JPS62280551A - Heat accumulation type air conditioner - Google Patents

Heat accumulation type air conditioner

Info

Publication number
JPS62280551A
JPS62280551A JP61123179A JP12317986A JPS62280551A JP S62280551 A JPS62280551 A JP S62280551A JP 61123179 A JP61123179 A JP 61123179A JP 12317986 A JP12317986 A JP 12317986A JP S62280551 A JPS62280551 A JP S62280551A
Authority
JP
Japan
Prior art keywords
heat
compressor
valve
refrigerant
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61123179A
Other languages
Japanese (ja)
Inventor
忠男 辻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP61123179A priority Critical patent/JPS62280551A/en
Publication of JPS62280551A publication Critical patent/JPS62280551A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 3、発明の詳細な説明 (産業上の利用分野) 太介叫は若蔦式空僚語和機に係り、特に夏期に、夜間電
力等の余剰電力を使用して蓄冷熱をしておき、昼間の電
力使用のピーク時に前記蓄冷熱により冷媒を凝縮する一
方で圧縮機を低能力運転し得るようにし、もってビーク
ンフト対策を講じ得るようにした蓄熱式空気調和機に関
する。
[Detailed Description of the Invention] 3. Detailed Description of the Invention (Field of Industrial Application) Taisukei is related to the Wakatsuta-type air-speed communication machine, which uses surplus electricity such as night electricity, especially in the summer. Relating to a regenerative air conditioner that stores cold heat and allows the compressor to operate at a low capacity while condensing refrigerant during peak daytime power usage, thereby making it possible to take measures against beakkenft. .

(従来の技術) 従来、夏期電力使用のピーク時に蓄熱機構を使用してピ
ークカット機能を行なわせる蓄熱式空気調和機としては
たとえば第4図図示のものが知られている(実公昭58
−43732号公報参照)。
(Prior Art) For example, the one shown in Fig. 4 is known as a heat storage type air conditioner that performs a peak cut function by using a heat storage mechanism during peak power usage in the summer.
(Refer to Publication No.-43732).

該蓄熱式空気調和機は室内熱交換器4を有する室内ユニ
ットYのほかに、該室内ユニットYより高所に蓄熱槽5
を設置し、室内熱交換器4および蓄熱槽5内に強制循環
冷媒回路用および自然循環冷媒回路用の独立し1こ2系
統の伝熱管路4..4−2および6−+ 、 6−zを
それぞれ有し、通常冷房時は室内ユニットYの伝熱管路
4−2を蒸発器として作用させて冷房を行い、蓄冷熱時
は蓄熱槽5の強制循環冷媒回路用の伝熱管路6−1を蒸
発器として蓄冷熱を行い、電力使用のピークカット時は
自然循環冷媒回路に切換えて、圧縮機1を停止するとと
もに室内ユニットYの伝熱管路4−2を蒸発器とし、蓄
熱槽5の伝熱管路6−2を凝縮器としてそれぞれ作用せ
しめて、蓄熱槽5の蓄冷熱を放冷して冷房を行い、省エ
ネルギーを計っている。
In addition to an indoor unit Y having an indoor heat exchanger 4, the heat storage type air conditioner also has a heat storage tank 5 located higher than the indoor unit Y.
is installed, and one or two independent systems of heat transfer pipes 4. for forced circulation refrigerant circuit and natural circulation refrigerant circuit are installed in indoor heat exchanger 4 and heat storage tank 5. .. 4-2, 6-+, and 6-z, and during normal cooling, the heat transfer pipe 4-2 of the indoor unit Y acts as an evaporator to perform cooling, and when storing cold heat, the heat storage tank 5 is forcedly closed. The heat transfer pipe 6-1 for the circulating refrigerant circuit is used as an evaporator to store cold heat, and when peak power usage is cut, the circuit is switched to the natural circulation refrigerant circuit to stop the compressor 1 and the heat transfer pipe 4 of the indoor unit Y. -2 is used as an evaporator, and the heat transfer pipe line 6-2 of the heat storage tank 5 is made to function as a condenser, and the cold heat stored in the heat storage tank 5 is released to perform cooling, thereby saving energy.

(発明−が解決しようとする問題点) しかしながら、該装置は冷媒の重力を利用して冷媒を移
送する方式であるため、冷媒を移送する移送力は蓄熱槽
5と室内ユニットYとの上下ヘッド差であり、装置をパ
ッケージ化する場合両者のヘッド差が十分数れないため
、能力を確保することが困難となる。
(Problem to be solved by the invention) However, since this device uses the gravity of the refrigerant to transfer the refrigerant, the transfer force for transferring the refrigerant is applied to the upper and lower heads of the heat storage tank 5 and the indoor unit Y. This is a difference, and when packaging the device, the head difference between the two cannot be sufficiently counted, making it difficult to secure capacity.

また、蓄熱槽5と室内ユニットYとに強制循環冷媒回路
用と自然循環冷媒回路用との伝熱管路が前記の如くそれ
ぞれ独立して2系統必要であるため配管が複雑となり、
必要冷媒貴ら異なるので受液器35の他に液溜め器36
が必要である。
In addition, since the heat storage tank 5 and the indoor unit Y require two independent heat transfer pipe lines, one for the forced circulation refrigerant circuit and one for the natural circulation refrigerant circuit, as described above, the piping becomes complicated.
Since the required refrigerant is different, a liquid reservoir 36 is required in addition to the liquid receiver 35.
is necessary.

(問題点を解決するための手段) そこで本発明は前記問題点を解決するための手段として
、容量可変とした電動式の圧縮機1、室外熱交換器2、
減圧器3および室内熱交換器4からなる冷媒回路を有す
る空気調和機に蓄熱槽5を付設し、蓄冷熱運転時は室外
熱交換器2を凝縮器とし、前記蓄熱槽5内の伝熱管路6
を蒸発器としてそれぞれ作用せしめて蓄冷熱する一方、
電力ピークンフト運転時は圧縮機1を低能力で駆動する
とともに、前記伝熱管路6を凝縮器として作用せしめ冷
媒を液化し、該液化した冷媒を前記減圧器3をバイパス
して室内熱交換器4を蒸発器として作用せしめる配管構
成としたものである。
(Means for Solving the Problems) Therefore, the present invention provides a variable capacity electric compressor 1, an outdoor heat exchanger 2,
A heat storage tank 5 is attached to an air conditioner having a refrigerant circuit consisting of a pressure reducer 3 and an indoor heat exchanger 4, and during cold storage heat operation, the outdoor heat exchanger 2 is used as a condenser, and a heat transfer pipe line in the heat storage tank 5 is attached. 6
act as evaporators to store cold heat,
During peak power operation, the compressor 1 is driven at low capacity, the heat transfer pipe 6 is made to act as a condenser to liquefy the refrigerant, and the liquefied refrigerant bypasses the pressure reducer 3 and is transferred to the indoor heat exchanger 4. The piping is configured to function as an evaporator.

(作 用) 本発明は前記手段により、通常冷房運転時は圧縮機lを
運転し、室外熱交換器2を凝縮器とし、室内熱交角型4
を蒸発器としてそれぞれ作用せしめて、ピーク電力負荷
が発生しない時間帯での通常冷房を行う。そして、冷房
運転停止時、例えば冷房の必要でない深夜あるいは室温
が低下して冷房用サーモスタットが作動した時に、室内
ユニットYより蓄熱槽5に切換えて、蓄熱槽5内の伝熱
管路6を蒸発器として作用せしめて蓄熱材に蓄冷熱を行
っておく。
(Function) According to the above-mentioned means, the present invention operates the compressor 1 during normal cooling operation, uses the outdoor heat exchanger 2 as a condenser, and uses the indoor heat exchanger square type 4
Each acts as an evaporator to perform normal cooling during times when peak power loads do not occur. When the cooling operation is stopped, for example late at night when cooling is not required, or when the room temperature drops and the cooling thermostat is activated, the indoor unit Y is switched to the heat storage tank 5, and the heat transfer pipe line 6 in the heat storage tank 5 is connected to the evaporator. The heat storage material acts as a cold storage material to store cold heat.

しかして、電力負荷がピーク状態のとき冷媒を蓄熱槽5
内の伝熱管路6で凝縮させ、液化冷媒を減圧器3をバイ
パスさせて減圧せずに室内熱交換器4内で蒸発させて通
常冷媒と同等能力の冷房を行うが、このとき圧縮機lを
冷媒配管抵抗に打勝つポンプとして作動仕しめて低能力
とし、電力消費量を低減して」転するものである。
Therefore, when the power load is at its peak, the refrigerant is transferred to the heat storage tank 5.
The liquefied refrigerant bypasses the pressure reducer 3 and is evaporated in the indoor heat exchanger 4 without being depressurized to provide cooling with the same capacity as normal refrigerant. The system operates as a pump that overcomes the resistance of refrigerant piping, resulting in low capacity and reduced power consumption.

(実施例) 以下第1図ないし第3図を参照して本発明の好適な実施
例としての分離形番熱式空気調和機について説明する。
(Embodiment) A separate type thermal air conditioner as a preferred embodiment of the present invention will be described below with reference to FIGS. 1 to 3.

第1図に示す本発明の第1実施例の分離形番熱式空気調
和機は、室外ユニットXと室内ユニットYとを室外と室
内とに分離して配置している。室外ユニットXは、電動
式の圧縮機1、室外熱交換器2、室外ファン15、蓄熱
槽5およびインバータ16をケーンング内に収納してい
る。
In the separated type thermal air conditioner according to the first embodiment of the present invention shown in FIG. 1, an outdoor unit X and an indoor unit Y are arranged separately into an outdoor unit and an indoor unit. The outdoor unit X houses an electric compressor 1, an outdoor heat exchanger 2, an outdoor fan 15, a heat storage tank 5, and an inverter 16 in a caning.

蓄熱槽5はその内部に単一の伝熱管路6を内蔵熱を持つ
熱媒体を使用している。蓄熱槽5の大きさは圧縮機出力
IPS当り100(1位の容量のものを使用することが
好ましい。また、インバータ16は圧縮機lの回転数を
変化させて圧縮機の容量を可変とするために使用するも
のである。
The heat storage tank 5 has a single heat transfer pipe 6 inside thereof and uses a heat medium having heat therein. The size of the heat storage tank 5 is 100 per compressor output IPS (it is preferable to use one with a capacity of 1st place.In addition, the inverter 16 changes the rotation speed of the compressor 1 to make the capacity of the compressor variable. It is used for

前記室外ユニットXは前記各機器を次の如く配管接続す
る。すなわち、ガス側端子8、圧縮機1の吸入側、同吐
出側、室外熱交換器2、逆止弁9および液態端子10を
順次接続し、さらに、三方切換弁11、蓄熱槽5の伝熱
管路6および逆止弁13と蓄熱用の膨張弁I2の直列回
路に逆上弁14を並列に接続した並列回路を、室外熱交
換器2と逆止弁9とに並列に接続する如く、圧縮itと
室外熱交換器2との門から分岐して逆止弁9と液態端子
10との間に接続する。
The outdoor unit X connects each of the devices with piping as follows. That is, the gas side terminal 8, the suction side and discharge side of the compressor 1, the outdoor heat exchanger 2, the check valve 9, and the liquid terminal 10 are connected in sequence, and the three-way switching valve 11 and the heat transfer tube of the heat storage tank 5 are connected in sequence. A parallel circuit in which the reversal valve 14 is connected in parallel to the series circuit of the passage 6, the check valve 13, and the expansion valve I2 for heat storage is connected in parallel to the outdoor heat exchanger 2 and the check valve 9. It branches from the gate between IT and the outdoor heat exchanger 2 and is connected between the check valve 9 and the liquid terminal 10.

しかして、前記逆止弁9は室外熱交換器2より液態端子
IOに向う方向が、逆止弁13は膨張弁12より蓄熱槽
5に向う方向が、また逆止弁1 =1は蓄熱槽5より液
態端子10に向う方向かそれぞ槽5に接続されるボート
Aを、圧縮機1と室外熱交換器2との間に接続されるポ
ートBと、圧縮機1とガス側端子8との間に接続される
ポートCとに切換接続する如く構成される。
Therefore, the check valve 9 is directed from the outdoor heat exchanger 2 toward the liquid terminal IO, the check valve 13 is directed from the expansion valve 12 toward the heat storage tank 5, and the check valve 1 = 1 is the heat storage tank. 5 to the liquid terminal 10 or the boat A connected to the tank 5, respectively, to the port B connected between the compressor 1 and the outdoor heat exchanger 2, and to the compressor 1 and the gas side terminal 8. It is configured such that it can be switched and connected to port C connected between the two ports.

一方、室内ユニットYは室内熱交換器4、室内ファン1
7、冷房用の膨張弁19および電磁弁20をケーノング
内に収納し、液態端子18、膨張弁1つと電磁弁20と
の並列回路、室内熱交換器4およびガス側端子2Iを順
次接続する。なお、電磁弁20は電力ビークンフト運転
時のみ開とし、通常冷房時および蓄冷熱運転時には閉と
するものである。
On the other hand, indoor unit Y has an indoor heat exchanger 4 and an indoor fan 1.
7. The cooling expansion valve 19 and the solenoid valve 20 are housed in the canong, and the liquid terminal 18, the parallel circuit of one expansion valve and the solenoid valve 20, the indoor heat exchanger 4, and the gas side terminal 2I are connected in sequence. Note that the solenoid valve 20 is opened only during electric power pickup operation, and closed during normal cooling and cold storage heat operation.

そして、前記室外ユニットXと室内ユニットYとの各ガ
ス側端子8と21および液態端子10と18とをそれぞ
れ接続して循環冷媒回路を形成するものである。
The gas terminals 8 and 21 and the liquid terminals 10 and 18 of the outdoor unit X and indoor unit Y are connected to each other to form a circulating refrigerant circuit.

次に、叙上の如く構成し、た冷媒回路の作用について説
明する。夏期ピーク電力負荷が発生しない時間帯での通
常の冷房運転は、圧縮機1、室外ファン155よび室内
ファン17をそれぞれ駆動し、電磁弁20を閉として実
線矢印の如く冷媒を流通さ亡て、室外熱交換器4で室内
を冷房する。そして、冷房運転停止時、例えば冷房の必
要でない深夜あるいは室温が低下して冷房用サーモスタ
ットが作動して冷房が停止している時は、圧縮機Iおよ
び室外ファン15を駆動し、三方切換弁11をボートA
とボートCとを連通させ、破線矢印の如く、圧縮機1、
室外熱交換器2、逆止弁9、膨張弁12、逆止弁13、
蓄熱槽5の伝熱管路6、三方切換弁11のボートA1同
ポートCおよび圧縮機lの如く冷媒を流通させ、室外熱
交換器2を凝縮器、伝熱管路6を蒸発器としてそれぞれ
作用させ、蓄熱材7としての水を氷の状態にして蓄冷熱
する。
Next, the operation of the refrigerant circuit constructed as described above will be explained. In normal cooling operation during the time when peak power load does not occur in the summer, the compressor 1, the outdoor fan 155, and the indoor fan 17 are each driven, the solenoid valve 20 is closed, and the refrigerant is circulated as shown by the solid line arrow. The outdoor heat exchanger 4 cools the room. When the cooling operation is stopped, for example late at night when cooling is not necessary, or when the room temperature has dropped and the cooling thermostat is activated and the cooling is stopped, the compressor I and the outdoor fan 15 are driven, and the three-way switching valve 11 is activated. Boat A
and boat C, and compressor 1, as shown by the broken line arrow.
outdoor heat exchanger 2, check valve 9, expansion valve 12, check valve 13,
The refrigerant is passed through the heat transfer pipe 6 of the heat storage tank 5, the boat A1 port C of the three-way switching valve 11, and the compressor l, and the outdoor heat exchanger 2 acts as a condenser and the heat transfer pipe 6 acts as an evaporator. , the water serving as the heat storage material 7 is turned into ice to store cold heat.

次に、電力負荷かピークの状態のときは電力ピークンフ
ト運転を行う。すなわち、電力’tP費塁の大きい圧縮
機lをインバータ16で低速運転して低能力とするとと
らに、室内ファン17を駆動し、電磁弁20を開、三方
切換弁11のボートBとポートAとを連通せしめると、
冷媒は白抜矢印の如く、圧縮機l、三方切換弁11のポ
ートB、同ボートA、伝熱管路6、逆上弁14、電磁弁
20、室内熱交換器4および圧縮機Iと循環し、圧縮機
1の吐出ガスを蓄熱槽5内の伝熱管路6で蓄熱材として
の水で凝縮せしめて液化しく約5℃)、この液冷媒を冷
房用の膨張弁19をバイパスする電磁弁20を流通させ
、減圧しないで室内熱交換器4て蒸発させ室内を冷房す
る。
Next, when the power load is at its peak, power peak-down operation is performed. That is, the compressor l, which has a large electric power consumption, is operated at low speed by the inverter 16 to reduce its capacity, and at the same time, the indoor fan 17 is driven, the solenoid valve 20 is opened, and the boat B and port A of the three-way switching valve 11 are When you communicate with
The refrigerant circulates through the compressor I, the port B of the three-way switching valve 11, the boat A, the heat transfer pipe 6, the reverse valve 14, the solenoid valve 20, the indoor heat exchanger 4, and the compressor I, as indicated by the white arrow. , the gas discharged from the compressor 1 is condensed with water as a heat storage material in the heat transfer pipe line 6 in the heat storage tank 5 and liquefied (approximately 5° C.), and the electromagnetic valve 20 bypasses the expansion valve 19 for cooling the liquid refrigerant. is circulated and evaporated in the indoor heat exchanger 4 without reducing the pressure to cool the room.

ここで、冷媒は蓄熱槽5内の伝熱管路6内で凝縮される
が、蓄熱材7が水で低温であるので、凝縮温度も5°C
と低温であり、この液冷媒を減圧せずに室内熱交換器4
て蒸発させるので、圧縮itは冷媒を移送するポンプと
して作動することとなり低能力でよく、インバータ16
で低速駆動しても十分通常冷房時と同等の冷房が行える
ものである。なお、このため電磁弁20は開のとき冷媒
流通抵抗の少ないものを使用することが好ましいことは
言うまでもない。
Here, the refrigerant is condensed in the heat transfer pipe 6 in the heat storage tank 5, but since the heat storage material 7 is water and has a low temperature, the condensation temperature is also 5°C.
This liquid refrigerant is transferred to the indoor heat exchanger 4 without being depressurized.
Since the compressor IT operates as a pump to transfer the refrigerant, a low capacity is required, and the inverter 16
Even when driven at low speed, the air conditioner can provide sufficient cooling equivalent to normal cooling. For this reason, it goes without saying that it is preferable to use a solenoid valve 20 that has low refrigerant flow resistance when opened.

なお、前記実施例では減圧器3の作用をなすものは、冷
房用の膨張弁19および蓄熱用の膨張弁12の両者であ
り、また、膨張弁19と電磁弁20とは室内ユニットY
内に介設したが、これを逆止弁9と液態端子IO間の室
外ユニットX内に介設しても良い乙のであり、かくした
ときは室内での冷媒流通時の騒音か防止できる乙のであ
る。
In the above embodiment, both the cooling expansion valve 19 and the heat storage expansion valve 12 act as the pressure reducer 3, and the expansion valve 19 and the solenoid valve 20 are connected to the indoor unit Y.
Although this is installed inside the outdoor unit X between the check valve 9 and the liquid terminal IO, it is also possible to install it inside the outdoor unit It is.

次に、第2図に示す第2実施例は第1実施例の冷房用の
膨張弁19、電磁弁20、蓄熱用の膨張弁12、逆止弁
13および14の代りに、冷房、蓄冷熱兼用の膨張弁2
5と電磁弁26との直列回路を、逆止弁9と液態端子I
Oとの間に介設するとともに、膨張−弁25と電磁弁2
6との間から分岐して、電磁弁27を介して蓄熱槽5の
伝熱管路6に接続したほかは第1実施例と同様な回路で
ある。
Next, the second embodiment shown in FIG. Dual-purpose expansion valve 2
5 and the solenoid valve 26, and the check valve 9 and the liquid terminal I.
The expansion valve 25 and the solenoid valve 2 are interposed between the expansion valve 25 and the solenoid valve 2.
The circuit is the same as that of the first embodiment except that it is branched from between 6 and 6 and connected to the heat transfer pipe 6 of the heat storage tank 5 via the electromagnetic valve 27.

そして、本実施例における電磁弁26と電磁弁第2実施
例の蓄熱式空気調和機は叙上の如く構成するものである
ので、通常冷房時、蓄冷熱運転時および電力ビークノッ
ト運転時の冷媒流通方向はそれぞれ第2図の実線矢印、
破線矢印および白抜矢印の如く流通して第1図の第1実
施例と殆んど同様の作用を行なうので、その詳細は省略
するが、冷房、蓄冷熱兼用の膨張弁25が室外ユニット
Y内に介設されるので、第1実施例の膨張弁I9と電磁
弁20とを室外ユニットY内に介設したものと同様に、
室内での冷媒流通時の騒音が防止できろとともに、殆ん
どの機器が室外ユニットX内に収納できるので室内ユニ
ットY内の配管、配線が簡略にできる乙のである。
Since the solenoid valve 26 of this embodiment and the regenerative air conditioner of the second embodiment of the solenoid valve are constructed as described above, the refrigerant flow during normal cooling, cold storage heat operation, and power peak knot operation is The directions are indicated by the solid arrows in Figure 2, respectively.
The expansion valve 25, which serves both for cooling and for storing cold heat, is connected to the outdoor unit Y. Since the expansion valve I9 and the solenoid valve 20 of the first embodiment are installed inside the outdoor unit Y,
Not only can noise be prevented when the refrigerant circulates indoors, but since most of the equipment can be stored in the outdoor unit X, piping and wiring in the indoor unit Y can be simplified.

なお、この実施例では減圧器3の作用をなすものは、冷
房、蓄冷熱兼用の膨張弁25であることは言うまでもな
い。
It goes without saying that in this embodiment, what functions as the pressure reducer 3 is the expansion valve 25 which serves both for cooling and storing cold heat.

実に、第3図に示す第3実施例は第り実施例および第2
実施例が冷房のみを行うものであるのに対し、該冷媒回
路に四路切艮弁30その他の機器を付加して冷暖房を行
う空気調和機である。
Indeed, the third embodiment shown in FIG.
While the embodiment performs only cooling, this is an air conditioner that performs heating and cooling by adding a four-way valve 30 and other devices to the refrigerant circuit.

すなわち、第3実施例は第1実施例の圧縮機Iの吐出側
および吸入側に四路切換弁30を介設し、さらに、四路
切換弁30、室外熱交換器2、圧縮機lの吸入側との間
に三方切換弁3Lを、また、逆止弁9に並列に暖房用の
膨張弁32を接続し、膨張弁32と液態端子10との間
から分岐して電磁弁33を介して逆止弁13と伝熱管路
6との間に接続し、膨張弁12は逆止弁9を介さず直接
室外熱交換器2に接続するほかは前記第1実施例または
第2実施例と同様であるので構成の詳細は省略する。
That is, in the third embodiment, the four-way switching valve 30 is interposed on the discharge side and the suction side of the compressor I of the first embodiment, and the four-way switching valve 30, the outdoor heat exchanger 2, and the compressor I are A three-way switching valve 3L is connected to the suction side, and an expansion valve 32 for heating is connected in parallel to the check valve 9. This is different from the first embodiment or the second embodiment, except that the check valve 13 is connected between the check valve 13 and the heat transfer pipe 6, and the expansion valve 12 is directly connected to the outdoor heat exchanger 2 without using the check valve 9. Since they are similar, the details of the configuration will be omitted.

叙上の蓄熱式空気調和機で夏期の冷房運転状態は第1実
施例とほぼ同様であるので簡単に説明する。
Since the cooling operation state of the above-mentioned regenerative air conditioner in summer is almost the same as that of the first embodiment, it will be briefly explained.

まず、通常の冷房時は実線矢示の如く、冷媒を圧縮機1
、四路切換弁30、三方切換弁31のボートB、同ポー
トA、室外熱交換器2、逆止弁9、膨張弁19、室内熱
交換器4、四路切換弁30および圧縮機1と流通させて
室内を冷、房する。次に、蓄冷熱運転時は、破線矢印の
如く、圧縮機l、四路切換弁30、三方切換弁31のボ
ートB1同ポー)A、室外熱交換器2、膨張弁12、逆
止弁I3、伝熱管路6、三方切換弁11のボートA、同
ポートcおよび圧縮機1の如く冷媒を流通させて蓄熱槽
5に蓄冷熱する。また、電力ピークシフト運転時は電磁
弁33および電磁弁20を共に開とし、冷媒を白抜矢示
の如く、圧縮機1、四路切換弁30、三方切換弁11の
ボートB、同ポートA、伝熱管路6、電磁弁33、電磁
弁20、室内熱交換器4、四路切換弁30、圧縮機1と
流通させて、蓄熱槽5の蓄冷熱を室内熱交換器4におい
て放冷し冷房を行う。
First, during normal cooling, the refrigerant is pumped into the compressor 1 as shown by the solid line arrow.
, the four-way switching valve 30, the boat B of the three-way switching valve 31, the same port A, the outdoor heat exchanger 2, the check valve 9, the expansion valve 19, the indoor heat exchanger 4, the four-way switching valve 30, and the compressor 1. It circulates to cool and air the room. Next, during cold storage heat operation, as shown by the broken line arrow, the compressor 1, the four-way switching valve 30, the three-way switching valve 31, the boat B1) A, the outdoor heat exchanger 2, the expansion valve 12, and the check valve I3. , the heat transfer pipe 6 , the boat A of the three-way switching valve 11 , the port C of the three-way switching valve 11 , and the compressor 1 through which the refrigerant flows to store cold heat in the heat storage tank 5 . During power peak shift operation, both the solenoid valve 33 and the solenoid valve 20 are opened, and the refrigerant is transferred to the boat B and port A of the compressor 1, four-way switching valve 30, and three-way switching valve 11 as shown by the white arrows. , the heat transfer pipe 6, the solenoid valve 33, the solenoid valve 20, the indoor heat exchanger 4, the four-way switching valve 30, and the compressor 1, so that the cold heat stored in the heat storage tank 5 is cooled in the indoor heat exchanger 4. Cool the room.

しかして冬期の通常の暖房時は、実線二重矢印の如く、
圧縮機I、四路切換弁30、室内熱交換器4、電磁弁2
0、膨張弁32、室外熱交換器2、三方切換弁31のボ
ートA、同ポー1− B、四路切換弁30および圧縮機
1と冷媒を流通させて暖房を行う。冬期の蓄冷熱運転時
は破線二重矢印の如く、圧縮機l、四路切換弁30、三
方切換弁11のボートB1同ポー1、A−伝熱管路6、
雷α[33、膨張弁32、室外熱交換器2、三方切換弁
31のボートA、同ポートCおよび圧縮機Iと冷媒を流
通させて、蓄熱槽5に蓄暖熱を行う。
However, during normal heating in winter, as shown by the solid double arrow,
Compressor I, four-way switching valve 30, indoor heat exchanger 4, solenoid valve 2
Heating is performed by circulating refrigerant through the expansion valve 32, the outdoor heat exchanger 2, the boat A of the three-way switching valve 31, the port 1-B of the three-way switching valve 31, the four-way switching valve 30, and the compressor 1. During cold storage heat operation in winter, the compressor 1, four-way switching valve 30, three-way switching valve 11, boat B1 port 1, A-heat transfer pipe 6,
The refrigerant is circulated through the lightning α [33, the expansion valve 32, the outdoor heat exchanger 2, the boat A and the port C of the three-way switching valve 31, and the compressor I, to store heat in the heat storage tank 5.

また、暖房立上り時には白抜二重矢印の如く、圧縮R1
、四路切換弁30、室内熱交換(社)4、電磁弁20、
膨張弁32、室外熱交換器2、三方切換弁31のボート
A、同ポートB、四路切換弁30および圧縮機l、と前
記室外熱交換器2および三方切換弁31に並列に膨張弁
32と室外熱交換器2との間から分岐して膨張弁12(
この場合は電動膨張弁を使用し全開とする)、逆上弁I
3、伝熱管路6、三方切換弁11のボートA、同ポート
Bより四路切換弁30と三方切換弁31のボートBとの
間に冷媒を流通させて、室外熱交換器2より収熱すると
同時に蓄熱槽5の蓄暖熱を放熱して急速に暖房を行い、
暖房立上りを早くする。
Also, at the start of heating, compression R1 is shown as a white double arrow.
, four-way switching valve 30, indoor heat exchange company 4, solenoid valve 20,
The expansion valve 32, the outdoor heat exchanger 2, the boat A of the three-way switching valve 31, the same port B, the four-way switching valve 30, and the compressor L, and the expansion valve 32 are connected in parallel to the outdoor heat exchanger 2 and the three-way switching valve 31. An expansion valve 12 (
In this case, use an electric expansion valve and fully open it), reverse valve I
3. Coolant is circulated between the heat transfer pipe 6, the boat A of the three-way switching valve 11, and the port B of the four-way switching valve 30 and the boat B of the three-way switching valve 31, and heat is collected from the outdoor heat exchanger 2. At the same time, the heat stored in the heat storage tank 5 is radiated to rapidly heat the room.
Make heating start up faster.

なお、デフロスト運転時は夏期夜間または冷房停止時の
蓄熱運転と同様な冷媒循環(白抜矢印)であるので詳細
は省略する。
Note that during the defrost operation, the refrigerant circulation (white arrow) is similar to the heat storage operation during the summer night or when the air conditioner is stopped, so the details will be omitted.

この実施例では減圧器3の作用をなすものは、冷房用、
蓄熱用および暖房用の膨張弁19.12゜32である。
In this embodiment, those acting as the pressure reducer 3 are for cooling,
The expansion valve for heat storage and heating is 19.12°32.

(発明の効果) 本発明は叙上の如く構成するものであるので、次の如き
顕著な効果を奏するものである。
(Effects of the Invention) Since the present invention is configured as described above, it has the following remarkable effects.

すなイつち、夏期電力負荷がピーク状態のとき冷媒を蓄
熱槽5内の蓄冷熱により伝熱管路6で凝縮させるので、
凝縮温度か低温となり、従って凝縮圧力も上昇しないの
で、液化冷媒を減圧器3をバイパスさせて減圧せずに室
内熱交換器4で蒸発させ、通常冷房と同等能力の冷房を
行うことができる。従って、圧縮機Iは冷媒配管抵抗に
打勝つポンプとして作動せしめるので、電力使用量の最
ら大なる圧縮機1を低能力で駆動でき、電力消費遣を低
減できるものである。
In other words, when the summer power load is at its peak, the refrigerant is condensed in the heat transfer pipe 6 by the cold heat stored in the heat storage tank 5.
Since the condensation temperature becomes low and therefore the condensation pressure does not increase, the liquefied refrigerant is evaporated in the indoor heat exchanger 4 without being depressurized by bypassing the pressure reducer 3, and cooling with the same capacity as normal cooling can be performed. Therefore, since the compressor I is operated as a pump that overcomes the refrigerant pipe resistance, the compressor 1, which consumes the largest amount of power, can be driven at a low capacity, thereby reducing power consumption.

なお、蓄熱槽5の蓄熱材7として水等の融解潜熱を持つ
熱媒体を使用すれば効果が顕著となるものである。
Note that if a heat medium having latent heat of fusion, such as water, is used as the heat storage material 7 of the heat storage tank 5, the effect will be significant.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図および第3図はそれぞれ本発明の蓄熱式
空気調和機の第1実施例、第2実施例および第3実施例
の配管接続図、第4図は従来の蓄熱式空気調和機の配管
接続図である。 l・・・・・圧縮機 2・・・・・室外熱交換器 3・・・・・減圧器 4・・・・・室内熱交換器 5・・・・・蓄熱槽 6・・・・・伝熱管路
Fig. 1, Fig. 2, and Fig. 3 are piping connection diagrams of the first, second, and third embodiments of the regenerative air conditioner of the present invention, respectively, and Fig. 4 is the piping connection diagram of the conventional regenerative air conditioner. It is a piping connection diagram of a harmonizer. l... Compressor 2... Outdoor heat exchanger 3... Pressure reducer 4... Indoor heat exchanger 5... Heat storage tank 6... heat transfer pipe line

Claims (1)

【特許請求の範囲】[Claims] 1、容量可変とした電動式の圧縮機(1)、室外熱交換
器(2)、減圧器(3)および室内熱交換器(4)から
なる冷媒回路を有する空気調和機に蓄熱槽(5)を付設
し、蓄冷熱運転時は室外熱交換器(2)を凝縮器とし、
前記蓄熱槽(5)内の伝熱管路(6)を蒸発器としてそ
れぞれ作用せしめて蓄冷熱する一方、電力ピークシフト
運転時は圧縮機(1)を低能力で駆動するとともに、前
記伝熱管路(6)を凝縮器として作用せしめて冷媒を液
化し、該液化した冷媒を前記減圧器(3)をバイパスし
て室内熱交換器(4)を蒸発器として作用せしめる配管
構成としたことを特徴とする蓄熱式空気調和機。
1. A heat storage tank (5 ), and during cold storage heat operation, the outdoor heat exchanger (2) is used as a condenser.
The heat transfer pipes (6) in the heat storage tank (5) act as evaporators to store cold heat, while the compressor (1) is driven at low capacity during power peak shift operation, and the heat transfer pipes (6) acts as a condenser to liquefy the refrigerant, the liquefied refrigerant bypasses the pressure reducer (3), and the indoor heat exchanger (4) acts as an evaporator. A heat storage type air conditioner.
JP61123179A 1986-05-27 1986-05-27 Heat accumulation type air conditioner Pending JPS62280551A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61123179A JPS62280551A (en) 1986-05-27 1986-05-27 Heat accumulation type air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61123179A JPS62280551A (en) 1986-05-27 1986-05-27 Heat accumulation type air conditioner

Publications (1)

Publication Number Publication Date
JPS62280551A true JPS62280551A (en) 1987-12-05

Family

ID=14854143

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61123179A Pending JPS62280551A (en) 1986-05-27 1986-05-27 Heat accumulation type air conditioner

Country Status (1)

Country Link
JP (1) JPS62280551A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0363443A (en) * 1989-08-01 1991-03-19 Daikin Ind Ltd Operation controller for regenerative air conditioner

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5523159U (en) * 1978-08-02 1980-02-14
JPS5819641A (en) * 1981-07-27 1983-02-04 Matsushita Electric Ind Co Ltd Operation control device of heat accumulating air conditioner

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5523159U (en) * 1978-08-02 1980-02-14
JPS5819641A (en) * 1981-07-27 1983-02-04 Matsushita Electric Ind Co Ltd Operation control device of heat accumulating air conditioner

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0363443A (en) * 1989-08-01 1991-03-19 Daikin Ind Ltd Operation controller for regenerative air conditioner

Similar Documents

Publication Publication Date Title
US5211029A (en) Combined multi-modal air conditioning apparatus and negative energy storage system
US20140230477A1 (en) Hot water supply air conditioning system
KR101864636B1 (en) Waste heat recovery type hybrid heat pump system
JPH0634169A (en) Air conditioning device
US20200393170A1 (en) Chiller plant with ice storage
CN212109084U (en) Air conditioning system with natural cooling function
JPS62280551A (en) Heat accumulation type air conditioner
JPH03294754A (en) Air conditioner
CN218977173U (en) Refrigerating system
KR100187774B1 (en) A regenerative cooling system
JPH0794927B2 (en) Air conditioner
JPH11173689A (en) Heat storage type cooling device
JP2661313B2 (en) Thermal storage refrigeration cycle device
JPS6162774A (en) Heat accumulation type refrigerator
JPS5960164A (en) Heat accumulation type air cooler
JPH05215490A (en) Air conditioner utilizing heat pump
JPH02219933A (en) Cold storage system
JPH11211259A (en) Regenerative type heat pump air conditioning equipment
JPS62153658A (en) Method of operating heat energy utilizer
JPS6387563A (en) Heat accumulation type air conditioner
JP3998423B2 (en) Air conditioner
JP3370478B2 (en) Air conditioning system
JPH08303900A (en) Heat storage type heat pump air conditioner and operation method thereof
JPH0278869A (en) Multi-purpose room heating and cooling device
JPH06101934A (en) Air-conditioning apparatus