.

図中、(MF)は室内ファンのモータで、単相交流電源
(60a)を受けて各リレ一端子(RYn ) 〜(R
Y+a)によって風量の大きい順に強風と弱風とに切換
え、暖房運転時室温センサ(THI)の信号による停止
時のみ微風にするようになされている。そして、室内制
御ユニット(60)のプリント基板には室内電動膨張弁
(6)の開度を調節するパルスモータ(EVりが接続さ
れる=方、室温センサ(THl)および温度センサ(T
H2)、  (TH3)の信号が人力されている。また
、各室内制御ユニット(60)は室外制御ユニット(5
0)に信号線を介して信号の授受可能に接続されるとと
もに、リモートコントロールスイッチ(90)とは信号
線で接続されている。そして、室内制御ユニット(60
)にはCPU (61)が内蔵され、該CPU(61)
には、各センサ類あるいは室外制御ユニット(50)か
らの信号に応じて室内電動膨張弁(6)あるいは室内フ
ァンの動作を制御する運転操作手段(61a)が構成さ
れている。
In the figure, (MF) is the motor of the indoor fan, which receives single-phase AC power (60a) and connects one terminal of each relay (RYn) to (R
Y+a) is used to switch between strong wind and weak wind in descending order of air volume, and only when the heating operation is stopped in response to a signal from the room temperature sensor (THI), light wind is applied. The printed circuit board of the indoor control unit (60) is connected to a pulse motor (to which an EV controller is connected) that adjusts the opening degree of the indoor electric expansion valve (6), a room temperature sensor (THl), and a temperature sensor (T
H2) and (TH3) signals are manually generated. In addition, each indoor control unit (60) is connected to an outdoor control unit (5
0) via a signal line so as to be able to send and receive signals, and is also connected to a remote control switch (90) via a signal line. And indoor control unit (60
) has a built-in CPU (61), and the CPU (61)
A driving operation means (61a) is configured to control the operation of the indoor electric expansion valve (6) or the indoor fan according to signals from each sensor or the outdoor control unit (50).

次に、本発明の特徴とする上記蓄熱制御ユニット(70
)について説明する。
Next, the heat storage control unit (70
) will be explained.

該蓄熱制御ユニット(70)は、第6図に示すように、
蓄熱コントローラ(80)が接続されていて、該蓄熱コ
ントローラ(80)の指令信号により上記蓄暖熱操作手
段(Y)を運転制御するように構成されている。
The heat storage control unit (70), as shown in FIG.
A heat storage controller (80) is connected, and the heating operation means (Y) is configured to be controlled by a command signal from the heat storage controller (80).

上記蓄熱コントローラ(80)は、CPU(81)にク
ロック回路(82)よりクロック信号が入力されると共
に、送信回路(83)が接続されて上記蓄熱制御ユニッ
ト(70)に指令信号を出力するように構成されている
。更に、上記CPU(81)には蓄冷熱運転のプログラ
ムなどを入力する入力部(84)が接続されており、該
人力部(84)は時刻設定、蓄冷熱運転のプログムラ設
定、時分の設定、休日指定、プログラムの設定完了など
をCPU (81)に入力するように構成されている。
The heat storage controller (80) receives a clock signal from a clock circuit (82) into the CPU (81), and is connected to a transmission circuit (83) so as to output a command signal to the heat storage control unit (70). It is composed of Furthermore, an input section (84) for inputting programs for cold storage heat operation, etc. is connected to the CPU (81), and the human power section (84) inputs time settings, program irregularities settings for cold storage heat operation, and hour and minute settings. , holiday designation, program setting completion, etc., are input to the CPU (81).

また、上記CPU (81)にはEEFROM (85
)が接続されており、該EEPROM(85)が蓄冷熱
の運転状態を記憶するように構成されている。
In addition, the CPU (81) has an EEFROM (85
) is connected, and the EEPROM (85) is configured to store the operating state of the cold storage heat.

更にまた、上記CPU (81)には、運転データ記憶
手段(81a)及び運転指令手段(8l b)が構成さ
れており、該運転データ記憶手段(81a)は上記入力
部(84)で設定された蓄冷熱運転プログラムに基づい
て各日々の蓄冷熱運転時刻を所定日数分記憶する運転時
間設定手段に構成され、例えば、日埴日から土躍日まで
の各曜日の蓄冷熱運転時刻を記憶するようになっている
。上記運転指令手段(81b)は運転データ記憶手段(
81a)の記憶データに基づいて運転時刻になると運転
指令信号を、運転停止時刻になると停止指令信号を上記
蓄熱制御ユニット(70)に出力するように構成されて
いる。
Furthermore, the CPU (81) is configured with an operation data storage means (81a) and an operation command means (81b), and the operation data storage means (81a) is configured with the information set by the input section (84). The operating time setting means stores the cold storage heat operation time for each day for a predetermined number of days based on the cold storage heat operation program, for example, stores the cold storage heat operation time for each day of the week from the first day of the week to the second day of the week. It looks like this. The operation command means (81b) is the operation data storage means (
Based on the stored data of 81a), it is configured to output an operation command signal when the operation time comes and a stop command signal when the operation stop time comes to the heat storage control unit (70).

そして、上記CPU (81)は1伝送ブロツクが8ビ
ツトで構成され、該1伝送ブロツクは、第7図に示すよ
うに、2ビツトが運転モード信号(81)、1ビツトが
プログラム設定完了信号(S2)、1ビツトが時報信号
(S3) 、4ビツトがチエツクサム信号(S4)に形
成されている。
In the CPU (81), one transmission block consists of 8 bits, and as shown in FIG. 7, 2 bits are the operation mode signal (81) and 1 bit is the program setting completion signal ( S2), 1 bit is formed as a time signal (S3), and 4 bits are formed as a checksum signal (S4).

該運転モード信号(Sl)は“11″で蓄冷禁止モード
、“10°で運転モード、“01“で試運転モード、“
00°で停止モードに設定され、上記運転指令手段(8
l b)によって指令信号である各モード信号が出力さ
れるように成っている。
The operation mode signal (Sl) is “11” for cold storage prohibition mode, “10°” for operation mode, “01” for test run mode, “
The stop mode is set at 00°, and the operation command means (8
lb), each mode signal which is a command signal is output.

上記プログラム設定完了信号(S2)は“0“で設定完
了、“1”で未設定を示し、時報信号(S3)は午前零
時より1分間ビットを立てるように構成され、チエツク
サム信号(S4)は上記4ビツトの2の補数を入れるよ
うに構成されている。
The program setting completion signal (S2) is "0" indicating that the setting is complete, and "1" indicating that the setting has not been completed.The time signal (S3) is configured to set a bit for one minute from midnight, and the checksum signal (S4) is configured to receive the above-mentioned 4-bit two's complement number.

上記蓄熱制御ユニット(70)は、電源(70a)が接
続されて電力供給されると共に、CPU(71)に受信
回路(72a)、送信回路(72b)及び送受信回路(
73)が接続されて成り、該送受信回路(73)を介し
て上記室外制御ユニット(50)との間で制御信号を授
受するように構成されている。また、1つの蓄熱制御ユ
ニット(70)の受信回路(72a)には蓄熱コントロ
ーラ(80)が接続され、該蓄熱制御ユニット(70)
と他の各蓄熱制御ユニット(70)とは送信回路(72
b)と受信回路(72a)とが順に接続されて、該各蓄
熱制御ユニット(70)は蓄熱コントローラ(80)の
出力信号を順に受は取るように構成されている。更に、
上記CPU(71)は上記水温センサ(Thν)、冷却
人口センサ(Thj) 、冷却出口センサ(T hO)
及び水位センサ(Cm? )の各検出信号が人力される
と共に、上記蓄熱電動膨張弁(14)と流量制御弁(1
7)の各駆動モータ(EV3)、(EV4)を駆動制御
する駆動信号を出力するように構成されている。
The heat storage control unit (70) is connected to a power source (70a) and supplied with power, and the CPU (71) has a receiving circuit (72a), a transmitting circuit (72b), and a transmitting/receiving circuit (
73) is connected to the outdoor control unit (50), and is configured to send and receive control signals to and from the outdoor control unit (50) via the transmitting/receiving circuit (73). Further, a heat storage controller (80) is connected to the receiving circuit (72a) of one heat storage control unit (70), and the heat storage controller (80)
and each other heat storage control unit (70) is a transmission circuit (72).
b) and the receiving circuit (72a) are connected in sequence, and each of the heat storage control units (70) is configured to sequentially receive the output signal of the heat storage controller (80). Furthermore,
The CPU (71) includes the water temperature sensor (Thν), the cooling population sensor (Thj), and the cooling outlet sensor (ThO).
and the water level sensor (Cm?) are manually input, and the heat storage electric expansion valve (14) and the flow rate control valve (1
7) is configured to output a drive signal for driving and controlling each of the drive motors (EV3) and (EV4).

その上、上記蓄熱制御ユニット(70)には第1及び第
2開閉弁(15)、  (16)の電磁リレー(20R
1)、(20R2)及びリレー接点(RY21)、(R
Y22)が電源(70a)に接続されて設けられている
In addition, the heat storage control unit (70) is equipped with an electromagnetic relay (20R) for the first and second on-off valves (15) and (16).
1), (20R2) and relay contact (RY21), (R
Y22) is connected to the power source (70a).

また、上記蓄熱制御ユニット(70)には、蓄冷熱運転
切換手段である蓄冷熱運転切換スイッチ(74)、蓄冷
熱運転切換手段である蓄冷熱運転時刻スイッチ(75)
及びタイマ回路(76)が設けられている。該蓄冷熱運
転切換スイッチ(74)は蓄冷熱運転時に蓄冷熱のみを
行う蓄冷熱専用運転と蓄冷熱及び室内冷房を同時に行う
冷房蓄熱同時運転との何れかに切換えるように構成され
、該蓄冷熱運転切換スイッチ(74)の専用運転信号及
び同時運転信号が上記CPU (71)に人力されるよ
うに成っている。上記蓄暖熱運転切換スイッチ(75)
は暖房運転時に室内暖房のみを行う通常暖房運転と室内
暖房及び蓄暖熱を同時に行う暖房蓄熱同時運転との何れ
かに切換えるように構成され、該蓄暖熱運転切換スイッ
チ(75)の切換信号が上記CPU(71)に人力され
るように成っている。上記タイマ回路(76)は24時
間タイマであって、CPU (71)との間でタイム信
号を授受するように構成され、上記蓄熱コントローラ(
80)が出力する時報信号により24時間のカウントを
開始するように構成されている。
The heat storage control unit (70) also includes a cold storage heat operation changeover switch (74) which is a cold storage heat operation switching means, and a cold storage heat operation time switch (75) which is a cold storage heat operation changeover means.
and a timer circuit (76). The cold storage heat operation changeover switch (74) is configured to switch between a cold storage heat dedicated operation in which only cold heat is stored during the cold storage heat operation, and a cooling heat storage simultaneous operation in which cold storage heat and indoor cooling are performed at the same time. A dedicated operation signal and a simultaneous operation signal of the operation changeover switch (74) are manually input to the CPU (71). The above heating storage heat operation selector switch (75)
is configured to switch between normal heating operation in which only indoor heating is performed during heating operation and heating and heat storage simultaneous operation in which indoor heating and heating heat storage are performed at the same time, and the switching signal of the heating heat storage operation changeover switch (75) is manually input to the CPU (71). The timer circuit (76) is a 24-hour timer and is configured to send and receive time signals to and from the CPU (71).
80) is configured to start counting 24 hours based on the time signal outputted by the time signal.

また、上記CPU (71)には、蓄冷熱操作手段(7
1a)及び蓄暖熱操作手段(71b)が構成されており
、該蓄冷熱操作手段(71a)は上記蓄熱コントローラ
(80)が出力する運転指令信号及び停止指令信号、つ
まり、第7図の運転モード信号(Sl)を受信すると共
に、蓄冷熱運転切換スイッチ(74)の切換信号を受信
し、上記室外制御ユニット(50)と制御信号を授受し
て蓄熱電動膨張弁(14)等を制御するように構成され
ている。上記蓄暖熱操作手段(71b)は蓄暖熱運転切
換スイッチ(75)の切換信号を受信して蓄熱電動膨張
弁(14)等を制御するように構成されている。
The CPU (71) also includes a cold storage heat operation means (7).
1a) and a heating storage heat operation means (71b), and the cold storage heat operation means (71a) receives the operation command signal and stop command signal output from the heat storage controller (80), that is, the operation shown in FIG. In addition to receiving the mode signal (Sl), it also receives the switching signal of the cold storage thermal operation changeover switch (74), and sends and receives control signals to and from the outdoor control unit (50) to control the thermal storage electric expansion valve (14), etc. It is configured as follows. The heat storage operation means (71b) is configured to receive a switching signal from the heat storage operation changeover switch (75) and control the heat storage electric expansion valve (14) and the like.

つまり、具体的に、上記蓄熱制御ユニット(70)と室
外制御ユニット(50)との両CPU(71)、(54
)間においては圧縮機(1)の周波数指令信号や現在運
転中の周波数信号を授受すると共に、蓄熱制御ユニット
(70)より運転信号及び停止信号や異常信号などを出
力する一方、室外制御ユニット (50)より油戻し信
号、ポンプダウン信号及び異常信号などを出力して蓄冷
熱及び蓄暖熱運転を制御するように構成されている。
That is, specifically, both the CPUs (71) and (54) of the heat storage control unit (70) and the outdoor control unit (50)
) transmits and receives the frequency command signal of the compressor (1) and the frequency signal currently in operation, and also outputs operation signals, stop signals, abnormal signals, etc. from the heat storage control unit (70), while the outdoor control unit ( 50) is configured to output an oil return signal, a pump down signal, an abnormality signal, etc. to control the cold storage heat and heating heat storage operations.

次に、この蓄熱式空気調和装置の各運転モードにおける
6弁の開閉(もしくは開度調WI)と、冷媒の循環経路
について説明する。
Next, the opening/closing (or opening degree adjustment WI) of the six valves in each operation mode of this regenerative air conditioner and the refrigerant circulation route will be explained.

先ず、通常冷房運転時には、四路切換弁(2)が図中実
線のように切換わり、室外電動膨張弁(4)、流量制御
弁(17)、室内電動膨張弁(6)が開き、他の弁はい
ずれも閉じた状態で、室外熱交換器(3)で凝縮された
冷媒が各室内電動膨張弁(6)を経て、各室内熱交換器
(7)で蒸発して圧縮機(1)に戻る。
First, during normal cooling operation, the four-way switching valve (2) switches as shown by the solid line in the figure, the outdoor electric expansion valve (4), the flow control valve (17), the indoor electric expansion valve (6) open, and the other valves open. With all the valves closed, the refrigerant condensed in the outdoor heat exchanger (3) passes through each indoor electric expansion valve (6), evaporates in each indoor heat exchanger (7), and is transferred to the compressor (1). ).

蓄冷熱運転時において、蓄冷熱のみ行う蓄冷熱専用運転
時には、室外電動膨張弁(4)、流量制御弁(17)、
蓄熱電動膨張弁(14)及び第2開閉弁(16)が開き
、室内電動膨張弁(6)及び第1開閉弁(15)が閉じ
た状態で、室外熱交換′rA(3)で凝縮された液冷媒
が、第1バイパス路(13a)より、蓄熱電動膨張弁(
14)を経て、蓄熱熱交換器(12)で蒸発して圧縮機
(1)に戻るように循環し、冷熱を蓄える。
During cold storage heat operation, during cold storage heat dedicated operation in which only cold storage heat is performed, the outdoor electric expansion valve (4), the flow rate control valve (17),
With the heat storage electric expansion valve (14) and the second on-off valve (16) open and the indoor electric expansion valve (6) and the first on-off valve (15) closed, the heat is condensed in the outdoor heat exchange 'rA (3). The liquid refrigerant is transferred from the first bypass path (13a) to the heat storage electric expansion valve (
14), is evaporated in the regenerative heat exchanger (12), and circulated back to the compressor (1), storing cold heat.

蓄冷熱運転時において、通常冷房及び蓄冷熱を同時に行
う冷房蓄熱同時運転時には、室外電動膨張弁(4)、流
量制御弁(17)、室内電動膨張弁(6)、蓄熱電動膨
張弁(14)及び第2開閉弁(16)が開き、第1開閉
弁(15)が閉じた状態で、室外熱交換器(3)で凝縮
された液冷媒の一部が室内電動膨張弁(6)を経て室内
熱交換器(7)で蒸発する一方、液冷媒の残部が第バイ
パス路(13a)より、蓄熱電動膨張弁(14)を経て
蓄熱熱交換器(12)で蒸発し、ガスライン(9b)で
合流して圧縮機(1)に戻る。
During the cold storage heat operation, during the cooling heat storage simultaneous operation in which normal cooling and cold storage heat are performed at the same time, the outdoor electric expansion valve (4), the flow rate control valve (17), the indoor electric expansion valve (6), the heat storage electric expansion valve (14) With the second on-off valve (16) open and the first on-off valve (15) closed, part of the liquid refrigerant condensed in the outdoor heat exchanger (3) passes through the indoor electric expansion valve (6). While it is evaporated in the indoor heat exchanger (7), the remaining liquid refrigerant is evaporated in the heat storage heat exchanger (12) from the first bypass path (13a) through the heat storage electric expansion valve (14), and is then transferred to the gas line (9b). and return to the compressor (1).

上記蓄冷熱運転で蓄えた冷熱を利用する蓄冷熱回収運転
時には、室外電動膨張弁(4)、流量制御弁(17)、
室内電動膨張弁(6)、・・・、蓄熱電動膨張弁(14
)及び第1開閉弁(15)が開き、第2開閉弁(16)
が閉じた状態で、室外熱交換器(3)で凝縮された液冷
媒の一部が第2バイパス路(13b)を流れ、蓄熱熱交
換器(12)で過冷却されて第1バイパス路(13a)
から液ライン(9a)に戻る一方、液冷媒の残部はその
まま液ライン(9a)を流れ、合流後、各室内電動膨張
弁(6)を経て、各室内熱交換器(7)で蒸発して圧縮
機(1)に戻る。そのとき、流量制御弁(17)と蓄熱
電動膨張弁(14)の相対的な開度調節により、冷媒の
分流量が調節され、冷却人口センサ(Thi) 、冷却
出口センサ(T ho)で検出される液冷媒温度Tρl
、Tl!の差温Δ74?としての冷媒の過冷却度が適切
に調節される。
During the cold storage heat recovery operation that utilizes the cold heat stored in the cold storage heat operation, the outdoor electric expansion valve (4), the flow control valve (17),
Indoor electric expansion valve (6), ..., thermal storage electric expansion valve (14)
) and the first on-off valve (15) open, and the second on-off valve (16) opens.
In the closed state, a part of the liquid refrigerant condensed in the outdoor heat exchanger (3) flows through the second bypass path (13b), is supercooled in the regenerative heat exchanger (12), and passes through the first bypass path ( 13a)
The remainder of the liquid refrigerant flows through the liquid line (9a) as it is, and after merging, passes through each indoor electric expansion valve (6) and evaporates in each indoor heat exchanger (7). Return to compressor (1). At that time, the divided flow rate of the refrigerant is adjusted by adjusting the relative opening of the flow rate control valve (17) and the thermal storage motorized expansion valve (14), which is detected by the cooling population sensor (Thi) and the cooling outlet sensor (T ho). liquid refrigerant temperature Tρl
, Tl! Temperature difference Δ74? The degree of subcooling of the refrigerant is appropriately adjusted.

次に、通常暖房運転においては、四路切換弁(2)が図
中破線側に切換わり、各室内電動膨張弁(6)、流量制
御弁(17)、室外電動膨張弁(4)が開き、他の弁が
いずれも閉じた状態で、各室内熱交換器(7)で凝縮し
た液冷媒は、室外電動膨張弁(4)を経て室外熱交換器
(3)で蒸発して圧縮機(1)に戻る。
Next, in normal heating operation, the four-way switching valve (2) switches to the side shown by the broken line in the figure, and each indoor electric expansion valve (6), flow control valve (17), and outdoor electric expansion valve (4) opens. , with all other valves closed, the liquid refrigerant condensed in each indoor heat exchanger (7) passes through the outdoor electric expansion valve (4), evaporates in the outdoor heat exchanger (3), and is sent to the compressor ( Return to 1).

通常暖房及び蓄暖熱を同時に行う暖房蓄熱同時運転時に
は、各室内電動膨張弁(6)、第2開閉弁(16)、蓄
熱電動膨張弁(14) 、流量制御弁(17)、室外電
動膨張弁(4)が開き、第1開閉弁(15)が閉じた状
態で、吐出ガスの一部がガスライン(9b)から第3バ
イパス路(13C)を流れ、蓄熱熱交換器(12)で凝
縮する一方、吐出ガスの残部がガスライン(9b)を流
れて各室内熱交換器(7)で凝縮し、合流後、室外電動
膨張弁(4)を経て室外熱交換器(3)で蒸発して圧縮
機(1)に戻る。
During normal heating and heat storage simultaneous operation, which performs heating and heat storage at the same time, each indoor electric expansion valve (6), second on-off valve (16), thermal storage electric expansion valve (14), flow rate control valve (17), outdoor electric expansion With the valve (4) open and the first on-off valve (15) closed, part of the discharged gas flows from the gas line (9b) through the third bypass path (13C) and is transferred to the regenerative heat exchanger (12). While condensing, the remainder of the discharged gas flows through the gas line (9b) and condenses in each indoor heat exchanger (7), and after merging, passes through the outdoor electric expansion valve (4) and evaporates in the outdoor heat exchanger (3). and return to the compressor (1).

さらに、蓄暖熱回収デフロスト運転時には、四路切換弁
(2)が図中実線側に切換わり、室外電動膨張弁(4)
、流量制御弁(17)、各室内電動膨張弁(6)、蓄熱
電動膨張弁(14)、第2開閉弁(16)が開き、第1
開閉弁(15)が閉じた状態で、室外熱交換器(3)で
凝縮した液冷媒の一部が第1バイパス路(13a)より
、蓄熱電動膨張弁(14)を経て、蓄熱熱交換器(12
)で蒸発する一方、液冷媒の残部が各室内電動膨張弁(
6)を経て、各室内熱交換器(7)、・・・で蒸発し、
ガスライン(9b)で合流して圧縮機(1)に戻る。
Furthermore, during heating storage heat recovery defrost operation, the four-way switching valve (2) switches to the solid line side in the figure, and the outdoor electric expansion valve (4) switches to the solid line side in the figure.
, the flow rate control valve (17), each indoor electric expansion valve (6), the thermal storage electric expansion valve (14), and the second on-off valve (16) open, and the first
When the on-off valve (15) is closed, a part of the liquid refrigerant condensed in the outdoor heat exchanger (3) passes through the first bypass path (13a), the electric storage electric expansion valve (14), and enters the storage heat exchanger. (12
), while the remainder of the liquid refrigerant flows through each indoor electric expansion valve (
6), then evaporated in each indoor heat exchanger (7),...
They join together at the gas line (9b) and return to the compressor (1).

次に、各運転モード時における各制御ユニット(50)
、(60)、(70)の制御動作について説明する。
Next, each control unit (50) in each operation mode
, (60), and (70) will be explained.

先ず、室内制御ユニット(60)と室外制御ユニット(
50)との間においては、リモートコントロールスイッ
チ(90)より入力される冷暖房運転の運転信号及び停
止信号や設定温度信号に基づいて、該運転信号などを送
受信しており、室内制御ユニット(60)は室温センサ
(Th 1)の検出温度より室内ユニット(A)、・・
・のサーモオン・オフや室内電動膨張弁(6)等の制御
を行う。
First, the indoor control unit (60) and the outdoor control unit (
Based on the operation signal, stop signal, and set temperature signal of the cooling/heating operation inputted from the remote control switch (90), operation signals are transmitted and received between the indoor control unit (60) and the indoor control unit (60). is the indoor unit (A) based on the temperature detected by the room temperature sensor (Th 1).
・Controls thermo on/off and indoor electric expansion valve (6), etc.

そして、室外制御ユニット(50)は室内制御ユニット
(60)のサーモオン・オフ信号などによって周波数変
換器(INV)を制御して圧縮機(1)を容量制御する
と共に、室外電動膨張弁(4)等を制御する。
The outdoor control unit (50) controls the frequency converter (INV) using the thermo-on/off signal of the indoor control unit (60) to control the capacity of the compressor (1), and also controls the outdoor electric expansion valve (4). control etc.

一方、蓄熱コントローラ(80)においては、蓄冷熱運
転プログラムが人力部(84)より人力され、この運転
プログラムの設定が完了したか否か等を示す制御信号を
所定タイミングで蓄熱制御ユニット(70)に送信して
いる。つまり、第6図に示すように、指令信号である運
転モード信号(Sl)などを所定タイミングで送信し、
例えば、午前1時になると、以後、運転モード信号(S
l)を送信する一方、例えば午前6時になると、以後、
運転モード信号に代えて停止モード信号(Sl)を送信
する。
On the other hand, in the heat storage controller (80), a cold storage heat operation program is manually operated from the human power section (84), and a control signal indicating whether or not the setting of this operation program is completed is sent to the heat storage control unit (70) at a predetermined timing. is being sent to. In other words, as shown in FIG. 6, a command signal such as an operation mode signal (Sl) is transmitted at a predetermined timing,
For example, at 1 a.m., the driving mode signal (S
l), while for example at 6 am, from then on,
A stop mode signal (Sl) is transmitted instead of the operation mode signal.

そして、上記蓄熱制御ユニット(70)は、蓄熱コント
ローラ(80)の制御信号に是づき蓄暖熱操作手段(Y
)を運転制御し、つまり、プログラム設定完了信号(S
2)が“0″で設定完了になると、運転制御が開始可能
となり、時報信号(S3)によって午前零時よりタイマ
回路(76)がカウントを開始する。更に、冷房運転時
において、蓄冷熱運転切換スイッチ(74)の切換信号
に基づき蓄冷専用運転又は冷房蓄熱同時運転の制御を行
うことになり、上記蓄冷熱運転時刻になると、指令信号
である運転モード信号(Sl)により室外制御ユニット
(50)に運転信号を出力する。
The heat storage control unit (70) then operates the heating heat storage operating means (Y) in accordance with the control signal of the heat storage controller (80).
), that is, the program setting completion signal (S
2) is "0" and the setting is completed, operation control can be started, and the timer circuit (76) starts counting from midnight in response to the time signal (S3). Furthermore, during the cooling operation, the cold storage only operation or the cooling and thermal storage simultaneous operation will be controlled based on the switching signal of the cold storage heat operation changeover switch (74), and when the cold storage heat operation time comes, the operation mode that is the command signal will be changed. An operation signal is output to the outdoor control unit (50) by the signal (Sl).

この運転信号によって室外制御ユニット(50)は圧縮
機(1)を駆動制御すると共に、容量制御などを行う一
方、蓄熱制御ユニット(70)は蓄熱電動膨張弁(14
)等を運転モードに対応して制御する。
Based on this operation signal, the outdoor control unit (50) drives and controls the compressor (1) and performs capacity control, etc., while the heat storage control unit (70) controls the heat storage electric expansion valve (14).
), etc. are controlled according to the operation mode.

その後、上記蓄熱コントローラ(80)より停止モード
信号(Sl)が蓄熱制御ユニット(8o)に入力される
と、該蓄熱制御ユニット、(80)は室外制御ユニット
(50)に停止信号を出力すると共に、蓄熱電動膨張弁
(14)の全開制御などを行う一方、室外制御ユニット
(50)は圧縮機(1)の停止制御等を行う。
Thereafter, when the stop mode signal (Sl) is input from the heat storage controller (80) to the heat storage control unit (8o), the heat storage control unit (80) outputs a stop signal to the outdoor control unit (50) and The outdoor control unit (50) controls the compressor (1) to stop, etc. while controlling the thermal storage electric expansion valve (14) to fully open.

上述した運転制御により一日の所定時間に蓄冷熱が行わ
れ、蓄熱槽(11)内に氷などの冷熱が蓄えられる。
According to the above-described operation control, cold heat is stored at a predetermined time of the day, and cold heat such as ice is stored in the heat storage tank (11).

一方、暖房運転時において、蓄熱制御ユニット(70)
の蓄暖熱運転切換スイッチ(75)が暖房蓄熱同時運転
に切換えられると、該蓄熱制御ユニット(70)は蓄熱
電動膨張弁(14)等を制御し、蓄熱槽(11)に暖熱
を蓄える。
On the other hand, during heating operation, the heat storage control unit (70)
When the heating heat storage operation selector switch (75) is switched to heating and heat storage simultaneous operation, the heat storage control unit (70) controls the heat storage electric expansion valve (14), etc., and stores warm heat in the heat storage tank (11). .

従って、蓄暖熱操作手段(Y)を運転制御する蓄熱制御
ユニット(70)を室外制御ユニット(50)と別個に
専用の制御ユニットとして設けたために、室外制御ユニ
ット(50)の容量を小さくすることができるので、装
置全体の小型化を図ることができると共に、室外制御ユ
ニット(50)と室内制御ユニット(60)との間の信
号授受を容易に行うことができる。
Therefore, since the heat storage control unit (70) that controls the operation of the heating storage heat operation means (Y) is provided as a dedicated control unit separately from the outdoor control unit (50), the capacity of the outdoor control unit (50) is reduced. Therefore, it is possible to reduce the size of the entire device, and it is also possible to easily exchange signals between the outdoor control unit (50) and the indoor control unit (60).

史に、蓄暖熱操作手段(Y)の制御範囲が拡大しても室
外制御ユニット(50)の容量が拡大することが少ない
ので、運転範囲の拡大に容易に対応することができる。
Historically, even if the control range of the heat storage operation means (Y) expands, the capacity of the outdoor control unit (50) rarely increases, so it is possible to easily cope with the expansion of the operating range.

また、蓄冷熱専用運転と冷房蓄熱同時運転とに切換える
ことができるようにしたので、運転範囲の拡大を図るこ
とができる。
In addition, since it is possible to switch between the cold storage heat exclusive operation and the cooling heat storage simultaneous operation, the operating range can be expanded.

また、暖房運転時に暖房蓄熱同時運転に切換えることが
できるので、余剰の暖房能力を有効に利用することがで
きる。
Moreover, since it is possible to switch to simultaneous heating and heat storage operation during heating operation, surplus heating capacity can be used effectively.

また、運転データ記憶手段(81a)を設けたために、
設定時間になると自動的に蓄冷熱運転を開始及び停止す
ることができるので、操作性の向上を図ることができる
In addition, since the operation data storage means (81a) is provided,
Since the cold storage heat operation can be automatically started and stopped at the set time, operability can be improved.

尚、本実施例は、マルチ型空気調和装置について説明し
たが、本発明はマルチ型のものに限られず、蓄暖熱操作
手段(Y)を有するものであればよく、主冷媒回路(1
0)も実施例に限られるものではない。
Although this embodiment has described a multi-type air conditioner, the present invention is not limited to a multi-type air conditioner, and may be any type as long as it has a heat storage operation means (Y), and the main refrigerant circuit (1
0) is also not limited to the examples.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の構成を示すブロック図である。 第2図〜第6図は本発明の実施例を示し、第2図は冷媒
系統を示す冷媒回路図、第3図は制御系統を示すシステ
ム図、第4図は室外制御ユニットの回路ブロック図、第
5図は室内制御ユニットの回路ブロック図、第6図は蓄
熱制御ユニットと蓄熱コントローラを示す回路ブロック
図、第7図は蓄熱コントローラの出力信号の内容を示す
説明図である。 (10)・・・主冷媒回路 (50)・・・室外制御ユニット (54a)・・・運転操作手段 (60)・・・室内制御ユニット (70)・・・蓄熱制御ユニット (71a)・・・蓄冷熱操作手段 (71b)・・・蓄冷熱操作手段 (74)・・・蓄冷熱運転切換スイッチ(75)・・・
蓄暖熱運転切換スイッチ(80)・・・蓄熱コントロー
ラ (81a)・・・運転データ記憶手段 (81b)・・・運転指令手段 (A)・・・室内ユニット (X)・・・室外ユニット (Y)・・・蓄暖熱操作手段 ほか2名 手続補正書(自発) 平底2年4月6日
FIG. 1 is a block diagram showing the configuration of the present invention. 2 to 6 show embodiments of the present invention, FIG. 2 is a refrigerant circuit diagram showing the refrigerant system, FIG. 3 is a system diagram showing the control system, and FIG. 4 is a circuit block diagram of the outdoor control unit. , FIG. 5 is a circuit block diagram of the indoor control unit, FIG. 6 is a circuit block diagram showing the heat storage control unit and the heat storage controller, and FIG. 7 is an explanatory diagram showing the contents of the output signal of the heat storage controller. (10)...Main refrigerant circuit (50)...Outdoor control unit (54a)...Driving operation means (60)...Indoor control unit (70)...Thermal storage control unit (71a)...・Cold storage heat operation means (71b)...Cold storage heat operation means (74)...Cold storage heat operation changeover switch (75)...
Heating heat storage operation changeover switch (80)...Thermal storage controller (81a)...Operating data storage means (81b)...Operation command means (A)...Indoor unit (X)...Outdoor unit ( Y) ... Heating heat storage operation means and 2 other procedural amendments (voluntary) April 6, 2017

Claims (4)

【特許請求の範囲】[Claims] (1)室外ユニット(X)と室内ユニット(A)とが冷
媒配管(9)によって接続されると共に、蓄熱可能な蓄
熱媒体を備えた蓄熱ユニット(Y)が冷媒配管(9)に
よって接続されて主冷媒回路(10)が形成され、該主
冷媒回路(10)は少なくとも冷房運転時に通常冷房を
行う通常冷房運転と上記蓄熱ユニット(Y)に冷熱を蓄
える蓄冷熱運転とを行うように冷媒流通方向の切換可能
に構成される一方、 上記室外ユニット(X)を運転制御する室外制御ユニッ
ト(50)と、該室外制御ユニット(50)との間で制
御信号を授受して上記室内ユニット(A)を運転制御す
る室内制御ユニット(60)と、上記蓄熱ユニット(Y
)を運転制御する蓄熱制御ユニット(70)と、該蓄熱
制御ユニット(70)に制御信号を出力する蓄熱コント
ローラ(80)とが設けられた蓄熱式空気調和装置の運
転制御装置であって、 上記蓄熱コントローラ(80)には、蓄熱制御ユニット
(70)に蓄冷熱運転及び停止の指令信号を出力する運
転指令手段(81b)が設けられ、 上記蓄熱制御ユニット(70)には、上記運転指令手段
(81b)の指令信号を受けて上記室外制御ユニット(
50)に蓄冷熱運転の運転信号及び停止信号を出力する
と共に、蓄冷熱運転時に上記室外制御ユニット(50)
との間で制御信号を授受して上記蓄熱ユニット(Y)を
運転制御する蓄冷熱操作手段(71a)が設けられ、 上記室外制御ユニット(50)には、上記蓄冷熱操作手
段(71a)の運転信号及び停止信号を受けると共に、
該蓄冷熱操作手段(71a)との間で制御信号を授受し
て上記室外ユニット(X)を運転制御する運転操作手段
(54a)が設けられていることを特徴とする蓄熱式空
気調和装置の運転制御装置。
(1) The outdoor unit (X) and the indoor unit (A) are connected by a refrigerant pipe (9), and a heat storage unit (Y) equipped with a heat storage medium capable of storing heat is connected by a refrigerant pipe (9). A main refrigerant circuit (10) is formed, and the main refrigerant circuit (10) distributes refrigerant so as to perform at least a normal cooling operation in which normal cooling is performed during cooling operation and a cold storage heat operation in which cold heat is stored in the heat storage unit (Y). The indoor unit (A) is configured such that the direction can be switched, and the indoor unit (A ) and an indoor control unit (60) that controls the operation of the heat storage unit (Y
); and a heat storage controller (80) that outputs a control signal to the heat storage control unit (70). The heat storage controller (80) is provided with an operation command means (81b) that outputs a command signal for cold storage thermal operation and stop to the heat storage control unit (70), and the heat storage control unit (70) is provided with the operation command means (81b) and receives the command signal from the outdoor control unit (81b).
50), and outputs an operation signal and a stop signal for the cold storage heat operation to the outdoor control unit (50) during the cold storage heat operation.
The outdoor control unit (50) is provided with a cold storage heat operating means (71a) for controlling the operation of the heat storage unit (Y) by transmitting and receiving control signals to and from the cold storage heat operating means (71a). In addition to receiving operation signals and stop signals,
A regenerative air conditioner characterized in that an operation operation means (54a) for controlling the operation of the outdoor unit (X) by transmitting and receiving a control signal to and from the cold storage heat operation means (71a) is provided. Operation control device.
(2)請求項(1)記載の蓄熱式空気調和装置の運転制
御装置において、主冷媒回路(10)は、蓄冷熱運転時
に冷媒を室外ユニット(X)から蓄熱ユニット(Y)の
みに流して蓄冷熱のみを行う蓄冷熱専用運転と、冷媒を
室外ユニット(X)から蓄熱ユニット(Y)及び室内ユ
ニット(A)に流して蓄冷熱及び冷房を同時に行う冷房
蓄熱同時運転とに冷媒流通方向の切換可能に構成される
一方、 蓄熱制御ユニット(70)には、蓄冷熱専用運転と冷房
蓄熱同時運転とを切換えるように専用運転信号及び同時
運転信号を蓄冷熱操作手段(71a)に出力する蓄冷熱
運転切換手段(74)が設けられていることを特徴とす
る蓄熱式空気調和装置の運転制御装置。
(2) In the operation control device for a heat storage type air conditioner according to claim (1), the main refrigerant circuit (10) is configured to flow refrigerant from the outdoor unit (X) only to the heat storage unit (Y) during the cold storage heat operation. There are two types of cooling and heat storage operation: a cold storage heat dedicated operation in which only cold storage heat is stored, and a cooling heat storage simultaneous operation in which the refrigerant flows from the outdoor unit (X) to the heat storage unit (Y) and the indoor unit (A) to perform cold storage heat and cooling at the same time. The heat storage control unit (70) has a cold storage control unit (70) that outputs a dedicated operation signal and a simultaneous operation signal to the cold storage heat operation means (71a) so as to switch between the cold storage heat dedicated operation and the cooling heat storage simultaneous operation. An operation control device for a regenerative air conditioner, characterized in that a thermal operation switching means (74) is provided.
(3)請求項(1)又は(2)記載の蓄熱式空気調和装
置の運転制御装置において、主冷媒回路(10)は、冷
房運転と暖房運転とに可逆運転可能に構成されると共に
、該暖房運転時に通常暖房を行う通常暖房運転と暖房を
行うと同時に蓄熱ユニット(Y)に暖熱を蓄える暖房蓄
熱同時運転とを行うように冷媒流通方向の切換可能に構
成される一方、 蓄熱制御ユニット(70)には、通常暖房運転と暖房蓄
熱同時運転とを切換える蓄暖熱運転切換手段(75)と
、該蓄暖熱運転切換手段(75)の切換信号を受けて蓄
熱ユニット(Y)を運転制御する蓄暖熱操作手段(71
b)とが設けられていることを特徴とする蓄熱式空気調
和装置の運転制御装置。
(3) In the operation control device for a regenerative air conditioner according to claim (1) or (2), the main refrigerant circuit (10) is configured to be capable of reversible operation between cooling operation and heating operation. The heat storage control unit is configured to be able to switch the refrigerant flow direction so as to perform normal heating operation in which normal heating is performed during heating operation, and simultaneous heating and heat storage operation in which warm heat is stored in the heat storage unit (Y) at the same time as heating is performed. (70) includes a heating heat storage operation switching means (75) for switching between normal heating operation and simultaneous heating and heat storage operation, and a heat storage unit (Y) that receives a switching signal from the heating heat storage operation switching means (75). Heating and heat storage operation means (71) for operation control
b) An operation control device for a regenerative air conditioner, characterized in that it is provided with:
(4)請求項(1)、(2)又は(3)記載の蓄熱式空
気調和装置の運転制御装置において、蓄熱コントローラ
(80)には、運転指令手段(81b)が設定時間に対
応して運転指令信号及び停止指令信号を出力するように
蓄熱ユニット(Y)の蓄冷熱運転時間を設定する運転時
間設定手段(81a)が設けられていることを特徴とす
る蓄熱式空気調和装置の運転制御装置。
(4) In the operation control device for a thermal storage type air conditioner according to claim (1), (2) or (3), the thermal storage controller (80) has an operation command means (81b) configured to control the operation according to the set time. Operation control of a regenerative air conditioner, characterized in that an operation time setting means (81a) is provided for setting a cold storage heat operation time of a heat storage unit (Y) so as to output an operation command signal and a stop command signal. Device.
JP1201073A 1989-08-01 1989-08-01 Operation control device for heat storage type air conditioner Expired - Fee Related JPH0781731B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1201073A JPH0781731B2 (en) 1989-08-01 1989-08-01 Operation control device for heat storage type air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1201073A JPH0781731B2 (en) 1989-08-01 1989-08-01 Operation control device for heat storage type air conditioner

Publications (2)

Publication Number Publication Date
JPH0363443A true JPH0363443A (en) 1991-03-19
JPH0781731B2 JPH0781731B2 (en) 1995-09-06

Family

ID=16434944

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1201073A Expired - Fee Related JPH0781731B2 (en) 1989-08-01 1989-08-01 Operation control device for heat storage type air conditioner

Country Status (1)

Country Link
JP (1) JPH0781731B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58124138A (en) * 1982-01-21 1983-07-23 Matsushita Electric Ind Co Ltd Controlling method of driving auxiliary heat source in regenerative air conditioner
JPS59118938U (en) * 1983-01-31 1984-08-10 三菱電機株式会社 Split type air conditioning and water cooling equipment
JPS62280551A (en) * 1986-05-27 1987-12-05 ダイキン工業株式会社 Heat accumulation type air conditioner
JPS63120052U (en) * 1987-01-30 1988-08-03

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58124138A (en) * 1982-01-21 1983-07-23 Matsushita Electric Ind Co Ltd Controlling method of driving auxiliary heat source in regenerative air conditioner
JPS59118938U (en) * 1983-01-31 1984-08-10 三菱電機株式会社 Split type air conditioning and water cooling equipment
JPS62280551A (en) * 1986-05-27 1987-12-05 ダイキン工業株式会社 Heat accumulation type air conditioner
JPS63120052U (en) * 1987-01-30 1988-08-03

Also Published As

Publication number Publication date
JPH0781731B2 (en) 1995-09-06

Similar Documents

Publication Publication Date Title
JPH0769087B2 (en) Operation control device for air conditioner
JPH07117327B2 (en) Air conditioner
JPH0363443A (en) Operation controller for regenerative air conditioner
JPH0510607A (en) Air conditioner
JPH0391648A (en) Operation control device for thermal accumuation type air conditioner
JPH0399166A (en) Operation control device for thermal accumulating type air conditioner
JP2005164202A (en) Heat pump type heating system
JPH0399167A (en) Operation control device for thermal accumulation type air conditioner
JPH0395362A (en) Operating controller for heat storage type air conditioner
JPH0391647A (en) Operation control device for thermal accumulation type air conditioner
JPH0784956B2 (en) Operation control device for air conditioner
JP3075978B2 (en) Air conditioner operation control method
JPH06317360A (en) Multi-chamber type air conditioner
JPH03211380A (en) Air conditioner
JPH0784971B2 (en) Operation control device for air conditioner
JP2598513B2 (en) Operation control device for air conditioner
JPH05240522A (en) Air conditioning apparatus
JPH07101130B2 (en) Operation control device for air conditioner
JPH024162A (en) Air conditioning device
JPH0550665B2 (en)
JPS63187042A (en) Air conditioner
JPH0849934A (en) Regenerative type air conditioner
JPH0788992B2 (en) Air conditioning / hot water supply heat pump device
JP2002054831A (en) Air-conditioning device
JPS60240968A (en) Air-conditioning-hot-water supply heat pump device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070906

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080906

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees