JPS6218934Y2 - - Google Patents

Info

Publication number
JPS6218934Y2
JPS6218934Y2 JP798481U JP798481U JPS6218934Y2 JP S6218934 Y2 JPS6218934 Y2 JP S6218934Y2 JP 798481 U JP798481 U JP 798481U JP 798481 U JP798481 U JP 798481U JP S6218934 Y2 JPS6218934 Y2 JP S6218934Y2
Authority
JP
Japan
Prior art keywords
refrigerant
heat exchanger
valve
refrigeration cycle
pressure reducing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP798481U
Other languages
Japanese (ja)
Other versions
JPS57121874U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP798481U priority Critical patent/JPS6218934Y2/ja
Publication of JPS57121874U publication Critical patent/JPS57121874U/ja
Application granted granted Critical
Publication of JPS6218934Y2 publication Critical patent/JPS6218934Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Description

【考案の詳細な説明】 本考案は、ヒートポンプ式の冷凍サイクルを備
え、特に暖房サイクルを改良した空気調和機に関
する。
[Detailed Description of the Invention] The present invention relates to an air conditioner equipped with a heat pump type refrigeration cycle, and particularly with an improved heating cycle.

冷暖房運転の切換えが可能なヒートポンプ式の
冷凍サイクルを備えた空気調和機が多用される。
しかるにこの種空気調和機では特に暖房運転時に
外気温度が低下すると暖房能力が低下するという
欠点がある。
Air conditioners equipped with a heat pump type refrigeration cycle that can switch between cooling and heating modes are often used.
However, this type of air conditioner has the disadvantage that its heating capacity decreases when the outside air temperature decreases, especially during heating operation.

そこでこの欠点を防ぐため循環冷媒を直接加熱
して暖房能力を維持する手段が用いられるように
なつた。たとえば第1図もしくは第2図に示すよ
うな冷凍サイクルを構成する。図中1は圧縮機、
2は四方弁、3は室内側熱交換器、4は毛細管、
5はリキツドタンク、6は膨張弁、7は逆止弁、
8は室外側熱交換器、9は冷媒加熱器、10a,
10bは三方弁である。第1図の場合は冷媒加熱
器9は室外側熱交換器8と並列に接続され、第2
図の場合は冷媒加熱器9は室外側熱交換器8と直
列に接続されることになる。いずれの場合におい
ても外気温が低下すれば冷媒加熱器9は発熱して
冷媒を加熱し、圧縮器1の吸込冷媒圧力を上昇さ
せてこの圧縮ガス量の増大化を得、室内側熱交換
器3の凝縮圧力を上げて放出熱量の増大、すなわ
ち暖房能力の向上を得る。
In order to prevent this drawback, methods have been used to directly heat the circulating refrigerant to maintain heating capacity. For example, a refrigeration cycle as shown in FIG. 1 or 2 is constructed. 1 in the figure is a compressor,
2 is a four-way valve, 3 is an indoor heat exchanger, 4 is a capillary tube,
5 is a liquid tank, 6 is an expansion valve, 7 is a check valve,
8 is an outdoor heat exchanger, 9 is a refrigerant heater, 10a,
10b is a three-way valve. In the case of FIG. 1, the refrigerant heater 9 is connected in parallel with the outdoor heat exchanger 8, and the second
In the case shown in the figure, the refrigerant heater 9 is connected in series with the outdoor heat exchanger 8. In either case, if the outside temperature drops, the refrigerant heater 9 generates heat and heats the refrigerant, increases the pressure of the refrigerant sucked into the compressor 1, and increases the amount of compressed gas. By increasing the condensation pressure in step 3, the amount of heat released is increased, that is, the heating capacity is improved.

しかしながら、第1図の場合においては室外側
熱交換器9とを三方弁10a,10bで切換えて
運転しているので、一方の運転中は他方ののもの
に冷媒が溜つていわゆる冷媒寝込み現象が大き
く、特に立上がり特性が悪くて温風を得るまで時
間がかかる。第2図の場合においては実公昭46−
11796号公報および実開昭53−57361号公報で示さ
れる手段と同様である。すなわち、室外側熱交換
器が膨張弁やキヤピラリチユーブなどの減圧装置
の下流側に位置し、室外側熱交換器を出た冷媒に
熱を補助的に与える点で同様である。したがつて
冷媒加熱器9は室外側熱交換器8の補助熱源とし
て利用されるのみであり十分な熱量補給ができな
い欠点がある。
However, in the case of Fig. 1, since the outdoor heat exchanger 9 and the outdoor heat exchanger 9 are operated by switching between them using the three-way valves 10a and 10b, during operation of one, refrigerant accumulates in the other, resulting in the so-called refrigerant stagnation phenomenon. It is large and has particularly poor start-up characteristics, so it takes a long time to obtain hot air. In the case of Figure 2,
This is similar to the means shown in Japanese Unexamined Patent Publication No. 11796 and Japanese Utility Model Application Publication No. 53-57361. That is, the outdoor heat exchanger is located downstream of a pressure reducing device such as an expansion valve or a capillary tube, and is similar in that it supplementally provides heat to the refrigerant exiting the outdoor heat exchanger. Therefore, the refrigerant heater 9 is only used as an auxiliary heat source for the outdoor heat exchanger 8, and has the disadvantage that it cannot replenish a sufficient amount of heat.

本考案は上記事情に着目してなされたものであ
り、その目的とするところは、比較的簡単な構造
でありながら、低外気温度条件下における暖房サ
イクル特性の向上化を図れる空気調和機を提供し
ようとするものである。
The present invention has been developed in view of the above circumstances, and its purpose is to provide an air conditioner that has a relatively simple structure but can improve heating cycle characteristics under low outside temperature conditions. This is what I am trying to do.

以下本考案の一実施例を第3図にもとづいて説
明する。図中11は圧縮機、12は四方弁、13
は室内側熱交換器、14は毛細管、15はリキツ
ドタンク、16は膨張弁、17は室外側熱交換器
であり、これらは上記番号順に冷媒管Pを介して
連通してヒートポンプ式の冷凍サイクルを構成す
る。なお上記毛細管14と膨張弁16と減圧装置
18を構成する。この減圧装置18の膨張弁16
と並行に、第1の開閉弁19を有するバイパス管
20が連通する。また室外側熱交換器17と四方
弁12との間に補助減圧装置であるところの補助
膨張弁21と第2の開閉弁22との並行回路2
3、ヒータ24を収容する冷媒加熱器25が順次
直列に接続される。
An embodiment of the present invention will be described below with reference to FIG. In the figure, 11 is a compressor, 12 is a four-way valve, 13
14 is an indoor heat exchanger, 14 is a capillary tube, 15 is a liquid tank, 16 is an expansion valve, and 17 is an outdoor heat exchanger, and these are connected via the refrigerant pipe P in the above numerical order to form a heat pump type refrigeration cycle. Configure. Note that the capillary tube 14, the expansion valve 16, and the pressure reducing device 18 are configured. Expansion valve 16 of this pressure reducing device 18
A bypass pipe 20 having a first on-off valve 19 communicates in parallel with this. Further, a parallel circuit 2 between the outdoor heat exchanger 17 and the four-way valve 12 includes an auxiliary expansion valve 21 which is an auxiliary pressure reducing device and a second on-off valve 22.
3. Refrigerant heaters 25 accommodating heaters 24 are successively connected in series.

しかして、通常の冷房運転を行うには冷媒を図
中破線矢印に示す方向に導く。すなわち圧縮機1
1−四方弁12−冷媒加熱器25−第2の開閉弁
22−室外側熱交換器17−の開閉弁19−リキ
ツドタンク15−毛細管14−室内側熱交換器1
3−四方弁12−圧縮機11の順である。冷媒加
熱器25のヒータ24は発熱せずとも良い。冷媒
は室内側熱交換器13で蒸発し、被空調室から蒸
発潜熱を奪つてこの冷房作用を得る。
Therefore, in order to perform normal cooling operation, the refrigerant is guided in the direction shown by the broken line arrow in the figure. That is, compressor 1
1 - Four-way valve 12 - Refrigerant heater 25 - Second on-off valve 22 - On-off valve 19 of outdoor heat exchanger 17 - Liquid tank 15 - Capillary tube 14 - Indoor heat exchanger 1
The order is 3-four-way valve 12-compressor 11. The heater 24 of the refrigerant heater 25 does not need to generate heat. The refrigerant evaporates in the indoor heat exchanger 13 and takes away latent heat of vaporization from the air-conditioned room to obtain this cooling effect.

暖房運転を行うには四方弁12を切換えて冷媒
を図中実線矢印に示すように導く。すなわち圧縮
機11−四方弁12−室内側熱交換器13−毛細
管14−リキツドタンク15−膨張弁16−室外
熱交換器17−第2の開閉弁22−冷媒加熱器2
5−圧縮機11の順である。特に外気温が低下し
ない条件下では、ヒータ24は発熱せずとも良
い。冷媒は室内側熱交換器13で凝縮熱を放出
し、被空調室の暖房作用を得る。
To perform heating operation, the four-way valve 12 is switched to direct the refrigerant as shown by the solid arrow in the figure. That is, compressor 11 - four-way valve 12 - indoor heat exchanger 13 - capillary tube 14 - liquid tank 15 - expansion valve 16 - outdoor heat exchanger 17 - second on-off valve 22 - refrigerant heater 2
5-compressor 11; Particularly under conditions where the outside temperature does not drop, the heater 24 does not need to generate heat. The refrigerant releases condensation heat in the indoor heat exchanger 13 to obtain a heating effect in the air-conditioned room.

つぎに外気温が極端に低下して上記暖房サイク
ルでは充分な暖房効果が得られない場合について
説明する。この場合第1の開閉弁16は開放し第
2の開閉弁22は閉成するとともに冷媒加熱器2
5のヒータ24を加熱する。冷媒は圧縮機11−
四方弁12−室内側熱交換器13−毛細管14−
リキツドタンク15−第1の開閉弁19−室外側
熱交換器17−補助膨張弁21−冷媒加熱器25
−四方弁12−圧縮機11の順で導かれることに
なる。すなわちリキツドタンク15から冷媒加熱
器25まで冷媒は図中一点鎖線矢印に沿つて導か
れる。第1の開閉弁19を通過した冷媒は室外側
熱交換器17を介して補助膨張弁21によつては
じめて断熱膨張させられる。そして冷媒加熱器2
5で蒸発するが、このとき充分な熱量がヒータ2
4から与えられることとなる。上記室外側熱交換
器17は補助膨張弁21の上流側にあつて、ここ
を導通する冷媒は高圧液冷媒となつているから、
管内流は液相であり、圧力損失が少なくてすむ。
これに対して従来のものは、室外側熱交換器が膨
張弁の下流側に位置するため、室外側熱交換器の
管内流はガス相主体の気液二相となり圧力損失が
大きい。したがい上記実施例で冷媒加熱器25に
おける冷媒圧力は従来より大幅に高くなり、この
ため圧縮機11の運転効率が向上し室内側熱交換
器13においては外気温の影響を受けずに高熱量
の凝縮熱を放出することとなる。
Next, a case will be described in which the outside temperature drops extremely and the heating cycle described above does not provide a sufficient heating effect. In this case, the first on-off valve 16 is opened, the second on-off valve 22 is closed, and the refrigerant heater 2
The heater 24 of No. 5 is heated. The refrigerant is supplied to the compressor 11-
Four-way valve 12 - indoor heat exchanger 13 - capillary tube 14 -
Liquid tank 15 - First on-off valve 19 - Outdoor heat exchanger 17 - Auxiliary expansion valve 21 - Refrigerant heater 25
- Four-way valve 12 - Compressor 11 will be guided in this order. That is, the refrigerant is guided from the liquid tank 15 to the refrigerant heater 25 along the dashed line arrow in the figure. The refrigerant that has passed through the first on-off valve 19 is adiabatically expanded by the auxiliary expansion valve 21 via the outdoor heat exchanger 17. and refrigerant heater 2
It evaporates at step 5, but at this time enough heat is transferred to heater 2.
It will be given from 4. The outdoor heat exchanger 17 is located upstream of the auxiliary expansion valve 21, and the refrigerant flowing therethrough is a high-pressure liquid refrigerant.
The flow inside the pipe is in a liquid phase, resulting in less pressure loss.
On the other hand, in the conventional type, since the outdoor heat exchanger is located downstream of the expansion valve, the flow in the pipes of the outdoor heat exchanger becomes a gas-liquid two-phase mainly gas phase, resulting in a large pressure loss. Therefore, in the above embodiment, the refrigerant pressure in the refrigerant heater 25 is significantly higher than in the past, which improves the operating efficiency of the compressor 11 and allows the indoor heat exchanger 13 to generate a high amount of heat without being affected by the outside temperature. Heat of condensation will be released.

第4図にモリエル線図を示すが、図中細線で示
すa線が従来の冷媒加熱器無しのヒートポンプ式
冷凍サイクルであり、破線で示すb線が従来の冷
媒加熱器有りのヒートポンプ式冷凍サイクルであ
る。すなわち、冷媒加熱によつてエンタルピが増
加し、暖房効率が向上する。(なお、エンタルピ
の増加を明瞭にするためいずれの高圧、低圧も一
致するよう規制した。条件を同じくすればb線は
a線の斜め右上にずれる。)しかしながら、実線
で示すc線の本考案の冷凍サイクルが最も運転特
性が向上することとなる。なお上記毛細管14は
絞り量がごくゆるいため、線図の変化となつて現
れない。暖房立上がり時(始動時)においても上
述の運転を行えば、速やかに暖房効果が得られる
こととなる。
Fig. 4 shows a Mollier diagram, where the thin line a indicates a conventional heat pump refrigeration cycle without a refrigerant heater, and the broken line b indicates a conventional heat pump refrigeration cycle with a refrigerant heater. It is. That is, heating the refrigerant increases enthalpy and improves heating efficiency. (In order to clarify the increase in enthalpy, both high and low pressures were regulated to be the same. If the conditions were the same, the b line would shift diagonally to the upper right of the a line.) However, the present invention of the c line shown by the solid line The operating characteristics of the refrigeration cycle will be improved the most. Note that since the capillary tube 14 has a very loose constriction amount, it does not appear as a change in the diagram. If the above-mentioned operation is performed even when the heating starts (starting), the heating effect can be quickly obtained.

以上説明したように本考案によれば、ヒートポ
ンプ式の冷凍サイクルを構成する減圧装置と並行
に第1の開閉弁を設け、室外側熱交換器と四方弁
との間に冷媒加熱器を設け、この冷媒加熱器と室
外側熱交換器との間に補助減圧装置と第2の開閉
弁との並列回路を設けたものである。そして外気
温が極端に低下したときなどは第1、第2の開閉
弁が開閉操作によつて冷媒を補助減圧装置で断熱
膨張させ冷媒加熱器で加熱しながら蒸発させるよ
うにしたから、圧縮器の吸込圧力の上昇を図り一
定の暖房能力を発揮できる。さらに暖房立上がり
特性の向上が得られ快適な空気調和を図れるとと
もに室外側熱交換器および冷媒加熱器に冷媒が導
通して、これらでの冷媒のいわゆる寝込み現象を
防止できるなど種々の効果を奏する。
As explained above, according to the present invention, the first on-off valve is provided in parallel with the pressure reducing device constituting the heat pump type refrigeration cycle, the refrigerant heater is provided between the outdoor heat exchanger and the four-way valve, A parallel circuit including an auxiliary pressure reducing device and a second on-off valve is provided between the refrigerant heater and the outdoor heat exchanger. When the outside temperature drops extremely, the first and second on-off valves are opened and closed to adiabatically expand the refrigerant in the auxiliary pressure reducing device and evaporate it while heating it in the refrigerant heater. By increasing the suction pressure, a certain level of heating capacity can be achieved. Furthermore, the heating start-up characteristics are improved to achieve comfortable air conditioning, and the refrigerant is conducted to the outdoor heat exchanger and the refrigerant heater, thereby preventing the so-called stagnation phenomenon of the refrigerant therein.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は本考案の従来例を示すそ
れぞれ異なる冷凍サイクル構成図、第3図は本考
案の一実施例を示す冷凍サイクル構成図、第4図
はモリエル線図である。 18……減圧装置,19……第1の開閉弁、1
7……室外側熱交換器、12……四方弁、25…
…冷媒加熱器、23……並列回路、21……補助
減圧装置(補助膨張弁)、22……第2の開閉
弁。
1 and 2 are different refrigeration cycle configuration diagrams showing a conventional example of the present invention, FIG. 3 is a refrigeration cycle configuration diagram showing an embodiment of the present invention, and FIG. 4 is a Mollier diagram. 18... Pressure reducing device, 19... First on-off valve, 1
7... Outdoor heat exchanger, 12... Four-way valve, 25...
... Refrigerant heater, 23 ... Parallel circuit, 21 ... Auxiliary pressure reducing device (auxiliary expansion valve), 22 ... Second on-off valve.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] ヒートポンプ式の冷凍サイクルと、この冷凍サ
イクルを構成する減圧装置と並行に設けられ暖房
運転時における低外気温度条件下に開放する第1
の開閉弁と、冷凍サイクルを構成する室外側熱交
換器と四方弁との間に設けられ暖房運転時におけ
る低外気温度条件下に冷媒を加熱する冷媒加熱器
と、この冷媒加熱器と上記室外側熱交換器との間
に設けられ通常の冷暖房運転時に開放し、かつ暖
房運転時の低外気温度条件下に閉成する第2の開
閉弁およびこの第2の開閉弁の閉成にともない冷
媒を導通して減圧作用をなす補助減圧装置の並列
回路とを具備したことを特徴とする空気調和機。
A heat pump type refrigeration cycle and a first refrigeration system installed in parallel with the pressure reducing device that constitutes this refrigeration cycle and opened under low outside temperature conditions during heating operation.
a refrigerant heater that is installed between the outdoor heat exchanger and the four-way valve that constitute the refrigeration cycle and heats the refrigerant under low outside temperature conditions during heating operation; A second on-off valve is provided between the outside heat exchanger and opens during normal cooling/heating operation, and closes under low outside temperature conditions during heating operation, and as the second on-off valve closes, the refrigerant 1. An air conditioner characterized by comprising: a parallel circuit of an auxiliary pressure reducing device that performs a pressure reducing action by conducting the air conditioner.
JP798481U 1981-01-23 1981-01-23 Expired JPS6218934Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP798481U JPS6218934Y2 (en) 1981-01-23 1981-01-23

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP798481U JPS6218934Y2 (en) 1981-01-23 1981-01-23

Publications (2)

Publication Number Publication Date
JPS57121874U JPS57121874U (en) 1982-07-29
JPS6218934Y2 true JPS6218934Y2 (en) 1987-05-15

Family

ID=29806153

Family Applications (1)

Application Number Title Priority Date Filing Date
JP798481U Expired JPS6218934Y2 (en) 1981-01-23 1981-01-23

Country Status (1)

Country Link
JP (1) JPS6218934Y2 (en)

Also Published As

Publication number Publication date
JPS57121874U (en) 1982-07-29

Similar Documents

Publication Publication Date Title
GB2168136A (en) Air-conditioning hot-water supply device
JPS6155018B2 (en)
JPS6218934Y2 (en)
JPH10232073A (en) Air conditioner
JP2002005536A (en) Heat pump cycle
JPH0942706A (en) Air conditioner
JPS5930366Y2 (en) air conditioner
JPS6330929Y2 (en)
JPS5856507Y2 (en) air conditioner
JPS6015084Y2 (en) Refrigeration equipment
JPS59115943A (en) Refrigeration cycle device
JPH03164668A (en) Heat pump device
JP3314998B2 (en) Air conditioner
JPH0113972Y2 (en)
JPH0127020Y2 (en)
JPH0222604Y2 (en)
JPS6225648Y2 (en)
JPH06337186A (en) Defrosting controller for air-conditioning machine
JPH04222360A (en) Heat pump type air conditioner
JPS6155019B2 (en)
JPH0347172Y2 (en)
JPH0431505Y2 (en)
JPH10274450A (en) Air-conditioning equipment
JPH03211374A (en) Cooling and heating apparatus with hot-water supply device and its control method
JPH10292961A (en) Air conditioner