JPH07117327B2 - Air conditioner - Google Patents

Air conditioner

Info

Publication number
JPH07117327B2
JPH07117327B2 JP1025465A JP2546589A JPH07117327B2 JP H07117327 B2 JPH07117327 B2 JP H07117327B2 JP 1025465 A JP1025465 A JP 1025465A JP 2546589 A JP2546589 A JP 2546589A JP H07117327 B2 JPH07117327 B2 JP H07117327B2
Authority
JP
Japan
Prior art keywords
refrigerant
superheat
degree
expansion valve
outdoor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1025465A
Other languages
Japanese (ja)
Other versions
JPH02208469A (en
Inventor
隆 松崎
伸一 中石
幸雄 重永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP1025465A priority Critical patent/JPH07117327B2/en
Publication of JPH02208469A publication Critical patent/JPH02208469A/en
Publication of JPH07117327B2 publication Critical patent/JPH07117327B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/21Refrigerant outlet evaporator temperature

Landscapes

  • Air Conditioning Control Device (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、膨張弁の開度調節により過熱度を制御目標値
に応じて制御するようにした空気調和装置に係り、特
に、冷媒循環量の欠乏状態を検知するようにしたものの
改良に関する。
Description: TECHNICAL FIELD The present invention relates to an air conditioner in which the degree of superheat is controlled according to a control target value by adjusting the opening degree of an expansion valve, and in particular, the refrigerant circulation amount. The present invention relates to the improvement of the device for detecting the deficiency state of.

(従来の技術) 従来より、空気調和装置の運転中における冷媒循環量の
欠乏状態を検出するものとして、例えば実開昭63−1138
43号公報に開示される如く、一台の室外ユニットに複数
の室内ユニットを並列に接続したいわゆるマルチ形空気
調和装置において、圧力センサにより低圧を検知し、低
圧が所定値以下になる状態が一定時間持続すれば、冷媒
の欠乏状態と判定することにより、冷媒配管の誤配線を
検知するものは知られている。
(Prior Art) Conventionally, as a device for detecting a deficient state of the refrigerant circulation amount during the operation of an air conditioner, for example, in Japanese Utility Model Laid-Open No. 63-1138
As disclosed in Japanese Patent Publication No. 43, in a so-called multi-type air conditioner in which a plurality of indoor units are connected in parallel to one outdoor unit, a low pressure is detected by a pressure sensor, and the state where the low pressure is below a predetermined value is constant. It is known that the miswiring of the refrigerant pipe is detected by determining that the refrigerant is deficient if the time continues.

(発明が解決しようとする課題) 上記従来のものを利用して、空気調和装置の運転中にお
ける冷媒循環量の欠乏を検知することが考えられる。
(Problems to be Solved by the Invention) It is conceivable to detect the lack of the refrigerant circulation amount during the operation of the air conditioner by using the above conventional one.

しかしながら、冷媒の欠乏を検知するのに圧力センサを
利用する場合、冷媒の圧力状態は脈動等の変化が大きい
ので、冷媒が欠乏していないのに欠乏状態と判定した
り、検知の時間遅れが生じる等の問題がある。
However, when the pressure sensor is used to detect the lack of the refrigerant, the pressure state of the refrigerant is greatly changed such as pulsation, so it is determined that the refrigerant is deficient even if the refrigerant is not deficient, or there is a time delay in detection. There are problems such as occurrence.

また、通常、冷房運転時には低圧一定制御、暖房運転時
には高圧一定制御を行うための圧力センサが配置されて
いるので、冷房運転時の冷媒欠乏状態は、既設のセンサ
を利用して検知することができるが、暖房運転中の冷媒
欠乏を検知しようとすると、別途圧力センサを配置する
必要があり、コストアップを招くという問題もある。
Further, normally, since a pressure sensor for performing low pressure constant control during cooling operation and high pressure constant control during heating operation is arranged, the refrigerant deficiency state during cooling operation can be detected using an existing sensor. However, if it is attempted to detect the lack of the refrigerant during the heating operation, it is necessary to dispose a pressure sensor separately, which causes a problem of increasing cost.

本発明は斯かる点に鑑みてなされたものであり、その目
的は、膨張弁の開度制御の指標として利用されている冷
媒の過熱度の状態から冷媒の欠乏を検知することによ
り、別途センサ類を設けることなく冷媒の欠乏を確実に
検知して、信頼性の向上を図ることにある。
The present invention has been made in view of such a point, and an object thereof is to detect a lack of the refrigerant from the state of the degree of superheat of the refrigerant that is used as an index for controlling the opening degree of the expansion valve, thereby separately detecting a sensor. It is intended to reliably detect the lack of the refrigerant without providing a class and improve the reliability.

(課題を解決するための手段) 上記目的を達成するため本発明の解決手段は、原理的に
は、第1図に示すように、圧縮機(1)、凝縮器(12又
は6)、開度の調節可能な膨張弁(8又は13)及び蒸発
器(6又は12)を順次接続してなる冷媒回路(14)を備
えた空気調和装置において、上記蒸発器(6又は12)に
おける冷媒の過熱度を検出する過熱度検出手段(50A)
と、該過熱度検出手段(50A)の出力を受け、過熱度が
所定の制御目標値に収束するように上記膨張弁(8又は
13)の開度を制御する開度制御手段(51A)と、該開度
制御手段(51A)で制御される膨張弁(8又は13)の開
度が最大で、かつ上記過熱度検出手段(50A)で検出さ
れる過熱度が上記制御目標値よりも所定値以上高い状態
が一定時間以上継続するときには、冷媒欠乏信号を出力
する信号出力手段(52)とを設けることにより、過熱度
を一定に制御するようにした開度制御時の膨張弁開度と
過熱度との関係から冷媒の欠乏状態を判定することにあ
る。
(Means for Solving the Problem) In order to achieve the above object, the solution means of the present invention is, in principle, as shown in FIG. 1, a compressor (1), a condenser (12 or 6), an opener. In an air conditioner provided with a refrigerant circuit (14) in which an expansion valve (8 or 13) whose degree is adjustable and an evaporator (6 or 12) are sequentially connected, the refrigerant in the evaporator (6 or 12) is Superheat detection means (50A) to detect superheat
And the output of the superheat detection means (50A), and the expansion valve (8 or 8) so that the superheat converges to a predetermined control target value.
The opening degree control means (51A) for controlling the opening degree of 13), the opening degree of the expansion valve (8 or 13) controlled by the opening degree control means (51A) is maximum, and the superheat degree detecting means ( When the superheat detected at 50A) is higher than the control target value by a predetermined value or more for a certain period of time or more, the superheat is kept constant by providing a signal output means (52) that outputs a refrigerant depletion signal. This is to determine the lack state of the refrigerant from the relationship between the expansion valve opening and the degree of superheat when the opening control is performed in accordance with the above control.

より具体的には、第2図に示すように、圧縮機(1)、
熱源側熱交換器(6)を有する室外ユニット(A)に対
して、利用側熱交換器(12)および該利用側熱交換器
(12)用の開度の調節可能な膨張弁(13)を内蔵する複
数の室内ユニット(B)〜(F)を並列に接続してなる
冷媒回路(14)を備えた空気調和装置を対象とする。そ
して、冷房運転時、上記各利用側熱交換器(12),…に
おける冷媒の過熱度を検出する過熱度検出手段(50
B),…と、該各過熱度検出手段(50B),…の出力を受
け、過熱度が所定の制御目標値に収束するよう上記膨張
弁(13),…の開度を制御する開度制御手段(51B),
…とを設けるものとする。
More specifically, as shown in FIG. 2, the compressor (1),
For an outdoor unit (A) having a heat source side heat exchanger (6), a use side heat exchanger (12) and an expansion valve (13) with adjustable opening for the use side heat exchanger (12). The present invention is directed to an air conditioner including a refrigerant circuit (14) in which a plurality of indoor units (B) to (F) containing therein are connected in parallel. Then, during the cooling operation, a superheat degree detecting means (50) for detecting the superheat degree of the refrigerant in each of the use side heat exchangers (12) ,.
B), ..., And the opening degree for controlling the opening degree of the expansion valves (13), ... In response to the outputs of the respective superheat degree detecting means (50B), ... so that the superheat degree converges to a predetermined control target value. Control means (51B),
... and shall be provided.

さらに、上記各室内ユニット(B)〜(F)のうちいず
れか一つにおいて、上記開度制御手段(51B)で制御さ
れる膨張弁(13)の開度が最大で、かつ上記過熱度検出
手段(50B)で検出される過熱度が上記制御目標値より
も所定値以上高い状態で一定時間以上継続するときに
は、冷媒欠乏信号を出力する信号出力手段(52)を設け
たものである。
Further, in any one of the indoor units (B) to (F), the opening degree of the expansion valve (13) controlled by the opening degree control means (51B) is maximum, and the superheat detection is performed. A signal output means (52) is provided for outputting a refrigerant deficiency signal when the degree of superheat detected by the means (50B) is higher than the control target value by a predetermined value or more and continues for a predetermined time or longer.

(作用) 以上の構成により、本発明では、複数の室内ユニット
(B)〜(F)を備えた空気調和装置の冷房運転時、各
室内ユニット(B)〜(F)において、各過熱度検出手
段(50B),…により各利用側熱交換器(12),…にお
ける冷媒の過熱度が検出され、各開度制御手段(51
B),…により、過熱度が制御目標値に収束するように
各膨張弁(13),…の開度が制御され、冷媒循環量が十
分あれば、空調負荷に対応した能力制御が行われる。
(Operation) With the above configuration, in the present invention, during the cooling operation of the air conditioner including the plurality of indoor units (B) to (F), each superheat detection is performed in each of the indoor units (B) to (F). The means (50B), ... Detects the degree of superheat of the refrigerant in each of the use side heat exchangers (12) ,.
B) ... controls the opening of each expansion valve (13) so that the degree of superheat converges to the control target value, and if the refrigerant circulation amount is sufficient, capacity control corresponding to the air conditioning load is performed. .

しかし、冷媒回路(14)全体の偏流、室内負荷等の運転
状況等で定まる冷媒循環量が十分でないときには、各室
内ユニット(B)〜(F)のうちいずれか一つにおい
て、利用側熱交換器(12)における冷媒の蒸発量の減少
に伴ない過熱度が上昇する。そして、当該室内ユニット
の膨張弁(13)で上昇した過熱度を制御目標値に維持す
べく膨張弁(13)の開度が開き側に制御されるが、冷媒
の循環量が少ないので、過熱度の上昇を抑制し得ず、弁
開度が全開値でしかも過熱度が制御目標値よりも所定値
以上高い状態が継続することになり、このような状態が
一定時間以上継続したときには、信号出力手段(52)に
より冷媒欠乏信号が出力される。
However, when the refrigerant circulation amount determined by the operating conditions such as the non-uniform flow of the entire refrigerant circuit (14) and the indoor load is not sufficient, in any one of the indoor units (B) to (F), the heat exchange on the use side is performed. The degree of superheat increases as the amount of refrigerant evaporated in the vessel (12) decreases. Then, the opening of the expansion valve (13) is controlled to the open side in order to maintain the degree of superheat raised by the expansion valve (13) of the indoor unit at the control target value, but the circulation amount of the refrigerant is small, so If the valve opening is at the fully open value and the degree of superheat is higher than the control target value by a predetermined value or more, the signal will be A refrigerant deficiency signal is output by the output means (52).

その場合、冷媒の欠乏状態が弁開度制御に利用する過熱
度とそのときの弁開度とから判断されるので、圧力をパ
ラメータとして検知する場合のような誤検知を生じる虞
れがなく、信頼性が向上することになる。
In that case, the lack of refrigerant is determined from the degree of superheat used for valve opening control and the valve opening at that time, so there is no risk of erroneous detection such as when pressure is detected as a parameter. Reliability will be improved.

(実施例) 以下、本発明の実施例について、第3図以下の図面に基
づき説明する。
(Embodiment) An embodiment of the present invention will be described below with reference to the drawings starting from FIG.

第3図は本発明の実施例に係るマルチ型空気調和装置の
冷媒配管系統を示し、(A)は室外ユニット、(B)〜
(F)は該室外ユニット(A)に並列に接続された室内
ユニットである。上記室外ユニット(A)の内部には、
出力周波数を30〜70Hzの範囲で10Hz毎に可変に切換えら
れるインバータ(2a)により容量が調整される第1圧縮
機(1a)と、パイロット圧の高低で差動するアンローダ
(2b)により容量がフルロード(100%)およびアンロ
ード(50%)状態の2段階に調整される第2圧縮機(1
b)とを逆止弁(1e)を介して並列に接続して構成され
る容量可変な圧縮機(1)と、該圧縮機(1)から吐出
されるガス中の油を分離する油分離器(4)と、暖房運
転時には図中実線の如く切換わり冷房運転時には図中破
線の如く切換わる四路切換弁(5)と、冷房運転時に凝
縮器、暖房運転時に蒸発器となる室外熱交換器(6)お
よび該室外熱交換器(6)に付設された室外ファン(6
a)と、過冷却コイル(7)と、冷房運転時には冷媒流
量を調節し、暖房運転時には冷媒の絞り作用を行う開度
の調節可能な膨張弁としての室外電動膨張弁(8)と、
液化した冷媒を貯蔵するレシーバ(9)と、アキュムレ
ータ(10)とが主要機器として内蔵されていて、該各機
器(1)〜(10)は各々冷媒の連絡配管(11)で冷媒の
流通可能に接続されている。また上記室内ユニット
(B)〜(F)は同一構成であり、各々、冷房運転時に
は蒸発器、暖房運転時には凝縮器となる室内熱交換器
(12),…およびそのファン(12a),…を備え、かつ
該室内熱交換器(12),…の液冷媒分岐管(11a),…
には、暖房運転時に冷媒流量を調節し、冷房運転時に冷
媒の絞り作用を行う冷房用減圧機構としての室内電動膨
張弁(13),…がそれぞれ介設され、合流後手動閉鎖弁
(17)を介し連絡配管(11b)によって室外ユニット
(A)との間を接続されている。すなわち、以上の各機
器は冷媒配管(11)により、冷媒の流通可能に接続され
ていて、室外空気との熱交換により得た熱を室内空気に
放出するようにした主冷媒回路(14)が構成されてい
る。
FIG. 3 shows a refrigerant piping system of a multi-type air conditioner according to an embodiment of the present invention, where (A) is an outdoor unit and (B)-.
(F) is an indoor unit connected in parallel to the outdoor unit (A). Inside the outdoor unit (A),
The capacity is adjusted by the first compressor (1a) whose capacity is adjusted by the inverter (2a) that can variably switch the output frequency in the range of 30 to 70Hz in 10Hz steps, and the capacity by the unloader (2b) that differentiates depending on the pilot pressure. The second compressor (1 that is adjusted in two stages: full load (100%) and unload (50%)
b) and a variable capacity compressor (1) configured by connecting them in parallel via a check valve (1e), and oil separation for separating oil in gas discharged from the compressor (1) (4), a four-way switching valve (5) that switches as shown by the solid line in the figure during heating operation, and switches as shown by the broken line in the figure during cooling operation, and outdoor heat that becomes a condenser during cooling operation and an evaporator during heating operation. An outdoor fan (6) attached to the exchanger (6) and the outdoor heat exchanger (6)
a), a supercooling coil (7), an outdoor electric expansion valve (8) as an expansion valve having an adjustable opening degree that adjusts the refrigerant flow rate during cooling operation and throttles the refrigerant during heating operation,
A receiver (9) for storing a liquefied refrigerant and an accumulator (10) are built-in as main equipments, and each of the equipments (1) to (10) can flow the refrigerant through a refrigerant communication pipe (11). It is connected to the. The indoor units (B) to (F) have the same structure, and each of the indoor heat exchangers (12), ... And its fans (12a), which serve as an evaporator during a cooling operation and a condenser during a heating operation, are connected to each other. Liquid refrigerant branch pipes (11a) of the indoor heat exchangers (12), ...
An indoor electric expansion valve (13), which serves as a pressure reducing mechanism for cooling, which regulates the flow rate of the refrigerant during the heating operation and throttles the refrigerant during the cooling operation, is provided in each of them, and a manual shut-off valve (17) after the merging. Is connected to the outdoor unit (A) through a communication pipe (11b). That is, each of the above devices is connected by a refrigerant pipe (11) so that the refrigerant can flow, and a main refrigerant circuit (14) for releasing the heat obtained by heat exchange with the outdoor air to the indoor air is provided. It is configured.

また、装置には多くのセンサ類が配置されていて、(TH
1),…は各室内温度を検出する室温サーモスタット、
(TH2),…および(TH3),…は各々室内熱交換器(1
2),…の液側およびガス側配管における冷媒の温度を
検出する室内液温センサ及び室内ガス温センサ、(TH
4)は圧縮機(1)の吐出管温度を検出する吐出管セン
サ、(TH5)は室外熱交換器(6)の液側配管における
冷媒の温度T5を検出する室外液温センサ、(TH6)は液
管(11)との熱交換を行った後の吸入管(11)に配置さ
れ、吸入ガスの温度T6を検出する吸入管センサであっ
て、該吸入管センサ(TH6)の検出値T6と上記室外液温
センサ(TH5)の検出値T5との差温(T6−T5)により、
冷媒の過熱度Sh(=T6−T5)が求まるようになされてお
り、上記2つのセンサ(TH5)及び(TH6)により、過熱
度検出手段(50)が構成されている。
In addition, the device is equipped with many sensors,
1), ... are room temperature thermostats that detect each room temperature,
(TH2), ... and (TH3), ... are indoor heat exchangers (1
2), ... Indoor liquid temperature sensor and indoor gas temperature sensor that detect the temperature of the refrigerant in the liquid side and gas side piping, (TH
4) is a discharge pipe sensor that detects the discharge pipe temperature of the compressor (1), (TH5) is an outdoor liquid temperature sensor that detects the temperature T 5 of the refrigerant in the liquid side pipe of the outdoor heat exchanger (6), and (TH6 ) Is a suction pipe sensor which is arranged in the suction pipe (11) after heat exchange with the liquid pipe (11) and detects the temperature T 6 of the suction gas, which is detected by the suction pipe sensor (TH6). By the temperature difference (T 6 −T 5 ) between the value T 6 and the detected value T 5 of the outdoor liquid temperature sensor (TH5),
The superheat degree Sh (= T 6 −T 5 ) of the refrigerant is obtained, and the two sensors (TH5) and (TH6) constitute a superheat degree detecting means (50).

さらに、(P1)は暖房運転時には高圧Tc、冷房運転時に
は低圧Teを検知する圧力センサ、(TH7)は室外熱交換
器(6)の空気吸込口に配置され、吸込空気温度を検出
するための外気温センサである。
Furthermore, (P1) is a pressure sensor that detects high pressure Tc during heating operation and low pressure Te during cooling operation, and (TH7) is arranged at the air intake port of the outdoor heat exchanger (6) to detect the intake air temperature. It is an outside air temperature sensor.

なお、上記各主要機器以外に補助用の諸機器が設けられ
ている。(1f)は第2圧縮機(1b)のバイパス路(11
c)に介設されて、第2圧縮機(1b)の停止時およびア
ンロード状態時に「開」となり、フルロード状態で
「閉」となるアンローダ用電磁弁、(21)は吐出管と吸
入管とを接続する均圧ホットガスバイパス路(11d)に
介設されて、サーモオフ状態等による圧縮機(1)の停
止時、再起動前に一定時間開作動するホットガス用電磁
弁である。また、(11e)は暖房過負荷制御用バイパス
路であって、該バイパス路(11e)には、室外熱交換器
(6a)と共通の空気通路に設置された補助熱交換器(2
2)、逆止弁(23)、冷媒の高圧時に開作動する電磁開
閉弁(24)及びキャピラリ(28)が順次直列に接続され
ており、暖房過負荷時に吐出ガスが室外熱交換器(6)
をバイパスして流れるようになされている。さらに、
(11g)は上記暖房過負荷バイパス路(11e)の液冷媒側
配管と主冷媒回路(14)の吸入ラインとの間を接続し、
冷暖房運転時に吸入ガスの過熱度を調節するためのリキ
ッドインジェクションバイパス路であって、該バイパス
路(11g)には圧縮機(1)のオン・オフと連動して開
閉するインジェクション用電磁弁(29)と、感温筒(TP
1)により検出される吸入ガスの過熱度に応じて開度を
調節される自動膨張弁(30)とが介設されている。
In addition to the above-mentioned main devices, various auxiliary devices are provided. (1f) is the bypass (11) of the second compressor (1b)
The solenoid valve for the unloader, which is installed in c), opens when the second compressor (1b) is stopped and is in the unload state, and is closed when it is in the full load state. (21) is the discharge pipe and the suction pipe. This is a hot gas solenoid valve which is provided in a pressure equalizing hot gas bypass passage (11d) connecting to a pipe and which is opened for a certain period of time before restarting when the compressor (1) is stopped due to a thermo-off state or the like. Further, (11e) is a heating overload control bypass passage, and the bypass passage (11e) has an auxiliary heat exchanger (2) installed in an air passage common to the outdoor heat exchanger (6a).
2), the check valve (23), the electromagnetic on-off valve (24) that opens when the refrigerant pressure is high, and the capillary (28) are sequentially connected in series, and the discharge gas is discharged from the outdoor heat exchanger (6) when the heating is overloaded. )
It is designed to bypass and flow. further,
(11g) connects between the liquid refrigerant side pipe of the heating overload bypass passage (11e) and the suction line of the main refrigerant circuit (14),
A liquid injection bypass path for adjusting the degree of superheat of intake gas during air-conditioning operation, wherein the bypass path (11g) is an injection solenoid valve (29) that opens and closes in conjunction with turning on and off of the compressor (1). ) And a temperature sensitive tube (TP
An automatic expansion valve (30) whose opening is adjusted according to the degree of superheat of the intake gas detected by 1) is interposed.

また、図中、(HPS)は圧縮機保護用の高圧圧力開閉
器、(SP)はサービスポートである。
Further, in the figure, (HPS) is a high pressure switch for protecting the compressor, and (SP) is a service port.

そして、上記各電磁弁およびセンサ類は各主要機器と共
に後述の室外制御ユニット(15)に信号線で接続され、
該室外制御ユニット(15)は各室内制御ユニット(1
6),…に連絡配線によって信号の授受可能に接続され
ている。
The solenoid valves and sensors are connected to the outdoor control unit (15), which will be described later, together with the main equipment by signal lines,
The outdoor control unit (15) is connected to each indoor control unit (1
6), ... Connected to each other via communication wiring so that signals can be exchanged.

第4図は上記室外ユニット(A)側に配置される室外制
御ユニット(15)の内部および接続される各機器の配線
関係を示す電気回路図である。図中、(MC1)はインバ
ータ(2a)の周波数変換回路(INV)に接続された第1
圧縮機(1a)のモータ、(MC2)は第2圧縮機(1b)の
モータ、(52C1)および(52C2)は各々周波数変換回路
(INV)およびモータ(MC2)を作動させる電磁接触器
で、上記各機器はヒューズボックス(FS)、漏電ブレー
カ(BR1)を介して三相交流電源に接続されるととも
に、室外制御ユニット(15)とは単相交流電源で接続さ
れている。また、(MF)は室外ファン(6a)のファンモ
ータ、(52FH)及び(52FL)は該ファンモータ(MF)を
作動させる電磁接触器であって、それぞれ三相交流電源
のうちの単相成分に対して並列に接続され、電磁接触器
(52FH)が接続状態になったときには室外ファン(6a)
が強風(標準風量)に、電磁接触器(52FL)が接続状態
になったときには室外ファン(6a)が弱風になるよう択
一切換え可能になされている。
FIG. 4 is an electric circuit diagram showing the wiring relationship between the inside of the outdoor control unit (15) arranged on the side of the outdoor unit (A) and each device connected thereto. In the figure, (MC1) is the first connected to the frequency conversion circuit (INV) of the inverter (2a).
The motor of the compressor (1a), (MC2) is the motor of the second compressor (1b), and (52C 1 ) and (52C 2 ) are electromagnetic contacts that operate the frequency conversion circuit (INV) and the motor (MC 2 ), respectively. Each of the above devices is connected to a three-phase AC power source via a fuse box (FS) and an earth leakage breaker (BR1), and is also connected to the outdoor control unit (15) by a single-phase AC power source. Further, (MF) is a fan motor for the outdoor fan (6a), and (52F H ) and (52F L ) are electromagnetic contactors for operating the fan motors (MF). Outdoor fan (6a) when connected in parallel to the phase components and when the electromagnetic contactor (52F H ) is connected
Is switched to strong wind (standard air volume), and when the electromagnetic contactor (52F L ) is connected, the outdoor fan (6a) can be selectively switched so that it becomes weak wind.

次に、室外制御ユニット(15)の内部にあっては、電磁
リレーの常開接点(BY1)〜(RY8)が単相交流電流に対
して並列に接続され、これらは順に、四路切換弁(5)
の電磁リレー(20S)、周波数変換回路(INV)の電磁接
触器(52C1)、第2圧縮機(1b)の電磁接触器(52
C2)、室外ファン用電磁接触器(52FH),(52FL)、ホ
ットガス用電磁弁(21)の電磁リレー(SVP)、インジ
ェクション用電磁弁(29)の電磁リレー(SVT)及びア
ンローダ用電磁弁(1f)の電磁リレー(SVL)のコイル
に直列に接続され、室外制御ユニット(15)に直接又は
室内制御ユニット(16),…を介して入力される各セン
サ(TH1)〜(TH7)の信号に応じて開閉されて、上記各
電磁接触器あるいは電磁リレーの接点を開閉させるもの
である。また、端子CNには、室外電動膨張弁(8)の開
度を調節するパルスモータ(EV)のコイルが接続されて
いる。なお、図中右側の回路において、(CH1),(C
H2)はそれぞれ第1圧縮機(1a)、第2圧縮機(1c)の
オイルフォーミング防止用ヒータで、それぞれ電磁接触
器(52C1),(52C2)と直列に接続され上記各圧縮機
(1a),(1b)が停止時に電流が流れるようになされて
いる。さらに、(51C1)はモータ(MC1)の過電流リレ
ー、(49C1),(49C2)はそれぞれ第1圧縮機(1a)、
第2圧縮機(1b)の温度上昇保護用スイッチ、(63
H1),(63H2)はそれぞれ第1圧縮機(1a)、第2圧縮
機(1b)の圧力上昇保護用スイッチ、(51F)はファン
モータ(MF)の過電流リレーであって、これらは直列に
接続されて起動時には電磁リレー(30FX)をオン状態に
し、故障にはオフ状態にさせる保護回路を構成してい
る。そして、室外制御ユニット(15)にはタイマ(31)
を備えた室外制御装置(15a)が内蔵され、該室外制御
装置(15a)によって各室内制御ユニット(16),…あ
るいは各センサ類から入力される信号に応じて各機器の
動作が制御される。
Next, inside the outdoor control unit (15), the normally open contacts (BY 1 ) to (RY 8 ) of the electromagnetic relay are connected in parallel to the single-phase alternating current, and these are connected in order to the four-way connection. Switching valve (5)
Electromagnetic relay (20S), an electromagnetic contactor of the frequency converting circuit (INV) (52C 1), an electromagnetic contactor of the second compressor (1b) (52
C 2 ), outdoor fan electromagnetic contactor (52F H ), (52F L ), hot gas solenoid valve (21) solenoid relay (SV P ), injection solenoid valve (29) solenoid relay (SV T ). And each sensor (TH1) that is connected in series to the coil of the electromagnetic relay (SV L ) of the unloader solenoid valve (1f) and is input to the outdoor control unit (15) directly or via the indoor control unit (16). )-(TH7) signals are opened and closed to open and close the contacts of each electromagnetic contactor or electromagnetic relay. A coil of a pulse motor (EV) that adjusts the opening of the outdoor electric expansion valve (8) is connected to the terminal CN. In the circuit on the right side of the figure, (CH 1 ), (C
H 2 ) are heaters for preventing oil forming of the first compressor (1a) and the second compressor (1c), respectively, which are connected in series with the electromagnetic contactors (52C 1 ) and (52C 2 ) respectively. Current flows through (1a) and (1b) when stopped. Furthermore, (51C 1 ) is the overcurrent relay of the motor (MC 1 ), (49C 1 ) and (49C 2 ) are the first compressor (1a),
Switch for temperature rise protection of the second compressor (1b), (63
H 1), (63H 2) the first compressor, respectively (1a), the pressure increase protection switch of the second compressor (1b), a overcurrent relay (51F) is a fan motor (MF), these Are connected in series to form a protection circuit that turns on the electromagnetic relay (30F X ) at startup and turns it off in case of failure. Then, the outdoor control unit (15) has a timer (31).
An outdoor control device (15a) provided with is built in, and the operation of each device is controlled by the outdoor control device (15a) in accordance with a signal input from each indoor control unit (16), ... Or each sensor. .

第3図において、空気調和装置の暖房運転時、冷媒はガ
ス状態で圧縮機(1)により圧縮され、四路切換弁
(5)を経て各室内ユニット(B)〜(F)に分岐して
送られる。各室内ユニット(B)〜(F)では、各室内
熱交換器(12),…で熱交換を受けて凝縮された後合流
し、室外ユニット(A)で、レシーバ(9)に液貯蔵さ
れ、液状態で室外電動膨張弁(8)によって絞り作用を
受けて室外熱交換器(6)で蒸発し、ガス状態となって
圧縮機(1)に戻る。
In Fig. 3, during the heating operation of the air conditioner, the refrigerant is compressed in a gas state by the compressor (1) and is branched to each indoor unit (B) to (F) via the four-way switching valve (5). Sent. In each of the indoor units (B) to (F), heat is exchanged in each of the indoor heat exchangers (12), and is condensed and then merges, and the outdoor unit (A) stores the liquid in the receiver (9). In the liquid state, it is subjected to a throttling action by the outdoor electric expansion valve (8) and evaporated in the outdoor heat exchanger (6) to be in a gas state and returned to the compressor (1).

そして、上記暖房運転時、上記室外制御ユニット(15)
により、上記圧力センサ(P1)で検出される凝縮圧力相
当飽和温度Tcが一定になるように圧縮機(1)の運転容
量が制御される一方、室外熱交換器(6)の能力制御と
して、上記過熱度検出手段(50)で検出される過熱度Sh
が所定の制御目標値Shoになるように、室外電動膨張弁
(8)の開度Evが制御される。
Then, during the heating operation, the outdoor control unit (15)
By this, the operating capacity of the compressor (1) is controlled so that the condensation pressure equivalent saturation temperature Tc detected by the pressure sensor (P1) becomes constant, while the capacity control of the outdoor heat exchanger (6) is performed. Superheat degree Sh detected by the superheat degree detecting means (50)
The opening degree Ev of the outdoor electric expansion valve (8) is controlled so that the control target value Sho becomes a predetermined control target value Sho.

ここで、暖房運転中の冷媒欠乏を検知するための制御に
ついて、第5図のフローチャートに基づき説明する。ま
ず、ステップS1でサンプリングタイマがカウントアップ
するまで待って、ステップS2で上記過熱度検出手段(5
0)により過熱度Shを検出するとともに、その値Shが制
御目標値Shoに収束するように、室外電動膨張弁(8)
の開度EvをPI制御し、ステップS3で室外電動膨張弁
(8)を駆動するためのパルス信号を出力する。そし
て、ステップS4で、室外電動膨張弁(8)が全開値Emax
が否かを判別し、全開値EmaxでなければステップS5で上
記タイマ(31)をリセットする一方、全開値Emaxであれ
ばステップS6でさらに過熱度Shが制御目標値Shoよりも
高い所定の設定値α(例えば20℃程度の値)よりも大き
いか否かを判別し、Sh>αであればステップS7でタイマ
(31)のカウントを行って、ステップS8でタイマ(31)
のカウント値が一定時間(30分間)を経過したか否かを
判別し、30分間を経過するまでは上記ステップS1〜S6
制御を繰返し、30分間を経過すれば、冷媒の欠乏状態と
判断してステップS9で冷媒が欠乏していることを告知す
るためのアラーム信号を出力する。
Here, the control for detecting the lack of the refrigerant during the heating operation will be described with reference to the flowchart of FIG. First, in step S 1 , wait until the sampling timer counts up, and then in step S 2 , the superheat detection means (5
0) detects the degree of superheat Sh, and the outdoor electric expansion valve (8) so that the value Sh converges to the control target value Sho.
The opening degree Ev is controlled by PI, and a pulse signal for driving the outdoor electric expansion valve (8) is output in step S 3 . Then, in step S 4 , the outdoor electric expansion valve (8) is set to the fully open value Emax.
If the full open value Emax is not reached, the timer (31) is reset in step S 5 , while if the full open value Emax is reached, the superheat degree Sh is further higher than the control target value Sho in step S 6. Is larger than the set value α of (for example, a value of about 20 ° C.), and if Sh> α, the timer (31) is counted in step S 7 , and the timer (31) is counted in step S 8.
The count value, it is determined whether or not the elapsed predetermined time (30 minutes), until passage of 30 minutes repeated control step S 1 to S 6, if passed for 30 minutes, deficiency states of the refrigerant refrigerant step S 9 determines to output an alarm signal for notifying that it is deficient with.

一方、上記フロー中で、ステップS6の判別でSh≦αの場
合には、ステップS5に移行して、タイマ(31)をリセッ
トしてからステップS1に戻る。すなわち、連続して30分
間過熱度Shが設定値αよりも大きいときのみ冷媒の欠乏
状態と判断するようになされている。
On the other hand, in the above flow, if Sh ≦ α in the determination in step S 6 , the process proceeds to step S 5 , the timer (31) is reset, and then the process returns to step S 1 . That is, only when the superheat degree Sh is continuously larger than the set value α for 30 minutes, it is determined that the refrigerant is in a deficient state.

上記制御のフローにおいて、ステップS2及びS3により、
過熱度検出手段(50)の出力を受け、過熱度Shが所定の
制御目標値に収束するように上記室外電動膨張弁(8)
の開度Evを制御する開度制御手段(51)が構成され、ス
テップS9により、該開度制御手段(51)で制御される室
外電動膨張弁(8)の開度Evが最大で、かつ上記過熱度
検出手段(50)で検出される過熱度Shが上記制御目標値
Shoよりも所定値以上高い状態が一定時間(30分間)以
上継続するときには、冷媒欠乏信号を出力する信号出力
手段(52)が構成されている。
In the above control flow, by steps S 2 and S 3 ,
The outdoor electric expansion valve (8) receives the output of the superheat detection means (50) so that the superheat Sh converges to a predetermined control target value.
The configured opening control means (51) for controlling the opening Ev, in step S 9, the maximum opening degree Ev of the outdoor electric expansion valve (8) which is controlled by the open degree control means (51), Further, the superheat degree Sh detected by the superheat degree detecting means (50) is the control target value.
A signal output means (52) is configured to output a refrigerant deficiency signal when a state higher than Sho by a predetermined value or more continues for a certain time (30 minutes) or more.

したがって、上記実施例では、装置の暖房運転中、各過
熱度検出手段(50)により、室外熱交換器(蒸発器)
(6)における冷媒の過熱度Shが検出され、各開度制御
手段(51)により、過熱度Shが制御目標値Shに収束する
ように室外電動膨張弁(8)の開度EvがPI制御され、冷
媒循環量が十分あれば、室内ユニット(B)〜(F)側
の空調負荷に対応した室外ユニット(A)の能力制御が
行われる。
Therefore, in the above embodiment, during the heating operation of the device, the outdoor heat exchanger (evaporator) is operated by each of the superheat detection means (50).
The superheat degree Sh of the refrigerant in (6) is detected, and the opening degree Ev of the outdoor electric expansion valve (8) is PI controlled by each opening degree control means (51) so that the superheat degree Sh converges to the control target value Sh. If the refrigerant circulation amount is sufficient, the capacity control of the outdoor unit (A) corresponding to the air conditioning load on the indoor units (B) to (F) side is performed.

しかし、冷媒循環量が十分でないときには、室外熱交換
器(6)における冷媒の蒸発量の減少に伴ない過熱度Sh
が上昇する。そして、室外電動膨張弁(8)で上昇した
過熱度Shを制御目標値Shoに維持すべく室外電動膨張弁
(8)の開度Evが開き側に制御されるが、冷媒の循環量
が少ないので、過熱度Shの上昇を抑制し得ず、その結
果、弁開度Evが全開値Emaxでしかも過熱度Shが制御目標
値Shoよりも所定値以上高い状態が継続することにな
り、信号出力手段(52)により、冷媒の欠乏を告知する
アラーム信号が出力されるのである。
However, when the circulation amount of the refrigerant is not sufficient, the superheat degree Sh decreases as the evaporation amount of the refrigerant in the outdoor heat exchanger (6) decreases.
Rises. Then, the opening degree Ev of the outdoor electric expansion valve (8) is controlled to the open side in order to maintain the superheat degree Sh raised by the outdoor electric expansion valve (8) at the control target value Sho, but the circulation amount of the refrigerant is small. Therefore, the rise in the superheat degree Sh cannot be suppressed, and as a result, the valve opening Ev remains at the fully open value Emax and the superheat degree Sh is higher than the control target value Sho by a predetermined value or more. The means (52) outputs an alarm signal to notify the lack of the refrigerant.

その場合、冷媒の欠乏状態を検知するのに、圧力センサ
で低圧で低下を検知するようにした場合には、脈動等に
よる低圧の変動や応答遅れに起因する誤検知を生じる虞
れがあるが、本発明では弁開度制御に利用する過熱度Sh
とそのときの弁開度Evとから判断するようにしているの
で、そのような誤検知を生じる虞れはなく、信頼性の向
上を図ることができる。しかも、冷房運転だけでなく暖
房運転についても既設のセンサ(TH5),(TH6)を利用
できるという利点を有するものである。
In that case, if the pressure sensor detects a drop at a low pressure in order to detect a deficiency state of the refrigerant, there is a possibility that an erroneous detection may occur due to a change in the low pressure due to pulsation or the like and a response delay. In the present invention, the superheat degree Sh used for valve opening control
Since the determination is made based on the valve opening Ev at that time, there is no risk of such erroneous detection, and reliability can be improved. Moreover, it has an advantage that the existing sensors (TH5) and (TH6) can be used not only for the cooling operation but also for the heating operation.

本発明を利用すれば、圧力センサが配置されていないよ
うな空気調和装置においても、冷媒の欠乏状態を検知す
ることができる。また、例えば、マルチ形空気調和装置
の据付け時における誤配線の検知等に応用することもで
きる。
By utilizing the present invention, it is possible to detect a refrigerant shortage state even in an air conditioner in which a pressure sensor is not arranged. Further, for example, it can be applied to detection of miswiring at the time of installation of the multi-type air conditioner.

なお、上記実施例では暖房運転について説明したが、冷
房運転についても、運転中の全室内ユニット(B)〜
(F)において、次に、第3図の冷媒配管系統図に示さ
れるマルチ形空気調和装置の冷房運転時における制御内
容について説明する。この場合、過熱度検出手段(50)
は上記室内ガス温センサ(TH3)と室内液温センサ(TH
2)とで構成される。つまり、各室内ユニット(B)の
室内ガス温センサ(TH3)で検出される室内熱交換器(1
2)のガス管温度T3と室内液温センサ(TH2)で検出され
る液管温度T2との差温を過熱度Shとして検出するように
なされている。
Although the heating operation is described in the above embodiment, the cooling operation is also performed by all the indoor units (B) to
Next, in (F), the control content during the cooling operation of the multi-type air conditioner shown in the refrigerant piping system diagram of FIG. 3 will be described. In this case, superheat detection means (50)
Is the indoor gas temperature sensor (TH3) and the indoor liquid temperature sensor (TH
2) Composed of and. That is, the indoor heat exchanger (1) detected by the indoor gas temperature sensor (TH3) of each indoor unit (B)
The temperature difference between the gas pipe temperature T 3 of 2) and the liquid pipe temperature T 2 detected by the indoor liquid temperature sensor (TH 2) is detected as the superheat degree Sh.

そして、フローチャートは省略するが、基本的には第5
図のフローチャートの手順と同様であって、各室内ユニ
ット(B)〜(F)のうちいずれか一つにおいて、室内
電動膨張弁(13)の開度Evが全開値Emaxでかつ過熱度Sh
が設定値αよりも高い状態が一定時間(例えば30分間)
以上継続したときに、信号出力手段(52)により冷媒欠
乏信号が出力されるようになされており、上記暖房運転
中と同様に冷媒欠乏状態を検知することができる。よっ
て、第5図のフローチャートに示す暖房運転時の制御と
同様の効果を発揮することができる。
Then, although the flowchart is omitted, basically the fifth
Similar to the procedure in the flowchart in the figure, in any one of the indoor units (B) to (F), the opening degree Ev of the indoor electric expansion valve (13) is the fully open value Emax and the superheat degree Sh.
Is higher than the set value α for a certain period of time (for example, 30 minutes)
When the above is continued, the signal output means (52) outputs the refrigerant deficiency signal, and the refrigerant deficiency state can be detected as in the heating operation. Therefore, the same effect as the control during the heating operation shown in the flowchart of FIG. 5 can be exhibited.

すなわち、空気調和装置の冷房運転時、冷媒回路(14)
全体の冷媒循環量が欠乏すると、各室内ユニット(B)
〜(F)のうち室内負荷、偏流等で定まるいずれか一つ
で、室内電動膨張弁(13)の開度が最大であるにも拘ら
ず過熱度Shの過上昇状態が長い間継続することを利用し
たものであり、より迅速に冷媒欠乏状態を検知しうる利
点がある。
That is, during the cooling operation of the air conditioner, the refrigerant circuit (14)
If the total refrigerant circulation amount is insufficient, each indoor unit (B)
~ (F), whichever is determined by the indoor load, drift, etc., and that the overheated state of the superheat degree Sh continues for a long time despite the maximum opening of the indoor electric expansion valve (13). Is used, and there is an advantage that the refrigerant deficiency state can be detected more quickly.

(発明の効果) 以上説明したように、複数の室内ユニットを設けた空気
調和装置において、冷房運転時、各室内ユニットのうち
いずれか一つにおいて膨張弁開度が最大でかつ過熱度が
過上昇の状態が一定時間以上継続したときに、冷媒欠乏
信号を出力するようにしたので、冷媒循環量の欠乏にと
もない、偏流、室内負荷等の運転状況の差に基づく最先
の室内ユニットで生じる冷媒欠乏状態をいちはやく検知
することができ、冷媒の欠乏に対して迅速な対応を図る
ことができる。
(Effects of the Invention) As described above, in the air conditioning apparatus provided with a plurality of indoor units, during the cooling operation, the expansion valve opening degree is maximum and the superheat degree is excessively increased in any one of the indoor units. Since the refrigerant shortage signal is output when the state of continues for a certain period of time or more, the refrigerant generated in the first indoor unit based on the difference in operating conditions such as drift, indoor load, etc. due to the shortage of the refrigerant circulation amount. The lack condition can be detected quickly, and a quick response to the lack of the refrigerant can be achieved.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の原理を示すブロック図、第2図は本発
明の構成を示すブロック図である。 第3図以下は本発明の実施例を示し、第3図は装置の全
体構成を示す冷媒配管系統図、第4図は室外制御ユニッ
トの内部構成を示す電気回路図、第5図は冷媒欠乏状態
検知のための制御内容を示すフローチャート図である。 1……圧縮機 6……室外熱交換器(熱源側熱交換器) 8……室外電動膨張弁 12……室内熱交換器(利用側熱交換器) 13……室内電動膨張弁 14……冷媒回路 50……過熱度検出手段 51……開度制御手段 52……信号出力手段
FIG. 1 is a block diagram showing the principle of the present invention, and FIG. 2 is a block diagram showing the configuration of the present invention. FIG. 3 and subsequent figures show an embodiment of the present invention, FIG. 3 is a refrigerant piping system diagram showing the overall configuration of the apparatus, FIG. 4 is an electric circuit diagram showing the internal configuration of the outdoor control unit, and FIG. It is a flowchart figure which shows the control content for state detection. 1 …… Compressor 6 …… Outdoor heat exchanger (heat source side heat exchanger) 8 …… Outdoor electric expansion valve 12 …… Indoor heat exchanger (use side heat exchanger) 13 …… Indoor electric expansion valve 14 …… Refrigerant circuit 50 …… Superheat detection means 51 …… Opening degree control means 52 …… Signal output means

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭60−17672(JP,A) 実開 昭63−37980(JP,U) ─────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-60-17672 (JP, A) Actual development Shou 63-37980 (JP, U)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】圧縮機(1)、熱源側熱交換器(6)を有
する室外ユニット(A)に対して、利用側熱交換器(1
2)および該利用側熱交換器(12)用の開度の調節可能
な膨張弁(13)を内蔵する複数の室内ユニット(B)〜
(F)を並列に接続してなる冷媒回路(14)を備えた空
気調和装置において、 冷房運転時、上記各利用側熱交換器(12),…における
冷媒の過熱度を検出する過熱度検出手段(50B),…
と、該各過熱度検出手段(50B),…の出力を受け、過
熱度が所定の制御目標値に収束するよう上記膨張弁(1
3),…の開度を制御する開度制御手段(51B),…とを
備えるとともに、 上記各室内ユニット(B)〜(F)のうちいずれか一つ
において上記開度制御手段(51B)で制御される膨張弁
(13)の開度が最大で、かつ上記過熱度検出手段(50
B)で検出される過熱度が上記制御目標値よりも所定値
以上高い状態で一定時間以上継続するときには、冷媒欠
乏信号を出力する信号出力手段(52)を備えたことを特
徴とする空気調和装置。
1. A use side heat exchanger (1) for an outdoor unit (A) having a compressor (1) and a heat source side heat exchanger (6).
2) and a plurality of indoor units (B) incorporating the expansion valve (13) with adjustable opening for the use side heat exchanger (12)
An air conditioner having a refrigerant circuit (14) in which (F) are connected in parallel, in a cooling operation, the superheat detection for detecting the degree of superheat of the refrigerant in each of the use side heat exchangers (12) ,. Means (50B), ...
And the outputs of the respective superheat detection means (50B), ..., The expansion valve (1) so that the superheat converges to a predetermined control target value.
3), and opening control means (51B) for controlling the opening of each of the indoor units (B) to (F), and the opening control means (51B). The maximum opening of the expansion valve (13) controlled by the
An air conditioner characterized by comprising signal output means (52) for outputting a refrigerant deficiency signal when the degree of superheat detected in B) is higher than the control target value by a predetermined value or more and continues for a certain period of time or more. apparatus.
JP1025465A 1989-02-03 1989-02-03 Air conditioner Expired - Fee Related JPH07117327B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1025465A JPH07117327B2 (en) 1989-02-03 1989-02-03 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1025465A JPH07117327B2 (en) 1989-02-03 1989-02-03 Air conditioner

Publications (2)

Publication Number Publication Date
JPH02208469A JPH02208469A (en) 1990-08-20
JPH07117327B2 true JPH07117327B2 (en) 1995-12-18

Family

ID=12166773

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1025465A Expired - Fee Related JPH07117327B2 (en) 1989-02-03 1989-02-03 Air conditioner

Country Status (1)

Country Link
JP (1) JPH07117327B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107940826A (en) * 2017-11-10 2018-04-20 广东美的暖通设备有限公司 Multi-line system and its refrigerant distribution control method and device

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0820130B2 (en) * 1990-11-29 1996-03-04 ダイキン工業株式会社 Refrigeration system operation controller
US5301514A (en) * 1992-12-02 1994-04-12 General Electric Company Low refrigerant charge detection by monitoring thermal expansion valve oscillation
JP3963190B2 (en) 2005-04-07 2007-08-22 ダイキン工業株式会社 Refrigerant amount determination system for air conditioner
JP5210510B2 (en) * 2006-10-13 2013-06-12 三菱重工業株式会社 Refrigerant filling amount determination method and refrigerant leakage detection method for multi-air conditioning system
JP6341808B2 (en) * 2014-08-28 2018-06-13 三菱電機株式会社 Refrigeration air conditioner
CN107101323A (en) * 2017-04-13 2017-08-29 青岛海尔空调电子有限公司 The coolant quantity detection method and device of air conditioner
JP7412221B2 (en) * 2020-02-28 2024-01-12 大阪瓦斯株式会社 Refrigerant leakage state determination method, refrigerant leakage state determination device, and refrigerant leakage state monitoring system
JP7447625B2 (en) * 2020-03-30 2024-03-12 株式会社富士通ゼネラル air conditioner
CN113944979B (en) * 2021-11-12 2023-06-02 宁波奥克斯电气股份有限公司 Expansion valve control method and device, multi-connected air conditioner and computer storage medium
CN115111710B (en) * 2022-06-23 2024-06-18 北京小米移动软件有限公司 Air conditioner control method, device, medium and chip

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6017672A (en) * 1983-07-08 1985-01-29 株式会社日立製作所 Alarm device for shortage of refrigerant
JPS6337980U (en) * 1986-08-27 1988-03-11

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107940826A (en) * 2017-11-10 2018-04-20 广东美的暖通设备有限公司 Multi-line system and its refrigerant distribution control method and device
CN107940826B (en) * 2017-11-10 2020-04-03 广东美的暖通设备有限公司 Multi-split air conditioning system and refrigerant distribution control method and device thereof

Also Published As

Publication number Publication date
JPH02208469A (en) 1990-08-20

Similar Documents

Publication Publication Date Title
JPH07117327B2 (en) Air conditioner
JPH0769087B2 (en) Operation control device for air conditioner
JPH0765792B2 (en) Air conditioner
JPH0772654B2 (en) Operation control device for air conditioner
JPS6373052A (en) Oil recovery operation controller for refrigerator
JPH052902B2 (en)
JPH0784956B2 (en) Operation control device for air conditioner
JPH07101130B2 (en) Operation control device for air conditioner
JPH0735932B2 (en) Operation control device for air conditioner
JPH0217358A (en) Degree of overheat control device for freezing device
JP2598513B2 (en) Operation control device for air conditioner
JPH0816556B2 (en) Operation control device for air conditioner
JPH0820140B2 (en) Oil recovery operation control device for air conditioner
JPH0448418Y2 (en)
JPH0784971B2 (en) Operation control device for air conditioner
JPH0772653B2 (en) Operation control device for air conditioner
JPH0723816B2 (en) Air conditioner
JPH07117328B2 (en) Operation control device for air conditioner
JPH061133B2 (en) Electric expansion valve controller for air conditioner
JPH02208452A (en) Pressure equalizing control device for refrigerator
JPH02230063A (en) Capacity control device for air conditioner
JPH0650197B2 (en) Refrigerator control device
JPH0381061B2 (en)
JPS63176949A (en) Air conditioner
JPH0550665B2 (en)

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071218

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081218

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees