JPH04369327A - Air conditioner - Google Patents
Air conditionerInfo
- Publication number
- JPH04369327A JPH04369327A JP3144544A JP14454491A JPH04369327A JP H04369327 A JPH04369327 A JP H04369327A JP 3144544 A JP3144544 A JP 3144544A JP 14454491 A JP14454491 A JP 14454491A JP H04369327 A JPH04369327 A JP H04369327A
- Authority
- JP
- Japan
- Prior art keywords
- refrigerant
- radiant
- heat exchanger
- panel
- outlet
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000001816 cooling Methods 0.000 claims abstract description 95
- 239000003507 refrigerant Substances 0.000 claims abstract description 85
- 238000010438 heat treatment Methods 0.000 claims abstract description 66
- 238000004781 supercooling Methods 0.000 abstract description 21
- 230000005855 radiation Effects 0.000 abstract description 13
- 238000007710 freezing Methods 0.000 abstract 1
- 230000008014 freezing Effects 0.000 abstract 1
- 230000006641 stabilisation Effects 0.000 abstract 1
- 238000011105 stabilization Methods 0.000 abstract 1
- 238000001704 evaporation Methods 0.000 description 16
- 230000008020 evaporation Effects 0.000 description 14
- 238000005057 refrigeration Methods 0.000 description 14
- 239000007788 liquid Substances 0.000 description 9
- 230000005494 condensation Effects 0.000 description 6
- 238000009833 condensation Methods 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 2
- 238000004378 air conditioning Methods 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 238000013021 overheating Methods 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
Landscapes
- Devices For Blowing Cold Air, Devices For Blowing Warm Air, And Means For Preventing Water Condensation In Air Conditioning Units (AREA)
- Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
Abstract
Description
【0001】0001
【産業上の利用分野】本発明は,空気調和機に関するも
のである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air conditioner.
【0002】0002
【従来の技術】一般に冷媒を用いた冷凍サイクルでは、
例えば冷房の負荷に応じて圧縮機の運転を調整して冷媒
の過冷却度を調整している。しかしながら、負荷の変動
量が大きい場合には圧縮機の調整のみでは十分に過冷却
度の調整が行えない。さらに、冷房と暖房をひとつの系
で行う場合には、冷房と暖房とで必要となる冷媒量が異
なるため、より過冷却度の調整が困難となる。このよう
な問題を解決するために、大型の空気調和機では冷媒を
溜めるためのレシーバーを別途備えることで冷媒量の調
整を行うようにしたものがある。[Prior Art] Generally, in a refrigeration cycle using a refrigerant,
For example, the degree of supercooling of the refrigerant is adjusted by adjusting the operation of the compressor depending on the cooling load. However, when the amount of load fluctuation is large, the degree of supercooling cannot be adjusted sufficiently by adjusting the compressor alone. Furthermore, when cooling and heating are performed in one system, the amount of refrigerant required for cooling and heating differs, making it more difficult to adjust the degree of supercooling. To solve this problem, some large air conditioners are equipped with a separate receiver for storing refrigerant to adjust the amount of refrigerant.
【0003】0003
【発明が解決しようとする課題】しかしながら、冷媒を
溜めるためのレシーバーを空気調和機に設けると、機器
が大型になってしまい、また機器が高価なものとなって
しまう。一方、冷凍サイクルを安定させるには、膨張弁
前の冷媒が液状態である方が良く、冷媒を安定に液状態
に保つには、上記のように冷媒の過冷却度を一定に保つ
必要がある。冷媒は過冷却度が小さい場合,液冷媒中に
冷媒気泡が発生し,膨張弁での減圧作用が不安定になり
,冷媒流量,蒸発温度が一定しないため,冷凍サイクル
の性能を低下させる。また、過冷却度が大きい場合,圧
力−エンタルピー曲線の高圧,低圧とも高くなり,熱交
換器の熱交換量が減少し,冷凍サイクルの性能を低下さ
せる。そして、冷暖房負荷に対して冷媒が多いと,過冷
却度は大きくなり,冷媒が少ないと過冷却度が小さくな
る為に、冷媒量を調節することはやはり必要となる。However, if an air conditioner is provided with a receiver for storing refrigerant, the device becomes large and expensive. On the other hand, in order to stabilize the refrigeration cycle, it is better for the refrigerant in front of the expansion valve to be in a liquid state, and to keep the refrigerant in a stable liquid state, it is necessary to maintain the degree of subcooling of the refrigerant constant as described above. be. If the degree of subcooling of the refrigerant is small, refrigerant bubbles will occur in the liquid refrigerant, making the pressure reduction effect at the expansion valve unstable, and the refrigerant flow rate and evaporation temperature will be inconsistent, reducing the performance of the refrigeration cycle. Furthermore, when the degree of supercooling is large, both high and low pressures in the pressure-enthalpy curve become high, reducing the amount of heat exchanged by the heat exchanger and degrading the performance of the refrigeration cycle. If there is a large amount of refrigerant relative to the heating and cooling load, the degree of subcooling will increase, and if there is a small amount of refrigerant, the degree of subcooling will decrease, so it is still necessary to adjust the amount of refrigerant.
【0004】そこで、本発明は簡単な構成で冷媒量を調
整することのできる空気調和機を提供することを目的と
する。SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide an air conditioner that can adjust the amount of refrigerant with a simple configuration.
【0005】[0005]
【課題を解決するための手段】上記目的を達成するため
に、本発明の空気調和機は、まず第一に輻射冷房パネル
,輻射暖房パネルを備えた冷暖房可能な空気調和機であ
ることを特徴とし、第二に冷房時には輻射暖房パネルを
、暖房時には輻射冷房パネルを冷媒溜として用いること
で常に過冷却度が適正となるように冷媒量を調整する冷
媒量調整手段を備えていることを特徴とする。[Means for Solving the Problems] In order to achieve the above object, the air conditioner of the present invention is first of all an air conditioner that can be heated and cooled and equipped with a radiant cooling panel and a radiant heating panel. Second, it is equipped with a refrigerant amount adjustment means that adjusts the amount of refrigerant so that the degree of subcooling is always appropriate by using the radiant heating panel as a refrigerant reservoir during cooling and the radiant cooling panel as a refrigerant reservoir during heating. shall be.
【0006】[0006]
【作用】本発明の空気調和機では、輻射冷房パネルと輻
射暖房パネルの二種類の輻射パネルが、それぞれ輻射パ
ネル及び冷媒溜めとして動作する。すなわち、冷暖房負
荷に応じて、冷媒量調整手段が、冷房時には輻射暖房パ
ネルに冷媒を溜めるように動作し、暖房時には輻射冷房
パネルに冷媒を調整するように動作して、冷媒量が調整
され過冷却度が適正に調整される。[Operation] In the air conditioner of the present invention, two types of radiant panels, a radiant cooling panel and a radiant heating panel, operate as a radiant panel and a refrigerant reservoir, respectively. That is, depending on the air conditioning load, the refrigerant amount adjusting means operates to store refrigerant in the radiant heating panel during cooling, and adjusts refrigerant to the radiant cooling panel during heating, thereby adjusting the amount of refrigerant and preventing overheating. Cooling degree is adjusted appropriately.
【0007】[0007]
【実施例】以下に実施例と比較例を示すことで本発明を
更に説明する。まず、比較例の強制対流と輻射を利用し
た空調装置の一例を図2の概略構成図に示す。本装置は
,圧縮機1,四方弁2,室外熱交換器7,室内熱交換器
3,輻射冷房パネル10,室内熱交換器用膨張弁9,輻
射冷房パネル入口膨張弁8,輻射冷房パネル出口膨張弁
11,輻射暖房パネル出口膨張弁5,暖房用逆止弁15
,輻射冷房パネル逆止弁12,冷房用逆止弁6および室
内ファン13,室外ファン14,吸入温度センサー16
,輻射冷房パネル入口温度センサー17,輻射冷房パネ
ル出口温度センサー18,室内熱交換器温度センサー1
9,室外熱交換器温度センサー20で構成されおり,1
系統の冷凍サイクルをなしている。以下に本装置の動作
を説明する。冷房の場合,実線で示すように圧縮機1か
ら吐出された高温高圧の冷媒は,室外熱交換器7を通り
室外ファン14によって駆動された外気と熱交換を行い
放熱し,凝縮液化し,冷房用逆止弁6によってこの方向
の流れは止められるため室内熱交換器用膨張弁9,輻射
冷房パネル入口膨張弁8に至る。このとき室内熱交換器
用膨張弁9を通った冷媒は減圧され低圧の気液二相状態
となった後,室内熱交換器3で室内ファン13によって
駆動された室内空気と熱交換して蒸発気化し,低温低圧
の蒸気となった後,四方弁2を通り,圧縮機1に再び吸
入する。このとき,室内空気は冷却されて室内を冷房す
ることができる。一方,輻射冷房パネル入口膨張弁8に
至った冷媒は,ここで流量調節を行われ,減圧され,低
温低圧の気液二相状態になった後,輻射冷房パネル10
に至る。輻射冷房パネル10に至った冷媒は,室内から
輻射および自然対流により集熱し,蒸発気化し,輻射冷
房パネル出口膨張弁11に至る。このとき,輻射冷房パ
ネル入口センサー17により輻射冷房パネル10の蒸発
温度を検知し,輻射冷房パネル出口膨張弁11の弁開度
によって冷媒の蒸発温度を制御することによって輻射冷
房パネル10の温度を変化させることができ,室内空気
の露点に合わせたパネル温度にすることができる。その
後,冷媒は,逆止弁12を通り室内熱交換器3を通過し
た冷媒と合流し圧縮機1に再び吸入するサイクルを繰り
返す。ここで,室内に取り付けられた露点センサー等に
よって室内空気の露点温度を検知し,輻射冷房パネル1
0の表面が結露しないように,輻射冷房パネル10を流
れる冷媒の温度が制御される。[Examples] The present invention will be further explained by showing Examples and Comparative Examples below. First, an example of a comparative air conditioner using forced convection and radiation is shown in the schematic configuration diagram of FIG. 2. This device consists of a compressor 1, a four-way valve 2, an outdoor heat exchanger 7, an indoor heat exchanger 3, a radiant cooling panel 10, an expansion valve 9 for the indoor heat exchanger, a radiant cooling panel inlet expansion valve 8, and a radiant cooling panel outlet expansion valve. Valve 11, radiant heating panel outlet expansion valve 5, heating check valve 15
, radiant cooling panel check valve 12 , cooling check valve 6 and indoor fan 13 , outdoor fan 14 , suction temperature sensor 16
, radiant cooling panel inlet temperature sensor 17, radiant cooling panel outlet temperature sensor 18, indoor heat exchanger temperature sensor 1
9. Consists of outdoor heat exchanger temperature sensor 20, 1
It forms the system's refrigeration cycle. The operation of this device will be explained below. In the case of cooling, the high-temperature, high-pressure refrigerant discharged from the compressor 1 passes through the outdoor heat exchanger 7, exchanges heat with the outside air driven by the outdoor fan 14, radiates heat, condenses and liquefies, and cools the air, as shown by the solid line. Since the flow in this direction is stopped by the non-return valve 6, the flow reaches the indoor heat exchanger expansion valve 9 and the radiant cooling panel inlet expansion valve 8. At this time, the refrigerant that has passed through the expansion valve 9 for the indoor heat exchanger is depressurized and becomes a low-pressure gas-liquid two-phase state, and then heat exchanges with the indoor air driven by the indoor fan 13 in the indoor heat exchanger 3 to produce evaporated air. After it becomes low-temperature, low-pressure steam, it passes through the four-way valve 2 and is sucked into the compressor 1 again. At this time, the indoor air is cooled and the room can be cooled. On the other hand, the refrigerant that has reached the radiant cooling panel inlet expansion valve 8 is adjusted in flow rate and depressurized to become a low-temperature, low-pressure gas-liquid two-phase state.
leading to. The refrigerant that has reached the radiant cooling panel 10 collects heat from the room through radiation and natural convection, evaporates, and reaches the radiant cooling panel outlet expansion valve 11 . At this time, the evaporation temperature of the radiant cooling panel 10 is detected by the radiant cooling panel inlet sensor 17, and the temperature of the radiant cooling panel 10 is changed by controlling the evaporation temperature of the refrigerant according to the valve opening degree of the radiant cooling panel outlet expansion valve 11. This allows the panel temperature to match the dew point of the indoor air. Thereafter, the refrigerant passes through the check valve 12, merges with the refrigerant that has passed through the indoor heat exchanger 3, and is sucked into the compressor 1 again, repeating the cycle. Here, the dew point temperature of the indoor air is detected by a dew point sensor installed indoors, and the radiant cooling panel 1
The temperature of the refrigerant flowing through the radiation cooling panel 10 is controlled so that no dew condensation occurs on the surface of the cooling panel 10.
【0008】なお,冷凍サイクルの制御については,輻
射冷房パネル出口温度センサー18により輻射冷房パネ
ル10の冷媒出口温度を,輻射冷房パネル入口温度セン
サー17により輻射冷房パネル10の冷媒蒸発温度を検
知し,冷媒過熱度を求め,輻射冷房パネル入口膨張弁8
を制御し,輻射冷房パネル10出口の冷媒過熱度を調節
する。また,吸入温度センサー16により圧縮機の冷媒
吸入温度を,室内熱交換器温度センサー19により室内
熱交換器の蒸発温度を検知し,冷媒過熱度を求め,室内
熱交換器用膨張弁9を制御し,圧縮機に吸入される冷媒
過熱度を調節する。輻射冷房パネル10の蒸発温度につ
いては上記に述べたように,輻射冷房パネル入口温度セ
ンサー17により輻射冷房パネル10の蒸発温度を検知
し,輻射冷房パネル出口膨張弁11を制御し,輻射冷房
パネル10の蒸発温度を調節する。これらの制御を繰り
返すことにより,輻射冷房パネル10の表面を結露させ
ずに,冷凍サイクルを正常に運転することができる。Regarding the control of the refrigeration cycle, a radiant cooling panel outlet temperature sensor 18 detects the refrigerant outlet temperature of the radiant cooling panel 10, a radiant cooling panel inlet temperature sensor 17 detects the refrigerant evaporation temperature of the radiant cooling panel 10, Determine the degree of superheating of the refrigerant, and check the radiant cooling panel inlet expansion valve 8.
and adjusts the degree of superheating of the refrigerant at the outlet of the radiant cooling panel 10. In addition, the suction temperature sensor 16 detects the refrigerant suction temperature of the compressor, the indoor heat exchanger temperature sensor 19 detects the evaporation temperature of the indoor heat exchanger, determines the degree of refrigerant superheating, and controls the expansion valve 9 for the indoor heat exchanger. , adjusts the degree of superheating of the refrigerant sucked into the compressor. Regarding the evaporation temperature of the radiant cooling panel 10, as described above, the evaporation temperature of the radiant cooling panel 10 is detected by the radiant cooling panel inlet temperature sensor 17, and the radiant cooling panel outlet expansion valve 11 is controlled. Adjust the evaporation temperature of By repeating these controls, the refrigeration cycle can be operated normally without causing dew condensation on the surface of the radiant cooling panel 10.
【0009】暖房の場合、点線で示すように圧縮機1か
ら吐出された高温高圧の冷媒は四方弁2を通り,輻射冷
房パネル逆止弁12によってこの方向の流れは止められ
るので室内熱交換器3に至り,室内ファン13によって
駆動された室内空気と熱交換を行い放熱し,凝縮液化し
,暖房用逆止弁15によってこの方向の流れは止められ
るため輻射暖房パネル4に至り輻射暖房パネル4を高温
にした後,輻射暖房パネル出口膨張弁5で低圧の気液二
相状態となり,冷房用逆止弁6を通って室外熱交換器7
に至る。室外熱交換器7で室外ファン14によって駆動
された外気と熱交換して蒸発気化し,低温低圧の蒸気と
なった後,四方弁2を通り,圧縮機1に再び吸入する。
このとき,室内熱交換器3で室内空気が加温されて室内
が暖房されるともに,輻射暖房パネル4で輻射および自
然対流によって室内が暖房される。冷凍サイクルの制御
については,吸入温度センサー16により圧縮機の吸入
冷媒温度を,室外熱交換器温度センサー20により室外
熱交換器の冷媒蒸発温度を検知し,冷媒過熱度を求め,
輻射暖房パネル用膨張弁5を制御し,圧縮機に吸入され
る冷媒過熱度を調節する。In the case of heating, the high-temperature, high-pressure refrigerant discharged from the compressor 1 passes through the four-way valve 2, as shown by the dotted line, and the flow in this direction is stopped by the radiant cooling panel check valve 12. 3, it exchanges heat with the indoor air driven by the indoor fan 13, radiates heat, condenses and liquefies, and since the flow in this direction is stopped by the heating check valve 15, it reaches the radiant heating panel 4, and the radiant heating panel 4 After heating to a high temperature, it becomes a low-pressure gas-liquid two-phase state at the radiant heating panel outlet expansion valve 5, passes through the cooling check valve 6, and is transferred to the outdoor heat exchanger 7.
leading to. After exchanging heat with outside air driven by the outdoor fan 14 in the outdoor heat exchanger 7 and evaporating it into low-temperature, low-pressure steam, it passes through the four-way valve 2 and is sucked into the compressor 1 again. At this time, the indoor heat exchanger 3 heats the indoor air to heat the room, and the radiant heating panel 4 heats the room by radiation and natural convection. Regarding the control of the refrigeration cycle, the suction temperature sensor 16 detects the suction refrigerant temperature of the compressor, the outdoor heat exchanger temperature sensor 20 detects the refrigerant evaporation temperature of the outdoor heat exchanger, and calculates the degree of refrigerant superheating.
The expansion valve 5 for the radiant heating panel is controlled to adjust the degree of superheating of the refrigerant sucked into the compressor.
【0010】上記空気調和機の欠点は、負荷の変動量が
大きい場合には圧縮機の調整のみでは十分に過冷却度の
調整が行えず、さらに、冷房と暖房とで必要となる冷媒
量が異なるため、冷房及び暖房に応じて過冷却度を十分
に調整出来ない点である。The disadvantage of the above air conditioner is that when the amount of load fluctuation is large, the degree of supercooling cannot be adjusted sufficiently by adjusting the compressor alone, and furthermore, the amount of refrigerant required for cooling and heating is Because of the difference, the degree of supercooling cannot be adjusted sufficiently depending on cooling and heating.
【0011】上記問題を解決したのが本発明の実施例で
ある。図1は,本発明実施例の空気調和機の概略構成図
である。本装置は,圧縮機1,四方弁2,室外熱交換器
7,室内熱交換器用膨張弁29,室内熱交換器3,輻射
冷房パネル入口膨張弁28,輻射冷房パネル10,輻射
冷房パネル出口膨張弁21,電磁弁22,輻射暖房パネ
ル4,輻射暖房パネル出口膨張弁25,室内ファン13
,室外ファン14,吸入温度センサー16,輻射冷房パ
ネル入口温度センサー17,輻射冷房パネル出口温度セ
ンサー18,室内熱交換器温度センサー19,室外熱交
換器温度センサー20,室外熱交換器中央温度センサー
27,輻射暖房パネル入口温度センサー23,輻射暖房
パネル出口温度センサー24で構成されおり,1系統の
冷凍サイクルである。電磁弁22は、暖房運転時,室内
熱交換器出口から輻射暖房パネル入口へ冷媒が流れる経
路の途中に設けられている。また,暖房運転時の冷媒流
れに沿って,輻射暖房パネルの入口と出口近くに,輻射
暖房パネル入口温度センサー23と輻射暖房パネル出口
温度センサー24が設けられている。さらに,室外熱交
換器中央温度センサー27は室外熱交換器のほぼ中央の
温度を検知するために設けられている。室内熱交換器用
膨張弁29,輻射冷房パネル入口膨張弁28,輻射冷房
パネル出口膨張弁21,輻射暖房パネル出口膨張弁25
は冷媒の流れが可逆可能であり,全閉にすれば,冷媒が
流れないという機能を有している。以下,本装置の動作
を説明する。冷房の場合,実線で示すように圧縮機1か
ら吐出された高温高圧の冷媒は,室外熱交換器7へ至り
,室外ファン14によって駆動された外気と熱交換を行
い放熱し,凝縮液化する。室外熱交換器7を出た冷媒は
,室内熱交換器用膨張弁29,輻射冷房パネル入口膨張
弁28に至る。The embodiment of the present invention solves the above problem. FIG. 1 is a schematic diagram of an air conditioner according to an embodiment of the present invention. This device consists of a compressor 1, a four-way valve 2, an outdoor heat exchanger 7, an indoor heat exchanger expansion valve 29, an indoor heat exchanger 3, a radiant cooling panel inlet expansion valve 28, a radiant cooling panel 10, and a radiant cooling panel outlet expansion valve. Valve 21, solenoid valve 22, radiant heating panel 4, radiant heating panel outlet expansion valve 25, indoor fan 13
, outdoor fan 14, suction temperature sensor 16, radiant cooling panel inlet temperature sensor 17, radiant cooling panel outlet temperature sensor 18, indoor heat exchanger temperature sensor 19, outdoor heat exchanger temperature sensor 20, outdoor heat exchanger central temperature sensor 27 , a radiant heating panel inlet temperature sensor 23, and a radiant heating panel outlet temperature sensor 24, and is a single-system refrigeration cycle. The solenoid valve 22 is provided in the middle of the path through which the refrigerant flows from the indoor heat exchanger outlet to the radiant heating panel inlet during heating operation. Further, a radiant heating panel inlet temperature sensor 23 and a radiant heating panel outlet temperature sensor 24 are provided near the inlet and outlet of the radiant heating panel along the flow of refrigerant during heating operation. Furthermore, an outdoor heat exchanger center temperature sensor 27 is provided to detect the temperature at approximately the center of the outdoor heat exchanger. Indoor heat exchanger expansion valve 29, radiant cooling panel inlet expansion valve 28, radiant cooling panel outlet expansion valve 21, radiant heating panel outlet expansion valve 25
The refrigerant flow is reversible and has the function of preventing refrigerant from flowing if it is fully closed. The operation of this device will be explained below. In the case of cooling, as shown by the solid line, the high-temperature, high-pressure refrigerant discharged from the compressor 1 reaches the outdoor heat exchanger 7, exchanges heat with the outside air driven by the outdoor fan 14, radiates heat, and condenses to liquefy. The refrigerant leaving the outdoor heat exchanger 7 reaches the indoor heat exchanger expansion valve 29 and the radiant cooling panel inlet expansion valve 28 .
【0012】室内熱交換器用膨張弁29を通った冷媒は
減圧され低圧の気液二相状態となった後,室内熱交換器
3で室内ファン13によって駆動された室内空気と熱交
換して蒸発気化し,低温低圧の蒸気となった後,四方弁
2を通り,圧縮機1に再び吸入する。このとき,室内空
気は冷却されて室内を冷房する。The refrigerant that has passed through the indoor heat exchanger expansion valve 29 is depressurized and becomes a low-pressure gas-liquid two-phase state, and then is evaporated by exchanging heat with the indoor air driven by the indoor fan 13 in the indoor heat exchanger 3. After it is vaporized and becomes low-temperature, low-pressure steam, it passes through the four-way valve 2 and is sucked into the compressor 1 again. At this time, the indoor air is cooled to cool the room.
【0013】輻射冷房パネル入口膨張弁28に至った冷
媒は,ここで流量調節が行われ減圧され,低温低圧の気
液二相状態になった後,輻射冷房パネル10に至る。輻
射冷房パネル10に至った冷媒は,室内から輻射および
自然対流により集熱し,蒸発気化し,輻射冷房パネル出
口膨張弁21に至る。このとき,輻射冷房パネル入口温
度センサー17により輻射冷房パネル10の蒸発温度を
検知し,輻射冷房パネル出口膨張弁21の弁開度によっ
て冷媒の蒸発温度を制御することによって輻射冷房パネ
ル10の温度を変化させ,室内空気の露点に合わせたパ
ネル温度にする。この露点は、室内に取り付けられた露
点センサー等によって検知され、輻射冷房パネル10の
表面は結露しないように温度制御される。その後,冷媒
は室内熱交換器3を通過した冷媒と合流し圧縮器1に再
び吸入するサイクルを繰り返す。なお,冷凍サイクルの
制御は,輻射冷房パネル出口温度センサー18により輻
射冷房パネル10の冷媒出口温度を,輻射冷房パネル入
口温度センサー17により輻射冷房パネル10の冷媒蒸
発温度を検知し,冷媒過熱度を求め,輻射冷房パネル入
口膨張弁8を制御し,輻射冷房パネル10の過熱度を調
節する。また,吸入温度センサー16により圧縮機の冷
媒吸入温度を,室内熱交換器温度センサー19により室
内熱交換器3の蒸発温度を検知し,冷媒過熱度を求め,
室内熱交換器用膨張弁29を制御し,圧縮機に吸入され
る冷媒過熱度を調節する。The refrigerant that has reached the radiant cooling panel inlet expansion valve 28 is subjected to flow rate adjustment and pressure reduction, and reaches the radiant cooling panel 10 after being in a gas-liquid two-phase state at low temperature and low pressure. The refrigerant that has reached the radiant cooling panel 10 collects heat from the room through radiation and natural convection, evaporates, and reaches the radiant cooling panel outlet expansion valve 21 . At this time, the evaporation temperature of the radiant cooling panel 10 is detected by the radiant cooling panel inlet temperature sensor 17, and the evaporation temperature of the refrigerant is controlled by the valve opening degree of the radiant cooling panel outlet expansion valve 21, thereby controlling the temperature of the radiant cooling panel 10. The panel temperature is adjusted to match the dew point of the indoor air. This dew point is detected by a dew point sensor installed indoors, and the temperature of the surface of the radiant cooling panel 10 is controlled so that no dew condensation occurs. Thereafter, the refrigerant merges with the refrigerant that has passed through the indoor heat exchanger 3 and is sucked into the compressor 1 again, repeating the cycle. The refrigeration cycle is controlled by detecting the refrigerant outlet temperature of the radiant cooling panel 10 with the radiant cooling panel outlet temperature sensor 18 and the refrigerant evaporation temperature of the radiant cooling panel 10 with the radiant cooling panel inlet temperature sensor 17, and determining the degree of refrigerant superheating. Then, the radiant cooling panel inlet expansion valve 8 is controlled to adjust the degree of superheating of the radiant cooling panel 10. In addition, the refrigerant suction temperature of the compressor is detected by the suction temperature sensor 16, the evaporation temperature of the indoor heat exchanger 3 is detected by the indoor heat exchanger temperature sensor 19, and the degree of refrigerant superheating is determined.
The indoor heat exchanger expansion valve 29 is controlled to adjust the degree of superheating of the refrigerant sucked into the compressor.
【0014】そして、冷媒量の調整は次のようにして行
われる。室外熱交換器中央温度センサー27により凝縮
温度を,室外熱交換器温度センサー20により室外熱交
換器出口温度を検知し,その温度差から,過冷却度を求
める。The amount of refrigerant is adjusted as follows. The outdoor heat exchanger central temperature sensor 27 detects the condensing temperature, and the outdoor heat exchanger temperature sensor 20 detects the outdoor heat exchanger outlet temperature, and the degree of supercooling is determined from the temperature difference.
【0015】過冷却度=凝縮温度−室外熱交換器出口温
度過冷却度が大きければ,輻射暖房パネル出口膨張弁2
5を全開にし,余分な冷媒を輻射暖房パネル4に溜める
。このとき,電磁弁22は全閉である。また,過冷却度
が小さければ,電磁弁22を全開にし,輻射暖房パネル
4に滞留している冷媒を室内熱交換器3に放出する。
このとき,輻射暖房パネル出口膨張弁25は全閉である
。Degree of supercooling = condensation temperature - outdoor heat exchanger outlet temperature If the degree of supercooling is large, the radiant heating panel outlet expansion valve 2
5 is fully opened and excess refrigerant is stored in the radiant heating panel 4. At this time, the solenoid valve 22 is fully closed. Further, if the degree of supercooling is small, the solenoid valve 22 is fully opened and the refrigerant staying in the radiant heating panel 4 is released to the indoor heat exchanger 3. At this time, the radiant heating panel outlet expansion valve 25 is fully closed.
【0016】このように,適正な過冷却度になるように
,輻射暖房パネル出口膨張弁25と電磁弁22を制御す
れば,冷凍サイクルは正常に運転できる。As described above, the refrigeration cycle can be operated normally by controlling the radiant heating panel outlet expansion valve 25 and the solenoid valve 22 so as to obtain an appropriate degree of supercooling.
【0017】次に,暖房の場合について説明する。室内
熱交換器用膨張弁29は全閉である。点線で示すように
,圧縮機1から吐出された高温高圧の冷媒は四方弁2を
通り,室内熱交換器3に至り,室内ファン13によって
駆動された室内空気と熱交換を行い放熱し,凝縮液化し
,室内熱交換器膨張弁29によってこの方向の流れは止
められるため,電磁弁22が全開して,電磁弁22を通
過後,輻射暖房パネル4に至り輻射暖房パネル4を高温
にした後,輻射暖房パネル出口膨張弁25に至る。冷媒
は輻射暖房パネル出口膨張弁25で低圧の気液二相状態
となり,室外熱交換器7に至る。室外熱交換器7で室外
ファン14によって駆動された外気と熱交換して蒸発気
化し,低温低圧の蒸気となった後,四方弁2を通り,圧
縮機1に再び吸入する。このとき,室内熱交換器3で室
内空気が加温されて室内が暖房されるともに,輻射暖房
パネル4で輻射および自然対流によって室内が暖房され
る。Next, the case of heating will be explained. The indoor heat exchanger expansion valve 29 is fully closed. As shown by the dotted line, the high-temperature, high-pressure refrigerant discharged from the compressor 1 passes through the four-way valve 2, reaches the indoor heat exchanger 3, exchanges heat with the indoor air driven by the indoor fan 13, radiates heat, and condenses. It liquefies and the flow in this direction is stopped by the indoor heat exchanger expansion valve 29, so the solenoid valve 22 is fully opened, and after passing through the solenoid valve 22, it reaches the radiant heating panel 4 and makes the radiant heating panel 4 high temperature. , leading to the radiant heating panel outlet expansion valve 25. The refrigerant becomes a low-pressure gas-liquid two-phase state at the radiant heating panel outlet expansion valve 25 and reaches the outdoor heat exchanger 7. After exchanging heat with outside air driven by the outdoor fan 14 in the outdoor heat exchanger 7 and evaporating it into low-temperature, low-pressure steam, it passes through the four-way valve 2 and is sucked into the compressor 1 again. At this time, the indoor heat exchanger 3 heats the indoor air to heat the room, and the radiant heating panel 4 heats the room by radiation and natural convection.
【0018】冷凍サイクルの制御は,吸入温度センサー
16により圧縮機の吸入冷媒温度を,室外熱交換器温度
センサー20により室外熱交換器の冷媒蒸発温度を検知
し,冷媒過熱度を求め,輻射暖房パネル出口膨張弁25
を制御し,圧縮機に吸入される冷媒過熱度を調節するこ
とにより行われる。The refrigeration cycle is controlled by detecting the suction refrigerant temperature of the compressor with the suction temperature sensor 16 and the refrigerant evaporation temperature of the outdoor heat exchanger with the outdoor heat exchanger temperature sensor 20 to determine the degree of refrigerant superheating. Panel outlet expansion valve 25
This is done by controlling the temperature and adjusting the degree of superheating of the refrigerant sucked into the compressor.
【0019】そして,冷媒量の調整は次のようにして行
われる。輻射暖房パネル入口温度センサー23により凝
縮温度を,輻射暖房パネル出口温度センサー24により
輻射暖房パネル出口温度を検知し,その温度差から,過
冷却度を求める。The amount of refrigerant is adjusted as follows. The radiant heating panel inlet temperature sensor 23 detects the condensation temperature, and the radiant heating panel outlet temperature sensor 24 detects the radiant heating panel outlet temperature, and the degree of supercooling is determined from the temperature difference.
【0020】
過冷却度=凝縮温度(T23)−輻射暖房パネル出口温
度(T24)
過冷却度が大きければ,輻射冷房パネル出口膨張弁21
を全開にし,余分な冷媒を輻射冷房パネル10に溜める
。このとき,輻射冷房パネル入口膨張弁28は全閉であ
る。また,過冷却度が小さければ,輻射冷房パネル入口
膨張弁28を全開にし,輻射冷房パネル10に滞留して
いる冷媒を室外熱交換器7に放出する。このとき,輻射
冷房パネル出口膨張弁21は全閉である。[0020] Degree of supercooling = condensation temperature (T23) - radiant heating panel outlet temperature (T24) If the degree of supercooling is large, the radiant cooling panel outlet expansion valve 21
is fully opened and excess refrigerant is stored in the radiation cooling panel 10. At this time, the radiant cooling panel inlet expansion valve 28 is fully closed. Furthermore, if the degree of supercooling is small, the radiant cooling panel inlet expansion valve 28 is fully opened, and the refrigerant staying in the radiant cooling panel 10 is released to the outdoor heat exchanger 7. At this time, the radiant cooling panel outlet expansion valve 21 is fully closed.
【0021】このように,適正な過冷却度になるように
,輻射冷房パネル出口膨張弁21と輻射冷房パネル入口
膨張弁28を制御すれば,冷凍サイクルは正常に運転で
きる。As described above, the refrigeration cycle can be operated normally by controlling the radiant cooling panel outlet expansion valve 21 and the radiant cooling panel inlet expansion valve 28 to achieve an appropriate degree of supercooling.
【0022】以上の説明から分かるように、本実施例の
空気調和機では比較例の空気調和機と比べて構成を複雑
にすることなく、冷媒量の調整を行うことができる。As can be seen from the above description, in the air conditioner of this embodiment, the amount of refrigerant can be adjusted without complicating the configuration compared to the air conditioner of the comparative example.
【0023】[0023]
【発明の効果】本発明の空気調和機では、輻射冷房パネ
ル,輻射暖房パネルを備えた冷暖房可能な空気調和機と
し、冷房時には輻射暖房パネルを、暖房時には輻射冷房
パネルを冷媒溜として用いる構成としているので、簡単
な構成で常に過冷却度が適正となるように冷媒量を調整
する事が出来る。[Effects of the Invention] The air conditioner of the present invention is equipped with a radiant cooling panel and a radiant heating panel and is capable of heating and cooling, and has a configuration in which the radiant heating panel is used as a refrigerant reservoir during cooling, and the radiant cooling panel is used as a refrigerant reservoir during heating. Therefore, the amount of refrigerant can be adjusted with a simple configuration so that the degree of subcooling is always appropriate.
【0024】そして、冷暖房負荷に応じて,過冷却度が
常に適正になるように制御できるため,冷凍サイクルの
性能を向上させることができる。[0024] Furthermore, since the degree of supercooling can be controlled to always be appropriate depending on the cooling/heating load, the performance of the refrigeration cycle can be improved.
【図1】本発明実施例の空気調和機の概略構成図である
。FIG. 1 is a schematic configuration diagram of an air conditioner according to an embodiment of the present invention.
【図2】比較例の空気調和機の概略構成図である。FIG. 2 is a schematic configuration diagram of an air conditioner of a comparative example.
1:圧縮機
2:四方弁3:室内熱交換器
4:輻射暖房パネル
7:室外熱交換器 1
0:輻射冷房パネル
13:室内ファン 1
4:室外ファン16:吸入温度センサー
17:輻射冷房パネル入口温度センサー
18:輻射冷房パネル出口温度センサー19:室内熱交
換器温度センサー 20:室外熱交換器温度センサー
21:輻射冷房パネル出口膨張弁 22:電磁弁23
:輻射暖房パネル入口温度センサー24:輻射暖房パネ
ル出口温度センサー25:輻射暖房パネル出口膨張弁
27:室外熱交換器中央温度センサー
28:輻射冷房パネル入口膨張弁 29:室内熱
交換器用膨張弁1: Compressor
2: Four-way valve 3: Indoor heat exchanger
4: Radiant heating panel 7: Outdoor heat exchanger 1
0: Radiant cooling panel 13: Indoor fan 1
4: Outdoor fan 16: Intake temperature sensor
17: Radiant cooling panel inlet temperature sensor 18: Radiant cooling panel outlet temperature sensor 19: Indoor heat exchanger temperature sensor 20: Outdoor heat exchanger temperature sensor 21: Radiant cooling panel outlet expansion valve 22: Solenoid valve 23
:Radiant heating panel inlet temperature sensor 24:Radiant heating panel outlet temperature sensor 25:Radiant heating panel outlet expansion valve
27: Outdoor heat exchanger central temperature sensor 28: Radiant cooling panel inlet expansion valve 29: Indoor heat exchanger expansion valve
Claims (1)
えた冷暖房可能な空気調和機であって、冷房時には輻射
暖房パネルを、暖房時には輻射冷房パネルを冷媒溜とし
て用いて冷媒量を調整する冷媒量調整手段を備えたこと
を特徴とする空気調和機。[Claim 1] An air conditioner capable of heating and cooling equipped with a radiant cooling panel and a radiant heating panel, the amount of refrigerant being adjusted by using the radiant heating panel as a refrigerant reservoir during cooling and using the radiant cooling panel as a refrigerant reservoir during heating. An air conditioner characterized by being equipped with an adjustment means.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3144544A JPH04369327A (en) | 1991-06-17 | 1991-06-17 | Air conditioner |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3144544A JPH04369327A (en) | 1991-06-17 | 1991-06-17 | Air conditioner |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04369327A true JPH04369327A (en) | 1992-12-22 |
Family
ID=15364770
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3144544A Pending JPH04369327A (en) | 1991-06-17 | 1991-06-17 | Air conditioner |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04369327A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010106771A1 (en) * | 2009-03-18 | 2010-09-23 | ダイキン工業株式会社 | Air conditioner |
WO2012060227A1 (en) * | 2010-11-05 | 2012-05-10 | ダイキン工業株式会社 | Air conditioner |
WO2020181963A1 (en) * | 2019-03-08 | 2020-09-17 | 晏飞 | Air conditioning/heat pump expansion function box and air conditioning/heat pump thermal storage refrigerating system |
-
1991
- 1991-06-17 JP JP3144544A patent/JPH04369327A/en active Pending
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010106771A1 (en) * | 2009-03-18 | 2010-09-23 | ダイキン工業株式会社 | Air conditioner |
JP2010216767A (en) * | 2009-03-18 | 2010-09-30 | Daikin Ind Ltd | Air conditioner |
WO2012060227A1 (en) * | 2010-11-05 | 2012-05-10 | ダイキン工業株式会社 | Air conditioner |
JP2012112638A (en) * | 2010-11-05 | 2012-06-14 | Daikin Industries Ltd | Air conditioner |
CN103201565A (en) * | 2010-11-05 | 2013-07-10 | 大金工业株式会社 | Air conditioner |
AU2011324586B2 (en) * | 2010-11-05 | 2015-09-24 | Daikin Industries, Ltd. | Air conditioner |
EP2636961A4 (en) * | 2010-11-05 | 2018-03-21 | Daikin Industries, Ltd. | Air conditioner |
WO2020181963A1 (en) * | 2019-03-08 | 2020-09-17 | 晏飞 | Air conditioning/heat pump expansion function box and air conditioning/heat pump thermal storage refrigerating system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5100416B2 (en) | Reheat dehumidifier and air conditioner | |
CN108027179B (en) | Air conditioner | |
US5689962A (en) | Heat pump systems and methods incorporating subcoolers for conditioning air | |
US8459051B2 (en) | Air conditioner and method of controlling the same | |
JP4884365B2 (en) | Refrigeration air conditioner, refrigeration air conditioner outdoor unit, and refrigeration air conditioner control device | |
KR20090082733A (en) | Air conditioning system | |
WO2017138059A1 (en) | Air conditioning device | |
US10876777B2 (en) | Air conditioning device using vapor injection cycle and method for controlling the device | |
JP2005076933A (en) | Refrigeration cycle system | |
JP2007232265A (en) | Refrigeration unit | |
JP3852553B2 (en) | Air conditioner | |
JP2001263831A (en) | Refrigerating cycle system | |
JP2987951B2 (en) | Operation control device for air conditioner | |
JPH0533968A (en) | Air conditioner | |
JPH04369327A (en) | Air conditioner | |
JP3627101B2 (en) | Air conditioner | |
JPH08121879A (en) | Refrigerating and air conditioning apparatus | |
JP2686371B2 (en) | Air conditioner | |
JPH10185343A (en) | Refrigerating equipment | |
KR101321543B1 (en) | Air conditioning system | |
JP4012892B2 (en) | Air conditioner | |
JPH06147558A (en) | Radiation air conditioning device | |
JPH05264108A (en) | Refrigeration device | |
JP2003065584A (en) | Air-conditioning apparatus and its control method | |
KR20180138487A (en) | Air conditioner for carbon dioxide |