JP3694935B2 - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP3694935B2
JP3694935B2 JP27529195A JP27529195A JP3694935B2 JP 3694935 B2 JP3694935 B2 JP 3694935B2 JP 27529195 A JP27529195 A JP 27529195A JP 27529195 A JP27529195 A JP 27529195A JP 3694935 B2 JP3694935 B2 JP 3694935B2
Authority
JP
Japan
Prior art keywords
heat exchanger
sub
refrigerant
circuit
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP27529195A
Other languages
Japanese (ja)
Other versions
JPH09113033A (en
Inventor
武夫 植野
春男 中田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP27529195A priority Critical patent/JP3694935B2/en
Publication of JPH09113033A publication Critical patent/JPH09113033A/en
Application granted granted Critical
Publication of JP3694935B2 publication Critical patent/JP3694935B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、冷房運転のみを行う空気調和装置に関し、特に、低外気温度時の運転対策に係るものである。
【0002】
【従来の技術】
従来より、空気調和装置には、圧縮機と室外熱交換器と膨張弁と室内熱交換器とを順に接続して成る閉回路の冷媒回路を設けた冷房専用機はよく知られている。
【0003】
また、空気調和装置には、特開平5−322389号公報に開示されているように、圧縮機と四路切換弁と室外熱交換器と方向制御回路と室内熱交換器とを順に接続し、方向制御回路に接続された1方向通路に膨張弁を設け、冷房サイクルと暖房サイクルとに可逆運転可能に構成しているものある。
【0004】
上記空気調和装置において、低外気温度状態においても冷房運転を行うようにする場合、圧縮機が所定の圧縮比を保持するようにする必要があるので、高圧制御弁を設けている。つまり、低外気温度で冷房運転を行う際、高圧制御弁を絞り、液冷媒を室外熱交換器に溜めて伝熱面積を小さくし、高圧を所定値に保持するようにしている。
【0005】
【発明が解決しようとする課題】
上述した空気調和装置においては、低外気温度状態で冷房運転を行う場合、圧縮機の圧縮比が所定値以下になると、圧縮機の逆止弁の破損等が生じることになり、凝縮圧力の低下を高圧制御弁によって防止していた。また、上記高圧制御弁に代えて室外ファンの風量制御によって高圧の低下を防止することも考えられている。
【0006】
しかしながら、上述した低外気温度で冷房運転を行う際、圧縮機の容量を低減することができるにも拘らず、圧縮機を所定容量で運転している。したがって、圧縮機の消費電力は一定値までは低下するものの、凝縮圧力制御を行っているため、所定値以上には低下させることができないという問題があった。この結果、エネルギ面で無駄をしているという問題があった。
【0007】
そこで、上記低外気温度時には、自然循環式で冷媒を循環させることが提案されているが、この自然循環式では、凝縮器を高所に、蒸発器を低所に設置し、所定のヘッド差を保持させる必要があり、設置条件が制限されるという問題があった。
【0008】
本発明は、斯かる点に鑑みてなされたもので、圧縮機の消費電力を低減してエネルギの有効利用を図ると共に、設置条件が制限されないようにすることを目的とするものである。
【0009】
【課題を解決するための手段】
−発明の概要−
本発明は、主冷媒回路(20)の液ライン(24-L)の途中に搬送用冷凍回路(30)の2つのサブ熱交換器(33,34)を設け、サブ冷媒を一方のサブ熱交換器で凝縮させ、他方のサブ熱交換器(33,34)で蒸発させることによって、搬送用冷凍回路(30)の熱エネルギを冷媒搬送力に変換し、主冷媒回路(20)の圧縮機(21)を停止した状態で冷媒が熱源側熱交換器(22)と利用側熱交換器(23)との間を循環するようにしたものである。
【0010】
これによって、冷媒を熱エネルギで搬送するので、設置条件の制約を受けることなく小さな動力で信頼性の高い冷房運転が可能となる。
【0011】
−発明の特定事項−
具体的に、図1に示すように、請求項1に係る発明が講じた手段は、圧縮機(21)と熱源側熱交換器(22)と膨張機構(EV-M)と利用側熱交換器(23)とが冷媒配管(24)によって接続されて成る主冷媒回路(20)が設けられている。
【0012】
そして、該主冷媒回路(20)の圧縮機(21)をバイパスし、利用側熱交換器(23)から熱源側熱交換器(22)への冷媒流通を許容するバイパス通路(11)が設けられている。
【0013】
加えて、圧縮機(31)と第1サブ熱交換器(33)と膨張機構(EV-S)と第2サブ熱交換器(34)とが順に接続され、サブ冷媒が一方のサブ熱交換器(33,34)で凝縮し、他方のサブ熱交換器(33,34)で蒸発する可逆運転可能な1つの冷凍サイクルを構成すると共に、両サブ熱交換器(33,34)が主冷媒回路(20)の液ライン(24-L)の途中に接続され、上記第1サブ熱交換器( 33 )でサブ冷媒が凝縮して該第1サブ熱交換器( 33 )の主冷媒回路( 20 )の液冷媒が加熱されて圧力が上昇し、該第1サブ熱交換器( 33 )の液冷媒が排出される一方、上記第2サブ熱交換器( 34 )でサブ冷媒が蒸発して該第2サブ熱交換器( 34 )の主冷媒回路( 20 )の液冷媒が冷却されて圧力が低下し、該第2サブ熱交換器( 34 )に液冷媒が流入する動作と、上記第2サブ熱交換器( 34 )でサブ冷媒が凝縮して該第2サブ熱交換器( 34 )の主冷媒回路( 20 )の液冷媒が加熱されて圧力が上昇し、該第2サブ熱交換器( 34 )の冷媒が排出される一方、上記第1サブ熱交換器( 33 )でサブ冷媒が蒸発して該第1サブ熱交換器( 33 )の主冷媒回路( 20 )の液冷媒が冷却されて圧力が低下し、該第1サブ熱交換器( 33 )に液冷媒が流入する動作とを繰り返して主冷媒回路(20)の液冷媒に移動力を付与する搬送用冷凍回路(30)が設けられている。
【0014】
また、請求項2に係る発明が講じた手段は、上記請求項1の発明において、外気温度を検出する温度検出手段(Th-o)と、該温度検出手段(Th-o)が検出する外気温度が所定温度以下になると、主冷媒回路(20)の圧縮機(21)を停止して搬送用冷凍回路(30)を駆動する一方、外気温度が所定温度より高くなると、搬送用冷凍回路(30)を停止して主冷媒回路(20)の圧縮機(21)を駆動する回路切換え手段(41)とが設けられた構成としている。
【0015】
また、請求項3に係る発明が講じた手段は、上記請求項1の発明において、外気温度を検出する温度検出手段(Th-o)と、主冷媒回路(20)の圧縮機(21)の圧縮比を判別する圧縮比判別手段(43)と、該温度検出手段(Th-o)が検出する外気温度が所定温度以下で且つ主冷媒回路(20)の圧縮機(21)の圧縮比が所定値以下になると、主冷媒回路(20)の圧縮機(21)を停止して搬送用冷凍回路(30)を駆動する一方、外気温度が所定温度より高くなると、搬送用冷凍回路(30)を停止して主冷媒回路(20)の圧縮機(21)を駆動する回路切換え手段(41)とが設けられた構成としている。
【0016】
また、請求項4に係る発明が講じた手段は、上記請求項1の発明において、搬送用冷凍回路(30)の圧縮機(31)の吐出圧力を検出する圧力検出手段(SP)と、該圧力検出手段(SP)が検出する吐出圧力が所定圧力以上になると、凝縮器となるサブ熱交換器(33,34)と蒸発器となるサブ熱交換器(33,34)とを切り換える熱交換切換え手段(42)とが設けられた構成としている。
【0017】
−作用−
上記の発明特定事項により、請求項1に係る発明では、外気温度が所定温度以上である場合、通常の冷房運転が行われ、圧縮機(21)から吐出した冷媒は、熱源側熱交換器(22)で凝縮して液化する。その後、この液冷媒は、膨張機構(EV-M)で膨張して利用側熱交換器(23)で蒸発してガス化し、ガス冷媒が圧縮機(21)に戻り、この循環を繰り返して冷房運転を行うことになる。
【0018】
一方、外気温度が低くなった場合、主冷媒回路(20)の冷媒は、熱源側熱交換器(22)で凝縮するので、主冷媒回路(20)の圧縮機(21)の運転を停止する一方、搬送用冷凍回路(30)を駆動して冷媒を循環させることになる。つまり、主冷媒回路(20)の冷媒は、熱源側熱交換器(22)において外気と熱交換して凝縮して液化し、この液冷媒は、冷媒配管(24)を通って搬送用冷凍回路(30)の各サブ熱交換器(33,34)に流入することになる。
【0019】
この搬送用冷凍回路(30)は、1つの冷凍サイクルを構成しているので、サブ冷媒は、圧縮機(31)より吐出して一方のサブ熱交換器(33,34)で凝縮した後、膨張機構(EV-S)で膨張し、他方のサブ熱交換器(33,34)で蒸発して圧縮機(31)に戻る循環を繰り返す。そして、凝縮器となっているサブ熱交換器(33,34)では冷媒が加熱されて圧力が上昇し、該サブ熱交換器(33,34)に溜っている液冷媒が排出される。つまり、該冷媒が移動力を得ることになる。
【0020】
一方、凝縮器となっているサブ熱交換器(33,34)では冷媒が冷却されて圧力が低下し、該サブ熱交換器(33,34)に液冷媒が流入することになる。この排出と流入とを両サブ熱交換器(33,34)で交互に繰り返すことによって、ほぼ連続的に液冷媒が流れる。そして、上記液冷媒は、膨張機構(EV-M)で膨張して利用側熱交換器(23)で蒸発し、ガス化して冷房することになり、この冷媒ガスは、膨張するので、利用側熱交換器(23)からバイパス通路(11)を通り、主冷媒回路(20)の圧縮機(21)をバイパスして熱源側熱交換器(22)に戻り、この動作を繰り返して冷房運転を行うことになる。
【0021】
また、請求項2に係る発明では、温度検出手段(Th-o)が外気温度を検出する一方、回路切換え手段(41)は、上記温度検出手段(Th-o)の検出温度に基き、外気温度が所定温度以下になると、主冷媒回路(20)の圧縮機(21)を停止して搬送用冷凍回路(30)を駆動する一方、外気温度が所定温度より高くなると、搬送用冷凍回路(30)を停止して主冷媒回路(20)の圧縮機(21)を駆動することになる。
【0022】
また、請求項3に係る発明では、温度検出手段(Th-o)が外気温度を検出すると共に、圧縮比判別手段(43)が、主冷媒回路(20)の圧縮機(21)の圧縮比を判別する。そして、回路切換え手段(41)は、上記温度検出手段(Th-o)の検出温度と圧縮比判別手段(43)の判別圧縮比をに基き、外気温度が所定温度以下で且つ主冷媒回路(20)の圧縮機(21)の圧縮比が所定値以下になると、主冷媒回路(20)の圧縮機(21)を停止して搬送用冷凍回路(30)を駆動する一方、外気温度が所定温度より高くなると、搬送用冷凍回路(30)を停止して主冷媒回路(20)の圧縮機(21)を駆動することになる。
【0023】
また、請求項4に係る発明では、圧力検出手段(SP)が搬送用冷凍回路(30)の圧縮機(31)の吐出圧力を検出する一方、熱交換器切換え手段は、圧力検出手段(SP)が検出する吐出圧力が所定圧力以上になると、凝縮器となるサブ熱交換器(33,34)と蒸発器となるサブ熱交換器(33,34)とを切り換えて主冷媒回路(20)の冷媒に移動力を与えることになる。
【0024】
【発明の効果】
したがって、請求項1、請求項2及び請求項4に係る発明によれば、搬送用冷凍回路(30)の熱エネルギによって主冷媒回路(20)の冷媒の搬送力を得るようにしたために、低外気温度状態であると、従来のように高圧制御弁や室外ファンの制御を行うことなく主冷媒回路(20)の圧縮機(21)を停止して冷房運転を行うので、消費電力の低減を図ることができる。この結果、エネルギの有効利用を図ることができ、EER(エネルギ有効率)の向上を図ることができる。例えば、搬送用冷凍回路(30)の圧縮機(31)の容量を主冷媒回路(20)の圧縮機(21)の容量の20%程度にすることができ、従来よりEERを10倍以上に向上させることができる。
【0025】
また、自然循環を利用しないので、熱源側熱交換器(22)と利用側熱交換器(23)との高低差を設ける必要がないことから、設置自由度の向上を図ることができる。
【0026】
また、搬送用冷凍回路(30)による冷媒循環の場合、利用側熱交換器(23)の出口側の冷媒の湿りや過熱を考慮する必要がないので、運転の信頼性を向上させることができる。
【0027】
また、利用側熱交換器(23)の温度制御は、膨張機構(EV-M)による冷媒循環量を制御するのみであるので、極めて容易に行うことができる。
【0028】
また、低外気温度の冷房運転の場合、主冷媒回路(20)の圧縮機(21)を停止しているので、従来のように圧縮機(21)の異常停止が生じないことから、信頼性の高い運転を行うことができる。
【0029】
また、搬送用冷凍回路(30)の異常時においては、主冷媒回路(20)の圧縮機(21)によって冷房運転を継続することができるので、より運転の信頼性を向上させることができる。
【0030】
また、請求項3に係る発明によれば、主冷媒回路(20)の圧縮機(21)の圧縮比に基いて回路切り換えを行うので、回路切り換えを正確に行うことができることから、確実に省エネルギ化を図ることができる。
【0031】
【発明の実施の形態1】
以下、本発明の実施形態1を図面に基づいて詳細に説明する。
【0032】
図1は、請求項1、請求項2及び請求項4に係る発明の実施形態を示し、本実施形態1の空気調和装置(10)は、冷房運転のみを冷房専用機であって、主冷媒回路(20)と搬送用冷凍回路であるサブ冷凍機(30)とを備えている。
【0033】
上記主冷媒回路(20)は、圧縮機(21)と熱源側熱交換器である室外熱交換器(22)と膨張機構である膨張弁(EV-M)と利用側熱交換器である室内熱交換器(23)とが冷媒配管(24)によって接続されて閉回路に構成されている。
【0034】
また、上記主冷媒回路(20)には、圧縮機(21)をバイパスするバイパス通路(11)が接続されている。該バイパス通路(11)は、逆止弁(CV-1)を備え、一端が圧縮機(21)の吐出側に、他端が圧縮機(21)の吸込側に接続されており、室内熱交換器(23)から室外熱交換器(22)への冷媒流通を許容するように構成されている。
【0035】
上記サブ冷凍機(30)は、本発明の特徴とする事項であって、圧縮機(31)と四路切換弁(32)と第1サブ熱交換器(33)と膨張機構である膨張弁(EV-S)と第2サブ熱交換器(34)とが順に接続され、サブ冷媒が一方のサブ熱交換器(33,34)で凝縮し、他方のサブ熱交換器(33,34)で蒸発する可逆運転可能な1つの冷凍サイクルを構成している。
【0036】
上記両サブ熱交換器(33,34)は、主冷媒回路(20)の液ラインである液冷媒配管(24-L)の途中に互いに並列に接続されている。該液冷媒配管(24-L)には、各サブ熱交換器(33,34)の入口側と出口側とにそれぞれで逆止弁(CV-2,CV-2,…)が設けられている。そして、上記両サブ熱交換器(33,34)は、低外気温度の冷房運転時において、サブ冷媒の凝縮と蒸発とを交互に行わせ、サブ冷媒が主冷媒回路(20)の液冷媒を冷却及び加熱して該液冷媒に移動力を付与するように構成されている。
【0037】
−サブ冷凍機(30)の作用原理−
そこで、上記サブ冷凍機(30)の基本的原理を説明する。
【0038】
先ず、主冷媒回路(20)の冷媒は、温度が上昇すると圧力も上昇し、温度が低下すると圧力も低下する。この原理を利用し、サブ冷凍機(30)の熱エネルギを冷媒が移動するための仕事に変換するようにしたものである。
【0039】
具体的に、サブ冷凍機(30)のサブ冷媒は、圧縮機(31)より吐出して一方のサブ熱交換器(33,34)で凝縮した後、膨張弁(EV-S)で膨張し、他方のサブ熱交換器(33,34)で蒸発して圧縮機(31)に戻る循環を繰り返す。このサブ冷媒が凝縮するサブ熱交換器(33,34)では冷媒が加熱されて圧力が上昇し、該サブ熱交換器(33,34)に溜っている液冷媒が排出される。つまり、該冷媒が移動力を得ることになる。
【0040】
一方、上記サブ冷媒が蒸発するサブ熱交換器(33,34)では冷媒が冷却されて圧力が低下し、該サブ熱交換器(33,34)に液冷媒が流入することになる。
【0041】
この排出と流入とを両サブ熱交換器(33,34)で交互に繰り返すことによって、ほぼ連続的に冷媒が搬送されることになる。
【0042】
−制御系統−
また、上記空気調和装置(10)には、外気温度を検出する温度検出手段である外気温センサ(Th-o)が設けられると共に、サブ冷凍機(30)の圧縮機(31)の吐出圧力を検出する圧力検出手段である圧力センサ(SP)が設けられている。そして、空調運転を制御するコントローラ(40)には、回路切換え手段(41)と熱交換切換え手段(42)とが設けられている。
【0043】
該回路切換え手段(41)は、外気温センサ(Th-o)が検出する外気温度が所定温度以下になると、上記主冷媒回路(20)の圧縮機(21)を停止してサブ冷凍機(30)を駆動する一方、外気温度が所定温度より高くなると、上記サブ冷凍機(30)を停止して主冷媒回路(20)の圧縮機(21)を駆動するように構成されている。
【0044】
上記熱交換切換え手段(42)は、圧力センサ(SP)が検出する吐出圧力が所定圧力以上になると、サブ冷凍機(30)の四路切換弁(32)を切換えて凝縮器となるサブ熱交換器(33,34)と蒸発器となるサブ熱交換器(33,34)とを切り換えるように構成されている。
【0045】
−実施形態1の運転動作−
次に、上述した空気調和装置(10)の運転動作について説明する。
【0046】
先ず、外気温度が所定温度以上である場合、通常の冷房運転が実行され、圧縮機(21)から吐出した冷媒は、室外熱交換器(22)で凝縮して液化する。その後、この液冷媒は、液冷媒配管(24-L)を流れ、サブ冷凍機(30)の両サブ熱交換器(33,34)をと通って膨張弁(EV-M)で膨張して室内熱交換器(23)で蒸発してガス化する。その後、上記ガス冷媒は圧縮機(21)に戻り、この循環を繰り返して室内を冷房する。
【0047】
一方、外気温度が低くなった場合、主冷媒回路(20)の冷媒は、室外熱交換器(22)で凝縮するので、主冷媒回路(20)の圧縮機(21)の運転を停止する一方、本発明の特徴として、サブ冷凍機(30)を駆動して冷媒を循環させることになる。
【0048】
この状態において、主冷媒回路(20)の冷媒は、室外熱交換器(22)において外気と熱交換して凝縮して液化し、外気から冷媒に冷熱が付与される。この液冷媒は、冷媒配管(24)を通ってサブ冷凍機(30)の各サブ熱交換器(33,34)に流入することになり、この液冷媒自体では、室内熱交換器(23)に移動する移動力を要しないので、各サブ熱交換器(33,34)に溜ることになる。
【0049】
このサブ冷凍機(30)は、1つの冷凍サイクルを構成しているので、サブ冷媒は、圧縮機(31)より吐出して一方のサブ熱交換器(33,34)で凝縮した後、膨張弁(EV-S)で膨張し、他方のサブ熱交換器(33,34)で蒸発して圧縮機(31)に戻る循環を繰り返す。例えば、第1サブ熱交換器(33)が凝縮器となり、第2サブ熱交換器(34)が蒸発器となっている場合、この第1サブ熱交換器(33)では冷媒が加熱されて圧力が上昇し、該第1サブ熱交換器(33)に溜っている液冷媒が排出される。つまり、該冷媒が移動力を得ることになる。
【0050】
一方、上記第2サブ熱交換器(34)では冷媒が冷却されて圧力が低下し、該第2サブ熱交換器(34)に液冷媒が流入することになる。この排出と流入とを両サブ熱交換器(33,34)で交互に繰り返すことによって、ほぼ連続的に液冷媒が流れる。そして、上記液冷媒は、冷媒配管(24)を流れ、膨張弁(EV-M)で膨張して室内熱交換器(23)で蒸発し、ガス化して室内を冷房することになる。この冷媒ガスは、膨張するので、室内熱交換器(23)からバイパス通路(11)を通り、主冷媒回路(20)の圧縮機(21)をバイパスして室外熱交換器(22)に戻り、再び外気から冷熱が付与されて凝縮する。この動作を繰り返して冷房運転が実行される。
【0051】
−回路の切換え動作−
次に、上述したサブ冷凍機(30)を利用するか否かの切り換え制御について図2に基き説明する。
【0052】
先ず、冷房運転時において、外気温センサ(Th-o)が室外温度を検知しているので、回路切換え手段(41)は、ステップST1において、この外気温センサ(Th-o)の検知信号に基き、外気温度が予め設定された設定温度TS1になったか否かを判定している。
【0053】
そして、上記外気温度が設定温度TS1より高い場合、上記ステップST1の判定がNOとなってステップST2に移り、主冷媒回路(20)を駆動してサブ冷凍機(30)の運転を停止してステップST1に戻り、冷房運転を継続する。つまり、上記主冷媒回路(20)の圧縮機(21)を駆動し、サブ冷凍機(30)の圧縮機(31)を停止する。
【0054】
そして、上記外気温度が設定温度TS1以下の低温である場合、上記ステップST1の判定がYESとなってステップST3に移り、サブ冷凍機(30)を駆動して主冷媒回路(20)の運転を停止してステップST1に戻り、冷房運転を継続する。つまり、上記主冷媒回路(20)の圧縮機(21)を停止し、サブ冷凍機(30)の圧縮機(31)を駆動し、上述したように両サブ熱交換器(33,34)によって主冷媒回路(20)の冷媒を循環させることになる。
【0055】
また、上記外気温度が設定温度TS1以下の低温状態から高くなると、再びステップST1からステップST2に移り、主冷媒回路(20)の圧縮機(21)を駆動し、サブ冷凍機(30)の圧縮機(31)を停止する。
【0056】
−四路切換弁の制御動作−
次に、上述した低外気冷房運転におけるサブ冷凍機(30)の四路切換弁(32)の切り換え制御について図3に基き説明する。
【0057】
先ず、サブ冷凍機(30)の圧力センサ(SP)は吐出圧力が所定圧力になるとオフするので、ステップST11において、圧力センサ(SP)がオフしたか否かを判定し、オフするまで四路切換弁(32)を現状のまま維持する一方、圧力センサ(SP)がオフすると、上記ステップST11からステップST12に移り、四路切換弁(32)を切り換えることになる。そして、上記ステップST11に戻り、上述の動作を繰り返すことになる。
【0058】
つまり、例えば、第1サブ熱交換器(33)を加熱して主冷媒回路(20)の液冷媒が全て流出すると、該第1サブ熱交換器(33)はガス冷媒が充満するので、サブ冷媒との熱交換率が低下し、圧縮機(31)の吐出圧力が上昇するので、この吐出圧力が所定値になると、四路切換弁(32)を切り換える。そして、圧力が上昇するので、この吐出圧力が所定値になると、四路切換弁(32)を切り換える。そして、第2サブ熱交換器(34)を凝縮器に、第1サブ熱交換器(33)を蒸発器にする。この動作を繰り返すことになる。
【0059】
−膨張弁の制御動作−
次に、上述した低外気冷房運転における膨張弁(EV-M)の開度制御について図4に基き説明する。
【0060】
先ず、ステップST21において、冷媒回路を判定し、つまり、主冷媒回路(20)を用いた冷房運転か、サブ冷凍機(30)を利用した冷房運転かを判定する。そして、上記主冷媒回路(20)を用いた冷房運転である場合、上記ステップST21からステップST22に移り、膨張弁(EV-M)を過熱度制御してステップST21に戻りこの動作を繰り返すことになる。
【0061】
具体的に、上記通常の冷房運転時には、室内熱交換器(23)における冷媒温度の過熱度が所定温度になるように膨張弁(EV-M)の開度をPI制御することになる。
【0062】
一方、サブ冷凍機(30)を利用した冷房運転である場合、上記ステップST21からステップST23に移り、室内温度と設定温度とを比較する。そして、室内温度が設定温度に対して±1℃の範囲内である場合、ステップST23からステップST24に移り、膨張弁(EV-M)の開度を現状のままにしてステップST21に戻り、この動作を繰り返すことになる。
【0063】
また、上記室内温度が設定温度に対して1℃以上高い場合、ステップST23からステップST25に移り、膨張弁(EV-M)の開度を一定量大きくしてステップST21に戻り、この動作を繰り返すことになる。
【0064】
また、上記室内温度が設定温度に対して1℃以上低い場合、ステップST23からステップST26に移り、膨張弁(EV-M)の開度を一定量小さくしてステップST21に戻り、この動作を繰り返すことになる。
【0065】
つまり、室内負荷に対応して室内熱交換器(23)を流れる冷媒流量を調節し、負荷が大きい場合には冷媒流量を多くし、逆に、負荷が小さい場合には冷媒流量を少なくすることになる。
【0066】
−実施形態1の効果−
以上のように本実施形態1によれば、サブ冷凍機(30)の熱エネルギによって主冷媒回路(20)の冷媒の搬送力を得るようにしたために、低外気温度状態であると、従来のように高圧制御弁や室外ファンの制御を行うことなく主冷媒回路(20)の圧縮機(21)を停止して冷房運転を行うので、消費電力の低減を図ることができる。この結果、エネルギの有効利用を図ることができ、EER(エネルギ有効率)の向上を図ることができる。例えば、サブ冷凍機(30)は、主冷媒回路(20)の冷媒を加熱及び冷却するのであるので、圧縮機(31)の容量を主冷媒回路(20)の圧縮機(21)の容量の20%程度にすることができ、従来よりEERを10倍以上にすることができる。
【0067】
また、従来のように自然循環を利用しないので、室外熱交換器(22)と室内熱交換器(23)との高低差を設ける必要がないことから、設置自由度の向上を図ることができる。
【0068】
また、サブ冷凍機(30)による冷媒循環の場合、室内熱交換器(23)の出口側の冷媒の湿りや過熱を考慮する必要がないので、運転の信頼性を向上させることができる。
【0069】
また、室内熱交換器(23)の温度制御は、膨張弁(EV-M)による冷媒循環量を制御するのみであるので、極めて容易に行うことができる。
【0070】
また、低外気温度の冷房運転の場合、主冷媒回路(20)の圧縮機(21)を停止しているので、従来のように圧縮機(21)の異常停止が生じないことから、信頼性の高い運転を行うことができる。
【0071】
また、サブ冷凍機(30)の異常時においては、主冷媒回路(20)の圧縮機(21)によって冷房運転を継続することができるので、より運転の信頼性を向上させることができる。
【0072】
【発明の実施の形態2】
図5は、請求項3に係る発明の実施形態を示し、主冷媒回路(20)の圧縮機(21)の圧縮比を考慮して回路切り換えを行うようにしたものである。
【0073】
具体的に、図1の一点鎖線で示すように、上記コントローラ(40)には、圧縮比判別手段(43)が設けられる一方、他の回路切換え手段(41)が設けられている。
【0074】
該圧縮比判別手段(43)は、主冷媒回路(20)の圧縮機(21)の圧縮比を判別するように構成されている。
【0075】
また、上記回路切換え手段(41)は、外気温センサ(Th-o)が検出する外気温度が所定温度以下で且つ主冷媒回路(20)の圧縮機(21)の圧縮比が所定値以下になると、主冷媒回路(20)の圧縮機(21)を停止して搬送用冷凍回路を駆動する一方、外気温度が所定温度より高くなると、搬送用冷凍回路を停止して主冷媒回路(20)の圧縮機(21)を駆動するように構成されている。
【0076】
−回路の切換え動作−
そこで、本実施形態2の回路切り換えの制御動作を図5の制御フロー図に基いて説明する。
【0077】
先ず、冷房運転時において、外気温センサ(Th-o)が室外温度を検知しているので、回路切換え手段(41)は、ステップST31において、この外気温センサ(Th-o)の検知信号に基き、外気温度が予め設定された設定温度TS2になったか否かを判定している。
【0078】
そして、上記外気温度が設定温度TS1より高い場合、上記ステップST31の判定がNOとなってステップST32に移り、主冷媒回路(20)を駆動してサブ冷凍機(30)の運転を停止してステップST1に戻り、冷房運転を継続する。つまり、上記主冷媒回路(20)の圧縮機(21)を駆動し、サブ冷凍機(30)の圧縮機(31)を停止する。
【0079】
一方、上記外気温度が設定温度TS2以下の低温である場合、上記ステップST31の判定がYESとなってステップST33に移り、主冷媒回路(20)の圧縮機(21)の圧縮比が最低値以下か否かを判定する。この主冷媒回路(20)の圧縮機(21)の圧縮比が最低値より高い場合、上記ステップST33の判定がNOとなって上記ステップST32に移り、主冷媒回路(20)を駆動してサブ冷凍機(30)の運転を停止してステップST1に戻り、冷房運転を継続する。
【0080】
また、上記主冷媒回路(20)の圧縮機(21)の圧縮比が最低値以下の低温である場合、上記ステップST33の判定がYESとなってステップST34に移り、サブ冷凍機(30)を駆動して主冷媒回路(20)の運転を停止して冷房運転を継続する。つまり、上記主冷媒回路(20)の圧縮機(21)を停止し、サブ冷凍機(30)の圧縮機(31)を駆動し、上述したように両サブ熱交換器(33,34)によって主冷媒回路(20)の冷媒を循環させることになる。
【0081】
その後、上記外気温度が設定温度TS2より3℃高い温度(TS2+3℃)以下か否かを判定し、該設定温度TS2より3℃高い温度以下の低温状態の場合は、ステップST34に戻り、サブ冷凍機(30)による冷房運転を継続し、上記設定温度TS2より3℃高い温度より高温になると、再びステップST35からステップST32に移り、主冷媒回路(20)の圧縮機(21)を駆動し、サブ冷凍機(30)の圧縮機(31)を停止する。
【0082】
したがって、本実施形態2によれば、主冷媒回路(20)の圧縮機(21)の圧縮比に基いて回路切り換えを行うので、回路切り換えを正確に行うことができることから、確実に省エネルギ化を図ることができる。その他の構成及び作用・効果は実施形態1と同様である。
【図面の簡単な説明】
【図1】 本発明の実施形態1を示す冷媒回路図である。
【図2】 回路切り換えを示す制御フロー図である。
【図3】 搬送用冷凍回路の切り換え動作を示す制御フロー図である。
【図4】 主冷媒回路の膨張弁の切り換え動作を示す制御フロー図である。
【図5】 実施形態2の回路切り換えを示す制御フロー図である。
【符号の説明】
10 空気調和装置
20 主冷媒回路
21 圧縮機
22 室外熱交換器(熱源側熱交換器)
23 室内熱交換器(利用側熱交換器)
EV-M 膨張弁(膨張機構)
30 サブ冷凍機(搬送用冷凍回路)
31 圧縮機
33,34 サブ熱交換器
EV-S 膨張弁(膨張機構)
40 コントローラ
41 回路切換え手段
42 熱交換切換え手段
43 圧縮比判別手段
Th-o 外気温センサ(温度検出手段)
SP 圧力センサ(圧力検出手段)
[0001]
BACKGROUND OF THE INVENTION
    The present invention relates to an air conditioner that performs only a cooling operation, and particularly relates to an operation measure at a low outside air temperature.
[0002]
[Prior art]
    2. Description of the Related Art Conventionally, an air conditioner is well known as a dedicated cooling apparatus provided with a closed circuit refrigerant circuit in which a compressor, an outdoor heat exchanger, an expansion valve, and an indoor heat exchanger are connected in order.
[0003]
    In addition, as disclosed in JP-A-5-322389, the air conditioner is connected in order with a compressor, a four-way switching valve, an outdoor heat exchanger, a direction control circuit, and an indoor heat exchanger, An expansion valve is provided in a one-way passage connected to the direction control circuit so that the reversible operation can be performed in the cooling cycle and the heating cycle.
[0004]
    In the above air conditioner, when the cooling operation is performed even in a low outside air temperature state, a high pressure control valve is provided because the compressor needs to maintain a predetermined compression ratio. That is, when the cooling operation is performed at a low outside air temperature, the high-pressure control valve is throttled, the liquid refrigerant is stored in the outdoor heat exchanger to reduce the heat transfer area, and the high pressure is maintained at a predetermined value.
[0005]
[Problems to be solved by the invention]
    In the above-described air conditioner, when cooling operation is performed in a low outside air temperature state, if the compression ratio of the compressor becomes a predetermined value or less, the check valve of the compressor is damaged, and the condensation pressure is reduced. Was prevented by a high-pressure control valve. In addition, it is also considered to prevent a decrease in high pressure by controlling the air volume of an outdoor fan instead of the high pressure control valve.
[0006]
    However, when the cooling operation is performed at the low outside air temperature described above, the compressor is operated at a predetermined capacity although the capacity of the compressor can be reduced. Therefore, although the power consumption of the compressor is reduced to a certain value, there is a problem that it cannot be reduced to a predetermined value or more because the condensation pressure control is performed. As a result, there is a problem of wasting energy.
[0007]
    Therefore, it has been proposed to circulate the refrigerant in a natural circulation system at the low outside air temperature. In this natural circulation system, the condenser is installed at a high place and the evaporator is installed at a low place. There is a problem that installation conditions are limited.
[0008]
    The present invention has been made in view of such points, and an object thereof is to reduce the power consumption of a compressor so as to effectively use energy and to prevent installation conditions from being restricted.
[0009]
[Means for Solving the Problems]
        -Summary of invention-
    In the present invention, two sub heat exchangers (33, 34) of the transport refrigeration circuit (30) are provided in the middle of the liquid line (24-L) of the main refrigerant circuit (20), and the sub refrigerant is used as one sub heat. By condensing in the exchanger and evaporating in the other sub heat exchanger (33, 34), the heat energy of the transfer refrigeration circuit (30) is converted into refrigerant transfer force, and the compressor of the main refrigerant circuit (20) The refrigerant circulates between the heat source side heat exchanger (22) and the use side heat exchanger (23) with (21) stopped.
[0010]
    Accordingly, since the refrigerant is transported by thermal energy, it is possible to perform a highly reliable cooling operation with small power without being restricted by installation conditions.
[0011]
        -Specific matters of the invention-
    Specifically, as shown in FIG. 1, the measures taken by the invention according to claim 1 are the compressor (21), the heat source side heat exchanger (22), the expansion mechanism (EV-M), and the use side heat exchange. A main refrigerant circuit (20) is provided in which the vessel (23) is connected by a refrigerant pipe (24).
[0012]
    A bypass passage (11) that bypasses the compressor (21) of the main refrigerant circuit (20) and allows refrigerant to flow from the use side heat exchanger (23) to the heat source side heat exchanger (22) is provided. It has been.
[0013]
    In addition, the compressor (31), the first sub heat exchanger (33), the expansion mechanism (EV-S), and the second sub heat exchanger (34) are connected in order, and the sub refrigerant serves as one sub heat exchange. Constitutes a refrigerating cycle capable of reversible operation that condenses in the condenser (33, 34) and evaporates in the other sub heat exchanger (33, 34). Connected in the middle of the liquid line (24-L) of the circuit (20)The first sub heat exchanger ( 33 ), The sub refrigerant is condensed and the first sub heat exchanger ( 33 ) Main refrigerant circuit ( 20 ) Is heated to increase the pressure, and the first sub heat exchanger ( 33 ) Is discharged while the second sub heat exchanger ( 34 ), The sub refrigerant evaporates and the second sub heat exchanger ( 34 ) Main refrigerant circuit ( 20 ) Liquid refrigerant is cooled and the pressure is reduced, and the second sub heat exchanger ( 34 ) And the second sub heat exchanger ( 34 ), The sub refrigerant is condensed and the second sub heat exchanger ( 34 ) Main refrigerant circuit ( 20 ) Liquid refrigerant is heated to increase the pressure, and the second sub heat exchanger ( 34 ) Refrigerant is discharged while the first sub heat exchanger ( 33 ), The sub refrigerant evaporates and the first sub heat exchanger ( 33 ) Main refrigerant circuit ( 20 ) Liquid refrigerant is cooled and the pressure is reduced, and the first sub heat exchanger ( 33 ) Repeatedly the liquid refrigerant flows intoLiquid cooling of main refrigerant circuit (20)In the mediumA transport refrigeration circuit (30) for applying a moving force is provided.
[0014]
    According to a second aspect of the present invention, there is provided a temperature detecting means (Th-o) for detecting an outside air temperature and an outside air detected by the temperature detecting means (Th-o) according to the first aspect of the invention. When the temperature falls below a predetermined temperature, the compressor (21) of the main refrigerant circuit (20) is stopped to drive the transport refrigeration circuit (30), while when the outside air temperature becomes higher than the predetermined temperature, the transport refrigeration circuit ( 30) and a circuit switching means (41) for driving the compressor (21) of the main refrigerant circuit (20).
[0015]
    Further, the means of the invention according to claim 3 is the temperature detection means (Th-o) for detecting the outside air temperature and the compressor (21) of the main refrigerant circuit (20) in the invention of claim 1 above. The compression ratio discriminating means (43) for discriminating the compression ratio, and the outside air temperature detected by the temperature detecting means (Th-o) is below a predetermined temperature and the compression ratio of the compressor (21) of the main refrigerant circuit (20) is When the temperature falls below a predetermined value, the compressor (21) of the main refrigerant circuit (20) is stopped to drive the transport refrigeration circuit (30), while when the outside air temperature becomes higher than the predetermined temperature, the transport refrigeration circuit (30) And a circuit switching means (41) for driving the compressor (21) of the main refrigerant circuit (20).
[0016]
    According to a fourth aspect of the present invention, there is provided the pressure detecting means (SP) for detecting the discharge pressure of the compressor (31) of the transport refrigeration circuit (30) according to the first aspect of the present invention. When the discharge pressure detected by the pressure detection means (SP) exceeds the specified pressure, heat exchange switches between the sub heat exchanger (33, 34) that functions as a condenser and the sub heat exchanger (33, 34) that functions as an evaporator. The switching means (42) is provided.
[0017]
        -Action-
    In the invention according to the first aspect, when the outside air temperature is equal to or higher than the predetermined temperature, the normal cooling operation is performed, and the refrigerant discharged from the compressor (21) is supplied to the heat source side heat exchanger ( Condensed and liquefied in 22). The liquid refrigerant is then expanded by the expansion mechanism (EV-M), evaporated and gasified by the use side heat exchanger (23), the gas refrigerant returns to the compressor (21), and this circulation is repeated to cool it. You will drive.
[0018]
    On the other hand, when the outside air temperature becomes low, the refrigerant in the main refrigerant circuit (20) condenses in the heat source side heat exchanger (22), so the operation of the compressor (21) in the main refrigerant circuit (20) is stopped. On the other hand, the refrigerant is circulated by driving the transport refrigeration circuit (30). That is, the refrigerant in the main refrigerant circuit (20) is condensed and liquefied by exchanging heat with the outside air in the heat source side heat exchanger (22), and this liquid refrigerant passes through the refrigerant pipe (24) and is refrigerated for transportation. It flows into each sub heat exchanger (33, 34) of (30).
[0019]
    Since this transport refrigeration circuit (30) constitutes one refrigeration cycle, the sub refrigerant is discharged from the compressor (31) and condensed in one of the sub heat exchangers (33, 34). The circulation is expanded by the expansion mechanism (EV-S), evaporated by the other sub heat exchanger (33, 34), and returned to the compressor (31). Then, in the sub heat exchanger (33, 34) serving as a condenser, the refrigerant is heated to increase the pressure, and the liquid refrigerant accumulated in the sub heat exchanger (33, 34) is discharged. That is, the refrigerant obtains a moving force.
[0020]
    On the other hand, in the sub heat exchanger (33, 34) serving as a condenser, the refrigerant is cooled and the pressure decreases, and the liquid refrigerant flows into the sub heat exchanger (33, 34). By repeating this discharge and inflow alternately in both sub heat exchangers (33, 34), the liquid refrigerant flows almost continuously. The liquid refrigerant is expanded by the expansion mechanism (EV-M), is evaporated by the use side heat exchanger (23), is gasified and is cooled, and the refrigerant gas expands. The heat exchanger (23) passes through the bypass passage (11), bypasses the compressor (21) of the main refrigerant circuit (20), returns to the heat source side heat exchanger (22), and repeats this operation for cooling operation. Will do.
[0021]
    In the invention according to claim 2, the temperature detecting means (Th-o) detects the outside air temperature, while the circuit switching means (41) is based on the detected temperature of the temperature detecting means (Th-o). When the temperature falls below a predetermined temperature, the compressor (21) of the main refrigerant circuit (20) is stopped to drive the transport refrigeration circuit (30), while when the outside air temperature becomes higher than the predetermined temperature, the transport refrigeration circuit ( 30) is stopped and the compressor (21) of the main refrigerant circuit (20) is driven.
[0022]
    In the invention according to claim 3, the temperature detecting means (Th-o) detects the outside air temperature, and the compression ratio determining means (43) is the compression ratio of the compressor (21) of the main refrigerant circuit (20). Is determined. Then, the circuit switching means (41) is based on the detected temperature of the temperature detecting means (Th-o) and the determined compression ratio of the compression ratio determining means (43), the outside air temperature is not more than a predetermined temperature and the main refrigerant circuit ( When the compression ratio of the compressor (21) of 20) falls below a predetermined value, the compressor (21) of the main refrigerant circuit (20) is stopped to drive the transfer refrigeration circuit (30), while the outside air temperature is predetermined When the temperature is higher, the transport refrigeration circuit (30) is stopped and the compressor (21) of the main refrigerant circuit (20) is driven.
[0023]
    In the invention according to claim 4, the pressure detecting means (SP) detects the discharge pressure of the compressor (31) of the conveying refrigeration circuit (30), while the heat exchanger switching means is the pressure detecting means (SP When the discharge pressure detected by) exceeds a predetermined pressure, the main refrigerant circuit (20) is switched between the sub heat exchanger (33, 34) serving as a condenser and the sub heat exchanger (33, 34) serving as an evaporator. A moving force is given to the refrigerant.
[0024]
【The invention's effect】
    Therefore, according to the first, second, and fourth aspects of the invention, since the refrigerant conveying force of the main refrigerant circuit (20) is obtained by the thermal energy of the conveying refrigeration circuit (30), the low In the outside air temperature state, the compressor (21) of the main refrigerant circuit (20) is stopped and the cooling operation is performed without controlling the high-pressure control valve and the outdoor fan as in the prior art. Can be planned. As a result, energy can be used effectively, and EER (energy effective rate) can be improved. For example, the capacity of the compressor (31) of the transport refrigeration circuit (30) can be about 20% of the capacity of the compressor (21) of the main refrigerant circuit (20), and the EER is more than 10 times higher than before. Can be improved.
[0025]
    Further, since natural circulation is not used, there is no need to provide a height difference between the heat source side heat exchanger (22) and the use side heat exchanger (23), so that the degree of freedom in installation can be improved.
[0026]
    Further, in the case of refrigerant circulation by the transport refrigeration circuit (30), it is not necessary to consider the wetness or overheating of the refrigerant on the outlet side of the use side heat exchanger (23), so that the reliability of operation can be improved. .
[0027]
    Further, the temperature control of the use side heat exchanger (23) can be performed very easily because it only controls the refrigerant circulation amount by the expansion mechanism (EV-M).
[0028]
    In the case of cooling operation at a low outside air temperature, the compressor (21) of the main refrigerant circuit (20) is stopped, so that the compressor (21) does not stop abnormally as in the past. High driving can be performed.
[0029]
    Further, when the conveying refrigeration circuit (30) is abnormal, the cooling operation can be continued by the compressor (21) of the main refrigerant circuit (20), so that the operation reliability can be further improved.
[0030]
    Further, according to the invention of claim 3, since the circuit switching is performed based on the compression ratio of the compressor (21) of the main refrigerant circuit (20), the circuit switching can be performed accurately. Energy can be achieved.
[0031]
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiment 1
    Hereinafter, Embodiment 1 of the present invention will be described in detail with reference to the drawings.
[0032]
    FIG. 1 shows an embodiment of the invention according to claims 1, 2, and 4, and the air conditioner (10) of the present embodiment 1 is a cooling-only machine that performs only a cooling operation, and is a main refrigerant. A circuit (20) and a sub-refrigerator (30) that is a transport refrigeration circuit are provided.
[0033]
    The main refrigerant circuit (20) includes a compressor (21), an outdoor heat exchanger (22) that is a heat source side heat exchanger, an expansion valve (EV-M) that is an expansion mechanism, and a room that is a utilization side heat exchanger. A heat exchanger (23) is connected by a refrigerant pipe (24) to form a closed circuit.
[0034]
    The main refrigerant circuit (20) is connected to a bypass passage (11) that bypasses the compressor (21). The bypass passage (11) includes a check valve (CV-1), one end is connected to the discharge side of the compressor (21) and the other end is connected to the suction side of the compressor (21). The refrigerant is allowed to flow from the exchanger (23) to the outdoor heat exchanger (22).
[0035]
    The sub-refrigerator (30) is a feature of the present invention, and is an expansion valve that is a compressor (31), a four-way switching valve (32), a first sub-heat exchanger (33), and an expansion mechanism. (EV-S) and the second sub heat exchanger (34) are connected in order, and the sub refrigerant is condensed in one sub heat exchanger (33, 34), and the other sub heat exchanger (33, 34). Constitutes a refrigerating cycle capable of reversible operation that evaporates.
[0036]
    Both the sub heat exchangers (33, 34) are connected in parallel to each other in the middle of the liquid refrigerant pipe (24-L) which is the liquid line of the main refrigerant circuit (20). The liquid refrigerant pipe (24-L) is provided with check valves (CV-2, CV-2,...) On the inlet side and the outlet side of each sub heat exchanger (33, 34). Yes. The sub heat exchangers (33, 34) alternately condense and evaporate the sub refrigerant during the cooling operation at a low outside air temperature, and the sub refrigerant uses the liquid refrigerant in the main refrigerant circuit (20). It is configured to apply a moving force to the liquid refrigerant by cooling and heating.
[0037]
        -Working principle of sub refrigerator (30)-
    Therefore, the basic principle of the sub refrigerator (30) will be described.
[0038]
    First, the pressure of the refrigerant in the main refrigerant circuit (20) increases as the temperature increases, and the pressure decreases as the temperature decreases. Using this principle, the heat energy of the sub refrigerator (30) is converted into work for moving the refrigerant.
[0039]
    Specifically, the sub refrigerant in the sub refrigerator (30) is discharged from the compressor (31), condensed in one of the sub heat exchangers (33, 34), and then expanded in the expansion valve (EV-S). Then, the other sub heat exchanger (33, 34) is repeatedly circulated and returned to the compressor (31). In the sub heat exchanger (33, 34) in which the sub refrigerant is condensed, the refrigerant is heated to increase the pressure, and the liquid refrigerant accumulated in the sub heat exchanger (33, 34) is discharged. That is, the refrigerant obtains a moving force.
[0040]
    On the other hand, in the sub heat exchanger (33, 34) in which the sub refrigerant evaporates, the refrigerant is cooled and the pressure decreases, and the liquid refrigerant flows into the sub heat exchanger (33, 34).
[0041]
    By repeating this discharge and inflow alternately in both sub heat exchangers (33, 34), the refrigerant is transported almost continuously.
[0042]
        -Control system-
    The air conditioner (10) is provided with an outside air temperature sensor (Th-o) which is a temperature detecting means for detecting the outside air temperature, and the discharge pressure of the compressor (31) of the sub refrigerator (30). There is provided a pressure sensor (SP) which is a pressure detecting means for detecting. The controller (40) for controlling the air conditioning operation is provided with a circuit switching means (41) and a heat exchange switching means (42).
[0043]
    The circuit switching means (41) stops the compressor (21) of the main refrigerant circuit (20) when the outside air temperature detected by the outside air temperature sensor (Th-o) falls below a predetermined temperature, On the other hand, when the outside air temperature becomes higher than a predetermined temperature, the sub-refrigerator (30) is stopped and the compressor (21) of the main refrigerant circuit (20) is driven.
[0044]
    When the discharge pressure detected by the pressure sensor (SP) exceeds a predetermined pressure, the heat exchange switching means (42) switches the four-way switching valve (32) of the sub-refrigerator (30) to form a sub-heat that becomes a condenser. The exchanger (33, 34) and the sub heat exchanger (33, 34) serving as an evaporator are switched.
[0045]
        -Driving operation of Embodiment 1-
    Next, the operation of the air conditioner (10) described above will be described.
[0046]
    First, when the outside air temperature is equal to or higher than a predetermined temperature, a normal cooling operation is performed, and the refrigerant discharged from the compressor (21) is condensed and liquefied in the outdoor heat exchanger (22). After that, this liquid refrigerant flows through the liquid refrigerant pipe (24-L), passes through both the sub heat exchangers (33, 34) of the sub refrigerator (30), and is expanded by the expansion valve (EV-M). It evaporates and gasifies in the indoor heat exchanger (23). Thereafter, the gas refrigerant returns to the compressor (21) and repeats this circulation to cool the room.
[0047]
    On the other hand, when the outside air temperature becomes low, the refrigerant in the main refrigerant circuit (20) condenses in the outdoor heat exchanger (22), so that the operation of the compressor (21) in the main refrigerant circuit (20) is stopped. As a feature of the present invention, the sub-refrigerator (30) is driven to circulate the refrigerant.
[0048]
    In this state, the refrigerant in the main refrigerant circuit (20) is condensed and liquefied by exchanging heat with the outside air in the outdoor heat exchanger (22), and cold heat is applied from the outside air to the refrigerant. The liquid refrigerant flows into the sub heat exchangers (33, 34) of the sub refrigerator (30) through the refrigerant pipe (24), and the liquid refrigerant itself is an indoor heat exchanger (23). Therefore, the sub-heat exchanger (33, 34) accumulates.
[0049]
    Since this sub refrigeration machine (30) constitutes one refrigeration cycle, the sub refrigerant is discharged from the compressor (31), condensed in one of the sub heat exchangers (33, 34), and then expanded. The circulation is repeated by expanding the valve (EV-S), evaporating by the other sub heat exchanger (33, 34) and returning to the compressor (31). For example, when the first sub heat exchanger (33) is a condenser and the second sub heat exchanger (34) is an evaporator, the refrigerant is heated in the first sub heat exchanger (33). The pressure rises, and the liquid refrigerant accumulated in the first sub heat exchanger (33) is discharged. That is, the refrigerant obtains a moving force.
[0050]
    On the other hand, in the second sub heat exchanger (34), the refrigerant is cooled to reduce the pressure, and the liquid refrigerant flows into the second sub heat exchanger (34). By repeating this discharge and inflow alternately in both sub heat exchangers (33, 34), the liquid refrigerant flows almost continuously. The liquid refrigerant flows through the refrigerant pipe (24), expands at the expansion valve (EV-M), evaporates at the indoor heat exchanger (23), gasifies, and cools the room. Since this refrigerant gas expands, it passes through the bypass passage (11) from the indoor heat exchanger (23), bypasses the compressor (21) of the main refrigerant circuit (20), and returns to the outdoor heat exchanger (22). Again, cold air is applied from the outside air to condense. This operation is repeated to execute the cooling operation.
[0051]
        -Circuit switching operation-
    Next, switching control for determining whether or not to use the above-described sub refrigerator (30) will be described with reference to FIG.
[0052]
    First, during the cooling operation, since the outside air temperature sensor (Th-o) detects the outdoor temperature, the circuit switching means (41) uses the detection signal of the outside air temperature sensor (Th-o) in step ST1. Based on this, it is determined whether or not the outside air temperature has reached a preset temperature TS1.
[0053]
    When the outside air temperature is higher than the set temperature TS1, the determination in step ST1 is NO, the process proceeds to step ST2, the main refrigerant circuit (20) is driven, and the operation of the sub refrigerator (30) is stopped. Returning to step ST1, the cooling operation is continued. That is, the compressor (21) of the main refrigerant circuit (20) is driven, and the compressor (31) of the sub refrigerator (30) is stopped.
[0054]
    And when the said outside temperature is low temperature below setting temperature TS1, determination of the said step ST1 becomes YES and moves to step ST3, a sub refrigerator (30) is driven, and driving | operation of a main refrigerant circuit (20) is carried out. Stop and return to step ST1 to continue the cooling operation. That is, the compressor (21) of the main refrigerant circuit (20) is stopped, the compressor (31) of the sub-refrigerator (30) is driven, and as described above, by both sub-heat exchangers (33, 34). The refrigerant in the main refrigerant circuit (20) is circulated.
[0055]
    Further, when the outside air temperature rises from a low temperature state lower than the set temperature TS1, the process proceeds from step ST1 to step ST2 again, the compressor (21) of the main refrigerant circuit (20) is driven, and the sub refrigerator (30) is compressed. Stop the machine (31).
[0056]
        -Control action of four-way selector valve-
    Next, switching control of the four-way selector valve (32) of the sub-refrigerator (30) in the above-described low outside air cooling operation will be described with reference to FIG.
[0057]
    First, since the pressure sensor (SP) of the sub-chiller (30) is turned off when the discharge pressure reaches a predetermined pressure, it is determined whether or not the pressure sensor (SP) is turned off in step ST11, and the four ways until the pressure sensor (SP) is turned off. While the switching valve (32) is maintained as it is, when the pressure sensor (SP) is turned off, the process proceeds from step ST11 to step ST12, and the four-way switching valve (32) is switched. And it returns to said step ST11 and repeats the above-mentioned operation | movement.
[0058]
    That is, for example, when the first sub heat exchanger (33) is heated and all the liquid refrigerant in the main refrigerant circuit (20) flows out, the first sub heat exchanger (33) is filled with the gas refrigerant. Since the heat exchange rate with the refrigerant decreases and the discharge pressure of the compressor (31) increases, the four-way switching valve (32) is switched when the discharge pressure reaches a predetermined value. Since the pressure increases, when the discharge pressure reaches a predetermined value, the four-way switching valve (32) is switched. Then, the second sub heat exchanger (34) is used as a condenser, and the first sub heat exchanger (33) is used as an evaporator. This operation is repeated.
[0059]
        -Control action of expansion valve-
    Next, the opening degree control of the expansion valve (EV-M) in the low outside air cooling operation described above will be described with reference to FIG.
[0060]
    First, in step ST21, the refrigerant circuit is determined, that is, whether the cooling operation using the main refrigerant circuit (20) or the cooling operation using the sub refrigerator (30) is determined. In the case of the cooling operation using the main refrigerant circuit (20), the process proceeds from step ST21 to step ST22, the degree of superheat of the expansion valve (EV-M) is controlled, and the process returns to step ST21 to repeat this operation. Become.
[0061]
    Specifically, during the normal cooling operation, the opening degree of the expansion valve (EV-M) is PI-controlled so that the degree of superheat of the refrigerant temperature in the indoor heat exchanger (23) becomes a predetermined temperature.
[0062]
    On the other hand, in the case of the cooling operation using the sub refrigerator (30), the process proceeds from step ST21 to step ST23, and the room temperature is compared with the set temperature. If the room temperature is within a range of ± 1 ° C. with respect to the set temperature, the process proceeds from step ST23 to step ST24, and the opening of the expansion valve (EV-M) remains unchanged and the process returns to step ST21. The operation will be repeated.
[0063]
    If the room temperature is higher than the set temperature by 1 ° C. or more, the process proceeds from step ST23 to step ST25, the opening of the expansion valve (EV-M) is increased by a certain amount, and the process returns to step ST21 to repeat this operation. It will be.
[0064]
    If the room temperature is lower than the set temperature by 1 ° C. or more, the process proceeds from step ST23 to step ST26, the opening of the expansion valve (EV-M) is decreased by a certain amount, and the process returns to step ST21, and this operation is repeated. It will be.
[0065]
    In other words, adjust the refrigerant flow rate flowing through the indoor heat exchanger (23) in response to the indoor load, increase the refrigerant flow rate when the load is large, and decrease the refrigerant flow rate when the load is small. become.
[0066]
        -Effect of Embodiment 1-
    As described above, according to the first embodiment, since the refrigerant conveying force of the main refrigerant circuit (20) is obtained by the heat energy of the sub-refrigerator (30), Thus, since the cooling operation is performed by stopping the compressor (21) of the main refrigerant circuit (20) without controlling the high-pressure control valve and the outdoor fan, the power consumption can be reduced. As a result, energy can be used effectively, and EER (energy effective rate) can be improved. For example, since the sub refrigerator (30) heats and cools the refrigerant in the main refrigerant circuit (20), the capacity of the compressor (31) is set to the capacity of the compressor (21) in the main refrigerant circuit (20). It can be about 20%, and the EER can be increased by 10 times or more.
[0067]
    Further, since natural circulation is not used as in the prior art, there is no need to provide a height difference between the outdoor heat exchanger (22) and the indoor heat exchanger (23), so that the degree of freedom in installation can be improved. .
[0068]
    Further, in the case of refrigerant circulation by the sub refrigerator (30), it is not necessary to consider the wetness or overheating of the refrigerant on the outlet side of the indoor heat exchanger (23), so that the operation reliability can be improved.
[0069]
    Further, the temperature control of the indoor heat exchanger (23) can be performed very easily because it only controls the refrigerant circulation amount by the expansion valve (EV-M).
[0070]
    In the case of cooling operation at a low outside air temperature, the compressor (21) of the main refrigerant circuit (20) is stopped, so that the compressor (21) does not stop abnormally as in the past. High driving can be performed.
[0071]
    Further, when the sub refrigerator (30) is abnormal, the cooling operation can be continued by the compressor (21) of the main refrigerant circuit (20), so that the operation reliability can be further improved.
[0072]
Second Embodiment of the Invention
    FIG. 5 shows an embodiment of the invention according to claim 3, in which the circuit is switched in consideration of the compression ratio of the compressor (21) of the main refrigerant circuit (20).
[0073]
    Specifically, as indicated by the alternate long and short dash line in FIG. 1, the controller (40) is provided with a compression ratio determining means (43) and another circuit switching means (41).
[0074]
    The compression ratio determining means (43) is configured to determine the compression ratio of the compressor (21) of the main refrigerant circuit (20).
[0075]
    The circuit switching means (41) is configured such that the outside air temperature detected by the outside air temperature sensor (Th-o) is not more than a predetermined temperature and the compression ratio of the compressor (21) of the main refrigerant circuit (20) is not more than a predetermined value. Then, the compressor (21) of the main refrigerant circuit (20) is stopped to drive the transfer refrigeration circuit, and when the outside air temperature becomes higher than a predetermined temperature, the transfer refrigeration circuit is stopped and the main refrigerant circuit (20) The compressor (21) is driven.
[0076]
        -Circuit switching operation-
    Therefore, the circuit switching control operation of the second embodiment will be described with reference to the control flowchart of FIG.
[0077]
    First, during the cooling operation, since the outside air temperature sensor (Th-o) detects the outdoor temperature, the circuit switching means (41) uses the detection signal of the outside air temperature sensor (Th-o) in step ST31. Based on this, it is determined whether or not the outside air temperature has reached a preset temperature TS2.
[0078]
    When the outside air temperature is higher than the set temperature TS1, the determination in step ST31 is NO, the process proceeds to step ST32, the main refrigerant circuit (20) is driven, and the operation of the sub refrigerator (30) is stopped. Returning to step ST1, the cooling operation is continued. That is, the compressor (21) of the main refrigerant circuit (20) is driven, and the compressor (31) of the sub refrigerator (30) is stopped.
[0079]
    On the other hand, when the outside air temperature is a low temperature equal to or lower than the set temperature TS2, the determination in step ST31 is YES, the process proceeds to step ST33, and the compression ratio of the compressor (21) of the main refrigerant circuit (20) is less than the minimum value. It is determined whether or not. When the compression ratio of the compressor (21) in the main refrigerant circuit (20) is higher than the minimum value, the determination in step ST33 is NO, the process proceeds to step ST32, and the main refrigerant circuit (20) is driven to The operation of the refrigerator (30) is stopped, the process returns to step ST1, and the cooling operation is continued.
[0080]
    Further, when the compression ratio of the compressor (21) of the main refrigerant circuit (20) is a low temperature below the minimum value, the determination in step ST33 is YES and the process proceeds to step ST34, and the sub refrigerator (30) is turned on. Drive to stop the operation of the main refrigerant circuit (20) and continue the cooling operation. That is, the compressor (21) of the main refrigerant circuit (20) is stopped, the compressor (31) of the sub-refrigerator (30) is driven, and as described above, by both sub-heat exchangers (33, 34). The refrigerant in the main refrigerant circuit (20) is circulated.
[0081]
    Thereafter, it is determined whether or not the outside air temperature is 3 ° C. higher than the set temperature TS 2 (TS 2 + 3 ° C.) or less. If the temperature is lower than the set temperature TS 2 3 ° C. When the cooling operation by the machine (30) is continued and the temperature becomes higher than the set temperature TS2 by 3 ° C., the process proceeds from step ST35 to step ST32 again to drive the compressor (21) of the main refrigerant circuit (20), Stop the compressor (31) of the sub refrigerator (30).
[0082]
    Therefore, according to the second embodiment, since the circuit switching is performed based on the compression ratio of the compressor (21) of the main refrigerant circuit (20), the circuit switching can be performed accurately, so energy saving is ensured. Can be achieved. Other configurations, operations, and effects are the same as those of the first embodiment.
[Brief description of the drawings]
FIG. 1 is a refrigerant circuit diagram illustrating a first embodiment of the present invention.
FIG. 2 is a control flow diagram showing circuit switching.
FIG. 3 is a control flow diagram showing a switching operation of a transport refrigeration circuit.
FIG. 4 is a control flow diagram showing an expansion valve switching operation of the main refrigerant circuit.
FIG. 5 is a control flow diagram showing circuit switching according to the second embodiment.
[Explanation of symbols]
10 Air conditioner
20 Main refrigerant circuit
21 Compressor
22 Outdoor heat exchanger (heat source side heat exchanger)
23 Indoor heat exchanger (use side heat exchanger)
EV-M expansion valve (expansion mechanism)
30 Sub refrigerator (conveyance refrigeration circuit)
31 Compressor
33, 34 Sub heat exchanger
EV-S expansion valve (expansion mechanism)
40 controller
41 Circuit switching means
42 Heat exchange switching means
43 Compression ratio discrimination means
Th-o outside air temperature sensor (temperature detection means)
SP pressure sensor (pressure detection means)

Claims (4)

圧縮機(21)と熱源側熱交換器(22)と膨張機構(EV-M)と利用側熱交換器(23)とが冷媒配管(24)によって接続されて成る主冷媒回路(20)と、
該主冷媒回路(20)の圧縮機(21)をバイパスし、利用側熱交換器(23)から熱源側熱交換器(22)への冷媒流通を許容するバイパス通路(11)と、
圧縮機(31)と第1サブ熱交換器(33)と膨張機構(EV-S)と第2サブ熱交換器(34)とが順に接続され、サブ冷媒が一方のサブ熱交換器(33,34)で凝縮し、他方のサブ熱交換器(33,34)で蒸発する可逆運転可能な1つの冷凍サイクルを構成すると共に、両サブ熱交換器(33,34)が主冷媒回路(20)の液ライン(24-L)の途中に接続され、上記第1サブ熱交換器( 33 )でサブ冷媒が凝縮して該第1サブ熱交換器( 33 )の主冷媒回路( 20 )の液冷媒が加熱されて圧力が上昇し、該第1サブ熱交換器( 33 )の液冷媒が排出される一方、上記第2サブ熱交換器( 34 )でサブ冷媒が蒸発して該第2サブ熱交換器( 34 )の主冷媒回路( 20 )の液冷媒が冷却されて圧力が低下し、該第2サブ熱交換器( 34 )に液冷媒が流入する動作と、上記第2サブ熱交換器( 34 )でサブ冷媒が凝縮して該第2サブ熱交換器( 34 )の主冷媒回路( 20 )の液冷媒が加熱されて圧力が上昇し、該第2サブ熱交換器( 34 )の冷媒が排出される一方、上記第1サブ熱交換器( 33 )でサブ冷媒が蒸発して該第1サブ熱交換器( 33 )の主冷媒回路( 20 )の液冷媒が冷却されて圧力が低下し、該第1サブ熱交換器( 33 )に液冷媒が流入する動作とを繰り返して主冷媒回路(20)の液冷媒に移動力を付与する搬送用冷凍回路(30)と
を備えていることを特徴とする空気調和装置。
A main refrigerant circuit (20) comprising a compressor (21), a heat source side heat exchanger (22), an expansion mechanism (EV-M), and a use side heat exchanger (23) connected by a refrigerant pipe (24); ,
A bypass passage (11) that bypasses the compressor (21) of the main refrigerant circuit (20) and permits refrigerant flow from the use side heat exchanger (23) to the heat source side heat exchanger (22);
The compressor (31), the first sub heat exchanger (33), the expansion mechanism (EV-S), and the second sub heat exchanger (34) are connected in order, and the sub refrigerant is connected to one of the sub heat exchangers (33). , 34) and a refrigerating cycle capable of reversible operation that condenses in the other sub heat exchanger (33, 34) and constitutes the main refrigerant circuit (20 ) In the middle of the liquid line (24-L) , the sub refrigerant is condensed in the first sub heat exchanger ( 33 ), and the main refrigerant circuit ( 20 ) of the first sub heat exchanger ( 33 ) is condensed. The liquid refrigerant is heated to increase the pressure, and the liquid refrigerant in the first sub heat exchanger ( 33 ) is discharged, while the sub refrigerant is evaporated in the second sub heat exchanger ( 34 ) and the second sub heat exchanger ( 34 ) is discharged . The liquid refrigerant in the main refrigerant circuit ( 20 ) of the sub heat exchanger ( 34 ) is cooled and the pressure decreases, and the liquid refrigerant flows into the second sub heat exchanger ( 34 ), and the second sub heat Exchange Vessel second sub heat exchanger sub refrigerant is condensed in (34) the liquid refrigerant is heated pressure of the main refrigerant circuit (20) in (34) is raised, the second sub-heat exchanger (34) while the refrigerant is discharged, the first sub-heat exchanger (33) liquid refrigerant of the main refrigerant circuit of the sub-refrigerant is evaporated first sub heat exchanger (33) (20) is cooled by the pressure of There was lowered, first sub heat exchanger and the transport refrigeration circuit for imparting a moving force to the liquid cooling medium of the main refrigerant circuit liquid refrigerant (33) is repeated and the operation for flowing (20) (30) An air conditioner characterized by comprising:
請求項1記載の空気調和装置において、
外気温度を検出する温度検出手段(Th-o)と、
該温度検出手段(Th-o)が検出する外気温度が所定温度以下になると、主冷媒回路(20)の圧縮機(21)を停止して搬送用冷凍回路(30)を駆動する一方、外気温度が所定温度より高くなると、搬送用冷凍回路(30)を停止して主冷媒回路(20)の圧縮機(21)を駆動する回路切換え手段(41)と
を備えていることを特徴とする空気調和装置。
The air conditioner according to claim 1,
Temperature detection means (Th-o) for detecting the outside air temperature,
When the outside air temperature detected by the temperature detecting means (Th-o) becomes a predetermined temperature or less, the compressor (21) of the main refrigerant circuit (20) is stopped to drive the transport refrigeration circuit (30), while the outside air Circuit switching means (41) for stopping the transport refrigeration circuit (30) and driving the compressor (21) of the main refrigerant circuit (20) when the temperature becomes higher than a predetermined temperature. Air conditioner.
請求項1記載の空気調和装置において、
外気温度を検出する温度検出手段(Th-o)と、
主冷媒回路(20)の圧縮機(21)の圧縮比を判別する圧縮比判別手段(43)と、
該温度検出手段(Th-o)が検出する外気温度が所定温度以下で且つ主冷媒回路(20)の圧縮機(21)の圧縮比が所定値以下になると、主冷媒回路(20)の圧縮機(21)を停止して搬送用冷凍回路(30)を駆動する一方、外気温度が所定温度より高くなると、搬送用冷凍回路(30)を停止して主冷媒回路(20)の圧縮機
(21)を駆動する回路切換え手段(41)と
を備えていることを特徴とする空気調和装置。
The air conditioner according to claim 1,
Temperature detection means (Th-o) for detecting the outside air temperature,
Compression ratio determining means (43) for determining the compression ratio of the compressor (21) of the main refrigerant circuit (20);
When the outside air temperature detected by the temperature detecting means (Th-o) is lower than a predetermined temperature and the compression ratio of the compressor (21) of the main refrigerant circuit (20) is lower than a predetermined value, the compression of the main refrigerant circuit (20) The refrigeration circuit (30) is stopped and the refrigeration circuit (30) for driving is driven, while the outside refrigeration circuit (30) is stopped and the compressor ( 21) An air conditioner comprising circuit switching means (41) for driving 21).
請求項1記載の空気調和装置において、
搬送用冷凍回路(30)の圧縮機(31)の吐出圧力を検出する圧力検出手段(SP)と、
該圧力検出手段(SP)が検出する吐出圧力が所定圧力以上になると、凝縮器となるサブ熱交換器(33,34)と蒸発器となるサブ熱交換器(33,34)とを切り換える熱交換切換え手段(42)と
を備えていることを特徴とする空気調和装置。
The air conditioner according to claim 1,
Pressure detection means (SP) for detecting the discharge pressure of the compressor (31) of the transport refrigeration circuit (30);
When the discharge pressure detected by the pressure detection means (SP) exceeds a predetermined pressure, heat is switched between the sub heat exchanger (33, 34) serving as a condenser and the sub heat exchanger (33, 34) serving as an evaporator. An air conditioning apparatus comprising an exchange switching means (42).
JP27529195A 1995-10-24 1995-10-24 Air conditioner Expired - Lifetime JP3694935B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27529195A JP3694935B2 (en) 1995-10-24 1995-10-24 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27529195A JP3694935B2 (en) 1995-10-24 1995-10-24 Air conditioner

Publications (2)

Publication Number Publication Date
JPH09113033A JPH09113033A (en) 1997-05-02
JP3694935B2 true JP3694935B2 (en) 2005-09-14

Family

ID=17553391

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27529195A Expired - Lifetime JP3694935B2 (en) 1995-10-24 1995-10-24 Air conditioner

Country Status (1)

Country Link
JP (1) JP3694935B2 (en)

Also Published As

Publication number Publication date
JPH09113033A (en) 1997-05-02

Similar Documents

Publication Publication Date Title
US20150059380A1 (en) Air-conditioning apparatus
JP2002168532A (en) Supercritical steam compression system, and device for regulating pressure in high-pressure components of refrigerant circulating therein
JP2006284035A (en) Air conditioner and its control method
WO2015045247A1 (en) Heat pump system, and heat pump water heater
JP4317793B2 (en) Cooling system
KR100550566B1 (en) A hotting drive method of heat pump multi-air conditioner
US11187447B2 (en) Refrigeration cycle apparatus
KR101890473B1 (en) A system for combining refrigerator and air conditioner, and control method thereof
JPH043865A (en) Freezing cycle device
JP3694935B2 (en) Air conditioner
JPH10185342A (en) Heat pump type air conditioner
JPH06257868A (en) Heat pump type ice heat accumulating device for air conditioning
KR100517600B1 (en) A warming drive method of air-conditioner
WO2021156901A1 (en) Refrigeration cycle device
KR101227477B1 (en) Air conditioner having volume variableness type condenser and method of control thereof
JP3661014B2 (en) Refrigeration equipment
JP3189492B2 (en) Operation control device for air conditioner
JP3871207B2 (en) Refrigeration system combining absorption and compression
JP3353367B2 (en) Air conditioner
JP3164079B2 (en) Refrigeration equipment
JP7424425B1 (en) dual refrigeration equipment
KR20100088378A (en) Air conditioner and defrosting driving method of the same
JP4165681B2 (en) Air-conditioning and hot-water supply system and control method thereof
JPH1047794A (en) Freezer
JP2004205142A (en) Refrigerating and air conditioning apparatus and its operation control method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050318

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050607

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050620

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090708

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100708

Year of fee payment: 5