JPH0670515B2 - Multi-room air conditioner - Google Patents

Multi-room air conditioner

Info

Publication number
JPH0670515B2
JPH0670515B2 JP63106504A JP10650488A JPH0670515B2 JP H0670515 B2 JPH0670515 B2 JP H0670515B2 JP 63106504 A JP63106504 A JP 63106504A JP 10650488 A JP10650488 A JP 10650488A JP H0670515 B2 JPH0670515 B2 JP H0670515B2
Authority
JP
Japan
Prior art keywords
heat exchanger
indoor
refrigerant
indoor units
opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63106504A
Other languages
Japanese (ja)
Other versions
JPH01277159A (en
Inventor
章雄 福嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP63106504A priority Critical patent/JPH0670515B2/en
Publication of JPH01277159A publication Critical patent/JPH01277159A/en
Publication of JPH0670515B2 publication Critical patent/JPH0670515B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Air Conditioning Control Device (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は1台の室外機に複数台の室内機を接続させた多
室用空気調和機に関するものである。
The present invention relates to a multi-room air conditioner in which one outdoor unit is connected to a plurality of indoor units.

[従来の技術] 従来のこの種の多室用空気調和機として、例えば、実公
昭55−28993号公報に記載された多室用空気調和機を挙
げることができる。
[Prior Art] As a conventional multi-room air conditioner of this type, for example, a multi-room air conditioner described in Japanese Utility Model Publication No. 55-28993 can be mentioned.

第11図は上記公報で公知になった従来の多室用空気調和
機の全体構成図である。
FIG. 11 is an overall configuration diagram of a conventional multi-room air conditioner known in the above publication.

図において、(1)は圧縮機、(2)は前記圧縮機
(1)に接続されて、冷房または暖房のサイクルの切換
えを行なう切換弁である四方切換弁、(3)は一方をこ
の四方切換弁(2)に接続させ、他方に膨張弁(23)及
びレシーバ(25)を直列に接続させた室外熱交換器、
(4)は前記圧縮機(1)と四方切換弁(2)との間に
接続させたアキュムレータ、(24)は前記膨張弁(23)
に並列に接続させた逆止弁であって、これらにより空気
調和機の主回路部を構成している。
In the figure, (1) is a compressor, (2) is a four-way switching valve which is a switching valve which is connected to the compressor (1) and switches the cooling or heating cycle, and (3) is one of these four-way switching valves. An outdoor heat exchanger connected to the switching valve (2) and connected in series to the expansion valve (23) and the receiver (25),
(4) is an accumulator connected between the compressor (1) and the four-way switching valve (2), and (24) is the expansion valve (23).
Is a check valve connected in parallel with, and constitutes the main circuit portion of the air conditioner.

また、(7a),(7b)は前記主回路から並列分岐され
て、その四方切換弁(2)とレシーバ(25)との間に、
それぞれにガス側電磁弁(26a),(26b)及び液側電磁
弁(27a),(27b)を介して接続された複数台の室内熱
交換器であって、これらの各熱交換器(7a),(7b)に
ついてもその各液側電磁弁(27a),(27b)との間に、
膨張弁(29a),(29b)と逆止弁(28a),(28b)との
並列回路をそれぞれ直列に接続させてある。
Further, (7a) and (7b) are branched in parallel from the main circuit, and between the four-way switching valve (2) and the receiver (25),
A plurality of indoor heat exchangers, each of which is connected via a gas side solenoid valve (26a), (26b) and a liquid side solenoid valve (27a), (27b). ), (7b) between the liquid side solenoid valves (27a), (27b),
Expansion valves (29a) and (29b) and check valves (28a) and (28b) are connected in series in parallel circuits.

そして、この従来例による多室用空気調和機は、四方切
換弁(2)の切換え操作により、冷房運転は実線矢印、
暖房運転は点線矢印のように冷房を循環作用させるよう
にしている。
In the multi-room air conditioner according to the conventional example, the cooling operation is performed by the solid arrow by the switching operation of the four-way switching valve (2).
In the heating operation, the cooling is circulated as indicated by the dotted arrow.

この種の従来の多室用空気調和機は、第11図に示すよう
に、各室内熱交換器(7a),(7b)、即ち、複数の室内
機に冷房用の膨張弁(29a),(29b)が設けられている
が、これは冷房運転時には複数の室内機の負荷のアンバ
ランス、或いは各室内機の据付けられた位置関係が相対
的に均等でないときであっても、適正な冷媒量を供給す
ることをその主目的としているのである。しかし、暖房
運転時には複数の室内機に適正な冷媒量を分配する手段
がなく、多室用空気調和機として必ずしも十分な回路構
成でなかった。
As shown in FIG. 11, the conventional multi-room air conditioner of this type has indoor heat exchangers (7a), (7b), that is, a plurality of indoor units having expansion valves (29a) for cooling, (29b) is provided, but this is because even if the load of multiple indoor units is unbalanced during cooling operation, or the installed positional relationship of each indoor unit is not relatively even, Its main purpose is to supply quantity. However, during heating operation, there is no means for distributing an appropriate amount of refrigerant to a plurality of indoor units, and the circuit configuration is not always sufficient for a multi-room air conditioner.

また、冷房運転時には、膨張弁(29a),(29b)により
各室内機への冷媒量の分配を行なっているが、他の室内
機の影響を補正する手段がないため、お互いに他の室内
機の影響を受けあって、冷媒量の分配にハンチング現象
を起しやすく、また、膨張弁(29a),(29b)は室内熱
交換器出口の過熱度(以下、スーパーヒートと記す)
が、一定値になるように制御され、スーパーヒートがつ
き過ぎると、室内熱交換器の効率が低下し、冷房能力が
低下し易い。
In addition, during cooling operation, the expansion valves (29a) and (29b) are used to distribute the amount of refrigerant to each indoor unit, but there is no means to correct the influence of other indoor units, so there is no way of compensating for each other. Due to the influence of the machine, a hunting phenomenon is likely to occur in the distribution of the refrigerant amount, and the expansion valves (29a) and (29b) are superheated at the outlet of the indoor heat exchanger (hereinafter referred to as superheat).
However, if the superheat is controlled so as to be a constant value, the efficiency of the indoor heat exchanger decreases, and the cooling capacity tends to decrease.

即ち、これは、第12図の熱交換器出口の冷媒状態と平均
熱伝達率の関係を示す特性図からわかるように、熱交換
器出口がスーパーヒート領域に入ると急激に性能が低下
するためであり、例えば、第13図の一般的な室内機の熱
交換器の構成図に示すような複数のパスを持つ室内熱交
換器の場合には、全体のスーパーヒートは適正であって
も、各パスごとのスーパーヒートがばらつくとスーパー
ヒートが大きいパスは性能が低下するため、更に、冷房
能力の低下を助長する結果となる。
That is, this is because, as can be seen from the characteristic diagram showing the relationship between the refrigerant state at the heat exchanger outlet and the average heat transfer coefficient in FIG. 12, the performance rapidly decreases when the heat exchanger outlet enters the superheat region. That is, for example, in the case of an indoor heat exchanger having a plurality of paths as shown in the configuration diagram of a general indoor unit heat exchanger of FIG. 13, even if the entire superheat is appropriate, If the superheat varies from pass to pass, the performance of the pass with a large superheat deteriorates, which further promotes the decrease of the cooling capacity.

なお、第13図において、(35)は分配器、(36a)〜(3
6c)は分配管、(37a)〜(37c)は蒸発器のパス、(3
8)はヘッダーである。
In FIG. 13, (35) is a distributor, and (36a) to (3
6c) is a distribution pipe, (37a) to (37c) are evaporator paths, and (3
8) is the header.

また、従来の多室用空気調和期は、冷暖房運転時に膨張
弁(29a),(29b)によるスーパーヒート制御のため、
運転条件の変化による余剰冷媒を溜めるレシーバ(25)
が必要となり、過度状態で圧縮機(1)への液戻りを防
ぐためのアキュムレータ(4)と、2つの冷媒吸収容器
を必要としている。
Also, during the conventional multi-room air conditioning period, due to superheat control by the expansion valves (29a) and (29b) during heating and cooling operation,
Receiver (25) that stores excess refrigerant due to changes in operating conditions
Therefore, an accumulator (4) for preventing liquid return to the compressor (1) in an excessive state and two refrigerant absorption containers are required.

更に、従来の多室用空気調和機では、暖房運転時の液側
分岐回路の合流点が高圧の液冷媒となっており、室内機
のうち1台でも停止している場合、この停止回路内の冷
媒を回収するために逆止弁、毛細管を介して圧縮機の低
圧回路に接続する冷媒回収回路が必要となり、このため
冷媒回路が複雑なものとなる。なお、第11図では冷媒回
収回路を省略している。
Furthermore, in the conventional multi-room air conditioner, when the junction of the liquid side branch circuit during heating operation is a high-pressure liquid refrigerant, and even if one of the indoor units is stopped, In order to collect the refrigerant, the refrigerant recovery circuit connected to the low-pressure circuit of the compressor via the check valve and the capillary tube is required, which makes the refrigerant circuit complicated. The refrigerant recovery circuit is omitted in FIG.

一方、ビル空調の分野では室外機の設置スペースの制約
から多室用空気調和機が普及しているが、第11図に示す
従来例による多室用空気調和機では、一般に室外機を設
置する屋上から室内機を設置するフロアーまで、室内機
の台数分だけ冷媒配管を施工する必要があり、工事コス
トが割高となるとともに、ビルのパイプシャフトの占用
面積が大きくなる。
On the other hand, in the field of building air conditioning, multi-room air conditioners are popular due to restrictions on the installation space of the outdoor units, but in the conventional multi-room air conditioner shown in FIG. 11, the outdoor unit is generally installed. From the rooftop to the floor where the indoor units are installed, it is necessary to install refrigerant pipes for the number of indoor units, which increases construction costs and increases the occupied area of the pipe shaft of the building.

そのため、ビル用の多室用空気調和機としては第14図の
他の従来の多室用空気調和機の冷媒回路図に示すよう
に、室外機から室内機を設置するフロアーまでを1対の
配管で施工できる空調機が特開昭62−102046号公報で提
案されている。
Therefore, as a multi-room air conditioner for a building, as shown in the refrigerant circuit diagram of another conventional multi-room air conditioner in FIG. 14, one pair from the outdoor unit to the floor on which the indoor unit is installed is installed. An air conditioner that can be installed by piping is proposed in Japanese Patent Laid-Open No. 62-102046.

なお、第14図において、第11図と同一符号及び記号は従
来の第一実施例の構成部分と同一または相当する構成部
分を示すものであり、その説明を省略する。
Note that, in FIG. 14, the same reference numerals and symbols as in FIG. 11 indicate the same or corresponding components as those of the conventional first embodiment, and the description thereof will be omitted.

第14図において、(30a),(30b)は第11図の液側電磁
弁(27a),(27b)と膨張弁(29a),(29b)の機能を
果す電動式膨張弁、(31)は電動式膨張弁(30a),(3
0b)とガス側電磁弁(26a),(26b)を納めたマルチユ
ニット、(32a),(32b)は毛細管である。
In FIG. 14, (30a) and (30b) are electric expansion valves that perform the functions of the liquid side solenoid valves (27a) and (27b) and the expansion valves (29a) and (29b) of FIG. 11, and (31) Is an electric expansion valve (30a), (3
0b) and gas side solenoid valves (26a) and (26b) are contained in a multi-unit, and (32a) and (32b) are capillaries.

この従来例による多室用空気調和機は、四方切換弁
(2)の切換操作により、冷房運転時は実線矢印、暖房
運転時は点線矢印のように冷媒を循環作用させるように
したものである。
In this conventional multi-room air conditioner, the refrigerant is circulated as indicated by a solid arrow during cooling operation and a dotted arrow during heating operation by switching operation of the four-way switching valve (2). .

ここで、冷房運転時は電動式膨張弁(30a),(30b)に
より、室内機への冷媒の分配を行ない、暖房運転時は電
動式膨張弁が全開となり、毛細管(32a),(32b)によ
り室内機への冷媒の分配を補正し、減圧は膨張弁(23)
により行なうものである。
Here, during the cooling operation, the electric expansion valves (30a) and (30b) are used to distribute the refrigerant to the indoor units, and during the heating operation, the electric expansion valve is fully opened and the capillaries (32a) and (32b). The distribution of the refrigerant to the indoor unit is corrected by the expansion pressure reduction valve (23).
It is done by.

一方、特開昭61−237978号公報の提案では、室内ユニッ
トの運転台数が急激に増減したときの制御について説明
している。しかし、これは膨張弁開度の速度の問題であ
り、通常状態における室内機への冷媒の分配については
使用できない。
On the other hand, the proposal of Japanese Patent Laid-Open No. 61-237978 describes the control when the number of operating indoor units suddenly increases or decreases. However, this is a problem of the speed of the expansion valve opening and cannot be used for distributing the refrigerant to the indoor units in the normal state.

[発明が解決しようとする課題] しかし、この種の従来の多室用空気調和機の場合、暖房
運転時の分配手段に関しては、第11図の従来例に比べ改
善されているがスーパーヒート制御のため、冷房運転時
の分配性能に関しては第11図の従来例と同様の性能を合
せ持ち、レシーバ(25)も冷房回収回路も必要となる。
[Problem to be Solved by the Invention] However, in the case of the conventional multi-room air conditioner of this type, the distribution means during the heating operation is improved as compared with the conventional example of FIG. Therefore, regarding the distribution performance during the cooling operation, it has the same performance as the conventional example of FIG. 11, and the receiver (25) and the cooling recovery circuit are required.

更に、この従来例においては、室外機と室内機の他にマ
ルチユニット(31)を室内ユニット近傍に設置する必要
があり、マルチユニット(31)の設置スペースの問題や
工事が複雑となり、マルチユニット(31)のアフターサ
ービスやマルチユニット(31)内の結露等を考慮する
と、据付上の制約がでて据付しずらくなる。
Furthermore, in this conventional example, in addition to the outdoor unit and the indoor unit, it is necessary to install the multi-unit (31) in the vicinity of the indoor unit, which causes a problem of installation space of the multi-unit (31) and complicated construction, and Considering after-sales service of (31) and dew condensation in the multi-unit (31), it becomes difficult to install due to restrictions on installation.

また、前者の従来例及び後者の従来例とともに暖房運転
時、停止室内機ではガス側電磁弁(26a),(26b)にて
冷媒を遮断しているため、追加運転したときに高圧ガス
冷媒が室内熱交換器(7a),(7b)に流れ込み、室内機
側で冷媒音が発生することがある。
Further, together with the former conventional example and the latter conventional example, since the refrigerant is shut off by the gas side solenoid valves (26a) and (26b) in the stopped indoor unit during the heating operation, the high pressure gas refrigerant is The refrigerant may flow into the indoor heat exchangers (7a) and (7b) and generate refrigerant noise on the indoor unit side.

そこで、本発明は、簡単な冷媒回路で複数の室内機の冷
媒分配を適正に行ない、かつ、冷媒回収回路が不要で、
アキュムレータだけで冷媒量の調整を可能とし、室内機
の追加運転においても冷媒音の発生を防止でき、更に、
室外機から1対の冷媒配管で途中まで施工でき、室内機
側で自由に分岐できる据付自由度の高い多室用空気調和
機の提供を課題とするものである。
Therefore, the present invention properly performs the refrigerant distribution of a plurality of indoor units with a simple refrigerant circuit, and does not require a refrigerant recovery circuit,
It is possible to adjust the amount of refrigerant only with an accumulator and prevent the generation of refrigerant noise even during additional operation of the indoor unit.
An object is to provide a multi-room air conditioner that can be installed halfway from an outdoor unit with a pair of refrigerant pipes and can be freely branched on the indoor unit side with a high degree of installation freedom.

[課題を解決するための手段] 請求項1の発明にかかる多室用空気調和機は、圧縮機、
四方切換弁、室外熱交換器、アキュムレータを順次接続
し、前記室外熱交換器の冷房運転時の出口側に配設した
前記アキュムレータ内の冷媒と熱交換可能な前記アキュ
ムレータに内蔵された熱交換器を設けて冷媒回路を形成
した冷暖切換可能な室外機と、前記室外機と1対の主管
で接続し、前記主管から分岐した分岐管に室内熱交換器
と電気信号で駆動する膨張弁を直列に接続して冷媒回路
を形成した複数の室内機と、前記室外熱交換器の冷房運
転時出口に配設した温度検出器及び圧縮機の出力側の高
圧圧力状態を検出する検出器からの信号を入力して過冷
却度を演算し、前記過冷却度が大きいときには前記各室
内機毎の膨張弁の合計開度を開く方向に、また、前記過
冷却度が小さいときには前記各室内機毎の膨張弁の合計
開度を閉じる方向に制御し、前記各室内機の能力に応じ
て前記該室内機の膨張弁の開度を設定するものである。
[Means for Solving the Problem] A multi-room air conditioner according to the invention of claim 1 is a compressor,
A four-way switching valve, an outdoor heat exchanger, and an accumulator are sequentially connected, and a heat exchanger incorporated in the accumulator capable of exchanging heat with the refrigerant in the accumulator disposed on the outlet side during the cooling operation of the outdoor heat exchanger. An outdoor unit capable of switching between heating and cooling and having a refrigerant circuit formed therein is connected to the outdoor unit through a pair of main pipes, and an indoor heat exchanger and an expansion valve driven by an electric signal are connected in series to a branch pipe branched from the main pipe. A plurality of indoor units that are connected to each other to form a refrigerant circuit, and a signal from a detector that detects a high pressure state on the output side of the temperature detector and the compressor that is disposed at the outlet during the cooling operation of the outdoor heat exchanger. To calculate the degree of supercooling, when the degree of supercooling is large in the direction of opening the total opening of the expansion valve for each indoor unit, and when the degree of supercooling is small, for each indoor unit Direction to close the total opening of the expansion valve Controlling said is for setting the opening degree of the expansion valve of the indoor machine according to the capability of the indoor unit.

請求項2の発明にかかる多室用空気調和機は、圧縮機、
四方切換弁、室外熱交換器、アキュムレータを順次接続
し、前記室外熱交換器の冷房運転時の出口側に配設した
前記アキュムレータ内の冷媒と熱交換可能な前記アキュ
ムレータに内蔵された熱交換器を設けて冷媒回路を形成
した冷暖切換可能な室外機と、前記室外機と1対の主管
で接続し、前記主管から分岐した分岐管に室内熱交換器
と電気信号で駆動する膨張弁を直列に接続して冷媒回路
を形成した複数の室内機と、前記室内熱交換器の暖房運
転時出口に配設した温度検出器及び圧縮機の出力側の高
圧圧力状態を検出する検出器からの信号を入力して過冷
却度を演算し、前記過冷却度が大きいときには前記各室
内機毎の膨張弁の総合計開度を開く方向に、また、前記
過冷却度が小さいときには前記各室内機毎の膨張弁の合
計開度を閉じる方向に制御し、前記各室内機の能力に応
じて前記該室内機の膨張弁の開度を設定するものであ
る。
A multi-room air conditioner according to the invention of claim 2 is a compressor,
A four-way switching valve, an outdoor heat exchanger, and an accumulator are sequentially connected, and a heat exchanger incorporated in the accumulator capable of exchanging heat with the refrigerant in the accumulator disposed on the outlet side during the cooling operation of the outdoor heat exchanger. An outdoor unit capable of switching between heating and cooling and having a refrigerant circuit formed therein is connected to the outdoor unit through a pair of main pipes, and an indoor heat exchanger and an expansion valve driven by an electric signal are connected in series to a branch pipe branched from the main pipe. A plurality of indoor units that are connected to each other to form a refrigerant circuit, and a signal from a temperature detector that is disposed at the outlet of the indoor heat exchanger during heating operation and a detector that detects the high pressure state of the output side of the compressor To calculate the degree of supercooling, and when the degree of supercooling is large, in the direction of opening the total opening of the expansion valves for each of the indoor units, and when the degree of supercooling is small, for each of the indoor units. To close the total opening of the expansion valve Controlling the said is for setting the opening degree of the expansion valve of the indoor machine according to the capability of the indoor unit.

[作用] 請求項1の発明においては、室外熱交換器の冷房運転時
出口に配設した温度検出器及び圧縮機の出力側の高圧圧
力状態を検出する検出器からの信号を入力して過冷却度
を演算し、その過冷却度が大きいときには各室内機毎の
膨張弁の合計開度を開く方向に、また、過冷却度が小さ
いときには各室内機毎の膨張弁の合計開度を閉じる方向
に制御し、前記各室内機の能力に応じて前記各室内機の
膨張弁の開度を設定する。
[Operation] In the invention of claim 1, a signal from a temperature detector arranged at the outlet of the outdoor heat exchanger during the cooling operation and a detector for detecting a high-pressure state on the output side of the compressor is inputted and the temperature is exceeded. The degree of cooling is calculated, and when the degree of supercooling is large, the total opening of the expansion valves for each indoor unit is opened, and when the degree of subcooling is small, the total opening of the expansion valves for each indoor unit is closed. Direction, and the opening degree of the expansion valve of each indoor unit is set according to the capacity of each indoor unit.

請求項2の発明においては、室内熱交換器の暖房運転時
出口に配設した温度検出器及び圧縮機の出力側の高圧圧
力状態を検出する検出器からの信号を入力して過冷却度
を演算し、その過冷却度が大きいときには各室内機毎の
膨張弁の合計開度を開く方向に、また、過冷却度が小さ
いときには各室内機毎の膨張弁の合計開度を閉じる方向
に制御し、前記各室内機の能力に応じて前記各室内機の
膨張弁の開度を設定する。
According to the second aspect of the invention, the supercooling degree is controlled by inputting signals from the temperature detector arranged at the outlet of the indoor heat exchanger during the heating operation and the detector for detecting the high pressure state on the output side of the compressor. When the degree of supercooling is large, control is performed to open the total opening of expansion valves for each indoor unit, and when the degree of subcooling is small, control is performed to close the total opening of expansion valves for each indoor unit. Then, the opening degree of the expansion valve of each indoor unit is set according to the capacity of each indoor unit.

[実施例] 以下、本発明の実施例を図を用いて説明する。[Embodiment] An embodiment of the present invention will be described below with reference to the drawings.

第1図は本発明の第一実施例による多室用空気調和機の
冷媒回路図、また、第2図は本発明の第一実施例による
多室用空気調和機の制御装置のブロック図である。
FIG. 1 is a refrigerant circuit diagram of a multi-room air conditioner according to a first embodiment of the present invention, and FIG. 2 is a block diagram of a control device for a multi-room air conditioner according to the first embodiment of the present invention. is there.

第1図において、(1)は圧縮機、(2)は四方切換
弁、(3)は室外熱交換器、(4)はアキュムレータ、
(5)はアキュムレータ内の熱交換器で、液管接続口と
室外熱交換器(3)の間の配管をアキュムレータ内冷媒
と熱交換するようにしてあり、上記構成部分を順次接続
することにより、室外機(6)の冷媒回路を構成してい
る。
In FIG. 1, (1) is a compressor, (2) is a four-way switching valve, (3) is an outdoor heat exchanger, (4) is an accumulator,
(5) is a heat exchanger in the accumulator, and the pipe between the liquid pipe connection port and the outdoor heat exchanger (3) is designed to exchange heat with the refrigerant in the accumulator. , Constitutes a refrigerant circuit of the outdoor unit (6).

また、(7a)〜(7c)は室内熱交換器、(8a)〜(8c)
は電気信号により駆動する可逆式の膨張弁であり、室内
熱交換機の冷房運転時入口側に膨張弁(8a)〜(8c)を
配設して、室内機(9a)〜(9c)の冷媒回路を構成して
いる。
Further, (7a) to (7c) are indoor heat exchangers, (8a) to (8c)
Is a reversible expansion valve driven by an electric signal. The expansion valves (8a) to (8c) are installed on the inlet side of the indoor heat exchanger during cooling operation, and the refrigerant of the indoor units (9a) to (9c) It constitutes the circuit.

そして、(10)は室外機(6)のガス管接続口に接続さ
れたガス側主管であり、他端はガス側分岐管(12a)〜
(12c)に分岐し、各々室内機(9a)〜(9c)のガス管
接続口に接続されている。(11)は室外機(6)の液接
続口に接続された液側主管であり、他端は液側分岐管
(13a)〜(13c)に分岐し、各々室内機(9a)〜(9c)
の液管接続口に接続されている。
And (10) is a gas side main pipe connected to the gas pipe connection port of the outdoor unit (6), and the other end is a gas side branch pipe (12a)-
It branches to (12c) and is connected to the gas pipe connection ports of the indoor units (9a) to (9c). (11) is a liquid side main pipe connected to the liquid connection port of the outdoor unit (6), and the other end is branched to liquid side branch pipes (13a) to (13c), and the indoor units (9a) to (9c, respectively). )
It is connected to the liquid pipe connection port of.

(14)は圧縮機(1)の吐出圧力を検出する圧力検出手
段である圧力センサ、(15)は室外熱交換器(3)の冷
房運転時に出口温度を検出する温度検出器であるサーミ
スタ、(16a)〜(16c)は室内熱交換器(7a)〜(7c)
の暖房運転時に出口配管の温度を検出する温度検出器で
あるサーミスタ、(17a)〜(17c)は室内機(9a)〜
(9c)の能力を設定する能力設定スイッチ、(18)は前
記温度及び圧力信号と前記スイッチ入力を取り込んで、
前記可逆式の膨張弁(8a)〜(8c)を制御する制御装置
である。
(14) is a pressure sensor which is a pressure detecting means for detecting the discharge pressure of the compressor (1), (15) is a thermistor which is a temperature detector for detecting an outlet temperature during the cooling operation of the outdoor heat exchanger (3), (16a) to (16c) are indoor heat exchangers (7a) to (7c)
The thermistor, which is a temperature detector that detects the temperature of the outlet pipe during the heating operation of, the indoor units (9a) to (17a) to (17c)
A capacity setting switch for setting the capacity of (9c), (18) takes in the temperature and pressure signals and the switch input,
A control device for controlling the reversible expansion valves (8a) to (8c).

第2図は前記制御装置(18)のブロック図で、基本的に
は、アナログ/デジタル(A/D)変換器(51)、入力
回路(52)、中央演算処理装置(CPU:53)、メモリ(5
4)、出力回路(55)、出力バッファ(56)及び抵抗(5
7)より構成される。なお、入出力部は一例のみ表示し
たものである。
FIG. 2 is a block diagram of the control device (18). Basically, an analog / digital (A / D) converter (51), an input circuit (52), a central processing unit (CPU: 53), Memory (5
4), output circuit (55), output buffer (56) and resistor (5
It consists of 7). It should be noted that the input / output unit is only an example.

また、能力設定スイッチ(17a)〜(17c)は各々3ビッ
トのスイッチで構成され、各々室内機(9a)〜(9c)の
能力に合せて、8通りの設定が可能となっている。
The capacity setting switches (17a) to (17c) are each composed of a 3-bit switch, and can be set in eight ways according to the capacities of the indoor units (9a) to (9c).

次に、上記構成を有する本実施例の多室用空気調和機の
動作について説明する。
Next, the operation of the multi-room air conditioner of the present embodiment having the above configuration will be described.

冷房運転時に圧縮機(1)より吐出された高圧ガス冷媒
は、四方切換弁(2)を通り室外熱交換器(3)により
液化され、アキュムレータ(4)の熱交換器(5)で、
更に、冷却され、サブクール(過冷却度)を大きくと
り、液側主管(11)及び液側分岐管(13a)〜(13c)を
通り、各室内機(9a)〜(9c)に導かれる。更に、各室
内機(9a)〜(9c)に設けた膨張弁(8a)〜(8c)によ
り、減圧されて室内熱交換機(7a)〜(7c)に入り、こ
こで蒸発する。蒸発した冷媒はガス側分岐管(12a)〜
(12c)を通り、ガス側主管(10)で合流し、室外機
(6)へ戻り、四方切換弁(2)、アキュムレータ
(4)を経て、圧縮機(1)に戻るサイクルが構成され
る。
The high-pressure gas refrigerant discharged from the compressor (1) during the cooling operation passes through the four-way switching valve (2), is liquefied by the outdoor heat exchanger (3), and is liquefied by the heat exchanger (5) of the accumulator (4).
Further, it is cooled and has a large subcool (supercooling degree), and is guided to the indoor units (9a) to (9c) through the liquid side main pipe (11) and the liquid side branch pipes (13a) to (13c). Further, the expansion valves (8a) to (8c) provided in the indoor units (9a) to (9c) reduce the pressure, enter the indoor heat exchangers (7a) to (7c), and evaporate there. The evaporated refrigerant is the gas side branch pipe (12a) ~
A cycle is constructed in which the gas passes through (12c), merges in the gas side main pipe (10), returns to the outdoor unit (6), passes through the four-way switching valve (2), the accumulator (4), and returns to the compressor (1). .

このとき、圧力センサ(14)と室外熱交換器(3)の出
口のサーミスタ(15)により、室外熱交換器(3)の出
口のサブクールを一定にすると同時に、能力設定スイッ
チ(17a)〜(17c)により登録された各室内機(9a)〜
(9c)の大きさにより、全体の膨張弁開度を分配するよ
うに制御装置(18)により膨張弁(8a)〜(8c)を制御
する。
At this time, the subcool at the outlet of the outdoor heat exchanger (3) is made constant by the pressure sensor (14) and the thermistor (15) at the outlet of the outdoor heat exchanger (3), and at the same time, the capacity setting switches (17a) to (17a). Each indoor unit (9a) registered by 17c) ~
The expansion valves (8a) to (8c) are controlled by the control device (18) so as to distribute the entire expansion valve opening depending on the size of (9c).

第3図は本実施例の制御装置(18)による冷房運転時の
膨張弁(8a)〜(8c)の制御の一例を説明するためのフ
ローチャートである。
FIG. 3 is a flow chart for explaining an example of control of the expansion valves (8a) to (8c) during the cooling operation by the control device (18) of the present embodiment.

まず、制御が開始されると、ステップS1で高圧圧力が圧
力センサ(14)によって検出され、圧力から変換された
飽和温度(t1)が入力され、ステップS2で室外熱交換器
(3)の出力側に設けたサーミスタ(15)によって、室
外熱交換器(3)の出口温度(t2)が検出され、この出
口温度(t2)が入力される。ステップS3でこれらの温度
差としてのサブクールSCが SC=t1−t2 で計算される。
First, when the control is started, the high pressure is detected by the pressure sensor (14) in step S1, the saturation temperature (t1) converted from the pressure is input, and the output of the outdoor heat exchanger (3) is input in step S2. The outlet temperature (t2) of the outdoor heat exchanger (3) is detected by the thermistor (15) provided on the side, and this outlet temperature (t2) is input. In step S3, the subcool SC as these temperature differences is calculated by SC = t1−t2.

ステップS4でサブクールの目標値SC0との差の絶対値|SC
−SC0|が3℃以下であるかどうかが判断され、3℃以下
ならば、合計開度 を変更せず、ステップS6に移る。また、サブクールの設
定値としての入力されたサブクールの目標値SC0とのず
れ|SC−SC0|が3℃を超えたと判断したとき、ステップS
5で各膨張弁開度の合計 が計算式 を用いて計算される。
Absolute value of the difference from the subcool target value SC0 in step S4 | SC
-SC0 | is judged to be 3 ℃ or less, and if it is 3 ℃ or less, the total opening Does not change and moves to step S6. When it is determined that the deviation | SC-SC0 | from the input subcool target value SC0 as the subcool set value exceeds 3 ° C, step S
Total of each expansion valve opening in 5 Is the formula Is calculated using.

ここにNj:各膨張弁開度 NJ:変更前の各膨張弁の開度 A :実験により決まる正の定数 各膨張弁の開度の合計 が計算されて、サブクールが大き目のときは膨張弁(8
a)〜(8c)の全体の開度を開方向へ、小さ目のときは
閉方向へ調整してステップS6に移る。
Where Nj: Opening of each expansion valve NJ: Opening of each expansion valve before change A: Positive constant determined by experiment Total of opening of each expansion valve Is calculated and when the subcool is large, the expansion valve (8
Adjust the overall opening of a) to (8c) in the opening direction, and if smaller, close it and move to step S6.

ステップS6で運転中の各室内機(9a)〜(9c)の能力コ
ードQj:(=Q1〜Q3)を能力設定スイッチ(17a)〜(17
c)から読み込む。そして、ステップS7で合計開度 をQjの大きさにより分配し、ステップS8で各膨張弁(8
a)〜(8c)の新開度Njを出力し、このフローを終了す
る。なお、このフローチャートによればサブクールの調
整と各室内機(9a)〜(9c)への冷媒の分配を適正にす
るように制御される。
In step S6, the capacity code Qj: (= Q1 to Q3) of each indoor unit (9a) to (9c) being operated is set to the capacity setting switch (17a) to (17).
Read from c). Then, in step S7, the total opening Are distributed according to the size of Qj, and each expansion valve (8
The new opening Nj of a) to (8c) is output, and this flow ends. It should be noted that according to this flowchart, control is performed so that subcool adjustment and refrigerant distribution to the indoor units (9a) to (9c) are made appropriate.

即ち、前述した第12図の熱交換器出口の冷媒状態と平均
熱伝達率の関係を示す特性図からわかるように、出口が
スーパーヒート領域に入ると、急激に性能が劣化するた
め、出口を湿り状態(乾き度x=0.9前後)で使用する
ことが性能を向上する上で重要なことがわかる。前記制
御はこれを利用したものでサブクールをアキュムレータ
(4)の熱交換器(5)により積極的に大きくとり、室
内熱交換器(7a)〜(7c)の出口を湿り状態にしている
と同時に、出口の乾き度がおのおのの回路で少々変化が
あっても、安定した能力を得るようにしたもので、複数
の室内機(9a)〜(9c)に冷媒を分配する上で、室内熱
交換器(7a)〜(7c)の出口の冷媒状態により各々の室
内機(9a)〜(9c)への分配を調整するようにフィード
バックをかけることをせず、一義的に室内機(9a)〜
(9c)の能力比で、合計開度を分配するだけでも、十分
に実使用条件では分配性能が確保でき、制御性がよいも
のとなる。同時に、室外熱交換器(3)で適正なサブク
ールをとっていることから室外熱交換器(3)も有効に
使用できる。当然のことながら、室内機(9a)〜(9c)
を全て運転したときにも室内熱交換器(7a)〜(7c)の
出口が湿り状態となるように冷媒量を充填しておく。ま
た、アキュムレータ(4)の熱交換器(5)は室外機
(6)と室内機(9a)〜(9c)の高低差等により延長配
管部での圧力損失が発生し、膨張弁(8a)〜(8c)の前
の冷媒がフラッシュして膨張弁(8a)〜(8c)の流量特
性が変化してしまうということを防止する役目も果すこ
とができる。更に、室内機(9a)〜(9c)の運転台数が
減少した場合には、停止した室内機(9a)〜(9c)の膨
張弁(8a)〜(8c)を全閉にすることにより冷媒供給を
停止すると同時に、余剰冷媒はアキュムレータ(4)内
に溜めることができるという機能も有する。
That is, as can be seen from the characteristic diagram showing the relationship between the refrigerant state at the heat exchanger outlet and the average heat transfer coefficient in FIG. 12 described above, when the outlet enters the superheat region, the performance rapidly deteriorates, so the outlet is It can be seen that use in a wet state (dryness x = around 0.9) is important for improving performance. The above-mentioned control uses this, and the subcool is positively increased by the heat exchanger (5) of the accumulator (4), and the outlets of the indoor heat exchangers (7a) to (7c) are kept wet at the same time. , Even if the dryness of the outlet changes slightly in each circuit, it is designed to obtain a stable capacity, and indoor heat exchange in distributing the refrigerant to multiple indoor units (9a) to (9c). The indoor units (9a) to (7a) to (7c) are not uniquely fed back so as to adjust the distribution to the indoor units (9a) to (9c) depending on the refrigerant state at the outlets of the indoor units (9a) to (9a).
With the capacity ratio of (9c), even if only the total opening is distributed, the distribution performance can be secured under actual use conditions, and the controllability becomes good. At the same time, since the outdoor heat exchanger (3) takes a proper subcool, the outdoor heat exchanger (3) can be effectively used. Naturally, indoor units (9a) to (9c)
The amount of refrigerant is filled so that the outlets of the indoor heat exchangers (7a) to (7c) are in a wet state even when all of the above are operated. Further, in the heat exchanger (5) of the accumulator (4), pressure loss occurs in the extension pipe portion due to the height difference between the outdoor unit (6) and the indoor units (9a) to (9c), and the expansion valve (8a). It can also serve to prevent the refrigerant before (8c) to (8c) from flashing and changing the flow rate characteristics of the expansion valves (8a) to (8c). Further, when the number of operating indoor units (9a) to (9c) decreases, the expansion valves (8a) to (8c) of the stopped indoor units (9a) to (9c) are fully closed to make the refrigerant At the same time that the supply is stopped, the excess refrigerant can also be stored in the accumulator (4).

また、暖房運転時は、圧縮機(1)より吐出された高温
高圧のガス冷媒は点線のように流路を切換えた四方切換
弁(2)を通り、ガス側主管(10)及びガス側分岐管
(12a)〜(12c)を介して室内熱交換器(7a)〜(7c)
に導かれる。室内熱交換器(7a)〜(7c)で液化した冷
媒は、室内機(9a)〜(9c)に設けた膨張弁(8a)〜
(8c)により減圧され、二相冷媒となり液側分岐管(13
a)〜(13c)及び液側主管(11)を通って室外機(6)
に戻り、室外熱交換器(3)で蒸発し、四方切換弁
(2)、アキュムレータ(4)を介して圧縮機(1)へ
戻るサイクルを構成する。
Further, during the heating operation, the high-temperature and high-pressure gas refrigerant discharged from the compressor (1) passes through the four-way switching valve (2) whose flow path is switched as shown by the dotted line, and flows through the gas side main pipe (10) and the gas side branch. Indoor heat exchangers (7a) to (7c) through pipes (12a) to (12c)
Be led to. The refrigerant liquefied in the indoor heat exchangers (7a) to (7c) is the expansion valve (8a) to the indoor units (9a) to (9c).
It is decompressed by (8c) and becomes a two-phase refrigerant.
Outdoor unit (6) through a) to (13c) and liquid side main pipe (11)
To the compressor (1) via the four-way switching valve (2) and the accumulator (4).

このとき、圧力センサ(14)と室内熱交換器(7a)〜
(7c)の出口配管に設けたサーミスタ(16a)〜(16c)
により、室内熱交換器(7a)〜(7c)の出口のサブクー
ルを一定にするように制御装置(18)により膨張弁(8
a)〜(8c)を制御する。
At this time, the pressure sensor (14) and the indoor heat exchanger (7a) ~
Thermistors (16a) to (16c) provided on the outlet pipe of (7c)
As a result, the expansion valve (8) is controlled by the control device (18) so that the subcools at the outlets of the indoor heat exchangers (7a) to (7c) are kept constant.
a) to (8c) are controlled.

第4図は本実施例の制御装置(18)による暖房運転時の
膨張弁(8a)〜(8c)の制御の一例を説明するフローチ
ャートである。
FIG. 4 is a flowchart illustrating an example of control of the expansion valves (8a) to (8c) during the heating operation by the control device (18) of the present embodiment.

まず、制御が開始されると、ステップS11で高圧圧力が
圧力センサ(14)によって検出され、圧力から変換され
た飽和温度(t1)が入力され、ステップS12で各室内熱
交換器(7a)〜(7c)の出口温度(T1)〜(T3)が検出
され、この出口温度(T1)〜(T3)が入力され、ステッ
プS13でこれらの温度差としての各サブクールSC1〜SC3
が計算式 SCj=t1〜Tj で計算される。ステップS14で各サブクールの平均値SCA
Vが計算式 で計算される。ステップS15でサブクールの平均値SCAV
とサブクールの目標値SC0との差の絶対値|SCAV−SC0|が
3℃以下であるか判断され、3℃以下ならばステップS1
7へ移る。サブクールの設定値として入力された目標サ
ブクールSC0とのずれ|SCAV−SC0|が3℃を越えると判断
したとき、ステップS16で各膨張弁(8a)〜(8c)の開
度の合計が計算式 を用いて計算される。
First, when the control is started, the high pressure is detected by the pressure sensor (14) in step S11, the saturation temperature (t1) converted from the pressure is input, and in step S12, each indoor heat exchanger (7a)- The outlet temperatures (T1) to (T3) of (7c) are detected, the outlet temperatures (T1) to (T3) are input, and in step S13, each subcool SC1 to SC3 as the temperature difference between them is detected.
Is calculated by the formula SCj = t1 ~ Tj. Average value SCA of each subcool in step S14
V is the formula Calculated by Subcool average SCAV in step S15
And the absolute value of the difference between the subcool target value SC0 | SCAV-SC0 | is 3 ° C or less, and if it is 3 ° C or less, step S1
Move to 7. When it is determined that the deviation | SCAV-SC0 | from the target subcool SC0 input as the subcool set value exceeds 3 ° C, the total opening of the expansion valves (8a) to (8c) is calculated in step S16. Is calculated using.

ここにNj:各膨張弁開度 NJ:変更前の各膨張弁の開度 C :実験により決まる正の定数 各膨張弁(8a)〜(8c)の開度の合計 が計算されて、平均サブクールが大き目のときは膨張弁
(8a)〜(8c)全体の開度を開方向へ、小さ目のときは
閉方向へ調整し、ステップS17へ移る。
Where Nj: Opening of each expansion valve NJ: Opening of each expansion valve before change C: Positive constant determined by experiment Total of opening of each expansion valve (8a) to (8c) Is calculated, and when the average subcool is large, the opening degrees of the entire expansion valves (8a) to (8c) are adjusted in the opening direction, and when the average subcool is small, the opening direction is adjusted in the closing direction, and the process proceeds to step S17.

ステップS17で各サブクールのずれ |SCj−SCAV| が2℃以下であるかどうか判断する。ずれが2℃以下の
場合は、ステップS18で変数DをゼロとしてステップS20
に移る。ずれが2度を越える場合はステップS19で、変
数Dには予め定められた定数D0がセットされ、ステップ
S20に移る。
In step S17, it is determined whether the deviation | SCj−SCAV | of each subcool is 2 ° C. or less. If the deviation is 2 ° C. or less, the variable D is set to zero in step S18 and step S20.
Move on to. If the deviation exceeds 2 degrees, a predetermined constant D0 is set to the variable D in step S19, and the step
Move to S20.

そして、ステップS20で各膨張弁開度Njが計算式 を用いて計算され、ステップS21で各膨張弁(8a)〜(8
c)の新開度Njが出力されてこのルーチンを終了する。
なお、ステップS20の各膨張弁(8a)〜(8c)の新開度
計算中のDは実験により決まる正の定数であり、この計
算式によれば、各室内熱交換器(7a)〜(7c)の出口の
サブクールは、サブクールが高目の室内機(9a)〜(9
c)については弁開度を大きくし、サブクールが低目の
室内機(9a)〜(9c)については弁開度を小さくするこ
とによって一定の目標値に調整される。
Then, in step S20, each expansion valve opening Nj is calculated by Calculated in step S21, the expansion valves (8a) to (8
The new opening Nj of c) is output and this routine is ended.
In the calculation of the new opening of each expansion valve (8a) to (8c) in step S20, D is a positive constant determined by the experiment, and according to this calculation formula, each indoor heat exchanger (7a) to (7c ) The subcool at the exit is the indoor unit (9a) to (9
For c), the valve opening is increased, and for the indoor units (9a) to (9c) where the subcool is low, the valve opening is adjusted to a constant target value.

このフローチャートによれば、平均サブクールによる全
体の動きによる補正と、個々のサブクールのずれによる
補正を行なっているため、他の室内機(9a)〜(9c)の
運転状況による影響を加味して、冷媒量の分配が行なわ
れ、制御性が非常に良いものとなっている。
According to this flow chart, the correction based on the overall movement due to the average sub-cool and the correction based on the deviation of each sub-cool are performed, so the effect of the operating conditions of the other indoor units (9a) to (9c) is added, The amount of refrigerant is distributed, and the controllability is very good.

室内機(9a)〜(9c)の運転台数が減少した場合には、
停止した室内機(9a)〜(9c)の膨張弁(8a)〜(8c)
を全閉とすることにより、冷媒の流れを停止する。余剰
冷媒は冷房動作時と同様に、アキュムレータ(4)内に
溜めることができる。
When the number of operating indoor units (9a) to (9c) decreases,
Expansion valves (8a) to (8c) of stopped indoor units (9a) to (9c)
The flow of the refrigerant is stopped by fully closing. The surplus refrigerant can be stored in the accumulator (4) as in the cooling operation.

停止した室内機(9a)〜(9c)の室内熱交換器(7a)〜
(7c)には、徐々に冷媒が凝縮するが液側分岐管(13
a)〜(13c)側が低圧側となっているため、必要に応じ
て膨張弁(8a)〜(8c)を一定時間開けば、冷媒の回収
が可能となる。更に、室内熱交換器(7a)〜(7c)は常
に高圧回路に接続されているため、室内機(9a)〜(9
c)が追加運転されても冷媒音の発生は全くない。
Indoor heat exchanger (7a) of stopped indoor units (9a) to (9c)
In (7c), the refrigerant gradually condenses, but the liquid side branch pipe (13
Since the a) to (13c) sides are on the low pressure side, the refrigerant can be recovered by opening the expansion valves (8a) to (8c) for a certain period of time if necessary. Furthermore, since the indoor heat exchangers (7a) to (7c) are always connected to the high-voltage circuit, the indoor units (9a) to (9
Even if c) is additionally operated, no refrigerant noise is generated.

また、冷房暖房ともに室内機(9a)〜(9c)の膨張弁
(8a)〜(8c)により、絞り機能と各室内機(9a)〜
(9c)への冷媒量の分配機能を持たせているため、分岐
管の長さや違いや室内機(9a)〜(9c)の高低差による
流量の差も制御装置(18)によって自動的に補正され、
いかなる状態においても適正流量が確保でき、更には、
室外機(6)から1対の配管で施工し、途中から自由に
分岐する方式の配管施工が可能となる。特に、第1図に
おいては、複数の分岐管が分岐する位置は1ケ所となっ
ているが、複数の箇所から分岐する方式でも上記特性を
発揮できることは言うまでもない。
In addition, the expansion function (8a) to (8c) of the indoor units (9a) to (9c) for both air conditioning and heating allows the throttle function and each indoor unit (9a) to
Since it has a function to distribute the amount of refrigerant to (9c), the controller (18) automatically adjusts the flow rate difference due to the length and difference of the branch pipes and the height difference of the indoor units (9a) to (9c). Corrected,
Proper flow rate can be secured in any condition, and further,
The outdoor unit (6) can be constructed with a pair of pipes, and the pipe can be freely branched from the middle. In particular, in FIG. 1, the position where a plurality of branch pipes branch is one, but it is needless to say that the above characteristics can be exhibited even in a system where a plurality of branch pipes branch.

この発明の第一実施例の多室用空気調和機では、膨張弁
(8a)〜(8c)はマイクロコンピュータにより制御され
るので、圧縮機をインバータにより周波数制御を使用と
する場合にも都合が良い。
In the multi-room air conditioner of the first embodiment of the present invention, since the expansion valves (8a) to (8c) are controlled by the microcomputer, it is convenient even when the frequency control is used by the compressor. good.

第5図は本発明の第二実施例による多室用空気調和機の
冷媒回路図である。図中、第一実施例と同一符号及び記
号は第一図実施例の構成部分と同一または相当する構成
部分を示すものであり、ここでは重複する説明を省略
し、相違点のみ説明する。
FIG. 5 is a refrigerant circuit diagram of a multi-room air conditioner according to a second embodiment of the present invention. In the figure, the same reference numerals and symbols as those of the first embodiment show the same or corresponding components as those of the first embodiment, and therefore, duplicate description will be omitted and only different points will be explained.

本実施例は第一実施例の圧力センサ(14)の代りに、飽
和温度の検出回路(19)を使用したもので、圧力の代り
に直接飽和温度を検出する飽和温度検出手段である温度
センサ(20)で温度を検出している。この検出回路(1
9)は熱交換器(22)と毛細管(21)及び温度センサ(2
0)で構成され、圧縮機(1)の出口の冷媒は熱交換器
(22)により冷却され、二相媒体となり毛細管(21)で
圧縮機(1)の吸入圧力まで減圧され、低温の二相冷媒
となり熱交換器(22)で熱交換することにより、圧縮機
入口の冷媒のエンタルピーの低圧冷媒となり、サイクル
を完了する。
This embodiment uses a saturation temperature detection circuit (19) instead of the pressure sensor (14) of the first embodiment, and is a temperature sensor which is a saturation temperature detection means for directly detecting the saturation temperature instead of pressure. The temperature is detected in (20). This detection circuit (1
9) is a heat exchanger (22), a capillary tube (21) and a temperature sensor (2
0), the refrigerant at the outlet of the compressor (1) is cooled by the heat exchanger (22), becomes a two-phase medium, and is decompressed by the capillary tube (21) to the suction pressure of the compressor (1). By becoming a phase refrigerant and exchanging heat in the heat exchanger (22), it becomes a low-pressure refrigerant having an enthalpy of refrigerant at the compressor inlet, completing the cycle.

第6図は前記第5図の実施例による多室用空気調和機の
飽和温度検出回路内の冷媒の状態を示すモリエル線図
で、実線がこの検出回路(19)内の冷媒の状態、破線
(A),(B),(C),(D)が通常の冷凍サイクル
上の冷媒の状態を表わしている。また、(E)は、毛細
管(21)の入口状態を示し、この場所に温度センサ(2
0)を取付けることにより圧力センサを使用することな
く高圧圧力飽和温度を検出することが可能となる。
FIG. 6 is a Mollier diagram showing the state of the refrigerant in the saturation temperature detection circuit of the multi-room air conditioner according to the embodiment of FIG. 5, and the solid line shows the state of the refrigerant in this detection circuit (19), and the broken line. (A), (B), (C), and (D) represent the states of the refrigerant on the normal refrigeration cycle. Further, (E) shows the entrance state of the capillary tube (21), and the temperature sensor (2
By installing 0), it becomes possible to detect the high pressure saturation temperature without using a pressure sensor.

なお、この実施例では、第一実施例のフローチャートの
ステップS1及びステップS11においては直接飽和温度(t
1)を検出することとなる。
In this embodiment, in steps S1 and S11 of the flowchart of the first embodiment, the saturation temperature (t
1) will be detected.

また、図示していないが室内外の熱交換器の中央付近の
配管の温度を検出すれば、やはり冷暖房運転時の高圧圧
力飽和温度を検出できることはいうまでもない。
Further, although not shown, it goes without saying that if the temperature of the pipes near the center of the indoor and outdoor heat exchangers is detected, the high pressure saturation temperature during cooling and heating operation can also be detected.

このように、この発明の実施例の多室用空気調和機によ
れば、室内機(9a)〜(9c)に設けた電気信号による駆
動する膨張弁(8a)〜(8c)を制御装置(18)によっ
て、冷房運転時にはサブクールを一定にしながら、か
つ、各室内機(9a)〜(9c)の能力により冷媒を適正に
分配するように制御し、暖房運転時は複数の室内熱交換
器(7a)〜(7c)出口のサブクールを各々一定に保つよ
うに制御できるので、従来例のようにレシーバ(25)が
不要で、冷媒回収回路も不要となり、また、室外機
(6)から1対の配管で途中まで施工できるから、配管
が簡単となり、また、分配性能が良くなる。そして、室
内熱交換器(7a)〜(7c)は常に高圧回路側となってい
るから、暖房運転時の室内機の追加運転においても冷媒
音が発生することがない。また、アキュムレータ(4)
に熱交換器(5)を設けたので冷房運転時には、多少冷
媒の分配にずれがあったり、負荷が少々変化しても、安
定した能力が得られる。
As described above, according to the multi-room air conditioner of the embodiment of the present invention, the expansion valves (8a) to (8c) driven by electric signals provided in the indoor units (9a) to (9c) are used as control devices ( 18), while controlling the sub-cool during cooling operation so that the refrigerant is appropriately distributed by the capacity of each indoor unit (9a) to (9c), during heating operation, a plurality of indoor heat exchangers ( Since the subcools at the outlets 7a) to (7c) can be controlled to be constant, the receiver (25) is not required as in the conventional example, the refrigerant recovery circuit is not required, and the outdoor unit (6) can be used as a pair. Since the pipe can be installed halfway, the pipe becomes simple and the distribution performance is improved. Since the indoor heat exchangers (7a) to (7c) are always on the high voltage circuit side, no refrigerant noise is generated even during the additional operation of the indoor unit during the heating operation. Also, accumulator (4)
Since the heat exchanger (5) is provided in the above, a stable capacity can be obtained during the cooling operation even if the distribution of the refrigerant is slightly deviated or the load is slightly changed.

上記発明の実施例では、運転中の各室内機(9a)〜(9
c)の能力を能力設定スイッチ(17a)〜(17c)を用い
て、能力コードQj(=Q1〜Q3)として制御装置(18)に
入力していた。しかし、この能力設定スイッチ(17a)
〜(17c)を省略することができる。
In the embodiment of the invention described above, each of the operating indoor units (9a) to (9
The ability of c) was input to the control device (18) as the ability code Qj (= Q1 to Q3) using the ability setting switches (17a) to (17c). However, this ability setting switch (17a)
~ (17c) can be omitted.

即ち、本実施例の多室用空気調和機は、圧縮機(1)、
四方切換弁(2)、室外熱交換器(3)、アキュムレー
タ(4)を順次接続し、室外熱交換器(3)の冷房運転
時の出口側に配設したアキュムレータ(4)内の冷媒と
熱交換可能なアキュムレータ(4)に内蔵された熱交換
器(5)を設けて冷媒回路を形成した冷暖切換可能な室
外機(6)と、室外機(6)と1対の主管(10),(1
1)で接続し、主管(10),(11)から分岐した分岐管
(12a)〜(12c)に室内熱交換器(7a)〜(7c)と電気
信号で駆動する膨張弁(8a)〜(8c)を直列に接続して
冷媒回路を形成した複数の室内機(9a)〜(9c)と、室
外熱交換器(3)の冷房運転時出口に配設したサーミス
タ(15)等からなる温度検出器及び圧縮機(1)の出力
側の高圧圧力状態を検出する圧力センサ(14)等からな
る検出器からの信号を入力して過冷却度を演算し、過冷
却度が大きいときには各室内機(9a)〜(9c)毎の膨張
弁(8a)〜(8c)の総合計開度を開く方向に、また、過
冷却度が小さいときには各室内機(9a)〜(9c)毎の膨
張弁(8a)〜(8c)の総合計開度を閉じる方向に制御
し、各室内機(9a)〜(9c)の能力に応じて各室内機
(9a)〜(9c)の膨張弁(8a)〜(8c)の開度を設定す
る制御装置(18)とを具備するものであり、冷暖房運転
時の構成を示し、これを請求項1の実施例とすることが
できる。
That is, the multi-room air conditioner of the present embodiment includes the compressor (1),
The four-way switching valve (2), the outdoor heat exchanger (3), and the accumulator (4) are sequentially connected, and the refrigerant in the accumulator (4) arranged on the outlet side of the outdoor heat exchanger (3) during the cooling operation is used. An outdoor unit (6) capable of switching between cooling and heating in which a heat exchanger (5) built in a heat-exchangeable accumulator (4) is provided to form a refrigerant circuit, and an outdoor unit (6) and a pair of main pipes (10) , (1
Expansion valves (8a) to which the indoor heat exchangers (7a) to (7c) and electric signals are connected to the branch pipes (12a) to (12c) that are connected by 1) and branched from the main pipes (10) and (11) It is composed of a plurality of indoor units (9a) to (9c) in which (8c) are connected in series to form a refrigerant circuit, a thermistor (15) arranged at the outlet of the outdoor heat exchanger (3) during the cooling operation, and the like. A supercooling degree is calculated by inputting a signal from a detector including a temperature sensor and a pressure sensor (14) for detecting a high pressure state on the output side of the compressor (1). In the direction to open the total opening of the expansion valves (8a) to (8c) for each indoor unit (9a) to (9c), and to each indoor unit (9a) to (9c) when the degree of subcooling is small. The total opening of the expansion valves (8a) to (8c) is controlled so as to be closed, and the expansion valves () of the indoor units (9a) to (9c) are controlled according to the capabilities of the indoor units (9a) to (9c). 8a) ~ (8c) open A control device (18) for setting the degree is provided, and the configuration during cooling and heating operation is shown, which can be the embodiment of claim 1.

また、本実施例の多室用空気調和機は、圧縮機(1)、
四方切換弁(2)、室外熱交換器(3)、アキュムレー
タ(4)を順次接続し、室外熱交換器(3)の冷房運転
時の出口側に配設したアキュムレータ(4)内の冷媒と
熱交換可能なアキュムレータ(4)に内蔵された熱交換
器(5)を設けて冷媒回路を形成した冷暖切換可能な室
外機(6)と、室外機(6)と1対の主管(10),(1
1)で接続し、主管(10),(11)から分岐した分岐管
(12a)〜(12c)に室内熱交換器(3)と電気信号で駆
動する膨張弁(8a)〜(8c)を直列に接続して冷媒回路
を形成した複数の室内機(9a)〜(9c)と、室内熱交換
器(7a)〜(7c)の暖房運転時出口に配設したサーミス
タ(16a)〜(16c)等からなる温度検出器及び圧縮機
(1)の出力側の高圧圧力状態を検出する圧力センサ
(14)等からなる検出器からの信号を入力して過冷却度
を演算し、過冷却度が大きいときには各室内機(9a)〜
(9c)毎の膨張弁(8a)〜(8c)の総合計開度を開く方
向に、また、過冷却度が小さいときには各室内機(9a)
〜(9c)毎の膨張弁(8a)〜(8c)の総合計開度を閉じ
る方向に制御し、各室内機(9a)〜(9c)の能力に応じ
て各室内機(9a)〜(9c)の膨張弁(8a)〜(8c)の開
度を設定する制御装置(18)とを具備するものであり、
暖房房運転時の構成を示し、これを請求項2の実施例と
することができる。
In addition, the multi-room air conditioner of this embodiment includes a compressor (1),
The four-way switching valve (2), the outdoor heat exchanger (3), and the accumulator (4) are sequentially connected, and the refrigerant in the accumulator (4) arranged on the outlet side of the outdoor heat exchanger (3) during the cooling operation is used. An outdoor unit (6) capable of switching between cooling and heating in which a heat exchanger (5) built in a heat-exchangeable accumulator (4) is provided to form a refrigerant circuit, and an outdoor unit (6) and a pair of main pipes (10) , (1
The indoor heat exchanger (3) and the expansion valves (8a) to (8c) driven by electric signals are connected to the branch pipes (12a) to (12c) connected from the main pipes (10) and (11). A plurality of indoor units (9a) to (9c) connected in series to form a refrigerant circuit, and thermistors (16a) to (16c) arranged at the heating operation outlets of the indoor heat exchangers (7a) to (7c). ), Etc. and a signal from a detector, such as a pressure sensor (14), which detects the high-pressure state of the output side of the compressor (1), calculates the degree of supercooling by calculating the degree of supercooling. When is large, each indoor unit (9a) ~
Each indoor unit (9a) in the direction to open the total opening of expansion valves (8a) to (8c) for each (9c), and when the degree of supercooling is small.
Controlling the total opening of expansion valves (8a) to (8c) for each (9c) to the direction of closing, each indoor unit (9a) to (9c) to (9c) according to the capacity of each indoor unit (9a) to (9c) 9c) expansion valves (8a) ~ (8c) for setting the opening degree of the control device (18),
A configuration during heating operation is shown, and this can be the embodiment of claim 2.

第7図は本発明の第三実施例による多室用空気調和機の
冷媒回路図、第8図は本発明の第三実施例による多室用
空気調和機の制御装置のブロック図である。
FIG. 7 is a refrigerant circuit diagram of the multi-room air conditioner according to the third embodiment of the present invention, and FIG. 8 is a block diagram of a control device of the multi-room air conditioner according to the third embodiment of the present invention.

なお、この発明の第三実施例は、基本的には第一実施例
と同じであるが、その相違点は、能力設定スイッチ(17
a)〜(17c)を用いておらず、室内熱交換器(7a)〜
(7c)の冷房運転時に出口配管の温度を検出する温度検
出器であるサーミスタ(160a)〜(160c)を配設してい
る点にある。
The third embodiment of the present invention is basically the same as the first embodiment, except that the capacity setting switch (17
a) ~ (17c) not used, indoor heat exchanger (7a) ~
The thermistors (160a) to (160c), which are temperature detectors for detecting the temperature of the outlet pipe during the cooling operation of (7c), are provided.

前記室内熱交換器(7a)〜(7c)の冷房運転時に出口配
管の温度を検出するサーミスタ(160a)〜(160c)の出
力は、制御装置(18)に入力され、各室内熱交換器(7
a)〜(7c)の冷房運転時の出口配管の温度を均一にす
るように、膨張弁(8a)〜(8c)を制御するものであ
る。
The outputs of the thermistors (160a) to (160c) that detect the temperature of the outlet pipe during the cooling operation of the indoor heat exchangers (7a) to (7c) are input to the control device (18), and the indoor heat exchangers ( 7
The expansion valves (8a) to (8c) are controlled so that the temperatures of the outlet pipes during the cooling operation of (a) to (7c) are made uniform.

第9図は本発明の第三実施例の制御装置(18)による冷
房運転時の膨張弁(8a)〜(8c)の制御の一例を説明す
るためのフローチャートである。なお、このフローチャ
ートは第3図の本発明の第一実施例の制御装置(18)に
よる冷房運転時の膨張弁(8a)〜(8c)の制御と共通す
るものであり、同一ステップの番号は同一内容を示すも
のである。
FIG. 9 is a flow chart for explaining an example of control of the expansion valves (8a) to (8c) during the cooling operation by the control device (18) of the third embodiment of the present invention. Note that this flowchart is common to the control of the expansion valves (8a) to (8c) during the cooling operation by the control device (18) of the first embodiment of the present invention in FIG. 3, and the same step numbers are used. It shows the same content.

まず、制御が開始されると、ステップS1で高圧圧力が圧
力センサ(14)によって検出され、圧力から変換された
飽和温度(t1)が入力され、ステップS2で室外熱交換器
(3)の出力側に設けたサーミスタ(15)によって、室
外熱交換器(3)の出口温度(t2)が検出され、この出
口温度(t2)が入力される。ステップS3でこれらの温度
差としてのサブクールSCが SC=t1−t2 で計算される。ステップS4でサブクールの目標値SC0と
の差の絶対値|SC−SC0|が3℃以下であるかどうかが判
断され、3℃以下ならば、合計開度 を変更せず、ステップS6に移る。また、サブクールの設
定値としての入力されたサブクールの目標値SC0とのず
れ|SC−SC0|が3℃を越えたと判断したとき、ステップS
5で各膨張弁開度の合計 が計算式 を用いて計算される。
First, when the control is started, the high pressure is detected by the pressure sensor (14) in step S1, the saturation temperature (t1) converted from the pressure is input, and the output of the outdoor heat exchanger (3) is input in step S2. The outlet temperature (t2) of the outdoor heat exchanger (3) is detected by the thermistor (15) provided on the side, and this outlet temperature (t2) is input. In step S3, the subcool SC as these temperature differences is calculated by SC = t1−t2. In step S4, it is judged whether or not the absolute value | SC-SC0 | of the difference from the target value SC0 of the subcool is 3 ° C or less. Does not change and moves to step S6. When it is determined that the deviation | SC-SC0 | from the input subcool target value SC0 as the subcool set value exceeds 3 ° C, step S
Total of each expansion valve opening in 5 Is the formula Is calculated using.

ここにNj:各膨張弁開度 NJ:変更前の各膨張弁の開度 A :実験により決まる正の定数 各膨張弁の開どの合計 が計算されて、サブクールが大き目のときは膨張弁(8
a)〜(8c)の全体の開度を開放へ、小さ目のときは閉
方向へ調整してステップS26に移る。
Where Nj: Opening of each expansion valve NJ: Opening of each expansion valve before change A: Positive constant determined by experiment Total of opening each expansion valve Is calculated and when the subcool is large, the expansion valve (8
Adjust the whole opening of a) to (8c) to open, and if it is smaller, close it and move to step S26.

ステップS26ではサーミスタ(160a)〜(160c)により
室内熱交換器(7a)〜(7c)の出口温度の検出値(T1)
〜(T3)が入力され、ステップS27で検出値(T1)〜(T
3)の平均値(TAV)が計算され、ステップS28でずれ|Tj
−TAV|が2℃以下であるか判断される。ずれが2℃以下
の場合には、ステップS29で変数(B)をゼロとしてス
テップS31へ移る。ずれが2℃を越える場合には、ステ
ップS30で変数(B)には予め定められた定数(B0)が
セットされステップS31へ移る。そして、ステップS31で
各膨張弁(8a)〜(8c)の開度Njが計算式を を用いて計算され、ステップS32で各膨張弁(8a)〜(8
c)の新開度Njが出力されてこのルーチンを終了する。
即ち、ステップS31の各膨張弁(8a)〜(8c)の新開度
計算式中の(B)は実験によって決まる正の定数であ
り、この計算式によれば、各室内熱交換器(7a)〜(7
c)の出口温度は、温度が高目の室内機(9a)〜(9c)
については各膨張弁(8a)〜(8c)の開度を大きくし、
温度が低目の室内機(9a)〜(9c)については、各膨張
弁(8a)〜(8c)の開度を小さくすることによって温度
を調整する。
In step S26, the detected value (T1) of the outlet temperature of the indoor heat exchangers (7a) to (7c) is detected by the thermistors (160a) to (160c).
~ (T3) is input, and the detected values (T1) ~ (T
3) average value (TAV) is calculated and deviated in step S28 | Tj
-TAV | is judged to be 2 ° C or lower. If the deviation is 2 ° C. or less, the variable (B) is set to zero in step S29, and the process proceeds to step S31. If the deviation exceeds 2 ° C., a predetermined constant (B0) is set in the variable (B) in step S30, and the process proceeds to step S31. Then, in step S31, the opening degree Nj of each expansion valve (8a) to (8c) is calculated by Calculated in step S32, the expansion valves (8a) to (8
The new opening Nj of c) is output and this routine is ended.
That is, (B) in the new opening calculation formulas of the expansion valves (8a) to (8c) in step S31 is a positive constant determined by an experiment, and according to this calculation formula, each indoor heat exchanger (7a) ~ (7
For the outlet temperature of c), the indoor units (9a) to (9c) with higher temperature
For, increase the opening of each expansion valve (8a) ~ (8c),
For the indoor units (9a) to (9c) having a low temperature, the temperatures are adjusted by reducing the openings of the expansion valves (8a) to (8c).

なお、この実施例の制御装置(18)による暖房運転時の
膨張弁(8a)〜(8c)の制御の一例を説明するためのフ
ローチャートは、第4図の本発明の第一実施例の制御装
置(18)による暖房運転時の膨張弁(8a)〜(8c)の制
御と同一であるので、その説明を省略する。
The flowchart for explaining an example of the control of the expansion valves (8a) to (8c) during the heating operation by the control device (18) of this embodiment is the control of the first embodiment of the present invention of FIG. Since it is the same as the control of the expansion valves (8a) to (8c) during the heating operation by the device (18), the description thereof will be omitted.

このように、本実施例のフローチャートによれば、サブ
クールの調整と各室内熱交換器の出口温度を一致させる
ように制御される。
As described above, according to the flow chart of the present embodiment, the adjustment of the subcool and the outlet temperature of each indoor heat exchanger are controlled to match.

この実施例も第2実施例のように変更することもでき
る。
This embodiment can also be modified like the second embodiment.

第10図はこの発明の第四実施例による多室用空気調和機
の冷媒回路図である。なお、回路構成及びその動作は、
第二実施例及び第三実施例に共通するものであるから、
その説明を省略する。
FIG. 10 is a refrigerant circuit diagram of a multi-room air conditioner according to a fourth embodiment of the present invention. The circuit configuration and its operation are
Since it is common to the second and third embodiments,
The description is omitted.

[発明の効果] 以上のように、請求項1の多室用空気調和機は、室外熱
交換器の冷房運転時出口に配設した温度検出器及び圧縮
機の出力側の高圧圧力状態を検出する検出器からの信号
を入力して過冷却度を演算し、その過冷却度が大きいと
きには各室内機毎の膨張弁の総合計開度を開く方向に、
また、その過冷却度が小さいときには前記各室内機毎の
膨張弁の総合計開度を閉じる方向に制御し、各室内機の
能力に応じて各室内機の膨張弁の開度を設定するもので
ある。
[Advantages of the Invention] As described above, the multi-room air conditioner according to claim 1 detects the high-pressure pressure state on the output side of the temperature detector and the compressor arranged at the outlet of the outdoor heat exchanger during the cooling operation. Input the signal from the detector to calculate the degree of supercooling, and when the degree of supercooling is large, in the direction to open the total opening of the expansion valves for each indoor unit,
Further, when the degree of subcooling is small, the total opening of the expansion valves of each indoor unit is controlled to be closed, and the opening of the expansion valve of each indoor unit is set according to the capacity of each indoor unit. Is.

したがって、室内機に設けた電気信号により駆動する膨
張弁を、冷房運転時にはサブクールを一定にしながら、
各室内機の能力により冷媒を適正に分配するように制御
し、暖房運転時は複数の室内熱交換器出口のサブクール
を各々一定に保つように制御できるのでレシーバが不要
となり、また、冷媒回収回路も不要となり、更に、室外
機から1対の配管で途中まで施工でき、簡単な冷媒配管
ですむから工事性能が良くなる。また、室内熱交換器は
常に高圧回路側となっているから、冷媒音が発生するこ
とがない。そして、アキュムレータに熱交換器を設けた
ので冷房運転時には、多少冷媒の分配にずれがあった
り、負荷が少々変化しても、安定した能力が得られると
いう効果がある。
Therefore, the expansion valve driven by the electric signal provided in the indoor unit, while keeping the subcool constant during the cooling operation,
It controls so that the refrigerant is appropriately distributed according to the capacity of each indoor unit, and during heating operation, it can be controlled so that the subcools at the outlets of multiple indoor heat exchangers are kept constant, so a receiver is not required and the refrigerant recovery circuit Is unnecessary, and furthermore, it can be installed halfway from the outdoor unit with a pair of pipes, and because simple refrigerant piping is required, construction performance is improved. Further, since the indoor heat exchanger is always on the high voltage circuit side, no refrigerant noise is generated. Further, since the accumulator is provided with the heat exchanger, there is an effect that a stable capacity can be obtained during the cooling operation even if the distribution of the refrigerant is slightly deviated or the load is slightly changed.

請求項2の多室用空気調和機は、室内熱交換器の暖房運
転時出口に配設した温度検出器及び圧縮機の出力側の高
圧圧力状態を検出する検出器からの信号を入力して過冷
却度を演算し、その過冷却度が大きいときには各室内機
毎の膨張弁の総合計開度を開く方向に、また、その過冷
却度が小さいときには各室内機毎の膨張弁の総合計開度
を閉じる方向に制御し、各室内機の能力に応じて前記各
室内機の膨張弁の開度を設定するものである。
The multi-room air conditioner according to claim 2 inputs signals from a temperature detector arranged at the outlet of the indoor heat exchanger during heating operation and a detector for detecting a high pressure state on the output side of the compressor. Calculate the degree of supercooling, and when the degree of supercooling is large, open the total opening of the expansion valves for each indoor unit.When the degree of subcooling is small, the total amount of expansion valves for each indoor unit is calculated. The opening degree is controlled to be closed, and the opening degree of the expansion valve of each indoor unit is set according to the capacity of each indoor unit.

この発明においても、上記請求項1の発明と同様な効果
を得ることができ、更に、本発明ではサブクールの調整
と各室内熱交換器の出口温度を一致させるように制御さ
れるから、各室内機の能力に合致させるように制御する
ことができ、譬え、冷媒回路に経時変化があっても適正
な冷媒の分配を行なうことができる。
Also in this invention, it is possible to obtain the same effect as that of the above-mentioned invention of claim 1, and further, in the present invention, since the adjustment of the subcool and the outlet temperature of each indoor heat exchanger are controlled to coincide with each other, it is possible to control each indoor It can be controlled to match the capability of the machine, and by the way, proper distribution of the refrigerant can be performed even if the refrigerant circuit changes over time.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の第一実施例による多室用空気調和機の
冷媒回路図、第2図は本発明の第一実施例による多室用
空気調和機の制御装置のブロック図、第3図は上記第一
実施例の制御装置による冷房運転時の膨張弁の制御の第
一例を説明するフローチャート、第4図は上記第一実施
例の制御装置による暖房運転時の膨張弁の制御の一例を
説明するフローチャート、第5図は本発明の第二実施例
による多室用空気調和機の冷媒回路図、第6図は第5図
の実施例による多室用空気調和機の飽和温度検出回路内
の冷媒の状態を示すモリエル線図、第7図は本発明の第
三実施例による多室用空気調和機の冷媒回路図、第8図
は本発明の第三実施例による多室用空気調和機の制御装
置のブロック図、第9図は本発明の第三実施例の制御装
置による冷房運転時の膨張弁の制御の第一例を説明する
フローチャート、第10図は本発明の第四実施例による多
室用空気調和機の冷媒回路図、第11図は従来の多室用空
気調和機の冷媒回路図、第12図は熱交換出口の冷媒状態
と平均熱伝達率の関係を示す特性図、第13図は一般的な
熱交換器の冷媒回路の接続状態を示す構成図、第14図は
他の従来の多室用空気調和機の冷媒回路図である。 図において 1:圧縮機、2:四方切換弁 3:室外熱交換器、4:アキュムレータ 5:アキュムレータに内蔵された熱交換器 6:室外機 7a,7b,7c:室内熱交換器 8a,8b,8c:膨張弁 9a,9b,9c:室内機 14:圧力センサ 15,16a,16b,16c,160a,160b,160c:サーミスタ 17a,17b,17c:能力設定スイッチ 18:制御装置 である。 なお、図中、同一符号及び同一記号は同一または相当部
分を示すものである。
FIG. 1 is a refrigerant circuit diagram of a multi-room air conditioner according to the first embodiment of the present invention, and FIG. 2 is a block diagram of a control device for a multi-room air conditioner according to the first embodiment of the present invention. FIG. 4 is a flow chart for explaining a first example of the control of the expansion valve during the cooling operation by the control device of the first embodiment, and FIG. 4 is a flowchart of the control of the expansion valve during the heating operation by the control device of the first embodiment. A flow chart for explaining an example, FIG. 5 is a refrigerant circuit diagram of a multi-room air conditioner according to a second embodiment of the present invention, and FIG. 6 is a saturation temperature detection of the multi-room air conditioner according to the embodiment of FIG. FIG. 7 is a Mollier diagram showing the state of the refrigerant in the circuit, FIG. 7 is a refrigerant circuit diagram of the multi-room air conditioner according to the third embodiment of the present invention, and FIG. 8 is a multi-room air conditioner according to the third embodiment of the present invention. FIG. 9 is a block diagram of the control device of the air conditioner, and FIG. 9 is a cooling operation by the control device of the third embodiment of the present invention. A flow chart illustrating a first example of control of an expansion valve, FIG. 10 is a refrigerant circuit diagram of a multi-room air conditioner according to a fourth embodiment of the present invention, and FIG. 11 is a conventional multi-room air conditioner. Refrigerant circuit diagram, FIG. 12 is a characteristic diagram showing the relationship between the refrigerant state at the heat exchange outlet and the average heat transfer coefficient, FIG. 13 is a configuration diagram showing the connection state of the refrigerant circuit of a general heat exchanger, FIG. FIG. 6 is a refrigerant circuit diagram of another conventional multi-room air conditioner. In the figure, 1: compressor, 2: four-way switching valve 3: outdoor heat exchanger, 4: accumulator 5: heat exchanger built in accumulator 6: outdoor unit 7a, 7b, 7c: indoor heat exchanger 8a, 8b, 8c: Expansion valve 9a, 9b, 9c: Indoor unit 14: Pressure sensor 15,16a, 16b, 16c, 160a, 160b, 160c: Thermistor 17a, 17b, 17c: Capacity setting switch 18: Controller. In the drawings, the same reference numerals and symbols indicate the same or corresponding parts.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】圧縮機、四方切換弁、室外熱交換器、アキ
ュムレータを順次接続し、前記室外熱交換器の冷房運転
時の出口側に配設した前記アキュムレータ内の冷媒と熱
交換可能な前記アキュムレータに内蔵された熱交換器を
設けて冷媒回路を形成した冷暖切換可能な室外機と、 前記室外機と1対の主管で接続し、前記主管から分岐し
た分岐管に室内熱交換器と電気信号で駆動する膨張弁を
直列に接続して冷媒回路を形成した複数の室内機と、 前記室外熱交換器の冷房運転時出口に配設した温度検出
器及び圧縮機の出力側の高圧圧力状態を検出する検出器
からの信号を入力して過冷却度(サブクール)を演算
し、前記過冷却度が大きいときには前記各室内機毎の膨
張弁の総合計開度を開く方向に、また、前記過冷却度が
小さいときには前記各室内機毎の膨張弁の総合計開度を
閉じる方向に制御し、前記各室内機の能力に応じて前記
各室内機の膨張弁の開度を設定する制御装置と を具備することを特徴とする多室用空気調和機。
1. A compressor, a four-way switching valve, an outdoor heat exchanger, and an accumulator which are sequentially connected, and which can exchange heat with a refrigerant in the accumulator disposed on the outlet side of the outdoor heat exchanger during cooling operation. An outdoor unit capable of switching between heating and cooling, in which a heat exchanger incorporated in an accumulator is provided to form a refrigerant circuit, and the outdoor unit is connected to the outdoor unit by a pair of main pipes, and a branch pipe branched from the main pipe is connected to the indoor heat exchanger and the electricity. A plurality of indoor units in which expansion valves driven by signals are connected in series to form a refrigerant circuit, and a high temperature pressure state on the output side of the temperature detector and the compressor arranged at the outlet during the cooling operation of the outdoor heat exchanger A signal from a detector for detecting the supercooling degree is input to calculate a subcooling degree, and when the subcooling degree is large, in a direction of opening the total opening of the expansion valves of the indoor units, and When the degree of supercooling is small, A control device that controls the total opening of the expansion valves for each of the indoor units in the closing direction and sets the opening of the expansion valve of each of the indoor units according to the capacity of each of the indoor units. A multi-room air conditioner.
【請求項2】圧縮機、四方切換弁、室外熱交換器、アキ
ュムレータを順次接続し、前記室外熱交換器の冷房運転
時の出口側に配設した前記アキュムレータ内の冷媒と熱
交換可能な前記アキュムレータに内蔵された熱交換器を
設けて冷媒回路を形成した冷暖切換可能な室外機と、 前記室外機と1対の主管で接続し、前記主管から分岐し
た分岐管に室内熱交換器と電気信号で駆動する膨張弁を
直列に接続して冷媒回路を形成した複数の室内機と、 前記室内熱交換器の暖房運転時出口に配設した温度検出
器及び圧縮機の出力側の高圧圧力状態を検出する検出器
からの信号を入力して過冷却度を演算し、前記過冷却度
が大きいときには前記各室内機毎の膨張弁の総合計開度
を開く方向に、また、前記過冷却度が小さいときには前
記各室内機毎の膨張弁の総合計開度を閉じる方向に制御
し、前記各室内機の能力に応じて前記各室内機の膨張弁
の開度を設定する制御装置と を具備することを特徴とする多室用空気調和機。
2. A compressor, a four-way switching valve, an outdoor heat exchanger, and an accumulator are sequentially connected, and the heat exchange with the refrigerant in the accumulator is provided on the outlet side of the outdoor heat exchanger during cooling operation. An outdoor unit capable of switching between heating and cooling, in which a heat exchanger incorporated in an accumulator is provided to form a refrigerant circuit, and the outdoor unit is connected to the outdoor unit by a pair of main pipes, and a branch pipe branched from the main pipe is connected to the indoor heat exchanger and the electricity. A plurality of indoor units in which expansion valves driven by signals are connected in series to form a refrigerant circuit, and a high temperature pressure state on the output side of the temperature detector and the compressor arranged at the heating operation outlet of the indoor heat exchanger The supercooling degree is calculated by inputting a signal from a detector that detects, and when the supercooling degree is large, in the direction of opening the total opening of the expansion valves of the indoor units, and the supercooling degree. When is small, expansion of each indoor unit And a control device that controls the opening of the expansion valve of each of the indoor units according to the capacity of each of the indoor units to control the total opening of the indoor unit of the multi-room air conditioner. Machine.
JP63106504A 1988-04-28 1988-04-28 Multi-room air conditioner Expired - Lifetime JPH0670515B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63106504A JPH0670515B2 (en) 1988-04-28 1988-04-28 Multi-room air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63106504A JPH0670515B2 (en) 1988-04-28 1988-04-28 Multi-room air conditioner

Publications (2)

Publication Number Publication Date
JPH01277159A JPH01277159A (en) 1989-11-07
JPH0670515B2 true JPH0670515B2 (en) 1994-09-07

Family

ID=14435260

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63106504A Expired - Lifetime JPH0670515B2 (en) 1988-04-28 1988-04-28 Multi-room air conditioner

Country Status (1)

Country Link
JP (1) JPH0670515B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110440406A (en) * 2019-08-05 2019-11-12 珠海格力电器股份有限公司 A kind of blower control method, device and unit equipment

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3043770B2 (en) * 1990-01-12 2000-05-22 株式会社日立製作所 Air conditioner
JP2009092337A (en) * 2007-10-11 2009-04-30 Panasonic Corp Air conditioner
CN114413429B (en) * 2022-01-26 2023-05-30 青岛海信日立空调系统有限公司 Air conditioning system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61237978A (en) * 1985-04-13 1986-10-23 ダイキン工業株式会社 Multiple type refrigerator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110440406A (en) * 2019-08-05 2019-11-12 珠海格力电器股份有限公司 A kind of blower control method, device and unit equipment

Also Published As

Publication number Publication date
JPH01277159A (en) 1989-11-07

Similar Documents

Publication Publication Date Title
EP0676595B1 (en) Air conditioning apparatus
US5237833A (en) Air-conditioning system
US5156014A (en) Air conditioning apparatus
US4771610A (en) Multiroom air conditioner
JP2019086251A (en) Control device of multi-type air conditioning device, multi-type air conditioning device, control method of multi-type air conditioning device, and control program of multi-type air conditioning device
EP0445368B1 (en) Cooling and heating concurrent operation type of multiple refrigeration cycle
JP2000018737A (en) Air-conditioner
JP2004317091A (en) Air conditioner, refrigerant circuit of air conditioner and control method for refrigerant circuit in air conditioner
JPH0670515B2 (en) Multi-room air conditioner
JP3719296B2 (en) Refrigeration cycle equipment
JP3000805B2 (en) Controller for refrigerant circuit
JP2893844B2 (en) Air conditioner
JP2910260B2 (en) Air conditioner and operation controller of air conditioner
JPH0379946A (en) Multi-room air conditioner
JP6932551B2 (en) Heat exchange system and its control method
JP2904354B2 (en) Air conditioner
JPH06317360A (en) Multi-chamber type air conditioner
JP5424705B2 (en) Refrigeration air conditioner
JP2522371B2 (en) Air conditioner
JP7397286B2 (en) Refrigeration cycle equipment
JP2525927B2 (en) Air conditioner
JPH02213639A (en) Air conditioner for multi rooms
JPS62288441A (en) Multichamber air conditioner
JPH04359767A (en) Air conditioner
JP2703381B2 (en) Multi air conditioner

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080907

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080907

Year of fee payment: 14