JPS6225645Y2 - - Google Patents

Info

Publication number
JPS6225645Y2
JPS6225645Y2 JP596182U JP596182U JPS6225645Y2 JP S6225645 Y2 JPS6225645 Y2 JP S6225645Y2 JP 596182 U JP596182 U JP 596182U JP 596182 U JP596182 U JP 596182U JP S6225645 Y2 JPS6225645 Y2 JP S6225645Y2
Authority
JP
Japan
Prior art keywords
pressure
refrigerant
heat exchanger
heating
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP596182U
Other languages
Japanese (ja)
Other versions
JPS58110763U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP596182U priority Critical patent/JPS58110763U/en
Publication of JPS58110763U publication Critical patent/JPS58110763U/en
Application granted granted Critical
Publication of JPS6225645Y2 publication Critical patent/JPS6225645Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Description

【考案の詳細な説明】 本考案はヒートポンプサイクルを有する冷暖房
装置に係り、特に暖房時にヒートポンプの熱源と
して、燃焼器による燃焼熱を利用するようにした
冷暖房装置に関するものである。
[Detailed Description of the Invention] The present invention relates to an air conditioning system having a heat pump cycle, and more particularly to an air conditioning system that utilizes combustion heat from a combustor as a heat source for a heat pump during heating.

従来、ヒートポンプサイクルによる暖房装置が
提案されているが、大気をヒートポンプの熱源と
しているため、冬期、寒冷地において、外気温が
低下すると充分な熱量が得られず、暖房能力が低
下すると共に、暖房負荷に温度の立上りが悪いと
言う特性を有し、更に熱源側熱交換器に流入する
冷媒の温度を下げて大気よりの吸熱量を増加する
場合、上記熱交換器に着霜が起こり、熱交換能力
が減少しかつ除霜のため圧縮機の運転を停止さ
せ、放熱側の熱交換を停止せざるを得ない欠点を
有していた。
Conventionally, heating devices using a heat pump cycle have been proposed, but since the air is used as the heat source for the heat pump, in winter or in cold regions, when the outside temperature drops, sufficient heat cannot be obtained, the heating capacity decreases, and the heating If the load has a characteristic that the temperature rises slowly and the temperature of the refrigerant flowing into the heat source side heat exchanger is lowered to increase the amount of heat absorbed from the atmosphere, frost will form on the heat exchanger and the heat will increase. This has disadvantages in that the exchange capacity is reduced and the operation of the compressor has to be stopped for defrosting, forcing the heat exchange on the heat radiation side to be stopped.

本考案は燃焼装置により、熱供給を行なうこと
により、暖房能力の増加と除霜運転の廃止を可能
にすると共に、外気温度に係りなく暖房能力が維
持出来る、前記欠点を補つた冷暖房装置におい
て、暖房時凝縮器となる熱交換器の熱交換効率に
より変化する凝縮器の凝縮圧力によつて、圧縮機
をバイパスして設けたバイパス路を通過する冷媒
量を変化させて、放熱側熱交換器の負荷に応じた
冷媒循環量を得ることを目的としている。
The present invention provides an air-conditioning and heating system that compensates for the above-mentioned drawbacks by supplying heat using a combustion device, thereby making it possible to increase the heating capacity and eliminate defrosting operation, as well as maintain the heating capacity regardless of the outside temperature. The condensation pressure of the condenser changes depending on the heat exchange efficiency of the heat exchanger that serves as the condenser during heating, and the amount of refrigerant that passes through the bypass passage provided by bypassing the compressor is changed, and the heat exchanger on the heat radiation side The purpose is to obtain a refrigerant circulation amount according to the load.

以下本考案の一実施例を第1図に示して説明す
る。第1図は本考案の冷暖房装置における冷媒回
路図である。
An embodiment of the present invention will be described below with reference to FIG. FIG. 1 is a refrigerant circuit diagram in the air conditioning system of the present invention.

1は圧縮機、2は四方弁、3は室外側熱交換
器、4は減圧機構、5は室内側熱交換器、6はア
キユムレータで、冷媒配管7によりそれぞれ連通
接続し冷媒回路を構成している。8は室外側熱交
換器3と減圧機構4との間に設けた冷房時冷媒を
流す第1逆止弁、9は冷媒加熱熱交換器で、上記
室外側熱交換器3と並列に配管接続され、かつ暖
房時冷媒を流す第2逆止弁10を冷媒の流入側配
管11に設けている。
1 is a compressor, 2 is a four-way valve, 3 is an outdoor heat exchanger, 4 is a pressure reduction mechanism, 5 is an indoor heat exchanger, and 6 is an accumulator, each of which is connected through a refrigerant pipe 7 to form a refrigerant circuit. There is. 8 is a first check valve provided between the outdoor heat exchanger 3 and the pressure reduction mechanism 4 to allow the refrigerant to flow during cooling; 9 is a refrigerant heating heat exchanger, which is connected via piping in parallel with the outdoor heat exchanger 3; A second check valve 10 that allows the refrigerant to flow during heating is provided in the refrigerant inflow pipe 11.

12は第3逆止弁で、上記減圧機構4と並列に
接続されている。13はバーナで、上記冷媒加熱
熱交換器9を加熱するよう臨接して設けてある。
14はバイパス路で、一方を四方弁2とアキユム
レータ6との間に接続し、他方を圧縮機1と四方
弁2との間に接続し、毛細管15、電磁弁16お
よび圧力膨張弁17を直列接続している。18は
圧力検知器で、上記冷媒回路の四方弁2と室内側
熱交換器5との間の配管19に設け、上記圧力膨
張弁21に接続されている。
Reference numeral 12 denotes a third check valve, which is connected in parallel to the pressure reducing mechanism 4. A burner 13 is provided adjacent to the refrigerant heating heat exchanger 9 to heat it.
14 is a bypass passage, one of which is connected between the four-way valve 2 and the accumulator 6, the other between the compressor 1 and the four-way valve 2, and a capillary tube 15, a solenoid valve 16 and a pressure expansion valve 17 are connected in series. Connected. A pressure detector 18 is provided in a pipe 19 between the four-way valve 2 of the refrigerant circuit and the indoor heat exchanger 5, and is connected to the pressure expansion valve 21.

この場合の暖房のサイクルの冷媒の流れは第1
図において、圧縮機1より吐出された気相の冷媒
は四方弁2を経て室内側熱交換器5に入り、室内
側の空気と熱交換して凝縮液化する。
In this case, the refrigerant flow in the heating cycle is
In the figure, a gas phase refrigerant discharged from a compressor 1 passes through a four-way valve 2, enters an indoor heat exchanger 5, exchanges heat with indoor air, and is condensed and liquefied.

液化した冷媒は第3逆止弁12および第2逆止
弁10を経て、冷媒加熱熱交換器9に流入する。
ここで冷媒は、バーナ13で発生する高温の燃焼
ガスで加熱されて、吸熱し蒸発して気相となり四
方弁2、アキユムレータ6を経て圧縮機1に入
る。暖房サイクルを繰返す。そして、圧縮機1を
バイパスするバイパス路14に圧力膨張弁17、
電磁弁16、毛細管15を順次直列に設けてある
から、暖房運転時、圧縮機1を吐出した冷媒の一
部を通過させるように構成させてある。
The liquefied refrigerant flows into the refrigerant heating heat exchanger 9 via the third check valve 12 and the second check valve 10.
Here, the refrigerant is heated by high-temperature combustion gas generated by the burner 13, absorbs heat, evaporates, becomes a gas phase, and enters the compressor 1 via the four-way valve 2 and the accumulator 6. Repeat heating cycle. A pressure expansion valve 17 is provided in the bypass passage 14 that bypasses the compressor 1.
Since the electromagnetic valve 16 and the capillary tube 15 are provided in series, a part of the refrigerant discharged from the compressor 1 is allowed to pass through during heating operation.

一方冷房のサイクルは圧縮機1から吐出された
気相の冷媒が四方弁2を経て室外側熱交換器3で
空気中に放熱して凝縮液化し第1逆止弁8を経
て、減圧機構4で断熱膨張し、室内側熱交換器5
で蒸発して気相となり四方弁2、アキユムレータ
6を経て圧縮機1に戻る公知の冷凍サイクルを画
く。
On the other hand, in the cooling cycle, the gas phase refrigerant discharged from the compressor 1 passes through the four-way valve 2, radiates heat into the air in the outdoor heat exchanger 3, condenses and liquefies, passes through the first check valve 8, and then passes through the pressure reducing mechanism 4. The indoor heat exchanger 5 expands adiabatically.
It evaporates into a gas phase and returns to the compressor 1 via the four-way valve 2 and the accumulator 6, forming a known refrigeration cycle.

ここで暖房時高圧側となる冷媒回路に圧力検知
器18を設ける。圧力検知器18はベローズの変
位により制御するもの、歪を検知して制御するも
の等圧力により機械的変化あるいは電気信号出力
の変化が得られるものである。
Here, a pressure detector 18 is provided in the refrigerant circuit which is on the high pressure side during heating. The pressure sensor 18 can be controlled by the displacement of a bellows, or controlled by detecting strain, or can produce a mechanical change or a change in electrical signal output based on pressure.

ここで、本考案による冷媒回路では、室内側熱
交換器5と、冷媒加熱熱交換器9との間には減圧
機構を有していない、従つて断熱膨張の効果が小
さいため、圧縮比は小さく、圧縮機1の出口の冷
媒温度は従来方式の圧縮機1への吸入冷媒温度と
同等もしくは、それ以上となる。すなわち、温度
上昇値は小さくてすむので過熱度を大きくとるこ
とが出来る、更に蒸発圧力はバーナ13からの熱
供給があるため、大きくとることが可能で凝縮圧
力との差は僅かで、従つて圧縮比が小さいく、圧
縮仕事は従来方式のヒートポンプに比べて小さく
てすむ。
Here, in the refrigerant circuit according to the present invention, there is no pressure reduction mechanism between the indoor heat exchanger 5 and the refrigerant heating heat exchanger 9, and therefore the effect of adiabatic expansion is small, so the compression ratio is The temperature of the refrigerant at the outlet of the compressor 1 is equal to or higher than the temperature of the refrigerant sucked into the compressor 1 in the conventional system. In other words, since the temperature rise value is small, the degree of superheating can be increased, and since the evaporation pressure is supplied with heat from the burner 13, it is possible to increase the evaporation pressure, and the difference from the condensation pressure is small. The compression ratio is small, so the compression work is smaller than that of conventional heat pumps.

しかしながら、圧縮比が小さいこと、および蒸
発圧力が高いことによつて、圧縮機の吸上げる冷
媒量が増加し、循環量が増す、暖房能力を一定と
して考えると、蒸発圧力の上昇と共に、圧縮機1
の吐出量を小さくする必要がある。本考案は吐出
量の増加と必要循環量とのバランスを圧縮機1の
吐出側から吸入側に対してバイパス路14を設け
て吐出冷媒の一部を吐出側から吸入側に戻すこと
によりその目的をたつしている。なお上記バイパ
ス路14は冷房時不要となるので、電磁弁16を
設け、冷房運転時閉止している。
However, because the compression ratio is small and the evaporation pressure is high, the amount of refrigerant sucked up by the compressor increases, and the amount of refrigerant circulated increases.Assuming that the heating capacity is constant, as the evaporation pressure increases, the compressor 1
It is necessary to reduce the discharge amount. The purpose of this invention is to balance the increase in discharge amount with the required circulation amount by providing a bypass passage 14 from the discharge side to the suction side of the compressor 1 and returning a part of the discharged refrigerant from the discharge side to the suction side. It's been a long time since I've been in the middle of a long time. Since the bypass passage 14 is not needed during cooling, a solenoid valve 16 is provided and closed during cooling operation.

本考案の冷媒回路における圧縮機1を吐出し
て、室内側熱交換器5、吸熱熱交換器9を経て圧
縮機1に戻る主冷媒回路の必要循環量は凝縮圧力
と蒸発圧力で定まるが、凝縮器となる室内側熱交
換器5の凝縮度により変化する、すなわち、室内
側熱交換器5を通過する空気の温度、風量により
凝縮圧力は変化する。
In the refrigerant circuit of the present invention, the required circulation amount of the main refrigerant circuit which discharges from the compressor 1 and returns to the compressor 1 via the indoor heat exchanger 5 and endothermic heat exchanger 9 is determined by the condensation pressure and the evaporation pressure. The condensation pressure changes depending on the degree of condensation of the indoor heat exchanger 5 serving as a condenser, that is, the condensation pressure changes depending on the temperature of the air passing through the indoor heat exchanger 5 and the amount of air.

従つて、前記主冷媒回路の系を安定にさせるに
は、バイパス路14を通過する冷媒量を調整する
必要がある。室内側熱交換器5を通過する空気の
温度、風量をある条件のもとで暖房能力最大、圧
縮機入力最小となるような最適循環量に調整する
機構として毛細管15を設け、バイパス路14を
通過する冷媒量を調整している。前記毛細管15
によるバイパス路14通過冷媒流量は前記のよう
にある条件において最適量となるのであつて、室
内側熱交換器5を通過する空気の各種の条件に対
しては最適循環量域からずれを生じた量となる。
本考案では、室外側熱交換器5を通過する空気の
温度、風量の状況に合わせて、バイパス量を調整
するものである。室内側熱交換器5は暖房時、凝
縮器として働き、冷媒回路の高圧側となる。前記
空気の温度、風量の状況によつて凝縮圧力(高圧
圧力)は次のように変化する。
Therefore, in order to stabilize the system of the main refrigerant circuit, it is necessary to adjust the amount of refrigerant passing through the bypass passage 14. A capillary tube 15 is provided as a mechanism for adjusting the temperature and volume of air passing through the indoor heat exchanger 5 to an optimal circulation volume that maximizes the heating capacity and minimizes the compressor input under certain conditions, and the amount of refrigerant passing through the bypass passage 14 is adjusted.
The flow rate of refrigerant passing through the bypass passage 14 by this means is an optimum amount under certain conditions as described above, and the amount deviates from the optimum circulation amount range for various conditions of the air passing through the indoor heat exchanger 5.
In this device, the bypass amount is adjusted according to the temperature and volume of the air passing through the outdoor heat exchanger 5. During heating, the indoor heat exchanger 5 acts as a condenser and is the high-pressure side of the refrigerant circuit. The condensation pressure (high-pressure pressure) changes as follows depending on the air temperature and volume:

低室内温度。風量大…圧力低い 高室内温度。風量小…圧力高い 凝縮圧力が低いと、主冷媒回路の循環量に対す
るバイパス量の比が大きくなり、主冷媒回路は、
冷媒不足の徴候を呈する。凝縮圧力が高いと前記
凝縮圧力が低い場合と逆の徴候を呈する。ここで
凝縮圧力に応じて、弁の開口度合を変化させる流
量調整用の圧力膨張弁17を設けている。圧力膨
張弁17は、凝縮圧力を検知する圧力検知器18
の圧力変化に応じ、前記圧力条件に合致するよう
にバイパス量を変化させるようにしている。また
圧力膨張弁17は前記毛細管15と直列に配置す
ることにより、圧力膨張弁17の開口度によるバ
イパス量の変化を緩やかなものにしている。
Low indoor temperature. Large air volume...low pressure and high indoor temperature. Low air volume...high pressure When the condensing pressure is low, the ratio of the bypass volume to the circulation volume of the main refrigerant circuit becomes large, and the main refrigerant circuit
Shows signs of refrigerant deficiency. A high condensing pressure exhibits the opposite symptoms to that of a low condensing pressure. Here, a pressure expansion valve 17 for flow rate adjustment is provided which changes the degree of opening of the valve depending on the condensation pressure. The pressure expansion valve 17 has a pressure sensor 18 that detects condensation pressure.
According to the pressure change, the amount of bypass is changed so as to match the pressure condition. Further, by arranging the pressure expansion valve 17 in series with the capillary tube 15, the change in bypass amount due to the degree of opening of the pressure expansion valve 17 is made gentle.

以上本考案においては、暖房時、凝縮圧力の変
化に応じてバイパス路を通過する冷媒量を調整す
ることにより、室内側熱交換器を通過する空気の
変化による冷媒回路の変動を抑えて安定した運転
が出来る。
As described above, in this invention, during heating, by adjusting the amount of refrigerant passing through the bypass path according to changes in condensing pressure, fluctuations in the refrigerant circuit due to changes in air passing through the indoor heat exchanger are suppressed and stabilized. I can drive.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本考案の冷暖房装置を示す冷媒回路図であ
る。 1は圧縮機、5は室内側熱交換器、9は冷媒加
熱熱交換器、14はバイパス路、15は毛細管、
16は電磁弁、17は圧力膨張弁、18は圧力検
知器である。
The figure is a refrigerant circuit diagram showing the heating and cooling device of the present invention. 1 is a compressor, 5 is an indoor heat exchanger, 9 is a refrigerant heating heat exchanger, 14 is a bypass path, 15 is a capillary tube,
16 is a solenoid valve, 17 is a pressure expansion valve, and 18 is a pressure detector.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 暖房時に蒸発器となる熱交換器内を流れる冷媒
を、燃焼により生成する高温ガスで加熱するよう
に構成された冷暖房装置において、圧縮機をバイ
パスするバイパス路、該当バイパス路を電磁弁、
圧力膨張弁および毛細管を直列に設け、凝縮圧力
が大なる時に圧力膨張弁を通過する冷媒量を大、
凝縮圧力が小なる時に圧力膨張弁を通過する冷媒
量を小とするように圧力検知器により制御するよ
う構成したことを特徴とする冷暖房装置。
In a heating and cooling system configured to heat a refrigerant flowing in a heat exchanger that serves as an evaporator during heating with high-temperature gas generated by combustion, a bypass path that bypasses a compressor, a solenoid valve,
A pressure expansion valve and a capillary tube are installed in series to increase the amount of refrigerant passing through the pressure expansion valve when the condensation pressure increases.
1. An air-conditioning and heating system characterized in that a pressure sensor is used to control the amount of refrigerant passing through a pressure expansion valve when the condensing pressure is low.
JP596182U 1982-01-20 1982-01-20 Air conditioning equipment Granted JPS58110763U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP596182U JPS58110763U (en) 1982-01-20 1982-01-20 Air conditioning equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP596182U JPS58110763U (en) 1982-01-20 1982-01-20 Air conditioning equipment

Publications (2)

Publication Number Publication Date
JPS58110763U JPS58110763U (en) 1983-07-28
JPS6225645Y2 true JPS6225645Y2 (en) 1987-06-30

Family

ID=30018749

Family Applications (1)

Application Number Title Priority Date Filing Date
JP596182U Granted JPS58110763U (en) 1982-01-20 1982-01-20 Air conditioning equipment

Country Status (1)

Country Link
JP (1) JPS58110763U (en)

Also Published As

Publication number Publication date
JPS58110763U (en) 1983-07-28

Similar Documents

Publication Publication Date Title
US5689962A (en) Heat pump systems and methods incorporating subcoolers for conditioning air
KR101203579B1 (en) Speed heating apparatus with air conditioner and Control process of the same
CA1284892C (en) Triple integrated heat pump circuit
JPS6343658B2 (en)
US4123914A (en) Energy saving change of phase refrigeration system
US4268291A (en) Series compressor refrigeration circuit with liquid quench and compressor by-pass
JPH0333984B2 (en)
US4306420A (en) Series compressor refrigeration circuit with liquid quench and compressor by-pass
JP2000304374A (en) Engine heat pump
US4324105A (en) Series compressor refrigeration circuit with liquid quench and compressor by-pass
JPS6225645Y2 (en)
JPH1114177A (en) Air conditioner
JPS6241170Y2 (en)
JPH062966A (en) Two-stage compression heat pump system
JPH0420749A (en) Air conditioner
JP2003065584A (en) Air-conditioning apparatus and its control method
JPH04236062A (en) Air conditioner
JPH0113972Y2 (en)
CA1157670A (en) Series compressor refrigeration circuit with liquid quench and compressor by-pass
JP3159038B2 (en) Absorption heat pump
JPH0579894B2 (en)
JPH04369327A (en) Air conditioner
JP3694935B2 (en) Air conditioner
JP2600713B2 (en) Expansion valve control device for air conditioner
JPS6222391B2 (en)