JP7412221B2 - Refrigerant leakage state determination method, refrigerant leakage state determination device, and refrigerant leakage state monitoring system - Google Patents

Refrigerant leakage state determination method, refrigerant leakage state determination device, and refrigerant leakage state monitoring system Download PDF

Info

Publication number
JP7412221B2
JP7412221B2 JP2020034159A JP2020034159A JP7412221B2 JP 7412221 B2 JP7412221 B2 JP 7412221B2 JP 2020034159 A JP2020034159 A JP 2020034159A JP 2020034159 A JP2020034159 A JP 2020034159A JP 7412221 B2 JP7412221 B2 JP 7412221B2
Authority
JP
Japan
Prior art keywords
degree
refrigerant
leakage
evaporator
superheat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020034159A
Other languages
Japanese (ja)
Other versions
JP2021135035A (en
Inventor
努 若林
裕樹 池本
昌彦 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2020034159A priority Critical patent/JP7412221B2/en
Publication of JP2021135035A publication Critical patent/JP2021135035A/en
Application granted granted Critical
Publication of JP7412221B2 publication Critical patent/JP7412221B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Description

本発明は、冷媒を圧縮する圧縮機と、前記圧縮機にて圧縮した冷媒を凝縮する凝縮器と、前記凝縮器にて凝縮した冷媒を膨張させる膨張弁と、前記膨張弁にて膨張した冷媒を蒸発させる蒸発器と、前記圧縮機と前記凝縮器と前記膨張弁と前記蒸発器とに記載の順に冷媒を循環する冷媒循環路とを備えるヒートポンプ装置における冷媒漏洩状態判定方法、それを用いた冷媒漏洩状態判定装置及び冷媒漏洩状態監視システムに関する。 The present invention provides a compressor that compresses a refrigerant, a condenser that condenses the refrigerant compressed by the compressor, an expansion valve that expands the refrigerant condensed in the condenser, and a refrigerant expanded in the expansion valve. A refrigerant leak state determination method in a heat pump device comprising an evaporator that evaporates, and a refrigerant circulation path that circulates refrigerant in the order described in the compressor, the condenser, the expansion valve, and the evaporator, using the method The present invention relates to a refrigerant leakage state determination device and a refrigerant leakage state monitoring system.

従来、冷媒を圧縮する圧縮機と、圧縮機にて圧縮した冷媒を凝縮する凝縮器と、凝縮器にて凝縮した冷媒を膨張させる膨張弁と、膨張弁にて膨張した冷媒を蒸発させる蒸発器と、圧縮機と凝縮器と膨張弁と蒸発器とに記載の順に冷媒を循環する冷媒循環路とを備えるヒートポンプ装置における冷媒の漏洩の有無を判定する空気調和装置が知られている(特許文献1を参照)。
当該空気調和装置は、所定の冷媒漏洩判定条件で運転を行う運転モードにおいて、熱源側熱交換器(冷房運転においては凝縮器)の出口における冷媒過冷却度の変動に応じて、変化する運転状態量に基づいて冷媒の漏洩の有無の判定が行われる。
Conventionally, there has been a compressor that compresses refrigerant, a condenser that condenses the refrigerant compressed by the compressor, an expansion valve that expands the refrigerant condensed in the condenser, and an evaporator that evaporates the refrigerant expanded by the expansion valve. An air conditioner is known that determines the presence or absence of refrigerant leakage in a heat pump device that includes a compressor, a condenser, an expansion valve, and an evaporator, and a refrigerant circulation path that circulates the refrigerant in the order described (Patent Document 1).
In an operation mode in which the air conditioner is operated under predetermined refrigerant leakage determination conditions, the operating state changes according to fluctuations in the degree of refrigerant subcooling at the outlet of the heat source side heat exchanger (condenser in cooling operation). The presence or absence of refrigerant leakage is determined based on the amount.

特許第4270197号公報Patent No. 4270197

上記特許文献1に開示の技術では、冷媒の漏洩の有無の判定は行えるものの、所定の冷媒漏洩判定条件にて運転を行う必要があるため、当該判定を行うときには、ヒートポンプ装置を空調の用に供することができず、使用者の利用に制限がかかるため改善の余地があった。
また、上記特許文献1に開示の技術では、冷媒がどの程度漏洩しているか等の漏洩程度を適切に知ることもできないという課題もあった。
Although the technology disclosed in Patent Document 1 can determine the presence or absence of refrigerant leakage, it is necessary to operate under predetermined refrigerant leakage determination conditions. However, there was room for improvement as this would place restrictions on users' use.
Furthermore, the technique disclosed in Patent Document 1 has a problem in that it is not possible to appropriately know the degree of leakage, such as how much refrigerant is leaking.

本発明は、上述の課題に鑑みてなされたものであり、その目的は、冷媒を循環する冷媒循環路を有するヒートポンプ装置において、運転状態に制約をつけることなく通常運転を継続しながらも、漏洩程度を含む漏洩状態を判定可能な冷媒漏洩状態判定方法、当該判定方法を実行可能な冷媒漏洩状態判定装置、冷媒漏洩状態監視システムを提供することにある。 The present invention has been made in view of the above-mentioned problems, and an object of the present invention is to prevent leakage while continuing normal operation without placing restrictions on the operating state in a heat pump device having a refrigerant circulation path that circulates refrigerant. It is an object of the present invention to provide a refrigerant leakage state determination method capable of determining the leakage state including the degree of leakage, a refrigerant leakage state determination apparatus capable of executing the determination method, and a refrigerant leakage state monitoring system.

上記目的を達成するための冷媒漏洩状態判定方法は、
冷媒を圧縮する圧縮機と、前記圧縮機にて圧縮した冷媒を凝縮する凝縮器と、前記凝縮器にて凝縮した冷媒を膨張させる膨張弁と、前記膨張弁にて膨張した冷媒を蒸発させる蒸発器と、前記圧縮機と前記凝縮器と前記膨張弁と前記蒸発器とに記載の順に冷媒を循環する冷媒循環路とを備えるヒートポンプ装置における冷媒漏洩状態判定方法であって、その特徴構成は、
前記圧縮機入口での冷媒吸込温度から蒸発温度を減算して過熱度を算出する過熱度算出工程と、
凝縮温度から前記凝縮器出口での冷媒温度を減算して過冷却度を算出する過冷却度算出工程と、
少なくとも1つ以上の前記蒸発器を有する場合において、運転している前記蒸発器及び当該蒸発器に対応する前記膨張弁に関し、膨張弁開度を前記蒸発器の能力比率に基づいて換算した値を平均した値としての運転蒸発器平均開度を導出する運転蒸発器平均開度導出工程と、
通常運転時において過熱度を基準過熱度に維持する過熱度維持工程と、
前記過熱度維持工程が実行された状態で、前記過冷却度算出工程にて算出された過冷却度が零であり、且つ前記運転蒸発器平均開度導出工程にて導出された前記運転蒸発器平均開度が、前記通常運転時での定格条件における前記運転蒸発器平均開度である平均開度を所定値だけ超える基準平均開度を超えると共に前記運転蒸発器平均開度の最大値である最大平均開度未満であり、前記過熱度算出工程にて算出される過熱度が基準過熱度に維持されている場合に、冷媒の漏洩程度が中程度漏洩状態であると判定する冷媒漏洩程度判定工程とを含む点にある。
The refrigerant leak status determination method to achieve the above purpose is as follows:
A compressor that compresses refrigerant, a condenser that condenses the refrigerant compressed by the compressor, an expansion valve that expands the refrigerant condensed in the condenser, and an evaporator that evaporates the refrigerant expanded in the expansion valve. A method for determining a refrigerant leakage state in a heat pump device comprising: a refrigerant circulation path that circulates refrigerant in the order described in the compressor, the condenser, the expansion valve, and the evaporator;
a degree of superheat calculation step of calculating the degree of superheat by subtracting the evaporation temperature from the refrigerant suction temperature at the inlet of the compressor;
A degree of supercooling calculation step of calculating the degree of supercooling by subtracting the refrigerant temperature at the condenser outlet from the condensation temperature;
In the case where there is at least one evaporator, a value obtained by converting the expansion valve opening degree based on the capacity ratio of the evaporator with respect to the evaporator in operation and the expansion valve corresponding to the evaporator. an operating evaporator average opening degree derivation step of deriving an operating evaporator average opening degree as an average value;
A superheat degree maintenance step of maintaining the superheat degree at a reference superheat degree during normal operation;
The operating evaporator in which the supercooling degree calculated in the supercooling degree calculation step is zero in the state in which the superheat degree maintaining step is executed, and the operating evaporator average opening degree deriving step The average opening exceeds the standard average opening which exceeds the average opening which is the average opening of the operating evaporator under rated conditions during normal operation by a predetermined value, and is the maximum value of the average opening of the operating evaporator. Refrigerant leakage degree determination that determines that the degree of refrigerant leakage is in a moderate leakage state when the degree of superheating calculated in the superheating degree calculation step is maintained at the reference degree of superheating when the opening degree is less than the maximum average opening degree. The point is that it includes the process.

上記目的を達成するための冷媒漏洩状態判定装置は、
冷媒を圧縮する圧縮機と、前記圧縮機にて圧縮した冷媒を凝縮する凝縮器と、前記凝縮器にて凝縮した冷媒を膨張させる膨張弁と、前記膨張弁にて膨張した冷媒を蒸発させる蒸発器と、前記圧縮機と前記凝縮器と前記膨張弁と前記蒸発器とに記載の順に冷媒を循環する冷媒循環路とを備えるヒートポンプ装置における冷媒漏洩状態判定装置であって、その特徴構成は、
前記圧縮機入口での冷媒吸込温度から蒸発温度を減算して過熱度を算出する過熱度算出部と、
凝縮温度から前記凝縮器出口での冷媒温度を減算して過冷却度を算出する過冷却度算出部と、
少なくとも1つ以上の前記蒸発器を有する場合において、運転している前記蒸発器及び当該蒸発器に対応する前記膨張弁に関し、膨張弁開度を前記蒸発器の能力比率に基づいて換算した値を平均した値としての運転蒸発器平均開度を導出する運転蒸発器平均開度導出部と、
通常運転時において過熱度を基準過熱度に維持する過熱度維持部と、
前記過熱度維持部が実行された状態で、前記過冷却度算出部にて算出された過冷却度が零であり、且つ前記運転蒸発器平均開度導出部にて導出された前記運転蒸発器平均開度が、前記通常運転時での定格条件における前記運転蒸発器平均開度である平均開度を所定値だけ超える基準平均開度を超えると共に前記運転蒸発器平均開度の最大値である最大平均開度未満であり、前記過熱度算出部にて算出される過熱度が基準過熱度に維持されている場合に、冷媒の漏洩程度が中程度漏洩状態であると判定する冷媒漏洩程度判定部とを有する点にある。
The refrigerant leakage state determination device for achieving the above purpose is as follows:
A compressor that compresses refrigerant, a condenser that condenses the refrigerant compressed by the compressor, an expansion valve that expands the refrigerant condensed in the condenser, and an evaporator that evaporates the refrigerant expanded in the expansion valve. A refrigerant leakage state determination device in a heat pump device, comprising a refrigerant circulation path that circulates refrigerant in the order described in the compressor, the condenser, the expansion valve, and the evaporator, the characteristics of which are as follows:
a superheat degree calculation unit that calculates the degree of superheat by subtracting the evaporation temperature from the refrigerant suction temperature at the compressor inlet;
a supercooling degree calculation unit that calculates a supercooling degree by subtracting the refrigerant temperature at the condenser outlet from the condensing temperature;
In the case where there is at least one evaporator, a value obtained by converting the expansion valve opening degree based on the capacity ratio of the evaporator with respect to the evaporator in operation and the expansion valve corresponding to the evaporator. an operating evaporator average opening degree derivation unit that derives an operating evaporator average opening degree as an average value;
a superheat degree maintenance section that maintains the superheat degree at a reference superheat degree during normal operation;
the operating evaporator in which the supercooling degree calculated by the supercooling degree calculation unit is zero in a state in which the superheat degree maintaining unit is executed, and the operating evaporator average opening degree deriving unit derives the operating evaporator; The average opening exceeds the standard average opening which exceeds the average opening which is the average opening of the operating evaporator under rated conditions during normal operation by a predetermined value, and is the maximum value of the average opening of the operating evaporator. Refrigerant leakage degree determination that determines that the degree of refrigerant leakage is in a moderate leakage state when the degree of superheating calculated by the superheating degree calculation unit is maintained at the reference degree of superheating when the opening degree is less than the maximum average opening degree. The point is that it has a part.

発明者らは、ヒートポンプ装置に係るパラメータの組み合わせが、冷媒の漏洩状態に応じて特異な変化をするという知見を新たに見出した。
上記特徴構成は、当該知見に基づくものであり、図2、3、4に示すように、過熱度維持工程が実行された状態で、過冷却度算出工程にて算出された過冷却度が零であり、且つ運転蒸発器平均開度導出工程にて導出された運転蒸発器平均開度が、基準平均開度を超えると共に最大平均開度未満であり、過熱度算出工程にて算出される過熱度が基準過熱度に維持されている場合は、冷媒の漏洩程度が中程度漏洩状態であると言えることを新たに見出した。
これにより、例えば、ヒートポンプ装置の管理者としては、実際に装置の点検を行う際に、中程度漏洩状態よりも少ない漏洩程度であって漏洩無しも含む少程度漏洩状態よりも装置のどの場所から漏洩が発生しているかを検知し易い中程度漏洩状態を、漏洩状態として積極的に検知できる。
また、当該漏洩状態の判定は、例えばヒートポンプ装置が定格負荷で運転しているか中程度の負荷で運転しているかに関わらず用いることができるため、ヒートポンプ装置の使用者側に何ら運転の制約をかけることなく実行できるため、従来の漏洩判定に比べ、運転の自由度を向上できる。
以上より、冷媒を循環する冷媒循環路を有するヒートポンプ装置において、運転状態に制約をつけることなく通常運転を継続しながらも、漏洩程度を含む漏洩状態を判定可能な冷媒漏洩状態判定方法、及び冷媒漏洩状態判定装置を実現できる。
The inventors have newly discovered that the combination of parameters related to a heat pump device changes uniquely depending on the state of refrigerant leakage.
The above characteristic structure is based on the knowledge, and as shown in FIGS. 2, 3, and 4, when the degree of supercooling calculated in the degree of supercooling calculation step is zero in the state in which the degree of superheating is maintained, the degree of supercooling is zero. , and the operating evaporator average opening calculated in the operating evaporator average opening degree calculation process exceeds the reference average opening degree and is less than the maximum average opening degree, and the superheating calculated in the superheating degree calculation process We have newly discovered that if the temperature is maintained at the standard superheat level, the degree of refrigerant leakage can be said to be moderate.
As a result, for example, as a manager of a heat pump device, when actually inspecting the device, it is important to note that the leakage level is lower than the moderate leakage condition, but it is more important to check whether the leakage condition is smaller than the moderate leakage condition, and is more important than the small leakage condition, which includes no leakage. A moderate leakage state in which it is easy to detect whether a leakage has occurred can be actively detected as a leakage state.
In addition, since the determination of the leakage state can be used regardless of whether the heat pump device is operating at a rated load or a medium load, there is no operational restriction on the user side of the heat pump device. Since it can be executed without any additional time, the degree of freedom in operation can be improved compared to conventional leakage determination.
As described above, in a heat pump device having a refrigerant circulation path that circulates refrigerant, there is provided a refrigerant leakage state determination method that can determine the leakage state including the degree of leakage while continuing normal operation without placing restrictions on the operating state, and the refrigerant leakage state determination method. A leak state determination device can be realized.

また、膨張弁開度は、実機での膨張弁の開度を示す「ステップ数」の他、「膨張弁面積」とすることができる。以下、膨張弁開度に対応するパラメータとして「膨張弁面積」を用いた場合の運転蒸発器平均開度の数値の一例を示す。
例えば、4台の蒸発器が接続されている場合の定格条件の運転状態の例を〔表1〕に示す。#1と#2は能力が比較的大きい蒸発器で、#3と#4は能力が比較的小さい蒸発器の例である。
下線部分の単純平均=10mmとなり、この定格条件での値を100%とする。
Further, the expansion valve opening degree can be expressed as the "expansion valve area" in addition to the "step number" that indicates the opening degree of the expansion valve in the actual machine. Below, an example of a numerical value of the operating evaporator average opening degree will be shown when "expansion valve area" is used as a parameter corresponding to the expansion valve opening degree.
For example, Table 1 shows an example of the operating state under rated conditions when four evaporators are connected. #1 and #2 are examples of evaporators with relatively large capacities, and #3 and #4 are examples of evaporators with relatively small capacities.
The simple average of the underlined portion = 10 mm 2 , and the value under this rated condition is taken as 100%.

〔表1〕
[Table 1]

次に、他条件での運転状態の例を〔表2〕に示す。下線部分の単純平均=10mmとなり、面積比は100%となる。 Next, examples of operating conditions under other conditions are shown in [Table 2]. The simple average of the underlined portion is 10 mm 2 and the area ratio is 100%.

〔表2〕
[Table 2]

尚、ここで、運転蒸発器平均開度は、通常運転時における定格運転時の値を100%とした値であり、単純平均のみならず、室内熱交換器の容量(暖房運転時の凝縮器又は冷房運転時の蒸発器の容量(能力))で重み付けした平均としても構わない。 Note that the operating evaporator average opening here is a value with the value at rated operation during normal operation as 100%, and is not only a simple average but also the indoor heat exchanger capacity (condenser opening during heating operation). Alternatively, it may be an average weighted by the capacity (capacity) of the evaporator during cooling operation.

冷媒漏洩状態判定方法の更なる特徴構成は、
前記冷媒漏洩程度判定工程は、
前記過熱度維持工程が実行された状態で、前記過冷却度算出工程にて算出された過冷却度が零より大きい値であり、且つ前記運転蒸発器平均開度導出工程にて導出された前記運転蒸発器平均開度が、前記最大平均開度未満であり、前記過熱度算出工程にて算出される過熱度が前記基準過熱度に維持されている場合に、冷媒の漏洩程度が中程度漏洩状態よりも少ない漏洩程度であって漏洩無しも含む少程度漏洩状態であると判定する点にある。
Further characteristics of the refrigerant leakage state determination method are as follows:
The refrigerant leakage degree determination step includes:
When the degree of superheating is maintained, the degree of supercooling calculated in the degree of supercooling calculation step is greater than zero, and the degree of supercooling calculated in the degree of supercooling calculation step is greater than zero, and When the average opening of the operating evaporator is less than the maximum average opening and the degree of superheat calculated in the degree of superheat calculation step is maintained at the standard degree of superheat, the degree of refrigerant leakage is medium leakage. The point is that it is determined that the state is a state where the degree of leakage is less than the state and there is a slight leakage state, which includes no leakage.

上記特徴構成によれば、冷媒の漏洩状態が、漏洩量の比較的少ない少程度漏洩状態であることがわかるから、例えば、冷媒の漏洩の有無だけがわかる技術に比べ、対応の緊急性が低い漏洩である等の判断ができる。結果、判定結果を知った後の管理者側での対応の選択肢を増やすことができ、管理者側の負担を軽減できると共に現場では漏洩状態に応じた適切な対応ができる。 According to the above characteristic structure, it is known that the refrigerant leakage state is a small leakage state with a relatively small amount of leakage, so the urgency to respond is lower than, for example, a technology that only shows the presence or absence of a refrigerant leakage. It is possible to determine whether there is a leak, etc. As a result, it is possible to increase the options for the administrator's response after knowing the determination result, reduce the burden on the administrator, and make it possible to respond appropriately depending on the leakage state at the site.

冷媒漏洩状態判定方法の更なる特徴構成は、
前記冷媒漏洩程度判定工程は、
前記過熱度維持工程が実行された状態で、前記過冷却度算出工程にて算出された過冷却度が零であり、且つ前記運転蒸発器平均開度導出工程にて導出された前記運転蒸発器平均開度が、前記最大平均開度であり、前記過熱度算出工程にて算出される過熱度が前記基準過熱度より大きい場合に、冷媒の漏洩程度が中程度漏洩状態よりも多い漏洩程度である多程度漏洩状態であると判定する点にある。
Further characteristics of the refrigerant leakage state determination method are as follows:
The refrigerant leakage degree determination step includes:
The operating evaporator in which the supercooling degree calculated in the supercooling degree calculation step is zero in the state in which the superheat degree maintaining step is executed, and the operating evaporator average opening degree deriving step When the average opening is the maximum average opening and the degree of superheat calculated in the degree of superheat calculation step is greater than the reference degree of superheat, the degree of leakage of the refrigerant is greater than the degree of leakage in the medium leakage state. The point is that it is determined that there is a leakage state to some extent.

上記特徴構成によれば、冷媒の漏洩状態が、漏洩量の比較的多い多程度漏洩状態であることがわかるから、例えば、冷媒の漏洩の有無だけがわかる技術に比べ、対応の緊急性が高い漏洩である等の判断ができ、判定の後の迅速な対応につなげることができる。 According to the above characteristic structure, it is known that the refrigerant leakage state is a multi-level leakage state with a relatively large amount of leakage, so the urgency of the response is higher than, for example, technology that only shows the presence or absence of refrigerant leakage. It is possible to determine whether there is a leak, etc., and this can lead to prompt response after the determination.

冷媒漏洩状態判定方法の更なる特徴構成は、
前記冷媒漏洩程度判定工程は、
前記過冷却度と前記運転蒸発器平均開度と前記過熱度の値の組み合わせが、前記中程度漏洩状態と前記少程度漏洩状態と前記多程度漏洩状態にて規定される値の組み合わせ以外である場合、前記ヒートポンプ装置の運転状態が前記通常運転とは異なる運転状態にあるとして漏洩程度の判定から除外する点にある。
Further characteristics of the refrigerant leakage state determination method are as follows:
The refrigerant leakage degree determination step includes:
The combination of the values of the degree of supercooling, the average opening of the operating evaporator, and the degree of superheat is other than the combination of values specified in the medium leakage state, the small leakage state, and the large leakage state. In this case, the operation state of the heat pump device is considered to be different from the normal operation and is excluded from the determination of the degree of leakage.

例えば、ヒートポンプ装置が運転開始直後等で、通常運転状態にない場合には、運転蒸発器平均開度が、基準平均開度程度であるにも関わらず、過熱度が基準過熱度よりも高い状態になる場合がある。
上記特徴構成によれば、このような場合を、漏洩状態の判定から除外することで、漏洩状態の判定精度を向上できる。
For example, if the heat pump device is not in normal operating condition, such as immediately after starting operation, the degree of superheating is higher than the standard degree of superheating even though the average opening degree of the operating evaporator is about the standard average degree of opening. It may become.
According to the characteristic configuration described above, by excluding such cases from the determination of the leakage state, it is possible to improve the accuracy of determination of the leakage state.

冷媒漏洩状態判定方法の更なる特徴構成は、
前記冷媒漏洩程度判定工程は、
前記運転蒸発器平均開度導出工程にて導出された前記運転蒸発器平均開度を前記圧縮機の入口圧力である蒸発圧力が高くなるほど高い側へ補正する点にある。
Further characteristics of the refrigerant leakage state determination method are as follows:
The refrigerant leakage degree determination step includes:
The point is that the operating evaporator average opening degree derived in the operating evaporator average opening degree deriving step is corrected to a higher side as the evaporation pressure, which is the inlet pressure of the compressor, becomes higher.

図7に示すように、発明者らは、漏洩がある場合(図7では漏洩率が40%)において、圧縮機の入口圧力である蒸発圧力が高くなるほど、運転蒸発器平均開度が高くなる傾向にあるという知見を得た。
上記特徴構成によれば、運転蒸発器平均開度導出工程にて導出された運転蒸発器平均開度を圧縮機の入口圧力である蒸発圧力が高くなるほど高い側へ補正するから、蒸発圧力が高い場合であっても、冷媒の漏洩程度を効果的に判定することができる。
尚、図7から判明するように、発明者らは、このような傾向は、定格負荷であっても中間負荷でもあっても、略同様であることを確認している。
As shown in Figure 7, the inventors found that when there is a leak (leakage rate is 40% in Figure 7), the higher the evaporation pressure, which is the inlet pressure of the compressor, the higher the average operating evaporator opening. We found that there is a trend.
According to the above characteristic configuration, the average operating evaporator opening derived in the average operating evaporator opening derivation process is corrected to the higher side as the evaporation pressure, which is the inlet pressure of the compressor, increases, so that the evaporation pressure is higher. Even in cases where the refrigerant leakage degree is determined effectively.
Incidentally, as can be seen from FIG. 7, the inventors have confirmed that such a tendency is substantially the same whether the load is the rated load or the intermediate load.

冷媒漏洩状態判定方法の更なる特徴構成は、
前記冷媒漏洩程度判定工程は、
前記運転蒸発器平均開度導出工程にて導出された前記運転蒸発器平均開度と蒸発圧力とから、冷媒の漏洩のない正規の充填量にて冷媒の漏洩量を除算した漏洩率を導出する点にある。
Further characteristics of the refrigerant leakage state determination method are as follows:
The refrigerant leakage degree determination step includes:
From the operating evaporator average opening degree and evaporation pressure derived in the operating evaporator average opening degree derivation step, a leakage rate is derived by dividing the refrigerant leakage amount by the regular filling amount without refrigerant leakage. At the point.

上記特徴構成によれば、運転蒸発器平均開度導出工程にて導出された運転蒸発器平均開度と蒸発圧力とから、冷媒の漏洩のない正規の充填量にて冷媒の漏洩量を除算した漏洩率をも導出できるから、数値にてより定量的な漏洩状態の判定を行うことができ、当該値に基づいてより適切な事後処理を実行することができる。 According to the above characteristic configuration, the amount of refrigerant leakage is divided by the normal filling amount without refrigerant leakage from the average operating evaporator opening and evaporation pressure derived in the average operating evaporator opening derivation process. Since the leakage rate can also be derived, the leakage state can be determined quantitatively using numerical values, and more appropriate post-processing can be performed based on the value.

冷媒漏洩状態判定方法の更なる特徴構成は、
前記冷媒漏洩程度判定工程は、
前記運転蒸発器平均開度導出工程にて導出された前記運転蒸発器平均開度を前記過熱度が高くなるほど高い側へ補正する点にある。
Further characteristics of the refrigerant leakage state determination method are as follows:
The refrigerant leakage degree determination step includes:
The point is that the operating evaporator average opening degree derived in the operating evaporator average opening degree deriving step is corrected to a higher side as the degree of superheat increases.

図6に示すように、発明者らは、漏洩がある場合(図6では漏洩率が40%)において過熱度が高くなるほど運転蒸発器平均開度が高くなる傾向にあるという知見を得た。
上記特徴構成によれば、運転蒸発器平均開度工程にて導出された運転蒸発器平均開度を過熱度が高くなるほど高い側へ補正するから、過熱度(基準過熱度)の値に関わらず、冷媒の漏洩程度をより精度良く判定できる。
尚、図6から判明するように、発明者らは、このような傾向は、定格負荷であっても中間負荷でもあっても、略同様であることを確認している。
As shown in FIG. 6, the inventors have found that when there is a leak (the leak rate is 40% in FIG. 6), the higher the degree of superheating, the higher the average opening of the operating evaporator tends to be.
According to the above feature configuration, the average operating evaporator opening derived in the average operating evaporator opening process is corrected to the higher side as the degree of superheating increases, so regardless of the value of the degree of superheating (standard degree of superheating). , the degree of refrigerant leakage can be determined with higher accuracy.
Incidentally, as is clear from FIG. 6, the inventors have confirmed that such a tendency is substantially the same whether the load is rated or an intermediate load.

更に、冷媒漏洩状態判定システムとしては、
上述の冷媒漏洩状態判定装置を備えると共に、
前記ヒートポンプ装置とネットワーク回線にて電気的に接続される監視装置を備え、
前記監視装置が、前記冷媒の漏洩程度を監視するように構成されていることが好ましい。
Furthermore, as a refrigerant leak status determination system,
In addition to having the above-mentioned refrigerant leakage state determination device,
comprising a monitoring device electrically connected to the heat pump device through a network line,
Preferably, the monitoring device is configured to monitor the degree of leakage of the refrigerant.

上記特徴構成によれば、遠隔監視による漏洩判定を実行できるから、漏洩の判定を管理者が夫々の現場に赴いて実行する場合にくらべ、判定に係る作業負荷を十分に低減できる。 According to the characteristic configuration described above, since the leakage determination can be performed by remote monitoring, the workload related to the leakage determination can be sufficiently reduced compared to the case where the administrator goes to each site and executes the leakage determination.

第1実施形態に係る冷媒漏洩状態判定装置及び冷媒漏洩状態監視システムの概略構成図である。1 is a schematic configuration diagram of a refrigerant leakage state determination device and a refrigerant leakage state monitoring system according to a first embodiment; FIG. 漏洩率と過冷却度との関係を計算により導出した結果を示すグラフ図である。It is a graph diagram showing the result of deriving the relationship between the leakage rate and the degree of supercooling by calculation. 漏洩率と運転蒸発器平均開度との関係を計算により導出した結果を示すグラフ図である。FIG. 3 is a graph diagram showing the result of calculation of the relationship between the leakage rate and the average operating evaporator opening degree. 漏洩率と過熱度との関係を計算により導出した結果を示すグラフ図である。It is a graph diagram showing the result of deriving the relationship between the leakage rate and the degree of superheat through calculation. 凝縮圧力等のパラメータを変化させた場合における漏洩率と過冷却度との関係を計算により導出した結果を示すグラフ図である。FIG. 2 is a graph diagram showing the result of calculation of the relationship between the leakage rate and the degree of supercooling when parameters such as condensation pressure are changed. 過熱度が運転蒸発器平均開度に与える影響を示すグラフ図である。FIG. 3 is a graph diagram showing the influence of the degree of superheating on the average opening degree of the operating evaporator. 圧縮機入口圧力(蒸発圧力)が運転蒸発器平均開度に与える影響を示すグラフ図である。FIG. 2 is a graph diagram showing the influence of compressor inlet pressure (evaporation pressure) on the average operating evaporator opening degree. 蒸発圧力と運転蒸発器平均開度から小・中程度漏洩状態における漏洩率を導出するためのグラフ図である。It is a graph diagram for deriving the leakage rate in a small/medium leakage state from the evaporation pressure and the average opening degree of the operating evaporator. 別実施形態に係る冷媒漏洩状態判定装置及び冷媒漏洩状態監視システムの概略構成図である。FIG. 2 is a schematic configuration diagram of a refrigerant leakage state determination device and a refrigerant leakage state monitoring system according to another embodiment. 過冷却器出口の過冷却度と冷媒充填量(漏洩量)との関係を計算により導出した結果を示すグラフ図である。FIG. 2 is a graph diagram showing the result of calculation of the relationship between the degree of subcooling at the outlet of the supercooler and the amount of refrigerant charged (leakage amount). 凝縮器出口の過冷却度と冷媒充填量(漏洩量)との関係を計算により導出した結果を示すグラフ図である。FIG. 2 is a graph diagram showing the result of calculation of the relationship between the degree of subcooling at the condenser outlet and the amount of refrigerant charged (leakage amount). 運転蒸発器平均開度と冷媒充填量(漏洩量)との関係を計算により導出した結果を示すグラフ図である。FIG. 2 is a graph diagram showing the result of calculation of the relationship between the average opening degree of the operating evaporator and the refrigerant filling amount (leakage amount).

本発明の実施形態に係る冷媒漏洩状態判定方法、当該判定方法を実行可能な冷媒漏洩状態判定装置100、冷媒漏洩状態監視システム200は、冷媒を循環する冷媒循環路を有するヒートポンプ装置において、運転状態に制約をつけることなく通常運転を継続しながらも、漏洩程度を含む漏洩状態を判定可能なものに関する。
以下、図1~図8に基づいて、その実施形態を説明する。
A refrigerant leakage state determination method according to an embodiment of the present invention, a refrigerant leakage state determination device 100 capable of executing the determination method, and a refrigerant leakage state monitoring system 200 are provided in a heat pump device having a refrigerant circulation path that circulates refrigerant. This invention relates to a device that can determine the leakage state, including the degree of leakage, while continuing normal operation without placing any restrictions on the leakage.
The embodiment will be described below based on FIGS. 1 to 8.

実施形態に係る冷媒漏洩状態判定装置100に係るヒートポンプ装置Hは、図1に示すように、エンジン14にて回転駆動され冷媒を圧縮する圧縮機11と、圧縮機11にて圧縮した冷媒を凝縮する凝縮器と、凝縮器にて凝縮した冷媒を膨張させる膨張弁Vと、膨張弁Vにて膨張した冷媒を蒸発させる蒸発器と、圧縮機11と凝縮器と膨張弁Vと蒸発器とに記載の順に冷媒を循環する冷媒循環路C1とを備える。即ち、当該実施形態にあっては、冷媒循環路C1を、冷媒を貯留するレシーバを介さない状態で備えている。
尚、当該冷媒循環路C1には、冷房運転(蒸発器にて冷却能力を発揮する運転)と暖房運転(凝縮器で加熱の能力を発揮する運転)とで冷媒の循環状態を切り替える四方弁20が設けられている。
また、圧縮機11の入口には冷媒を貯留するアキュムレータ15が設けられ、液相状態の冷媒が圧縮機11へ導かれることを防止している。
更に、圧縮機11の出口には圧縮機11から冷媒配管内へ混入したオイルを冷媒から分離するオイルセパレータ16が設けられると共に、当該オイルセパレータ16と圧縮機11の入口とを連通接続するオイル流路Lo及びオイル流路Loを開閉するオイル弁V3が設けられており、オイルセパレータ16に貯留されたオイルは、定期的に、オイル弁V3を閉止状態から開放状態へ移行する形態で、圧縮機11の入口へ導かれる。
As shown in FIG. 1, the heat pump device H according to the refrigerant leak state determination device 100 according to the embodiment includes a compressor 11 that is rotationally driven by an engine 14 and compresses refrigerant, and a compressor 11 that is rotationally driven by an engine 14 and compresses the refrigerant. an expansion valve V that expands the refrigerant condensed in the condenser, an evaporator that evaporates the refrigerant expanded in the expansion valve V, a compressor 11, a condenser, an expansion valve V, and an evaporator. and a refrigerant circulation path C1 that circulates the refrigerant in the order described. That is, in this embodiment, the refrigerant circulation path C1 is provided without passing through a receiver that stores refrigerant.
The refrigerant circulation path C1 includes a four-way valve 20 that switches the refrigerant circulation state between cooling operation (operation in which the evaporator exerts its cooling capacity) and heating operation (operation in which the condenser exerts its heating capacity). is provided.
Further, an accumulator 15 for storing refrigerant is provided at the inlet of the compressor 11 to prevent refrigerant in a liquid phase from being introduced into the compressor 11.
Furthermore, an oil separator 16 is provided at the outlet of the compressor 11 to separate oil mixed into the refrigerant pipe from the compressor 11 from the refrigerant, and an oil flow connecting the oil separator 16 and the inlet of the compressor 11 is provided. An oil valve V3 is provided to open and close the passage Lo and the oil flow passage Lo, and the oil stored in the oil separator 16 is periodically transferred to the compressor by shifting the oil valve V3 from the closed state to the open state. You will be guided to the entrance of 11.

冷房運転時には、図1に示すように、冷媒循環路C1を通流する冷媒は、圧縮機11、オイルセパレータ16、ファン(図示せず)により送風される室外空気と冷媒とを熱交換する室外熱交換器12(凝縮器に相当)、膨張弁V、ファン(図示せず)により送風される室内空気と冷媒とを熱交換する室内熱交換器13(蒸発器に相当)とに記載の順に循環するように、四方弁20が切り換えられる。
一方、暖房運転時には、図示は省略するが、冷媒循環路C1を通流する冷媒は、圧縮機11、オイルセパレータ16、ファン(図示せず)により送風される室内空気と冷媒とを熱交換する室内熱交換器13(凝縮器に相当)、膨張弁V、ファン(図示せず)により送風される室外空気と冷媒とを熱交換する室外熱交換器12(蒸発器に相当)とに記載の順に循環するように、四方弁20が切り換えられる。なお、エンジン14の排熱を用いて冷媒の一部を蒸発させる熱交換器も設置されている場合が多いが、図示は省略する。
During cooling operation, as shown in FIG. 1, the refrigerant flowing through the refrigerant circulation path C1 is transferred to the outdoor air where the refrigerant exchanges heat with outdoor air blown by the compressor 11, oil separator 16, and fan (not shown). The heat exchanger 12 (corresponding to a condenser), the expansion valve V, and the indoor heat exchanger 13 (corresponding to an evaporator) that exchanges heat between the indoor air blown by a fan (not shown) and the refrigerant in the order described. The four-way valve 20 is switched to circulate.
On the other hand, during heating operation, although not shown, the refrigerant flowing through the refrigerant circulation path C1 exchanges heat with indoor air blown by the compressor 11, oil separator 16, and fan (not shown). An indoor heat exchanger 13 (equivalent to a condenser), an expansion valve V, and an outdoor heat exchanger 12 (equivalent to an evaporator) that exchanges heat between outdoor air blown by a fan (not shown) and a refrigerant. The four-way valve 20 is switched to circulate in sequence. Note that a heat exchanger that evaporates part of the refrigerant using exhaust heat from the engine 14 is often installed, but is not shown.

更に、当該実施形態に係る冷媒漏洩状態判定装置100は、ヒートポンプ装置Hの各種パラメータを計測するべく、以下の構成を有する。
冷媒漏洩状態判定装置100は、ハードウェアとソフトウェアとが協働して実現される制御装置Sとして、圧縮機11入口での冷媒吸込温度から蒸発温度を減算して過熱度を算出する過熱度算出部S1と、凝縮温度から凝縮器出口での冷媒温度を減算して過冷却度を算出する過冷却度算出部S2と、少なくとも1つ以上の蒸発器を有する場合において、運転している蒸発器(室内熱交換器13)に対応する膨張弁Vに関し、膨張弁開度を蒸発器の能力比率に基づいて換算した値(当該実施形態では除算した値)を平均した値としての運転蒸発器平均開度を導出する運転蒸発器平均開度導出部S3とを有する。
尚、本明細書では、冷房運転の場合を例として説明するため、蒸発器を室内熱交換器13として説明する箇所があるが、暖房運転であっても好適に本発明の冷媒漏洩状態判定方法を適用することができ、暖房運転の場合には蒸発器は室外熱交換器12となる。
更に、制御装置Sは、ヒートポンプ装置Hを通常運転状態で運転するときに、過熱度を所定の基準過熱度(後述する計算結果では5K)に維持する過熱度維持部(図示せず)として機能する。
Furthermore, the refrigerant leak state determination device 100 according to the embodiment has the following configuration in order to measure various parameters of the heat pump device H.
The refrigerant leak state determination device 100 is a control device S realized by hardware and software working together, and performs superheat degree calculation that calculates the degree of superheat by subtracting the evaporation temperature from the refrigerant suction temperature at the inlet of the compressor 11. a subcooling degree calculating section S2 that calculates the degree of subcooling by subtracting the refrigerant temperature at the condenser outlet from the condensing temperature; and an operating evaporator in the case of having at least one evaporator; Regarding the expansion valve V corresponding to the indoor heat exchanger 13, the operating evaporator average is the average value of the expansion valve opening degree converted based on the capacity ratio of the evaporator (the divided value in this embodiment) It has an operating evaporator average opening degree deriving part S3 that derives the opening degree.
In this specification, the evaporator is described as the indoor heat exchanger 13 in order to explain the case of cooling operation as an example. can be applied, and in the case of heating operation, the evaporator becomes the outdoor heat exchanger 12.
Furthermore, the control device S functions as a superheat degree maintenance unit (not shown) that maintains the superheat degree at a predetermined reference superheat degree (5K in calculation results described later) when the heat pump device H is operated in a normal operating state. do.

さて、当該実施形態に係る冷媒漏洩状態判定装置100は、運転状態に制約をつけることなく通常運転を継続しながらも、漏洩程度を含む漏洩状態を判定するべく、以下のように構成されている。 Now, the refrigerant leakage state determination device 100 according to the embodiment is configured as follows in order to determine the leakage state including the degree of leakage while continuing normal operation without imposing restrictions on the operating state. .

冷媒漏洩状態判定装置100は、制御装置Sとして、過熱度維持部が過熱度を維持する過熱度維持工程を実行している状態で、過冷却度算出部S2にて算出された過冷却度が零であり、且つ運転蒸発器平均開度導出部S3にて導出された運転蒸発器平均開度が、通常運転時での定格条件における運転蒸発器平均開度である平均開度(図3で100%)を所定値(図3の例では25%程度)だけ増える基準平均開度(図3で125%、L1)を超えると共に運転蒸発器平均開度の最大値である最大平均開度未満であり、過熱度算出部S1にて算出される過熱度が基準過熱度に維持されている場合に、冷媒の漏洩程度が中程度漏洩状態であると判定する冷媒漏洩程度判定工程を実行する冷媒漏洩程度判定部S5を有する。 The refrigerant leakage state determining device 100, as a control device S, determines that the degree of subcooling calculated by the degree of supercooling calculating section S2 is 0, and the operating evaporator average opening derived by the operating evaporator average opening deriving unit S3 is the average operating evaporator opening under the rated conditions during normal operation (in Figure 3). 100%) by a predetermined value (approximately 25% in the example of Fig. 3) exceeding the standard average opening (125%, L1 in Fig. 3) and less than the maximum average opening which is the maximum value of the operating evaporator average opening. A refrigerant that executes a refrigerant leakage degree determination step that determines that the degree of refrigerant leakage is in a moderate leakage state when the degree of superheating calculated by the degree of superheating calculation unit S1 is maintained at the reference degree of superheating. It has a leakage degree determination section S5.

冷媒漏洩程度判定部S5は、冷媒漏洩状態判定方法として、上述の中程度漏洩状態の判定に加えて、少程度の漏洩状態の判定及び多程度の漏洩状態の判定を実行可能に構成されている。
説明を追加すると、冷媒漏洩程度判定部S5は、過熱度維持工程が実行されている状態で、過冷却度算出工程にて算出された過冷却度が零より大きい値であり、且つ運転蒸発器平均開度導出工程にて導出された運転蒸発器平均開度が、最大平均開度未満であり、過熱度算出工程にて算出される過熱度が基準過熱度に維持されている場合に、冷媒の漏洩程度が中程度漏洩状態よりも少ない漏洩程度であって漏洩無しも含む少程度漏洩状態であると判定する。
また、冷媒漏洩程度判定部S5は、過熱度維持工程が実行された状態で、過冷却度算出工程にて算出された過冷却度が零であり、且つ運転蒸発器平均開度導出工程にて導出された運転蒸発器平均開度が最大平均開度であり、過熱度算出工程にて算出される過熱度が基準過熱度より大きい場合に、冷媒の漏洩程度が中程度漏洩状態よりも多い漏洩程度である多程度漏洩状態であると判定する。
The refrigerant leakage degree determination unit S5 is configured to be able to perform determination of a small leakage state and determination of a large leakage state in addition to the above-mentioned determination of a medium leakage state as a method of determining a refrigerant leakage state. .
To add an explanation, the refrigerant leakage degree determination unit S5 determines that the degree of supercooling calculated in the degree of supercooling calculation step is a value greater than zero while the degree of superheating maintaining step is being executed, and the evaporator is in operation. If the operating evaporator average opening calculated in the average opening derivation step is less than the maximum average opening, and the superheat degree calculated in the superheat degree calculation step is maintained at the reference superheat degree, the refrigerant It is determined that the degree of leakage is less than the moderate leakage state and is in the slight leakage state, which includes no leakage.
In addition, the refrigerant leakage degree determination unit S5 determines that the degree of supercooling calculated in the degree of supercooling calculation step is zero in the state in which the degree of superheating maintenance step is executed, and the degree of supercooling calculated in the degree of supercooling calculation step is zero, and the degree of supercooling is determined to be zero in the step of deriving the average opening of the operating evaporator. If the derived operating evaporator average opening is the maximum average opening and the degree of superheat calculated in the superheat degree calculation step is greater than the standard degree of superheat, the degree of refrigerant leakage is greater than the medium leak state. It is determined that there is some degree of leakage.

更に、図2、3、4のシミュレーション結果に基づいて、冷媒漏洩程度判定工程について詳述する。尚、グラフ図において、□は、冷房定格運転における基準値を示すものである。
発明者らは、ヒートポンプ装置Hに関し、シンプルフローの場合の20HPの直膨GHPを模擬したシミュレーションを実行した。当該シミュレーションでは、圧縮冷凍サイクルでの冷房モードを対象としている。
ヒートポンプ装置Hを構成する構成要素としては、圧縮機11は、体積効率=90%で固定とし、オイルセパレータ16は約4Lの体積の空間に設定し、凝縮器(室外熱交換器12)は、段数54・列数3・個数2を模擬し、内径6.8mm・長さ1600mmのフィンチューブタイプで簡易的なパス割を設定し、冷媒循環路C1としての液管は、内径13.9mm、長さ50mで設定し、膨張弁Vは、配管上のオリフィスの面積を変化できるものを用い、蒸発器(室内熱交換器13)は、段数18・列数3・個数4を模擬し、内径4.6mm・長さ2200mmのフィンチューブタイプで、簡易的なパス割で設定し、冷媒循環路C1としてのガス管は、内径26.6mm・長さ50mで設定し、アキュムレータ15は、約8Lの体積の空間に設定した。
尚、上記記載において、凝縮器(室外熱交換器12)は個数2としているが、これは室外熱交換器12の正面と背面に1個ずつ熱交換器が配置されることを示すものである。
一方、上記記載において、蒸発器(室内熱交換器13)は個数4としているが、これは接続する室内熱交換器13の数に相当する。定格条件では、すべての室内熱交換器13に冷媒が流れるが、部分負荷等では一部の室内熱交換器13にのみ冷媒が流れる。本明細書では、蒸発器運転台数比率で表現しており、定格条件は100%、後述の中間負荷では50%と設定している。
次に、計算条件としては、凝縮圧力が2.9MPaA、蒸発器運転台数比率が100%、外気温度が35℃、過熱度が5K、蒸発圧力が0.75MPaA、標準充填量時の過冷却度が5K(17.5kg時)、運転蒸発器平均開度の上限が過冷却度(5K)時のときを100%として300%、圧縮機11の断熱効率が80%、冷媒はR410A、冷媒充填量が110%~30%(冷媒漏洩率が-10%~70%)とした。
尚、当該明細書においては、特に記載がない限り、運転蒸発器平均開度は、通常運転時で定格運転を実行している場合を100%として示している。
Furthermore, the refrigerant leakage degree determination process will be described in detail based on the simulation results shown in FIGS. 2, 3, and 4. In the graph, □ indicates a reference value in rated cooling operation.
Regarding heat pump device H, the inventors performed a simulation simulating direct expansion GHP of 20 HP in the case of simple flow. This simulation targets the cooling mode in the compression refrigeration cycle.
As for the components constituting the heat pump device H, the compressor 11 is fixed at a volumetric efficiency of 90%, the oil separator 16 is set in a space with a volume of about 4 L, and the condenser (outdoor heat exchanger 12) is: The number of stages is 54, the number of rows is 3, and the number is 2. A simple path allocation is set using a fin tube type with an inner diameter of 6.8 mm and a length of 1600 mm, and the liquid pipe as the refrigerant circulation path C1 has an inner diameter of 13.9 mm. The length is set to 50 m, the expansion valve V is one that can change the area of the orifice on the pipe, and the evaporator (indoor heat exchanger 13) has 18 stages, 3 rows, and 4 pieces, and the inner diameter It is a fin tube type with a diameter of 4.6 mm and a length of 2200 mm, and is set using a simple path division.The gas pipe as the refrigerant circulation path C1 is set with an inner diameter of 26.6 mm and a length of 50 m, and the accumulator 15 is approximately 8 L. is set in a space with a volume of .
In the above description, the number of condensers (outdoor heat exchanger 12) is 2, but this indicates that one heat exchanger is placed on the front and back of outdoor heat exchanger 12. .
On the other hand, in the above description, the number of evaporators (indoor heat exchangers 13) is four, which corresponds to the number of connected indoor heat exchangers 13. Under rated conditions, refrigerant flows to all indoor heat exchangers 13, but under partial load, etc., refrigerant flows only to some indoor heat exchangers 13. In this specification, it is expressed as a ratio of the number of evaporators in operation, and the rated condition is set to 100%, and the intermediate load described below is set to 50%.
Next, the calculation conditions are: condensation pressure is 2.9 MPaA, evaporator operation ratio is 100%, outside temperature is 35°C, degree of superheat is 5K, evaporation pressure is 0.75 MPaA, and degree of supercooling at standard filling amount. is 5K (17.5 kg), the upper limit of the operating evaporator average opening is 100% when the degree of supercooling (5K) is 300%, the adiabatic efficiency of the compressor 11 is 80%, the refrigerant is R410A, and the refrigerant is charged. The amount was set to 110% to 30% (refrigerant leak rate -10% to 70%).
In this specification, unless otherwise specified, the average operating evaporator opening degree is shown as 100% when rated operation is performed during normal operation.

図2は冷媒の漏洩率と過冷却度との関係、図3は冷媒の漏洩率と運転蒸発器平均開度との関係、図4は冷媒の漏洩率と過熱度との関係を示すグラフ図である。
当該シミュレーション結果から、少程度漏洩状態(図2、3、4では漏洩率が0%以上第1閾値R1(15%程度の値)未満)では、過熱度維持工程が実行されている状態において、過冷却度が、図2に示されるように零より大きい値であり、且つ運転蒸発器平均開度が、図3に示されるように基準平均開度(図3でL1)未満であり、過熱度が、図4に示されるように基準過熱度(図4では5K)に維持されていることがわかる。
中程度漏洩状態(図2、3、4では漏洩率が第1閾値R1%以上第2閾値R2(50%程度の値)未満)では、過熱度維持工程が実行されている状態において、過冷却度が、図2に示されるように零であり、且つ運転蒸発器平均開度が、図3に示されるように基準平均開度(図3でL1)を超えると共に最大平均開度未満であり、過熱度が、図4に示されるように基準過熱度(図4では5K)に維持されていることがわかる。
多程度漏洩状態(図2、3、4では漏洩率が第2閾値R2%以上)では、過熱度維持工程が実行されている状態において、過冷却度が、図2に示されるように零であり、且つ運転蒸発器平均開度が、図3に示されるように基準平均開度(図3でL1)を超える最大平均開度(300%)であり、過熱度が、図4に示されるように基準過熱度(図4では5K)より大きい値となっていることがわかる。
即ち、本発明に係る冷媒漏洩状態判定方法では、上述のシミュレーションの結果に基づいて、冷媒漏洩状態の判定を実行しているのである。
Figure 2 is a graph showing the relationship between the refrigerant leak rate and the degree of supercooling, Figure 3 is the relationship between the refrigerant leak rate and the average operating evaporator opening, and Figure 4 is a graph showing the relationship between the refrigerant leak rate and the degree of superheating. It is.
From the simulation results, in a small leakage state (in FIGS. 2, 3, and 4, the leakage rate is 0% or more and less than the first threshold R1 (a value of about 15%)), when the superheat degree maintenance step is being executed, The degree of supercooling is greater than zero as shown in FIG. 2, and the average operating evaporator opening is less than the standard average opening (L1 in FIG. 3) as shown in FIG. It can be seen that the temperature is maintained at the reference superheat degree (5K in FIG. 4) as shown in FIG.
In a medium leakage state (in Figures 2, 3, and 4, the leakage rate is greater than or equal to the first threshold R1% and less than the second threshold R2 (a value of approximately 50%)), supercooling is 2, and the operating evaporator average opening exceeds the reference average opening (L1 in FIG. 3) and is less than the maximum average opening, as shown in FIG. , it can be seen that the superheat degree is maintained at the reference superheat degree (5K in FIG. 4) as shown in FIG.
In a state where there is a large degree of leakage (in Figures 2, 3, and 4, the leakage rate is equal to or higher than the second threshold R2%), the degree of supercooling is zero as shown in Figure 2 while the superheat degree maintenance step is being executed. Yes, and the operating evaporator average opening is the maximum average opening (300%) exceeding the standard average opening (L1 in Figure 3) as shown in Figure 3, and the degree of superheat is as shown in Figure 4. It can be seen that the value is larger than the standard superheat degree (5K in FIG. 4).
That is, in the refrigerant leak state determination method according to the present invention, the refrigerant leak state is determined based on the results of the above-mentioned simulation.

尚、当該実施形態に係る冷媒漏洩状態判定装置100は、ヒートポンプ装置Hの運転状態に制限がなく通常運転状態であれば冷媒漏洩状態の判定を行えるものである。
しかしながら、例えば、ヒートポンプ装置Hの始動状態(定常運転に達するまでの状態)では、上述の各種パラメータの組み合わせが例外的な値を示す。例えば、始動状態では、運転蒸発器平均開度の開度が最大になっていないにも関わらず、過熱度が基準過熱度を超える高い値を示す場合がある。
そこで、冷媒漏洩程度判定部S5は、冷媒漏洩程度判定工程において、過冷却度と運転蒸発器平均開度と過熱度の値の組み合わせが、中程度漏洩状態と少程度漏洩状態と多程度漏洩状態にて規定される値の組み合わせ以外である場合、ヒートポンプ装置の運転状態が通常運転とは異なる運転状態にあるとして漏洩程度の判定から除外する。
Note that the refrigerant leakage state determining device 100 according to the embodiment can determine the refrigerant leakage state as long as there is no restriction on the operating state of the heat pump device H and the heat pump device H is in a normal operating state.
However, for example, in the starting state (state until steady operation is reached) of the heat pump device H, the combination of the various parameters described above exhibits exceptional values. For example, in the starting state, the degree of superheat may exhibit a high value exceeding the reference degree of superheat even though the average opening degree of the operating evaporator is not at its maximum.
Therefore, in the refrigerant leakage degree determination step, the refrigerant leakage degree determination unit S5 determines whether the combination of the subcooling degree, the operating evaporator average opening degree, and the superheating degree is a medium leakage state, a small leakage state, and a large leakage state. If the combination of values is other than that specified in , it is assumed that the operating state of the heat pump device is different from normal operation and is excluded from the determination of the degree of leakage.

さて、次に、種々の環境指標やパラメータの変化が、過冷却度及び運転蒸発器平均開度に及ぼす影響について行ったシミュレーション結果を、図5、6、7に基づいて説明する。
まず、過冷却度と漏洩率との関係を示す図5は、凝縮圧力:2.6~3.2MPaA、蒸発器運転台数比率:25%~100%、外気温度:25~35℃に変化させた場合の結果である。図5から判明するように、過冷却度がハッチングで示される部分で大きく変化することとなった。即ち、少程度の漏れ(過冷却度が正)の場合、凝縮圧力、運転台数比率、外気温度による過冷却度自体の変化が大きいことが判明した。しかしながら、第1閾値R1未満において過冷却度が零より大きい値をとり、第1閾値R1以上において過冷却度が零となる傾向は概ね維持される。これにより、本発明に係る過冷却度と漏洩率との関係において、凝縮圧力、蒸発器運転台数比率及び外気温度による補正は必要ないものとした。
Next, the results of simulations conducted regarding the effects of changes in various environmental indicators and parameters on the degree of supercooling and the average opening of the operating evaporator will be explained based on FIGS. 5, 6, and 7.
First, Figure 5, which shows the relationship between the degree of supercooling and the leakage rate, shows the relationship between the condensing pressure: 2.6 to 3.2 MPaA, the ratio of the number of evaporators in operation: 25% to 100%, and the outside temperature: 25 to 35°C. This is the result when As is clear from FIG. 5, the degree of supercooling changed significantly in the hatched areas. That is, in the case of a small leak (positive degree of supercooling), it was found that the degree of supercooling itself changes greatly depending on the condensing pressure, the ratio of the number of units in operation, and the outside air temperature. However, the tendency that the degree of supercooling takes a value larger than zero below the first threshold R1 and becomes zero above the first threshold R1 is generally maintained. As a result, in the relationship between the degree of supercooling and the leakage rate according to the present invention, correction based on the condensing pressure, the ratio of the number of operating evaporators, and the outside air temperature is not necessary.

次に、運転蒸発器平均開度と過熱度との関係を図6に示す。漏洩率が40%において、定格負荷(外気温度35℃、蒸発器運転台数比率100%、凝縮圧力2.9MPaA)と中間負荷(外気温度30℃、蒸発器運転台数比率50%、凝縮圧力2.6MPaA)との何れにおいても、過熱度が高くなるほど、運転蒸発器平均開度が低下する傾向にあることがわかる。
そこで、冷媒漏洩程度判定部S5は、冷媒漏洩程度判定工程において、運転蒸発器平均開度を過熱度が高くなるほど高い側へ補正する。
尚、定格負荷や中間負荷では、概ね同じ特性となっているため、凝縮圧力、運転台数比率、外気温度の影響は大きくないことがわかる。
Next, FIG. 6 shows the relationship between the average operating evaporator opening degree and the degree of superheat. When the leakage rate is 40%, the rated load (outside air temperature 35°C, evaporator operating ratio 100%, condensing pressure 2.9 MPaA) and intermediate load (outside air temperature 30°C, evaporator operating ratio 50%, condensing pressure 2. 6 MPaA), it can be seen that as the degree of superheating increases, the average operating evaporator opening degree tends to decrease.
Therefore, in the refrigerant leakage degree determination step, the refrigerant leakage degree determination unit S5 corrects the operating evaporator average opening degree to a higher side as the degree of superheating increases.
In addition, since the characteristics are generally the same at rated load and intermediate load, it can be seen that the influence of condensing pressure, ratio of number of operating units, and outside temperature is not large.

次に、運転蒸発器平均開度と圧縮機11の入口圧力(蒸発圧力)との関係を図7に示す。漏洩率が40%において、定格負荷(外気温度35℃、蒸発器運転台数比率100%、凝縮圧力2.9MPaA)と中間負荷(外気温度30℃、蒸発器運転台数比率50%、凝縮圧力2.6MPaA)との何れにおいても、蒸発圧力が高くなるほど、運転蒸発器平均開度が低下する傾向にあることがわかる。
そこで、冷媒漏洩程度判定部S5は、冷媒漏洩程度判定工程において、運転蒸発器平均開度を圧縮機11の入口圧力である蒸発圧力が高くなるほど高い側へ補正する。
尚、定格負荷や中間負荷では、概ね同じ特性となっているため、凝縮圧力、運転台数比率、外気温度の影響は大きくないことがわかる。
Next, FIG. 7 shows the relationship between the average operating evaporator opening degree and the inlet pressure (evaporation pressure) of the compressor 11. When the leakage rate is 40%, the rated load (outside air temperature 35°C, evaporator operating ratio 100%, condensing pressure 2.9 MPaA) and intermediate load (outside air temperature 30°C, evaporator operating ratio 50%, condensing pressure 2. 6 MPaA), it can be seen that as the evaporation pressure increases, the average operating evaporator opening degree tends to decrease.
Therefore, in the refrigerant leakage degree determination step, the refrigerant leakage degree determination unit S5 corrects the operating evaporator average opening degree to a higher side as the evaporation pressure, which is the inlet pressure of the compressor 11, increases.
In addition, since the characteristics are generally the same at rated load and intermediate load, it can be seen that the influence of condensing pressure, ratio of number of operating units, and outside temperature is not large.

更に、発明者らは、例えば、運転蒸発器平均開度が変化する少程度漏洩状態及び中程度漏洩状態において、即ち多程度漏洩状態を除く漏洩状態において、運転蒸発器平均開度と蒸発圧力(圧縮機11の入口圧力)とから、冷媒の漏洩のない正規の充填量にて冷媒の漏洩を除算した漏洩率(又は、100%から当該漏洩率を減算した充填率)を導出できることを、新たに見出した。
具体的には、図8に示すように、縦軸に充填率(100%-漏洩率)をとり、横軸に運転蒸発器平均開度をとったグラフ図において、蒸発圧力毎に、運転蒸発器平均開度の増加に従って充填率が減少する特性を有するグラフ図、換言すると充填率が運転蒸発器平均開度に対して累乗近似の特性を有するグラフ図を得るに至った。
因みに、当該図8に示すグラフのデータは、概ね同じような特性であった前述の定格負荷条件と中間負荷条件の結果から算出した値である。また、当該図8に示すグラフは、上述した構成及び条件において、以下の〔式1〕にて算出できる。
Furthermore, the inventors have determined that the average operating evaporator opening and evaporation pressure ( It is newly proposed that the leakage rate (or the filling rate that is obtained by subtracting the leakage rate from 100%) can be derived from the refrigerant leakage divided by the normal filling amount without any refrigerant leakage. I found it.
Specifically, as shown in Figure 8, in a graph in which the vertical axis shows the filling rate (100% - leakage rate) and the horizontal axis shows the average opening of the operating evaporator, the operating evaporator A graph diagram having a characteristic that the filling rate decreases as the average opening degree of the evaporator increases, in other words, a graph diagram having a characteristic that the filling rate is approximated to a power of the average opening degree of the operating evaporator was obtained.
Incidentally, the data in the graph shown in FIG. 8 is a value calculated from the results of the above-mentioned rated load condition and intermediate load condition, which had almost similar characteristics. Further, the graph shown in FIG. 8 can be calculated using the following [Formula 1] under the above-mentioned configuration and conditions.

〔式1〕

Figure 0007412221000003
[Formula 1]
Figure 0007412221000003

ここで、R:漏洩率、Pe:圧縮機入口圧力(MPaA)、Ev:運転蒸発器平均開度(%)、a=-0.98、 b=1.75、c=-0.06、d=0.06、e=-0.72
尚、当該値は、上述した具体的なヒートポンプ装置Hの構成を採用した場合の値であり、システム構成を変更すれば変化するものである。
Here, R: leakage rate, Pe: compressor inlet pressure (MPaA), Ev: average operating evaporator opening (%), a = -0.98, b = 1.75, c = -0.06, d=0.06, e=-0.72
Note that this value is a value when the above-described specific configuration of the heat pump device H is adopted, and will change if the system configuration is changed.

即ち、冷媒漏洩程度判定部S5は、冷媒漏洩程度判定工程において、冷媒の漏洩率(又は、充填率)までをも含めて判定できるから、管理者は当該値に基づいて、漏洩状況をより的確に把握しながら復旧作業に取り組むことができる。尚、図8では、運転蒸発器平均開度が120%である場合で、圧縮機入口圧力が1.05MPaAである場合と、圧縮機入口圧力が0.75MPaAである場合とにおける漏洩率(充填率)を導出する場合を例示している。 That is, since the refrigerant leakage degree determination unit S5 can determine the refrigerant leakage rate (or filling rate) in the refrigerant leakage degree determination step, the administrator can more accurately determine the leakage situation based on the value. You can work on recovery work while keeping track of the situation. In addition, in FIG. 8, the leakage rate (filling This example shows the case of deriving the ratio).

本発明に係る冷媒漏洩状態判定装置100は、図1に示すように、ネットワーク回線Nを介した監視装置Kを備えた冷媒漏洩状態監視システムとして構成可能である。当該構成では、制御装置Sの冷媒漏洩程度判定部S5にて判定された判定結果を監視装置Kにて常時監視することができ、ヒートポンプ装置Hが設けられる現場に管理者が赴くことなく、冷媒漏洩程度を把握することができる。
因みに、制御装置Sは、ヒートポンプ装置Hを一体的に設けても構わないし、監視装置Kの一部として設けても構わない。
A refrigerant leakage state determination device 100 according to the present invention can be configured as a refrigerant leakage state monitoring system including a monitoring device K via a network line N, as shown in FIG. With this configuration, the determination result determined by the refrigerant leakage degree determination unit S5 of the control device S can be constantly monitored by the monitoring device K, and the refrigerant It is possible to grasp the degree of leakage.
Incidentally, the control device S may be provided integrally with the heat pump device H, or may be provided as a part of the monitoring device K.

〔別実施形態〕
(1)本発明に係る冷媒漏洩状態判定装置100、冷媒漏洩状態判定方法及び冷媒漏洩状態判定システムは、図9に示すように、冷媒循環路C1を循環する冷媒の一部を分流する分配流路C2、分流した冷媒を膨張させ降温させる膨張弁V4、膨張弁V4を通過して降温した冷媒にて冷媒循環路C1を循環する冷媒を冷却する過冷却器17とを備える構成であっても良好にその機能を発揮する。
図9には、冷房運転時における分配流路C2の回路構成の一例を示す。
尚、以下では、上記実施形態と異なる構成である分配流路C2に関連する構成についてのみ説明し、説明のない構成については、上記実施形態と同一であるとする。
図9に示すように、分配流路C2の上流端は、過冷却器17と膨張弁Vとの間の冷媒循環路C1に接続されると共に、下流端は、アキュムレータ15と圧縮機11との間の冷媒循環路C1(より詳細には、オイル流路Loの下流端とアキュムレータ15との間の冷媒循環路C1)に接続されている。
当該分配流路C2は、膨張弁V4にて膨張された冷媒が通流する流路部位が、過冷却器17の内部を通過する形態で配設され、これにより、過冷却器17にて冷媒循環路C1を循環する冷媒を冷却するものである。
ここで、分配流路C2へ導かれる冷媒の流量を室外熱交換器12を通流する冷媒の流量で除算した値(図10~12でSCで示される値)を、8%(図10~12で△印)、4%(図10~12で□印)、0%(図10~12で〇印)とした場合における過冷却器17の出口の過冷却度と冷媒充填量の関係を図10に、凝縮器の出口での過冷却度と冷媒充填量との関係を図11に、膨張弁開度と冷媒充填量との関係を図12に示す。
当該結果により、過冷却器17の出口での過冷却度(図10で示す値)では、分配流路C2への冷媒の充填量の変化に伴って過冷却度と冷媒充填量との関係が変化しているのに対し、凝縮器の出口での過冷却度(図11で示す値)では、分配流路C2への冷媒の充填量の変化に関わらず過冷却度と冷媒充填量との関係が変化してない。このことから、過冷却器17を備える構成においては、凝縮器の出口にて過冷却度を導出する構成を採用することで、分配流路C2への冷媒の分配量に関わらず、冷媒の漏洩状態を適切に判定できることがわかる。
また、図12から、分配流路C2への分配量は、膨張弁開度と冷媒充填量との関係には、ほとんど影響を及ぼさないことがわかる。
[Another embodiment]
(1) As shown in FIG. 9, the refrigerant leakage state determination device 100, the refrigerant leakage state determination method, and the refrigerant leakage state determination system according to the present invention include a distribution flow that divides a part of the refrigerant circulating in the refrigerant circulation path C1. Even if the configuration includes a path C2, an expansion valve V4 that expands and lowers the temperature of the branched refrigerant, and a supercooler 17 that cools the refrigerant circulating through the refrigerant circulation path C1 with the refrigerant that has passed through the expansion valve V4 and cooled. It performs its functions well.
FIG. 9 shows an example of the circuit configuration of the distribution channel C2 during cooling operation.
In addition, below, only the structure related to the distribution flow path C2 which is a different structure from the said embodiment is demonstrated, and it is assumed that the structure which is not explained is the same as the said embodiment.
As shown in FIG. 9, the upstream end of the distribution channel C2 is connected to the refrigerant circulation channel C1 between the supercooler 17 and the expansion valve V, and the downstream end is connected to the refrigerant circulation channel C1 between the accumulator 15 and the compressor 11. It is connected to the refrigerant circulation path C1 between (more specifically, the refrigerant circulation path C1 between the downstream end of the oil flow path Lo and the accumulator 15).
The distribution flow path C2 is arranged in such a manner that a flow path portion through which the refrigerant expanded by the expansion valve V4 flows passes through the inside of the supercooler 17, so that the refrigerant flows in the supercooler 17. It cools the refrigerant circulating through the circulation path C1.
Here, the value obtained by dividing the flow rate of the refrigerant guided to the distribution channel C2 by the flow rate of the refrigerant flowing through the outdoor heat exchanger 12 (the value indicated by SC in FIGS. 10 to 12) is calculated by 8% (the value indicated by SC in FIGS. 12), 4% (marked □ in Figures 10 to 12), and 0% (marked ○ in Figures 10 to 12), the relationship between the degree of supercooling at the outlet of the supercooler 17 and the refrigerant filling amount is FIG. 10 shows the relationship between the degree of subcooling at the outlet of the condenser and the amount of refrigerant charged, and FIG. 11 shows the relationship between the expansion valve opening and the amount of refrigerant charged.
According to the results, the relationship between the degree of subcooling and the amount of refrigerant charged at the outlet of the subcooler 17 changes as the amount of refrigerant charged into the distribution channel C2 changes. On the other hand, for the degree of supercooling at the outlet of the condenser (the value shown in Figure 11), the relationship between the degree of supercooling and the amount of refrigerant charged changes regardless of the change in the amount of refrigerant charged into the distribution channel C2. The relationship hasn't changed. Therefore, in a configuration including the subcooler 17, by adopting a configuration in which the degree of subcooling is derived at the outlet of the condenser, refrigerant leakage can be prevented regardless of the amount of refrigerant distributed to the distribution channel C2. It can be seen that the state can be appropriately determined.
Further, from FIG. 12, it can be seen that the amount of distribution to the distribution channel C2 has almost no effect on the relationship between the expansion valve opening degree and the refrigerant charging amount.

(2)上記で記載した基準平均開度L1、閾値R1、閾値R2の値は、運転条件やシステム構成により変化する値であり、上記実施形態に示した値は例示であって、本発明の実施形態はこの値に限定されるものではない。 (2) The values of the reference average opening degree L1, threshold value R1, and threshold value R2 described above are values that change depending on the operating conditions and system configuration, and the values shown in the above embodiment are examples, and the values of the present invention are Embodiments are not limited to this value.

(3)上記実施形態では、中程度漏洩状態に加え、少程度漏洩状態及び多程度漏洩状態をも判定する構成を示したが、中程度漏洩状態のみを検出する構成を採用しても構わない。 (3) In the above embodiment, a configuration is shown in which a small leakage state and a large leakage state are determined in addition to a medium leakage state, but a configuration that detects only a medium leakage state may be adopted. .

(4)上記実施形態では、過熱度による運転蒸発器平均開度の補正や、圧縮機の入口圧力による運転蒸発器平均開度の補正を行う例を示したが、これらの補正は実行しなくても構わない。 (4) In the above embodiment, an example was shown in which the average operating evaporator opening degree is corrected based on the degree of superheating and the average operating evaporator opening degree is corrected based on the compressor inlet pressure, but these corrections are not performed. I don't mind.

(5)上記実施形態では、本発明に係るエンジン駆動式のヒートポンプ装置を例にとって説明したが、本発明に係る冷媒漏洩状態判定方法、冷媒漏洩状態判定装置及び冷媒漏洩状態監視システムは、モータ駆動式のヒートポンプ装置であっても、有効に利用可能である。 (5) In the above embodiment, the engine-driven heat pump device according to the present invention was explained as an example, but the refrigerant leakage state determination method, refrigerant leakage state determination device, and refrigerant leakage state monitoring system according to the present invention are Even a type of heat pump device can be effectively used.

(6)少程度漏洩状態の判定は、過熱度維持工程が実行されている状態で、過冷却度算出工程にて算出された過冷却度が零より大きい値であり、且つ運転蒸発器平均開度導出工程にて導出された運転蒸発器平均開度が、基準平均開度未満であり、過熱度算出工程にて算出される過熱度が基準過熱度に維持されている場合に、冷媒の漏洩程度が中程度漏洩状態よりも少ない漏洩程度である少程度漏洩状態であると判定する構成であっても構わない。 (6) A small leak state is determined when the degree of supercooling calculated in the degree of supercooling calculation step is greater than zero while the degree of superheat maintenance step is being executed, and the average operating evaporator opening is If the operating evaporator average opening degree derived in the degree derivation process is less than the standard average opening degree, and the degree of superheating calculated in the degree of superheating calculation process is maintained at the standard degree of superheating, refrigerant leakage occurs. The configuration may be such that the leakage level is determined to be a slight leakage state, which is a degree of leakage that is less than a medium leakage state.

尚、上記実施形態(別実施形態を含む、以下同じ)で開示される構成は、矛盾が生じない限り、他の実施形態で開示される構成と組み合わせて適用することが可能であり、また、本明細書において開示された実施形態は例示であって、本発明の実施形態はこれに限定されず、本発明の目的を逸脱しない範囲内で適宜改変することが可能である。 It should be noted that the configuration disclosed in the above embodiment (including other embodiments, the same applies hereinafter) can be applied in combination with the configuration disclosed in other embodiments, as long as there is no contradiction, and The embodiments disclosed in this specification are illustrative, and the embodiments of the present invention are not limited thereto, and can be modified as appropriate without departing from the purpose of the present invention.

本発明の冷媒漏洩状態判定装置、冷媒漏洩状態監視システムは、冷媒を循環する冷媒循環路を有するヒートポンプ装置において、運転状態に制約をつけることなく通常運転を継続しながらも、漏洩程度を含む漏洩状態を判定可能な冷媒漏洩状態判定方法、当該判定方法を実行可能な冷媒漏洩状態判定装置、冷媒漏洩状態監視システムとして、有効に利用可能である。 The refrigerant leakage state determination device and refrigerant leakage state monitoring system of the present invention are capable of detecting leakage, including degree of leakage, while continuing normal operation without placing restrictions on the operating state in a heat pump device having a refrigerant circulation path for circulating refrigerant. The present invention can be effectively used as a refrigerant leakage state determination method capable of determining the state, a refrigerant leakage state determination device capable of executing the determination method, and a refrigerant leakage state monitoring system.

11 :圧縮機
12 :室外熱交換器
13 :室内熱交換器
100 :冷媒漏洩状態判定装置
200 :冷媒漏洩状態監視システム
C1 :冷媒循環路
H :ヒートポンプ装置
K :監視装置
N :ネットワーク回線
S :制御装置
S1 :過熱度算出部
S2 :過冷却度算出部
S3 :運転蒸発器平均開度導出部
S5 :冷媒漏洩程度判定部
V :膨張弁
11: Compressor 12: Outdoor heat exchanger 13: Indoor heat exchanger 100: Refrigerant leakage state determination device 200: Refrigerant leakage state monitoring system C1: Refrigerant circulation path H: Heat pump device K: Monitoring device N: Network line S: Control Device S1: Superheat degree calculation section S2: Supercooling degree calculation section S3: Operating evaporator average opening degree derivation section S5: Refrigerant leakage degree determination section V: Expansion valve

Claims (10)

冷媒を圧縮する圧縮機と、前記圧縮機にて圧縮した冷媒を凝縮する凝縮器と、前記凝縮器にて凝縮した冷媒を膨張させる膨張弁と、前記膨張弁にて膨張した冷媒を蒸発させる蒸発器と、前記圧縮機と前記凝縮器と前記膨張弁と前記蒸発器とに記載の順に冷媒を循環する冷媒循環路とを備えるヒートポンプ装置における冷媒漏洩状態判定方法であって、
前記圧縮機入口での冷媒吸込温度から蒸発温度を減算して過熱度を算出する過熱度算出工程と、
凝縮温度から前記凝縮器出口での冷媒温度を減算して過冷却度を算出する過冷却度算出工程と、
少なくとも1つ以上の前記蒸発器を有する場合において、運転している前記蒸発器及び当該蒸発器に対応する前記膨張弁に関し、膨張弁開度を前記蒸発器の能力比率に基づいて換算した値を平均した値としての運転蒸発器平均開度を導出する運転蒸発器平均開度導出工程と、
通常運転時において過熱度を基準過熱度に維持する過熱度維持工程と、
前記過熱度維持工程が実行された状態で、前記過冷却度算出工程にて算出された過冷却度が零であり、且つ前記運転蒸発器平均開度導出工程にて導出された前記運転蒸発器平均開度が、前記通常運転時での定格条件における前記運転蒸発器平均開度である平均開度を所定値だけ超える基準平均開度を超えると共に前記運転蒸発器平均開度の最大値である最大平均開度未満であり、前記過熱度算出工程にて算出される過熱度が基準過熱度に維持されている場合に、冷媒の漏洩程度が中程度漏洩状態であると判定する冷媒漏洩程度判定工程とを含む冷媒漏洩状態判定方法。
A compressor that compresses refrigerant, a condenser that condenses the refrigerant compressed by the compressor, an expansion valve that expands the refrigerant condensed in the condenser, and an evaporator that evaporates the refrigerant expanded in the expansion valve. A method for determining a refrigerant leakage state in a heat pump device comprising: a refrigerant circulation path that circulates refrigerant in the order described in the compressor, the condenser, the expansion valve, and the evaporator,
a degree of superheat calculation step of calculating the degree of superheat by subtracting the evaporation temperature from the refrigerant suction temperature at the inlet of the compressor;
A degree of supercooling calculation step of calculating the degree of supercooling by subtracting the refrigerant temperature at the condenser outlet from the condensation temperature;
In the case where there is at least one evaporator, a value obtained by converting the expansion valve opening degree based on the capacity ratio of the evaporator with respect to the evaporator in operation and the expansion valve corresponding to the evaporator. an operating evaporator average opening degree derivation step of deriving an operating evaporator average opening degree as an average value;
A superheat degree maintenance step of maintaining the superheat degree at a reference superheat degree during normal operation;
The operating evaporator in which the supercooling degree calculated in the supercooling degree calculation step is zero in the state in which the superheat degree maintaining step is executed, and the operating evaporator average opening degree deriving step The average opening exceeds the standard average opening which exceeds the average opening which is the average opening of the operating evaporator under rated conditions during normal operation by a predetermined value, and is the maximum value of the average opening of the operating evaporator. Refrigerant leakage degree determination that determines that the degree of refrigerant leakage is in a moderate leakage state when the degree of superheating calculated in the superheating degree calculation step is maintained at the reference degree of superheating when the opening degree is less than the maximum average opening degree. A method for determining a refrigerant leakage state, including a process.
前記冷媒漏洩程度判定工程は、
前記過熱度維持工程が実行された状態で、前記過冷却度算出工程にて算出された過冷却度が零より大きい値であり、且つ前記運転蒸発器平均開度導出工程にて導出された前記運転蒸発器平均開度が、前記最大平均開度未満であり、前記過熱度算出工程にて算出される過熱度が前記基準過熱度に維持されている場合に、冷媒の漏洩程度が中程度漏洩状態よりも少ない漏洩程度であって漏洩無しも含む少程度漏洩状態であると判定する請求項1に記載の冷媒漏洩状態判定方法。
The refrigerant leakage degree determination step includes:
When the degree of superheating is maintained, the degree of supercooling calculated in the degree of supercooling calculation step is greater than zero, and the degree of supercooling calculated in the degree of supercooling calculation step is greater than zero, and When the average opening of the operating evaporator is less than the maximum average opening and the degree of superheat calculated in the degree of superheat calculation step is maintained at the standard degree of superheat, the degree of refrigerant leakage is medium leakage. 2. The refrigerant leak state determination method according to claim 1, wherein the refrigerant leak state is determined to be a slight leak state, which includes no leak, the degree of leak being smaller than that of the refrigerant leak state.
前記冷媒漏洩程度判定工程は、
前記過熱度維持工程が実行された状態で、前記過冷却度算出工程にて算出された過冷却度が零であり、且つ前記運転蒸発器平均開度導出工程にて導出された前記運転蒸発器平均開度が、前記最大平均開度であり、前記過熱度算出工程にて算出される過熱度が前記基準過熱度より大きい場合に、冷媒の漏洩程度が中程度漏洩状態よりも多い漏洩程度である多程度漏洩状態であると判定する請求項1に記載の冷媒漏洩状態判定方法。
The refrigerant leakage degree determination step includes:
In the state in which the superheat degree maintenance step is executed, the degree of supercooling calculated in the supercooling degree calculation step is zero, and the operating evaporator is derived in the operating evaporator average opening degree deriving step. When the average degree of opening is the maximum average degree of opening and the degree of superheat calculated in the degree of superheat calculation step is greater than the reference degree of superheat, the degree of leakage of the refrigerant is greater than the degree of leakage in the medium leakage state. The refrigerant leakage state determination method according to claim 1, wherein the refrigerant leakage state determination method is determined to be a leakage state to a certain extent.
前記冷媒漏洩程度判定工程は、
前記過熱度維持工程が実行された状態で、前記過冷却度算出工程にて算出された過冷却度が零であり、且つ前記運転蒸発器平均開度導出工程にて導出された前記運転蒸発器平均開度が、前記最大平均開度であり、前記過熱度算出工程にて算出される過熱度が前記基準過熱度より大きい場合に、冷媒の漏洩程度が中程度漏洩状態よりも多い漏洩程度である多程度漏洩状態であると判定する請求項2に記載の冷媒漏洩状態判定方法。
The refrigerant leakage degree determination step includes:
The operating evaporator in which the supercooling degree calculated in the supercooling degree calculation step is zero in the state in which the superheat degree maintaining step is executed, and the operating evaporator average opening degree deriving step When the average opening is the maximum average opening and the degree of superheat calculated in the degree of superheat calculation step is greater than the reference degree of superheat, the degree of leakage of the refrigerant is greater than the degree of leakage in the medium leakage state. 3. The refrigerant leak state determination method according to claim 2, wherein the refrigerant leak state determination method determines that the refrigerant leak state is to a certain extent.
前記冷媒漏洩程度判定工程は、
前記過冷却度と前記運転蒸発器平均開度と前記過熱度の値の組み合わせが、前記中程度漏洩状態と前記少程度漏洩状態と前記多程度漏洩状態にて規定される値の組み合わせ以外である場合、前記ヒートポンプ装置の運転状態が前記通常運転とは異なる運転状態にあるとして漏洩程度の判定から除外する請求項4に記載の冷媒漏洩状態判定方法。
The refrigerant leakage degree determination step includes:
The combination of the values of the degree of supercooling, the average opening of the operating evaporator, and the degree of superheat is other than the combination of values specified in the medium leakage state, the small leakage state, and the large leakage state. 5. The refrigerant leak state determination method according to claim 4, wherein if the heat pump device is in an operating state different from the normal operation, the heat pump device is excluded from the determination of the degree of leakage.
前記冷媒漏洩程度判定工程は、
前記運転蒸発器平均開度導出工程にて導出された前記運転蒸発器平均開度を前記圧縮機の入口圧力である蒸発圧力が高くなるほど高い側へ補正する請求項1~5の何れか一項に記載の冷媒漏洩状態判定方法。
The refrigerant leakage degree determination step includes:
Any one of claims 1 to 5, wherein the operating evaporator average opening degree derived in the operating evaporator average opening degree deriving step is corrected to a higher side as the evaporation pressure that is the inlet pressure of the compressor increases. The refrigerant leakage state determination method described in .
前記冷媒漏洩程度判定工程は、
前記運転蒸発器平均開度導出工程にて導出された前記運転蒸発器平均開度と蒸発圧力とから、冷媒の漏洩のない正規の充填量にて冷媒の漏洩量を除算した漏洩率を導出する請求項1~6の何れか一項に記載の冷媒漏洩状態判定方法。
The refrigerant leakage degree determination step includes:
From the operating evaporator average opening degree and evaporation pressure derived in the operating evaporator average opening degree derivation step, a leakage rate is derived by dividing the refrigerant leakage amount by the regular filling amount without refrigerant leakage. The refrigerant leakage state determination method according to any one of claims 1 to 6.
前記冷媒漏洩程度判定工程は、
前記運転蒸発器平均開度導出工程にて導出された前記運転蒸発器平均開度を前記過熱度が高くなるほど高い側へ補正する請求項1~7の何れか一項に記載の冷媒漏洩状態判定方法。
The refrigerant leakage degree determination step includes:
Refrigerant leakage state determination according to any one of claims 1 to 7, wherein the average operating evaporator opening degree derived in the average operating evaporator opening degree deriving step is corrected to a higher side as the degree of superheating increases. Method.
冷媒を圧縮する圧縮機と、前記圧縮機にて圧縮した冷媒を凝縮する凝縮器と、前記凝縮器にて凝縮した冷媒を膨張させる膨張弁と、前記膨張弁にて膨張した冷媒を蒸発させる蒸発器と、前記圧縮機と前記凝縮器と前記膨張弁と前記蒸発器とに記載の順に冷媒を循環する冷媒循環路とを備えるヒートポンプ装置における冷媒漏洩状態判定装置であって、
前記圧縮機入口での冷媒吸込温度から蒸発温度を減算して過熱度を算出する過熱度算出部と、
凝縮温度から前記凝縮器出口での冷媒温度を減算して過冷却度を算出する過冷却度算出部と、
少なくとも1つ以上の前記蒸発器を有する場合において、運転している前記蒸発器及び当該蒸発器に対応する前記膨張弁に関し、膨張弁開度を前記蒸発器の能力比率に基づいて換算した値を平均した値としての運転蒸発器平均開度を導出する運転蒸発器平均開度導出部と、
通常運転時において過熱度を基準過熱度に維持する過熱度維持部と、
前記過熱度維持部が実行された状態で、前記過冷却度算出部にて算出された過冷却度が零であり、且つ前記運転蒸発器平均開度導出部にて導出された前記運転蒸発器平均開度が、前記通常運転時での定格条件における前記運転蒸発器平均開度である平均開度を所定値だけ超える基準平均開度を超えると共に前記運転蒸発器平均開度の最大値である最大平均開度未満であり、前記過熱度算出部にて算出される過熱度が基準過熱度に維持されている場合に、冷媒の漏洩程度が中程度漏洩状態であると判定する冷媒漏洩程度判定部とを有する冷媒漏洩状態判定装置。
A compressor that compresses refrigerant, a condenser that condenses the refrigerant compressed by the compressor, an expansion valve that expands the refrigerant condensed in the condenser, and an evaporator that evaporates the refrigerant expanded in the expansion valve. A refrigerant leakage state determination device in a heat pump device comprising: a refrigerant circulation path that circulates refrigerant in the order described in the compressor, the condenser, the expansion valve, and the evaporator,
a degree of superheat calculation unit that calculates the degree of superheat by subtracting the evaporation temperature from the refrigerant suction temperature at the compressor inlet;
a supercooling degree calculation unit that calculates a supercooling degree by subtracting the refrigerant temperature at the condenser outlet from the condensing temperature;
In the case where there is at least one evaporator, a value obtained by converting the expansion valve opening degree based on the capacity ratio of the evaporator with respect to the evaporator in operation and the expansion valve corresponding to the evaporator. an operating evaporator average opening degree derivation unit that derives an operating evaporator average opening degree as an average value;
a superheat degree maintenance part that maintains the superheat degree at a reference superheat degree during normal operation;
the operating evaporator in which the supercooling degree calculated by the supercooling degree calculation unit is zero in a state in which the superheat degree maintaining unit is executed, and the operating evaporator average opening degree deriving unit derives the operating evaporator; The average opening exceeds the standard average opening which exceeds the average opening which is the average opening of the operating evaporator under rated conditions during normal operation by a predetermined value, and is the maximum value of the average opening of the operating evaporator. Refrigerant leakage degree determination that determines that the degree of refrigerant leakage is in a moderate leakage state when the degree of superheating calculated by the superheating degree calculation unit is maintained at the reference degree of superheating when the opening degree is less than the maximum average opening degree. A refrigerant leak state determination device having a section.
請求項9の冷媒漏洩状態判定装置を備えると共に、
前記ヒートポンプ装置とネットワーク回線にて電気的に接続される監視装置を備え、
前記監視装置が、前記冷媒の漏洩程度を監視するように構成されている冷媒漏洩状態監視システム。
In addition to comprising the refrigerant leakage state determining device according to claim 9,
comprising a monitoring device electrically connected to the heat pump device through a network line,
A refrigerant leakage state monitoring system, wherein the monitoring device is configured to monitor the degree of leakage of the refrigerant.
JP2020034159A 2020-02-28 2020-02-28 Refrigerant leakage state determination method, refrigerant leakage state determination device, and refrigerant leakage state monitoring system Active JP7412221B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020034159A JP7412221B2 (en) 2020-02-28 2020-02-28 Refrigerant leakage state determination method, refrigerant leakage state determination device, and refrigerant leakage state monitoring system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020034159A JP7412221B2 (en) 2020-02-28 2020-02-28 Refrigerant leakage state determination method, refrigerant leakage state determination device, and refrigerant leakage state monitoring system

Publications (2)

Publication Number Publication Date
JP2021135035A JP2021135035A (en) 2021-09-13
JP7412221B2 true JP7412221B2 (en) 2024-01-12

Family

ID=77660863

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020034159A Active JP7412221B2 (en) 2020-02-28 2020-02-28 Refrigerant leakage state determination method, refrigerant leakage state determination device, and refrigerant leakage state monitoring system

Country Status (1)

Country Link
JP (1) JP7412221B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006292211A (en) 2005-04-07 2006-10-26 Daikin Ind Ltd Air conditioner
JP2016065660A (en) 2014-09-24 2016-04-28 東芝キヤリア株式会社 Refrigeration cycle system
JP2017026308A (en) 2014-02-18 2017-02-02 東芝キヤリア株式会社 Refrigeration cycle device
US20190316820A1 (en) 2018-04-13 2019-10-17 Carrier Corporation Detection apparatus and method for refrigerant leakage of air source heat pump system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07117327B2 (en) * 1989-02-03 1995-12-18 ダイキン工業株式会社 Air conditioner

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006292211A (en) 2005-04-07 2006-10-26 Daikin Ind Ltd Air conditioner
JP2017026308A (en) 2014-02-18 2017-02-02 東芝キヤリア株式会社 Refrigeration cycle device
JP2016065660A (en) 2014-09-24 2016-04-28 東芝キヤリア株式会社 Refrigeration cycle system
US20190316820A1 (en) 2018-04-13 2019-10-17 Carrier Corporation Detection apparatus and method for refrigerant leakage of air source heat pump system

Also Published As

Publication number Publication date
JP2021135035A (en) 2021-09-13

Similar Documents

Publication Publication Date Title
JP5234167B2 (en) Leakage diagnostic device
CN109798701B (en) Air conditioner control system and method for continuous heating and air conditioner
JP5318099B2 (en) Refrigeration cycle apparatus and control method thereof
US9746212B2 (en) Refrigerating and air-conditioning apparatus
JP5318057B2 (en) Refrigerator, refrigeration equipment and air conditioner
JP5744081B2 (en) Air conditioner
JPWO2019053858A1 (en) Refrigeration cycle device and refrigeration device
CN114364925B (en) Refrigerant leakage determination system
JP4726845B2 (en) Refrigeration air conditioner
US9851134B2 (en) Air-conditioning apparatus
JP6902390B2 (en) Refrigeration cycle equipment
CN114151935A (en) Air conditioning system
JP5487831B2 (en) Leakage diagnosis method and leak diagnosis apparatus
JP7412221B2 (en) Refrigerant leakage state determination method, refrigerant leakage state determination device, and refrigerant leakage state monitoring system
JP6537629B2 (en) Air conditioner
JP5245576B2 (en) Refrigerant amount determination method for air conditioner and air conditioner
JP6410935B2 (en) Air conditioner
JP6286844B2 (en) Air conditioner
JP2017067397A (en) Refrigerator
JP2017062082A (en) Multi-air conditioner
JP2020094781A (en) Refrigerating apparatus
JP6348048B2 (en) Refrigeration cycle equipment
JP7424870B2 (en) air conditioner
JP2013113535A (en) Binary refrigerating device
JP2012127562A (en) Multi-room type refrigeration cycle device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221214

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231124

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231128

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231226

R150 Certificate of patent or registration of utility model

Ref document number: 7412221

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150