JPH0113972Y2 - - Google Patents

Info

Publication number
JPH0113972Y2
JPH0113972Y2 JP1982059592U JP5959282U JPH0113972Y2 JP H0113972 Y2 JPH0113972 Y2 JP H0113972Y2 JP 1982059592 U JP1982059592 U JP 1982059592U JP 5959282 U JP5959282 U JP 5959282U JP H0113972 Y2 JPH0113972 Y2 JP H0113972Y2
Authority
JP
Japan
Prior art keywords
refrigerant
compressor
unit
indoor
capillary tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1982059592U
Other languages
Japanese (ja)
Other versions
JPS58162459U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP5959282U priority Critical patent/JPS58162459U/en
Publication of JPS58162459U publication Critical patent/JPS58162459U/en
Application granted granted Critical
Publication of JPH0113972Y2 publication Critical patent/JPH0113972Y2/ja
Granted legal-status Critical Current

Links

Description

【考案の詳細な説明】 本考案は多室形空気調和装置の改良に関する。 従来の多室形空気調和装置、例えば二室形冷房
装置としては第1図に示す構造のものが知られて
いる。図中は室外ユニツトである。このユニツ
は冷媒の流れ方向に順次配列された圧縮機
2、凝縮器(室外熱交換器)3及び冷媒受液器4
を備えており、これらは主配管51,52で接続さ
れている。前記圧縮機2の前段側の主配管53
2つの第1の支管6a,6bに分枝されている。
また、前記冷媒受液器4の後段管の主配管54
2つの第2の支管7a,7bに分枝され、これら
支管7a,7bには夫々前記容器4側から電磁弁
8a,8b、毛細管9a,9bが順次介装されて
いる。そして、前記第1の支管6a,6bと第2
の支管7a,7bの間には夫々室内ユニツト10
a,10bが介装されている。これら室内ユニツ
10a10bは蒸発器(室内熱交換器)11
a,11bを有する。 上記構成の二室形冷房装置において、一方の室
外ユニツト10aのみを運転する場合は電磁弁8
aを開けると共に電磁弁8bを閉じ、圧縮機2の
冷媒を凝縮器3、冷媒受液器4、毛細管9aを通
して蒸発器11aに供給する。他方の室内ユニツ
10bのみを運転する場合は電磁弁8aを閉じ
ると共に電磁弁8bを開け冷媒を蒸発器11bに
供給する。また、二つの室内ユニツト10a
0bを同時に運転する場合は電磁弁8a,8bを
開けて2台の蒸発器11a,11bに冷媒を供給
する。 上述した第1図の二室形冷房装置では冷媒流量
制御用の毛細管9a,9bは1台運転、及び2台
運転の両方に対応しなければならない。しかしな
がら、これら毛細管9a,9bは管内径と長さで
決まる固定した抵抗であるため、流量変化の対応
が難しい。即ち、1台運転時(蒸発器11aの運
転)ではもう一つの蒸発器11bへの冷媒の供給
はなされず、低圧のガス状態であり、圧縮機2か
ら吐出された冷媒は毛細管9a、から流れるので
冷媒受液器4の液面はA−A′の位置まで上つた
状態に保持される。この時毛細管9aは蒸発器1
1aに適正流量を流すように選定される。同様
に、毛細管9bについても蒸発器11bに適正流
量を流すように選定されている。一方、2台の運
転時には蒸発器11a,11bに冷媒を供給する
ため、毛細管9a,9bの両者に冷媒が流れ、冷
媒受液器4の液面はB−B′の位置まで下がる。
つまり、1台運転時には前記受液器4のA−
A′とB−B′の差に相当する冷媒量が同受液器4
内に存在していたのが、2台運転時にはその冷媒
量が蒸発器11a,11bなどに移動することに
なる。 1台運転時の圧縮機2の吐出冷媒循環量を100
とした時2台運転時には蒸発器が2個になるた
め、蒸発能力が増し、圧縮機の吐出冷媒循環量は
130程度まで増す。ところが毛細管は1台運転に
対応して選定するため、100の冷媒循環量を流す
ように設定されている。その結果、2台運転時に
は圧縮機の吐出冷媒循環量に対応して130/2=65の 冷媒流量を流すように毛細管を絞るべきところ
が、毛細管は固定抵抗であるため、絞り不足とな
り、高低圧の圧力差が減少して蒸発温度が上昇し
て蒸発器の能力が減少すると共に蒸発能力以上の
冷媒が供給される。このため圧縮機に未蒸発の液
冷媒を吸込ませるような液バツク運転となり、冷
房装置の運転効率をおとし圧縮機に損傷を与える
結果になつていた。 上述した装置の改良として、第2図に示す如く
受液器を省き、毛細管の代りに圧縮機2と室内ユ
ニツト10a10b間の支管6a,6bに設置
した感温筒12a,12bを検知信号により動作
する膨張弁13a,13bを用いた二室形冷房装
置が知られている。しかしながら、かかる冷房装
置にあつては、膨張弁13a,13bを用いる
ため毛細管よりコスト高となる。膨張弁13
a,13bに可動部があり、信頼性が劣る、等の
欠点があつた。 本考案は上記事情に鑑みなされたもので、冷媒
量調節容器を圧縮機の室内ユニツト側の配管に熱
交換するように配設すると共に、該容器を毛細管
と室内ユニツトを結ぶ配管に連結することによ
り、2台運転時における余剰冷媒を前記冷媒量調
節容器に回収し、毛細管の不適正に基づく液バツ
ク運転を適正運転に維持した多室形空気調和装置
を提供しようとするものである。 以下、本考案を第3図図示の実施例に基づいて
詳細に説明する。なお、前述の第1図の装置と同
部材のものは同符号を付して説明を省略する。 本考案の二室形冷房装置は第3図に示す如く圧
縮機2の室内ユニツト10a10b側の主配管
3に該配管53を囲繞するように冷媒量調節容器
14を配設すると共に、該容器14を毛細管9a
と室内ユニツト10aの間の支管7a部分に連結
配管15を介して接続した構造になつている。 次に、本考案の二室形冷房装置の作用を説明す
る。 〔〕 1台運転時の作用 室外ユニツト1の圧縮機2で冷媒を圧縮するこ
とにより、高温、高圧となつた冷媒は主配管51
を経て凝縮器3に送られ液化凝縮される。この
時、室内ユニツト10aを運転させ、室内ユニツ
10bを停止させる場合は、支管7aに介装し
た電磁弁8aを開けると共に支管7bに介装した
電磁弁8bを閉じて前記凝縮器3の冷媒を主配管
2、受液器4、主配管54、支管7a、毛細管9
a、支管7aを通じて室内ユニツト10aの蒸発
器11aに供給する。こうした蒸発器11aへの
冷媒の供給において、毛細管9aは蒸発器11a
に適正量の冷媒が送られるように抵抗値(管内径
及び長さ)が定められているため、蒸発器11a
の出口及び圧縮機2の吸込配管としての主配管5
では適正な過熱度が保持される。したがつて、
冷媒受液器4の液面はA−A′の位置になり、か
つ主配管53は過熱状態であるので、該主配管53
を囲繞するように配設された冷媒量調節容器14
の内部は過熱ガスのみで液冷媒は存在しない。こ
の時、蒸発器11aで冷媒が蒸発し、室内ユニツ
10aを冷房すると共に、気化した冷媒は支管
6a、主配管53を通じて圧縮機2に吸込まれ冷
房サイクルがなされる。 一方、停止した室内ユニツト10bの蒸発器1
1bには電磁弁8bの作用により冷媒は供給され
ず、圧縮2により主配管53、支管6bを通じて
吸引されるので、ガス状の冷媒が存在するだけ
で、液冷媒は存在しない。 なお、室内ユニツト10aが停止し、室内ユニ
ツト10bが運転の場合も電磁弁及び毛細管に流
れる冷媒が逆になるだけで、毛細管の選定は同じ
である。 〔〕 2台運転時の作用 室内ユニツト10a10bが同時に運転され
る場合は電磁弁8a,8bを開けて2台の蒸発器
11a,11bに冷媒を供給する。このため毛細
管9a,9bの両者を冷媒が流れ、1台運転の時
に比較して低圧側へ供給される冷媒量が増大する
ため受液器4の液面はB−B′の位置まで低下す
る。 前述の如く、毛細管9a,9bは1台運転時に
適正な冷媒流量が確保できるように選定されてお
り、2台運転時には抵抗が少なすぎて蒸発器に過
剰の冷媒を供給し、圧縮機2に未蒸発の液冷媒を
吸込ます可能性があつた。本考案では圧縮機2の
吸込配管としての主配管53と熱交換するように
冷媒量調節容器14が設置され、連結配管15に
より毛細管9aと蒸発器11aの間の支管7aに
接続されている。このため、冷媒量調節容器14
内の冷媒は、吸込配管を未蒸発の液冷媒が通るこ
とにより冷やされて凝縮し液化される。このため
2台運転時に過剰に低圧側に供給された冷媒は、
低圧側に設けられた冷媒量調節容器14に余剰冷
媒分だけが溜められて、蒸発器11a,11bに
必要とされる冷媒量が供給されて、圧縮機2が未
蒸発の液冷媒を吸入するのを防止することができ
る。この場合、冷媒量調節容器14の大きさは余
剰冷媒を回収するのに十分な容積とする。吸込配
管としての主配管53の温度は、冷媒量調節容器
14の内部の飽和圧力に等しい温度に制御される
ので、望ましい過熱度の吸入ガス温度を得るため
には、連絡配管15は毛細管9aを含んで蒸発器
11aに到る間の配管の適当な圧力位置に連結す
れば良い。 したがつて、圧縮機2の吸込配管としての主配
管53にその主配管53を通る冷媒と熱換するよう
にして冷媒量調節容器14を配設し、かつ該容器
14を毛細管9aと蒸発器11a間の支管7a部
分に連結配管15を介して接続することによつ
て、2台運転時において従来装置の如く圧縮機に
未蒸発の液冷媒が吸込まれるという不都合さを解
消できる。即ち、圧縮機2の室内ユニツト側の主
配管53に未蒸発の液冷媒が通ると、冷媒量調節
容器14が冷却されて該容器14内の冷媒が凝縮
液化し、蒸発器11a,11bに過剰に供給され
ていた冷媒のうちの余剰分が該容器14内に回収
されて圧縮機2に未蒸発の液冷媒が吸込まれる不
都合さを解消できる。その結果、圧縮機の損傷を
防止できると共に液冷媒を吸込むことによる圧縮
機の消費電圧の増大を防止でき、高信頼性、高効
率の冷房運転が可能となる。また、本考案の冷房
装置は膨張弁などを有さず安価であり、しかも可
動部がないので信頼性の高い構造となる。 なお、上記実施例では二室形について説明した
が、3室以上の室内ユニツトを組込んだ構成にし
ても同様な効果を発揮できる。 また、上記実施例では冷房装置を例にして説明
したが、冷暖房装置でも同様に適用できる。 以上詳述した如く、本考案によれば簡単な構造
で高信頼性、高効率の運転が可能な多室形空気調
和装置を提供できる。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to improvements in multi-room air conditioners. 2. Description of the Related Art As a conventional multi-chamber air conditioning system, for example a two-chamber cooling system, one having the structure shown in FIG. 1 is known. In the figure, 1 is an outdoor unit. This unit 1 includes a compressor 2, a condenser (outdoor heat exchanger) 3, and a refrigerant receiver 4 arranged sequentially in the flow direction of the refrigerant.
These are connected by main pipes 5 1 and 5 2 . The main pipe 53 on the upstream side of the compressor 2 is branched into two first branch pipes 6a and 6b.
Further, the main pipe 54 of the latter stage pipe of the refrigerant receiver 4 is branched into two second branch pipes 7a and 7b, and these branch pipes 7a and 7b have electromagnetic valves 8a and 8b from the container 4 side, respectively. Capillary tubes 9a and 9b are successively interposed. Then, the first branch pipes 6a, 6b and the second
An indoor unit 10 is installed between the branch pipes 7a and 7b, respectively.
a, 10b are interposed. These indoor units 10a and 10b have an evaporator (indoor heat exchanger) 11
a, 11b. In the two-chamber cooling system configured as described above, when operating only one outdoor unit 10a, the solenoid valve 8
At the same time as opening the solenoid valve 8b, the refrigerant from the compressor 2 is supplied to the evaporator 11a through the condenser 3, the refrigerant receiver 4, and the capillary tube 9a. When operating only the other indoor unit 10b , the solenoid valve 8a is closed and the solenoid valve 8b is opened to supply refrigerant to the evaporator 11b. In addition, two indoor units 10a , 1
When operating the two evaporators 11a and 11b at the same time, the solenoid valves 8a and 8b are opened to supply refrigerant to the two evaporators 11a and 11b. In the above-mentioned two-chamber cooling system shown in FIG. 1, the capillary tubes 9a and 9b for controlling the refrigerant flow rate must support both one-unit operation and two-unit operation. However, since these capillary tubes 9a and 9b have a fixed resistance determined by the tube inner diameter and length, it is difficult to deal with changes in flow rate. That is, when one evaporator 11a is in operation (the evaporator 11a is in operation), the refrigerant is not supplied to the other evaporator 11b and is in a low-pressure gas state, and the refrigerant discharged from the compressor 2 flows from the capillary tube 9a. Therefore, the liquid level in the refrigerant receiver 4 is maintained at the level A-A'. At this time, the capillary tube 9a is connected to the evaporator 1.
It is selected so that an appropriate flow rate flows through 1a. Similarly, the capillary tube 9b is also selected to allow an appropriate flow rate to flow into the evaporator 11b. On the other hand, when the two units are in operation, the refrigerant is supplied to the evaporators 11a and 11b, so the refrigerant flows through both the capillaries 9a and 9b, and the liquid level in the refrigerant receiver 4 drops to the position BB'.
In other words, when one unit is operated, the A- of the liquid receiver 4 is
The amount of refrigerant corresponding to the difference between A' and B-B' is
However, when two units are operated, the amount of refrigerant that was present in the evaporators 11a, 11b will be transferred to the evaporators 11a, 11b, etc. The refrigerant circulation amount discharged from compressor 2 when one unit is operated is 100.
When two units are operated, there are two evaporators, so the evaporation capacity increases and the amount of refrigerant circulated discharged from the compressor decreases.
Increases to about 130. However, since the capillary tube is selected to correspond to the operation of one unit, it is set to flow a refrigerant circulation amount of 100. As a result, when two units are operated, the capillary tube should be throttled to flow a refrigerant flow rate of 130/2 = 65 in response to the circulating amount of refrigerant discharged from the compressor, but since the capillary tube has a fixed resistance, it is not throttled enough, resulting in high and low pressure. The pressure difference decreases, the evaporation temperature rises, and the capacity of the evaporator decreases, and at the same time, refrigerant exceeding the evaporation capacity is supplied. This results in a liquid back operation in which the compressor sucks unevaporated liquid refrigerant, reducing the operating efficiency of the cooling system and causing damage to the compressor. As an improvement to the above-mentioned device, as shown in Fig. 2, the liquid receiver is omitted, and instead of the capillary tube, temperature sensing tubes 12a and 12b installed in the branch pipes 6a and 6b between the compressor 2 and the indoor units 10a and 10b are used to send the detection signal. A two-chamber cooling device using expansion valves 13a and 13b that are operated by the following is known. However, since such a cooling device uses expansion valves 13a and 13b, it is more expensive than a capillary tube. Expansion valve 13
There are moving parts in a and 13b, which has disadvantages such as poor reliability. The present invention was developed in view of the above-mentioned circumstances, and involves arranging a refrigerant amount regulating container to exchange heat with the piping on the indoor unit side of the compressor, and connecting the container to the piping connecting the capillary tube and the indoor unit. Accordingly, the present invention aims to provide a multi-room air conditioner in which surplus refrigerant during two-unit operation is collected into the refrigerant amount adjustment container, and liquid back operation caused by improper capillary operation is maintained at proper operation. Hereinafter, the present invention will be explained in detail based on the embodiment shown in FIG. It should be noted that the same members as those of the device shown in FIG. As shown in FIG. 3, the two-chamber cooling system of the present invention has a refrigerant amount adjusting container 14 disposed in the main pipe 53 on the indoor units 10a , 10b side of the compressor 2 so as to surround the pipe 53 . , the container 14 is connected to the capillary tube 9a
It has a structure in which it is connected via a connecting pipe 15 to a branch pipe 7a between the indoor unit 10a and the indoor unit 10a. Next, the operation of the two-chamber cooling device of the present invention will be explained. [] Effects when operating one unit By compressing the refrigerant with the compressor 2 of the outdoor unit 1, the refrigerant that has become high temperature and high pressure is transferred to the main pipe 5 1
The liquid is sent to the condenser 3 through which it is liquefied and condensed. At this time, when operating the indoor unit 10a and stopping the indoor unit 10b , open the solenoid valve 8a installed in the branch pipe 7a and close the solenoid valve 8b installed in the branch pipe 7b to drain the refrigerant in the condenser 3. Main pipe 5 2 , liquid receiver 4 , main pipe 5 4 , branch pipe 7a, capillary tube 9
a. It is supplied to the evaporator 11a of the indoor unit 10a through the branch pipe 7a. In such supply of refrigerant to the evaporator 11a, the capillary tube 9a is connected to the evaporator 11a.
Since the resistance value (pipe inner diameter and length) is determined so that an appropriate amount of refrigerant is sent to the evaporator 11a,
Main pipe 5 as the outlet of the compressor 2 and the suction pipe of the compressor 2
3 , an appropriate degree of superheat is maintained. Therefore,
The liquid level of the refrigerant receiver 4 is at the position A-A', and the main pipe 5 3 is in an overheated state, so the main pipe 5 3
refrigerant amount adjustment container 14 arranged so as to surround the
Inside there is only superheated gas and no liquid refrigerant. At this time, the refrigerant is evaporated in the evaporator 11a to cool the indoor unit 10a , and the evaporated refrigerant is sucked into the compressor 2 through the branch pipe 6a and the main pipe 53 to complete a cooling cycle. On the other hand, the evaporator 1 of the stopped indoor unit 10b
Refrigerant is not supplied to 1b by the action of the electromagnetic valve 8b, but is sucked through the main pipe 5 3 and the branch pipe 6b by compression 2, so only gaseous refrigerant is present and no liquid refrigerant is present. Note that even when the indoor unit 10a is stopped and the indoor unit 10b is in operation, the selection of the capillary is the same, except that the refrigerant flowing through the solenoid valve and the capillary is reversed. [] Effect when two units are operated When the indoor units 10a and 10b are operated at the same time, the solenoid valves 8a and 8b are opened to supply refrigerant to the two evaporators 11a and 11b. Therefore, the refrigerant flows through both the capillary tubes 9a and 9b, and the amount of refrigerant supplied to the low pressure side increases compared to when one unit is operated, so the liquid level in the liquid receiver 4 drops to the position B-B'. . As mentioned above, the capillary tubes 9a and 9b are selected to ensure an appropriate flow rate of refrigerant when one unit is in operation, but when two units are in operation, the resistance is too small and excessive refrigerant is supplied to the evaporator and the compressor 2 is There was a possibility of inhaling unevaporated liquid refrigerant. In the present invention, a refrigerant amount adjustment container 14 is installed to exchange heat with the main pipe 53 serving as the suction pipe of the compressor 2, and is connected to the branch pipe 7a between the capillary tube 9a and the evaporator 11a by a connecting pipe 15. . For this reason, the refrigerant amount adjustment container 14
The refrigerant inside is cooled, condensed, and liquefied by unevaporated liquid refrigerant passing through the suction pipe. Therefore, when two units are operated, the refrigerant that is excessively supplied to the low pressure side is
Only the surplus refrigerant is stored in the refrigerant amount adjustment container 14 provided on the low pressure side, the required amount of refrigerant is supplied to the evaporators 11a and 11b, and the compressor 2 sucks the unevaporated liquid refrigerant. can be prevented. In this case, the size of the refrigerant amount adjustment container 14 is set to have a volume sufficient to collect excess refrigerant. The temperature of the main pipe 53 as a suction pipe is controlled to a temperature equal to the saturation pressure inside the refrigerant amount regulating container 14, so in order to obtain the suction gas temperature with the desired degree of superheating, the connecting pipe 15 is connected to the capillary tube 9a. It may be connected to an appropriate pressure position in the piping including the evaporator 11a. Therefore, a refrigerant amount adjusting container 14 is disposed in the main pipe 5 3 as a suction pipe of the compressor 2 so as to exchange heat with the refrigerant passing through the main pipe 5 3 , and the container 14 is connected to the capillary tube 9 a. By connecting the branch pipe 7a between the evaporators 11a via the connecting pipe 15, it is possible to eliminate the inconvenience that unevaporated liquid refrigerant is sucked into the compressor as in the conventional system when two units are operated. That is, when unevaporated liquid refrigerant passes through the main pipe 53 on the indoor unit side of the compressor 2, the refrigerant amount adjustment container 14 is cooled, and the refrigerant in the container 14 is condensed and liquefied, and is sent to the evaporators 11a and 11b. The surplus of the refrigerant that has been supplied in excess is collected into the container 14, and the inconvenience of unevaporated liquid refrigerant being sucked into the compressor 2 can be eliminated. As a result, damage to the compressor can be prevented, as well as an increase in voltage consumption of the compressor due to suction of liquid refrigerant, making it possible to perform highly reliable and highly efficient cooling operation. Further, the cooling device of the present invention does not include an expansion valve and is inexpensive, and has a highly reliable structure since there are no moving parts. In the above embodiment, a two-chamber type was described, but the same effect can be achieved even if the indoor unit incorporates three or more chambers. Furthermore, although the above embodiments have been described using a cooling device as an example, the present invention can be similarly applied to a heating and cooling device. As detailed above, according to the present invention, it is possible to provide a multi-room air conditioner that has a simple structure and can operate with high reliability and high efficiency.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の二室形冷房装置の概略図、第2
図は改良された従来の二室形冷房装置の概略図、
第3図は本考案の一実施例を示す二室形冷房装置
の概略図である。 ……室外ユニツト、2……圧縮機、3……凝
縮器(室外熱交換器)、4……冷媒受液器、51
2,53,54……主配管、6a,6b,7a,
7b……支管、8a,8b……電磁弁、9a,9
b……毛細管、10a10b……室内ユニツ
ト、11a,11b……蒸発器(室内熱交換器)、
14……冷媒量調節容器、15……連結配管。
Figure 1 is a schematic diagram of a conventional two-chamber cooling system;
The figure is a schematic diagram of an improved conventional two-chamber cooling system.
FIG. 3 is a schematic diagram of a two-chamber cooling device showing an embodiment of the present invention. 1 ...Outdoor unit, 2...Compressor, 3...Condenser (outdoor heat exchanger), 4...Refrigerant receiver, 5 1 ,
5 2 , 5 3 , 5 4 ... Main piping, 6a, 6b, 7a,
7b... Branch pipe, 8a, 8b... Solenoid valve, 9a, 9
b...capillary tube, 10a , 10b ...indoor unit, 11a, 11b...evaporator (indoor heat exchanger),
14... Refrigerant amount adjustment container, 15... Connection piping.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 冷媒の圧縮機、室外熱交換器及び該熱交換器側
から冷媒受液器、電磁弁、毛細管を順次介装した
複数の分岐管を有する室外ユニツトと、このユニ
ツトの各分岐管と前記圧縮機の間に夫々配設され
た室内熱交換器を有する複数台の室内ユニツトと
からなり、複数室を同時又はいずれか一室を冷暖
房運転に供する多室形空気調和装置において、前
記圧縮機から室内ユニツト側に延びる配管の少な
くとも一部に冷媒量調節容器を該配管を囲繞する
ように設けると共に、該容器を前記毛細管と室内
ユニツト間の分岐管のいずれか一つに連結したこ
とを特徴とする多室形空気調和装置。
An outdoor unit having a refrigerant compressor, an outdoor heat exchanger, and a plurality of branch pipes in which a refrigerant receiver, a solenoid valve, and a capillary tube are successively interposed from the heat exchanger side, and each branch pipe of this unit and the compressor. In a multi-room air conditioner, which is composed of a plurality of indoor units each having an indoor heat exchanger installed between the compressor and the indoor A refrigerant amount regulating container is provided in at least a portion of the piping extending toward the unit so as to surround the piping, and the container is connected to either one of the capillary tube and a branch pipe between the indoor unit. Multi-room air conditioner.
JP5959282U 1982-04-26 1982-04-26 Multi-room air conditioner Granted JPS58162459U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5959282U JPS58162459U (en) 1982-04-26 1982-04-26 Multi-room air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5959282U JPS58162459U (en) 1982-04-26 1982-04-26 Multi-room air conditioner

Publications (2)

Publication Number Publication Date
JPS58162459U JPS58162459U (en) 1983-10-28
JPH0113972Y2 true JPH0113972Y2 (en) 1989-04-24

Family

ID=30069889

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5959282U Granted JPS58162459U (en) 1982-04-26 1982-04-26 Multi-room air conditioner

Country Status (1)

Country Link
JP (1) JPS58162459U (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS553332U (en) * 1978-06-22 1980-01-10
JPS56142363A (en) * 1980-04-08 1981-11-06 Matsushita Refrigeration Heat pump type multi-chamber air conditioner

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6018754Y2 (en) * 1979-12-15 1985-06-06 ダイキン工業株式会社 outdoor unit

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS553332U (en) * 1978-06-22 1980-01-10
JPS56142363A (en) * 1980-04-08 1981-11-06 Matsushita Refrigeration Heat pump type multi-chamber air conditioner

Also Published As

Publication number Publication date
JPS58162459U (en) 1983-10-28

Similar Documents

Publication Publication Date Title
JPS645227B2 (en)
CN211781449U (en) Air conditioner dehumidification system capable of keeping constant temperature
JPH0544675Y2 (en)
JPH0113972Y2 (en)
JP2641058B2 (en) Three-tube water-cooled heat pump unit
JP2536172B2 (en) Heat pump system
JPS5930366Y2 (en) air conditioner
JP2765970B2 (en) Air conditioner
JP2911253B2 (en) Refrigerant heating multi refrigeration cycle
JPS5919255Y2 (en) air conditioner
JPS6018757Y2 (en) air conditioner
JPS6030682Y2 (en) air conditioner
CN218544870U (en) Dual-mode dehumidification automobile air conditioning system
JPS592832B2 (en) Heat recovery air conditioner
JPH0528440Y2 (en)
JP3326322B2 (en) Air conditioner and air conditioner system equipped with this air conditioner
JPS6225645Y2 (en)
JPH03170753A (en) Air conditioner
JPS5848823B2 (en) Heat recovery air conditioner
JPH0117007Y2 (en)
JPS5850212Y2 (en) Multi-room cooling system
JPS6017637Y2 (en) Heat pump air conditioner
JPS5850211Y2 (en) Air conditioner
JPS6218934Y2 (en)
JPH0579894B2 (en)