JP2893844B2 - Air conditioner - Google Patents

Air conditioner

Info

Publication number
JP2893844B2
JP2893844B2 JP2107917A JP10791790A JP2893844B2 JP 2893844 B2 JP2893844 B2 JP 2893844B2 JP 2107917 A JP2107917 A JP 2107917A JP 10791790 A JP10791790 A JP 10791790A JP 2893844 B2 JP2893844 B2 JP 2893844B2
Authority
JP
Japan
Prior art keywords
heat exchanger
outdoor
refrigerant
outdoor heat
indoor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2107917A
Other languages
Japanese (ja)
Other versions
JPH046355A (en
Inventor
文雄 松岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2107917A priority Critical patent/JP2893844B2/en
Priority to AU72991/91A priority patent/AU636726B2/en
Priority to US07/672,071 priority patent/US5142879A/en
Priority to EP91302356A priority patent/EP0448345B1/en
Priority to ES91302356T priority patent/ES2047984T3/en
Priority to EP92202252A priority patent/EP0509619B1/en
Priority to ES92202252T priority patent/ES2085552T3/en
Priority to DE69116855T priority patent/DE69116855T2/en
Priority to DE69100574T priority patent/DE69100574T2/en
Publication of JPH046355A publication Critical patent/JPH046355A/en
Application granted granted Critical
Publication of JP2893844B2 publication Critical patent/JP2893844B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0231Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units with simultaneous cooling and heating

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、室外機と複数の室内機との間を2本の冷
媒配管で接続し、各室内機の運転モードを冷房と暖房の
混在を可能とする冷暖同時マルチエアコンの自律分散協
調制御に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention connects an outdoor unit and a plurality of indoor units with two refrigerant pipes, and sets the operation mode of each indoor unit to a mixture of cooling and heating. The present invention relates to autonomous decentralized cooperative control of simultaneous cooling and heating multi-air conditioners.

[従来の技術] 第5図は、例えば特開平1−302074号公報に記載され
た従来の多室式空気調和機を示す構成図であり、図にお
いて、(1)は室外機、(2)は容量可変圧縮機、
(3)は四方弁、(4)は室外側熱交換器、(5)は室
外側膨張弁、(6a),(6b),(6c)は室内機、(8
a),(8b),(8c)は室内側熱交換器、(9)は室外
側送風機、(10a),(10b),(10c)は室内側送風
機、(11)はヘッダー、(12a),(12b),(12c)は
室内側第1二方弁、(13a),(13b),(13c)は室内
側第2二方弁、(14a),(14b),(14c)は室内側第
1膨張弁、(15a),(15b),(15c)は室内側第2膨
張弁、(16)は二方弁で、(50)はこの空気調和機を制
御する制御装置である。次に動作について説明する。圧
縮機(2)によって圧縮された高温高圧ガス冷媒は、四
方弁(3)を通り室外側熱交換器(4)で一部凝縮液化
し、中圧の二相冷媒として室外側膨張弁(5)を経由し
て室内に送られる。室内機(6a)が暖房モードで室内機
(6b),(6c)が冷房モードの時、室内に送られた中圧
の二相冷媒は室内側第1二方弁(12a)を経由して室内
側熱交換器(8a)で凝縮液化し、室内側第2膨張弁(15
a)を経てヘッダー(11)に液として溜まる。この中圧
液冷媒が室内機(6b),(6c)の室内第1膨張弁(14
a),(14c)を通て各々室内熱交換器(8b),(8c)に
入り、ここで低圧蒸発してガス化した冷媒は室内側第2
二方弁(13b),(13c)を経て室外機(1)に帰る。そ
して四方弁(3)を経て再び圧縮機(2)に帰り、冷媒
サイクルが形成されている。また、この冷媒サイクルを
形成している各種機器は室外機(1)側に設けられた制
御装置(50)によって次のように制御されている。室外
機(1)側の圧縮機(2)容量は、室内機(6a)〜(6
c)側の各部屋に設けられたルームサーモ(図示せず)
の送信するON−OFF信号に基づいて制御され、また、室
外側熱交換器(4)の容量を決定する因子としては、室
外側送風機(9)の送風のみの因子で、この因子は室外
機(1)に設けられた外気サーモ(図示せず)によって
検出された外気温度と予め設定された温度との温度偏差
値によって制御されている。また、室外側熱交換器
(4)の機能を放熱または吸熱機能へ切替える四方弁
(3)は、室内機(6a)〜(6c)側の各ルームサーモの
送信する冷・暖房信号の総比率によって制御され、ま
た、各室内側熱交換器(8a)〜(8c)の冷・暖運転モー
ドを切替える室内側第1・第2二方弁(12a)〜(12
c),(13a)〜(13c)および出・入口膨張弁(14a)〜
(14c),(15a)〜(15c)は、各ルームサーモの送信
する冷・暖信号によってそれぞれ個別に制御される。ま
た、室外機と室内機とを2本の配管で接続する、ほぼ同
一の従来技術として特開平2−8663号公報がある。
[Prior Art] FIG. 5 is a configuration diagram showing a conventional multi-room air conditioner described in, for example, Japanese Patent Laid-Open No. 1-302074, in which (1) is an outdoor unit and (2) is an outdoor unit. Is a variable capacity compressor,
(3) is a four-way valve, (4) is an outdoor heat exchanger, (5) is an outdoor expansion valve, (6a), (6b), (6c) are indoor units, (8)
a), (8b) and (8c) are indoor heat exchangers, (9) is an outdoor fan, (10a), (10b) and (10c) are indoor fans, (11) is a header, and (12a). , (12b) and (12c) are indoor first two-way valves, (13a), (13b) and (13c) are indoor second two-way valves, and (14a), (14b) and (14c) are chambers. An inside first expansion valve, (15a), (15b), and (15c) are indoor-side second expansion valves, (16) is a two-way valve, and (50) is a control device for controlling the air conditioner. Next, the operation will be described. The high-temperature and high-pressure gas refrigerant compressed by the compressor (2) passes through the four-way valve (3), partially condenses and liquefies in the outdoor heat exchanger (4), and becomes a medium-pressure two-phase refrigerant as the outdoor expansion valve (5). ) To be sent indoors. When the indoor unit (6a) is in the heating mode and the indoor units (6b) and (6c) are in the cooling mode, the medium-pressure two-phase refrigerant sent indoors passes through the indoor-side first two-way valve (12a). Condensed and liquefied in the indoor heat exchanger (8a), and the indoor second expansion valve (15
After a), it is collected as a liquid in the header (11). This medium-pressure liquid refrigerant is supplied to the indoor first expansion valves (14) of the indoor units (6b) and (6c).
a) and (14c) to enter the indoor heat exchangers (8b) and (8c), respectively.
Return to the outdoor unit (1) via the two-way valves (13b) and (13c). Then, the refrigerant returns to the compressor (2) again via the four-way valve (3), and a refrigerant cycle is formed. Various devices forming the refrigerant cycle are controlled as follows by a control device (50) provided on the outdoor unit (1) side. The capacity of the compressor (2) on the outdoor unit (1) side is from the indoor units (6a) to (6).
c) Room thermo provided in each room on the side (not shown)
Is controlled based on the ON-OFF signal transmitted by the outdoor heat exchanger (4), and the factor that determines the capacity of the outdoor heat exchanger (4) is only the air blower of the outdoor blower (9). It is controlled by a temperature deviation value between an outside air temperature detected by an outside air thermometer (not shown) provided in (1) and a preset temperature. The four-way valve (3) that switches the function of the outdoor heat exchanger (4) to the heat radiation or heat absorption function is provided by the total ratio of the cooling / heating signals transmitted by each room thermo on the indoor units (6a) to (6c). And the indoor first and second two-way valves (12a) to (12a) for switching between the cooling and warming operation modes of the indoor heat exchangers (8a) to (8c).
c), (13a) to (13c) and the inlet / outlet expansion valve (14a) to
(14c) and (15a) to (15c) are individually controlled by cooling / warming signals transmitted by each room thermo. Japanese Patent Application Laid-Open No. 2-8663 discloses an almost identical prior art in which an outdoor unit and an indoor unit are connected by two pipes.

[発明が解決しようとする課題] 従来の多室式空気調和機は以上のように構成されてい
るので、各種機器を制御するために、制御信号用配線が
室内−室外機関を行き来し、制御回路の配線工事が複雑
になって、配線工事に時間がかかったり、配線を誤った
り、また、室外熱交換器の容量を外気温度により室外側
送風機の回転数のみの因子で制御し、さらに、各種機器
の制御を互いに関連させずに、それぞれの制御機器の信
号によってそれぞれ個別に制御されているのために、室
外機側の天候・気候等の環境条件の変化に追従できなか
ったり、冷凍サイクル全体の負荷バランスをとるのに時
間がかかったりして、各部屋の温度がなかなか設定した
冷・暖房温度に安定しない、また、冷凍サイクル全体の
負荷バランスを崩す各室内機の仕様変更・増減工事は、
制御回路のプログラム変更や、複雑な配線改修工事をし
なければできないという問題があった。
[Problems to be Solved by the Invention] Since the conventional multi-room air conditioner is configured as described above, in order to control various devices, control signal wiring moves back and forth between the indoor-outdoor engine and the control. The wiring work of the circuit becomes complicated, the wiring work takes time, the wiring is incorrect, and the capacity of the outdoor heat exchanger is controlled by the outside air temperature only by the factor of the rotation speed of the outdoor blower, Since the control of various devices is not related to each other, but is controlled individually by the signals of the control devices, it is not possible to follow changes in environmental conditions such as weather and climate on the outdoor unit side, or the refrigeration cycle It takes time to balance the entire load, and the temperature of each room is not stable at the set cooling / heating temperature.In addition, specifications change of each indoor unit that breaks the load balance of the entire refrigeration cycle. Increase / decrease construction
There was a problem that it was necessary to change the program of the control circuit and perform complicated wiring repair work.

この発明は上記のような問題点を解消するためになさ
れたもので、天候・気候等の環境条件の変化によって室
外機側の負荷が変化したり、また、室内機側の室内扉の
開閉や、室内設定温度の設定変更や、冷・暖房運転モー
ドの運転切替によって室内機側の負荷が変化したり、さ
らに、各室内機の仕様変更・増減工事等によって冷凍サ
イクル全体の総冷・暖房能力比率が変化しても、この変
化した負荷に対応して、室外機側機器のみの一括同時演
算制御で自律的に冷凍サイクル全体の負荷をバランスさ
せ、制御回路が簡単で、各室内機の仕様変更・増減工事
が簡単にでき、冷凍サイクル全体の負荷バランスがスピ
ーディに精度良く安定する信頼性の高い自律分散型の多
室式空気調和機を得ることを目的とする。
The present invention has been made in order to solve the above-described problems, and the load on the outdoor unit changes due to changes in environmental conditions such as weather and climate, and the opening and closing of the indoor door on the indoor unit side. The load on the indoor unit changes due to the change of the indoor set temperature and the operation switching of the cooling / heating operation mode, and the total cooling / heating capacity of the entire refrigeration cycle due to the specification change / increase / decrease work of each indoor unit. Even if the ratio changes, the load of the entire refrigeration cycle is autonomously balanced by batch simultaneous operation control of only the outdoor unit side equipment in response to this changed load, the control circuit is simple, and the specifications of each indoor unit It is an object of the present invention to provide a highly reliable autonomous decentralized multi-room air conditioner that can easily be changed or increased / decreased in construction and can stably and accurately balance the load of the entire refrigeration cycle.

[課題を解決するための手段] この発明に係る多室空気調和機は、容量可変圧縮機と
四方弁と室外熱交換器と室外送風機とを有する室外機
と、この室外機に2本の配管で接続され、前記室外機か
らの冷媒の流れを変える分流コントローラと、この分流
コントローラと配管を介してそれぞれ並列に接続された
複数の室内熱交換器を有する室内機と、を備え冷房暖房
同時運転可能な空気調和機において、又は室外熱交換器
と室内熱交換器の近傍に配置され前記圧縮機又は室外熱
交換器と室内熱交換器を流れる冷媒の状態を検出する冷
媒状態検出手段と、前記冷媒状態検出手段の検出した検
出結果とあらかじめ設定された目標値とを比較して前記
圧縮機および前記室外熱交換器の必要能力を演算し、こ
の演算結果に基づいて前記圧縮機の容量を制御するとと
もに、前記室外熱交換器熱交換能力調整手段を調整し、
前記室外熱交換器の能力を制御する制御装置とを備えた
ものである。
[Means for Solving the Problems] A multi-room air conditioner according to the present invention includes an outdoor unit having a variable capacity compressor, a four-way valve, an outdoor heat exchanger, and an outdoor blower, and two pipes connected to the outdoor unit. A shunt controller that changes the flow of the refrigerant from the outdoor unit and an indoor unit that has a plurality of indoor heat exchangers connected in parallel via the shunt controller and piping, respectively, In a possible air conditioner, or refrigerant state detecting means arranged near the outdoor heat exchanger and the indoor heat exchanger to detect the state of the refrigerant flowing through the compressor or the outdoor heat exchanger and the indoor heat exchanger, The required capacity of the compressor and the outdoor heat exchanger is calculated by comparing the detection result detected by the refrigerant state detecting means with a preset target value, and the capacity of the compressor is controlled based on the calculated result. And adjusting the outdoor heat exchanger heat exchange capacity adjusting means,
A controller for controlling the capacity of the outdoor heat exchanger.

また、冷媒状態検出手段は、圧縮機の吐出および吸入
する冷媒の圧力或いは冷凍サイクルの冷媒の凝縮温度と
蒸発温度を検出するものである。
The refrigerant state detecting means detects the pressure of the refrigerant discharged and drawn by the compressor or the condensation temperature and the evaporation temperature of the refrigerant in the refrigeration cycle.

また、制御装置は、演算した室外熱交換器の必要能力
に応じて四方弁を、切換え室外熱交換器の機能を放熱又
は吸熱機能へ切換えるものである。
The control device switches the four-way valve according to the calculated required capacity of the outdoor heat exchanger, and switches the function of the outdoor heat exchanger to the heat radiation or heat absorption function.

[作用] この発明における空気調和機は、室外機に設けられ前
記室外熱交換器へ流れる冷媒量と風量を変化させて室外
熱交換器の熱交換能力を調整可能にし、圧縮機又は室外
熱交換器と室内熱交換器の近傍にて、圧縮機又は室外熱
交換器と室内熱交換器を流れる冷媒の状態を検出し、検
出結果とあらかじめ設定された目標値とを比較して圧縮
機および室外熱交換器の必要能力を演算し、この演算結
果に基づいて圧縮機の容量を制御するとともに、室外機
に設けられ室外熱交換器を流れる冷媒量と風量とを変化
させて室外熱交換器の熱交換能力を制御する。
[Operation] The air conditioner according to the present invention is provided in an outdoor unit, and the amount of refrigerant and the amount of air flowing to the outdoor heat exchanger are changed so that the heat exchange capacity of the outdoor heat exchanger can be adjusted. In the vicinity of the heat exchanger and the indoor heat exchanger, the state of the refrigerant flowing through the compressor or the outdoor heat exchanger and the indoor heat exchanger is detected, and the detection result is compared with a preset target value to determine the state of the compressor and the outdoor heat exchanger. The required capacity of the heat exchanger is calculated, the capacity of the compressor is controlled based on the calculation result, and the amount of refrigerant and the amount of air flowing in the outdoor heat exchanger provided in the outdoor unit are changed to change the capacity of the outdoor heat exchanger. Control heat exchange capacity.

また、この発明における空気調和器は、室外熱交換器
の入り口側および出口側配管のそれぞれに設けられた開
閉弁の開閉と、室外熱交換器の入り口および出口配管と
を接続し、かつ途中にバイパス弁を有するバイパス配管
のバイパス弁の開閉と、室外送風機の回転数変化と、に
より室外熱交換器の熱交換能力を連続的に調整可能なも
のである。
Further, the air conditioner according to the present invention connects the opening and closing of the on-off valves provided at the inlet and outlet pipes of the outdoor heat exchanger, and connects the inlet and outlet pipes of the outdoor heat exchanger, and on the way. The heat exchange capacity of the outdoor heat exchanger can be continuously adjusted by opening and closing the bypass valve of the bypass pipe having the bypass valve and changing the rotation speed of the outdoor blower.

また、この発明における空気調和機は、圧縮機の吐出
および吸入する冷媒の圧力或いは冷凍サイクルの冷媒の
凝縮温度と蒸発温度を検出するものである。
Further, the air conditioner according to the present invention detects the pressure of the refrigerant discharged and drawn by the compressor or the condensation temperature and the evaporation temperature of the refrigerant in the refrigeration cycle.

また、この発明における空気調和機は、演算した室外
熱交換器の必要能力に応じて四方弁を切り換え,室外熱
交換器の機能を放熱又は吸熱機能へ切り換えるものであ
る。
Further, the air conditioner of the present invention switches the four-way valve according to the calculated required capacity of the outdoor heat exchanger, and switches the function of the outdoor heat exchanger to the heat radiation or heat absorption function.

[実施例] 以下、この発明の一実施例を図について説明する。第
1図において、(1)は室外機、(2)はこの室外機
(1)内の容量可変圧縮機、(3)は四方弁、(4a),
(4b)は並列に接続された室外熱交換器、(6a)〜(6
c)は室内機、(7)はアキュムレータ、(8a)〜(8
c)は室内熱交換器、(12a)〜(12c)はこの室内熱交
換器(8a)〜(8c)の一端に接続された電子膨張弁、
(17),(18)は上記室外機(1)と分流コントローラ
(19)とを結ぶ連結配管、(20)は上記分流コントロー
ラ(19)内の高圧管部、(21)は低圧管部、(22)は中
圧管部、(23)は電子膨張弁、(24a)〜(24c),(25
a)〜(25c)は電磁開閉弁である。分流コントローラ
(19)から各室内機(6a)〜(6c)へはそれぞれ2本の
配管で接続されており、各室内機(6a)〜(6c)へはそ
れぞれ2本の配管で接続されており、各室内機(6a)〜
(6c)の一端はそれぞれ電子膨張弁(12a)〜(12c)を
介して分流コントローラ(19)の中圧管部(22)に接続
され、また他端はそれぞれ分流コントローラ(19)の電
磁開閉弁(24a)〜(24c)および(25a)〜(25c)を介
して高圧管部(20)および低圧管部(21)につながって
いる。
Embodiment An embodiment of the present invention will be described below with reference to the drawings. In FIG. 1, (1) is an outdoor unit, (2) is a variable displacement compressor in the outdoor unit (1), (3) is a four-way valve, (4a),
(4b) is an outdoor heat exchanger connected in parallel, (6a) to (6)
c) is an indoor unit, (7) is an accumulator, (8a) to (8)
c) is an indoor heat exchanger, (12a) to (12c) are electronic expansion valves connected to one ends of the indoor heat exchangers (8a) to (8c),
(17), (18) are connecting pipes connecting the outdoor unit (1) and the flow dividing controller (19), (20) is a high pressure pipe section in the flow dividing controller (19), (21) is a low pressure pipe section, (22) is a medium pressure pipe section, (23) is an electronic expansion valve, (24a) to (24c), (25)
a) to (25c) are solenoid on-off valves. Each of the indoor units (6a) to (6c) is connected to each of the indoor units (6a) to (6c) by two pipes, and each of the indoor units (6a) to (6c) is connected to each of the indoor units (6a) to (6c) by two pipes. Yes, each indoor unit (6a) ~
One end of (6c) is connected to the medium pressure pipe (22) of the shunt controller (19) via the electronic expansion valves (12a) to (12c), respectively, and the other end is an electromagnetic on-off valve of the shunt controller (19), respectively. (24a) to (24c) and (25a) to (25c) are connected to the high-pressure pipe (20) and the low-pressure pipe (21).

(26a),(26b),(27a),(27b)は各室外熱交換
器(4a),(4b)の両側にそれぞれ接続された開閉弁、
(28)は室外熱交換器(4a),(4b)に並列に設けられ
たバイパス路、(29)はこのバイパス路(28)に設けら
れたバイパス開閉弁である。
(26a), (26b), (27a) and (27b) are on-off valves connected to both sides of each outdoor heat exchanger (4a) and (4b),
(28) is a bypass provided in parallel with the outdoor heat exchangers (4a) and (4b), and (29) is a bypass opening / closing valve provided in the bypass (28).

また、(30)は容量可変圧縮機(2)の冷媒吐出側に
設けられその圧力Pdを検知する第1の検出器に対応する
高圧検知器、(31)はアキュムレータ(7)の冷媒入口
側に設けられその圧力Psと検知する第2の検出器に対応
する低圧検知器、(32)は上記高圧検知器(30),低圧
検知器(31)の検知出力に基づいて四方弁(3)、室外
側送風機(9)、開閉弁(26a),(26b),(27a),
(27b),バイパス開閉弁(29)を制御する制御装置で
ある。また(33)は四方弁である。
Further, (30) is a high pressure detector provided on the refrigerant discharge side of the variable capacity compressor (2) and detects the pressure Pd thereof, and (31) is a refrigerant inlet side of the accumulator (7). A low pressure detector corresponding to a second detector for detecting the pressure Ps of the four-way valve (3) based on the detection output of the high pressure detector (30) and the low pressure detector (31) , Outdoor blower (9), on-off valve (26a), (26b), (27a),
(27b) A control device for controlling the bypass on-off valve (29). (33) is a four-way valve.

このような構成の空気調和機において、室内機(6a)
が暖房運転モード、室内機(6b),(6c)が冷房運転モ
ードである場合の動作を説明する。
In the air conditioner having such a configuration, the indoor unit (6a)
The operation when the operation mode is the heating operation mode and the indoor units (6b) and (6c) are in the cooling operation mode will be described.

室外機(1)内の圧縮機(2)で圧縮された高温高圧
のガス冷媒は四方弁(3)を経て、室外熱交換器(4
a),(4b)で一部凝縮し、二相冷媒となって高圧連絡
配管(17)を経由して室内の分流コントローラ(19)に
入る。ここで気液分離器(40)で分離された高圧ガス冷
媒は高圧ガス管部(20)を経て電磁開閉弁(25a)より
室内機(6a)に流入し、その室内熱交換器(8a)で暖房
に供される。その後、冷媒は電子膨張弁(12a)を経て
中圧管部(22)に流入する。この冷媒は、気液分離器
(40)の液層部から電子膨張弁(23)を経由して中圧管
部(22)に流入する冷媒と合流して室内器(6b),(6
c)に流入する。そして、各々電子膨張弁(12b),(12
c)で低圧になり室内熱交換器(8b),(8c)で冷房に
供されてガス化し、その後電磁開閉弁(24b),(24c)
を経て低圧管部(21)に合流し分流コントローラ(19)
を出て室外への連絡配管(18)に入る。そして、室外機
(1)の四方弁(3)、アキュムレータ(7)を通り再
び圧縮部(2)に循環して冷暖同時冷媒回路が構成され
ている。
The high-temperature and high-pressure gas refrigerant compressed by the compressor (2) in the outdoor unit (1) passes through the four-way valve (3) and passes through the outdoor heat exchanger (4).
Partially condensed in (a) and (4b) and turns into a two-phase refrigerant and enters the indoor branch flow controller (19) via the high-pressure communication pipe (17). Here, the high-pressure gas refrigerant separated by the gas-liquid separator (40) flows into the indoor unit (6a) from the solenoid on-off valve (25a) through the high-pressure gas pipe (20), and the indoor heat exchanger (8a) Served for heating. Thereafter, the refrigerant flows into the medium pressure pipe (22) via the electronic expansion valve (12a). This refrigerant merges with the refrigerant flowing from the liquid layer portion of the gas-liquid separator (40) to the medium pressure pipe portion (22) via the electronic expansion valve (23), and the indoor units (6b), (6)
into c). The electronic expansion valves (12b), (12
The pressure becomes low in (c) and is cooled by the indoor heat exchangers (8b) and (8c) and gasified, and then the solenoid on-off valves (24b) and (24c)
And joins the low-pressure pipe section (21) via the flow controller (19)
And enter the outdoor connection pipe (18). Then, the refrigerant passes through the four-way valve (3) of the outdoor unit (1) and the accumulator (7) and circulates again to the compression unit (2) to form a simultaneous cooling / heating refrigerant circuit.

以上の冷媒回路において、室内機(6a)の熱交換器
(8a)は凝縮器として作用し、室内機(6b),(6c)の
熱交換器(8b),(8c)は蒸発器として作用している。
In the above refrigerant circuit, the heat exchanger (8a) of the indoor unit (6a) acts as a condenser, and the heat exchangers (8b) and (8c) of the indoor units (6b) and (6c) act as evaporators. doing.

上記のような動作においては、天候・気候等の環境条
件によって室外機側の負荷が変化したり、また、各室内
機側(6a)〜(6c)の室内扉の開閉や、室内設定温度の
設定変更や、冷・暖房モードの運転切替によって室内機
側の負荷が変化したり、またさらに、各室内機の仕様変
更・増減改造工事等によって冷凍サイクル全体の総冷・
暖房能力比率が変化したりしても、この変化した負荷に
追従して、冷凍サイクル全体の負荷をバランスさせるた
めに、室外機側(1)の圧縮機(2)の容量を制御する
と共に、室外熱交換器(26)の容量を決定するバイパス
弁(29)の開度や、開閉弁(26a),(27a),(26
b),(27b)の開度や、室外側送風機(9)の風量とか
を択一的に制御する必要が生じる。またさらに、室外機
および各室内機の要求する総冷・暖房能力の変化比率に
よっては、室外熱交換器の機能を放熱機能から吸熱機能
へ、吸熱機能から放熱機能へと切替える四方弁(3)を
も制御する必要が生じる。この実施例においては、高圧
検知器(30)が検知した高圧Pdを示す信号と低圧検知器
(31)が検知した低圧Psを示す信号とが制御装置(32)
に伝えられるが、一般に圧縮機能力をアップすると高圧
Pdは上昇し、低圧Psは下降する。又蒸発器能力をアップ
すると高圧Pdも低圧Psも上昇し、逆に凝縮器能力をアッ
プすると高圧Pdも低圧Psも下降する。この高圧Pdおよび
低圧が一定値を維持した定常状態であれば、室内側と室
外側の熱交換能力が平衡しているということであるか
ら、これら高圧Pdおよび低圧Psを、所定の目標高圧圧力
Pdおよび目標低圧圧力Psになるように室外機(1)
の熱交換能力を制御すれば室外機(1)内で閉じた自律
的制御ができる。圧縮機能力Qcompの変更量を△Qcomp,
室外熱交換器の熱交換能力Ak0の変更量を△Ak0とした場
合、上述のPd,Psとの関係は次の(1)式になる。
In the operation as described above, the load on the outdoor unit side changes depending on environmental conditions such as weather and climate, the opening and closing of the indoor doors on each indoor unit side (6a) to (6c), and the setting of the indoor set temperature. The load on the indoor unit side changes due to setting changes and switching between the cooling and heating modes, and furthermore, the total cooling and cooling of the entire refrigeration cycle
Even if the heating capacity ratio changes, the capacity of the compressor (2) on the outdoor unit side (1) is controlled to follow the changed load and balance the load of the entire refrigeration cycle. The degree of opening of the bypass valve (29), which determines the capacity of the outdoor heat exchanger (26), and the on-off valves (26a), (27a), (26)
It is necessary to selectively control the opening degrees of b) and (27b) and the air volume of the outdoor blower (9). Further, depending on the change ratio of the total cooling / heating capacity required by the outdoor unit and each indoor unit, a four-way valve (3) that switches the function of the outdoor heat exchanger from the heat radiation function to the heat absorption function and from the heat absorption function to the heat radiation function. Also needs to be controlled. In this embodiment, a signal indicating the high pressure Pd detected by the high pressure detector (30) and a signal indicating the low pressure Ps detected by the low pressure detector (31) are transmitted to the control device (32).
In general, the higher the compression function, the higher the pressure
Pd rises and low pressure Ps falls. When the evaporator capacity is increased, both the high pressure Pd and the low pressure Ps increase, and conversely, when the condenser capacity is increased, both the high pressure Pd and the low pressure Ps decrease. If the high pressure Pd and the low pressure are in a steady state maintaining a constant value, it means that the heat exchange capacity between the indoor side and the outdoor side is balanced, so that these high pressure Pd and the low pressure Ps are changed to a predetermined target high pressure
Outdoor unit (1) so that Pd * and target low pressure Ps *
By controlling the heat exchange capacity of the outdoor unit, closed autonomous control can be performed in the outdoor unit (1).変 更 Qcomp,
When the change amount of the heat exchange capacity Ak 0 of the outdoor heat exchanger is set to △ Ak 0 , the relationship between Pd and Ps described above is expressed by the following equation (1).

ただし、a,b,c,dは予め決められる定数であり、また
△Pd,△Psはそれぞれ目標値との偏差すなわち△Pd=Pd
−Pd,△Ps=Ps−Psである。この(1)式を変形す
れば、 となる。
Here, a, b, c, and d are constants determined in advance, and △ Pd and △ Ps are deviations from target values, that is, △ Pd = Pd
* -Pd, △ Ps = Ps * -Ps. By transforming equation (1), Becomes

このようにして求められた△Qcompに基づいて圧縮機
(2)の容量制御を行う。また求められた△Ak0に基づ
き室外熱交換器(4a),(4b)を凝縮器にして放熱源と
して使うか蒸発器にして吸熱源として使うかを判断して
四方弁(3)を制御する。例えば、上記の動作状態であ
れば、前の熱交換能力と求められた熱交換能力とにより
得られる熱交換能力が、正であるときはそのまま室外熱
交換器(4a),(4b)を凝縮器とするサイクルとし、負
となったときは室外熱交換器(4a),(4b)を蒸発器と
するサイクルにする。そして、サイクルにおける熱交換
能力(正のときAKe,負のときAKc)の可変制御は、室外
側送風機(9)の回転数制御および開閉弁(26a),(2
6b),(27a),(27b),バイパス弁(29)の開閉制御
によりなされる。すなわち、求められる熱交換能力に応
じて動作させる室外熱交換器の選択およびバイパス路
(28)による冷媒のバイパス要否の決定を行うととも
に、そのときの室外送風機(9)の回転数を可変するこ
とにより熱交換能力を連続的に制御するものである。第
2図にこのような制御における制御ブロック図を示す。
The capacity control of the compressor (2) is performed based on the thus obtained ら れ Qcomp. Also, based on the determined △ Ak 0 , the four-way valve (3) is controlled by judging whether to use the outdoor heat exchangers (4a) and (4b) as condensers and use them as heat radiation sources or as evaporators and use them as heat absorption sources. I do. For example, in the above operation state, when the heat exchange capacity obtained by the previous heat exchange capacity and the required heat exchange capacity is positive, the outdoor heat exchangers (4a) and (4b) are directly condensed. When it becomes negative, the cycle is made with the outdoor heat exchangers (4a) and (4b) as evaporators. The variable control of the heat exchange capacity (AKe when positive, AKc when negative) in the cycle is performed by controlling the rotation speed of the outdoor blower (9) and the on-off valves (26a), (2
6b), (27a), (27b), and the opening and closing control of the bypass valve (29). That is, the selection of the outdoor heat exchanger to be operated according to the required heat exchange capacity and the determination of the necessity of bypassing the refrigerant by the bypass passage (28) are performed, and the rotation speed of the outdoor blower (9) at that time is varied. Thus, the heat exchange capacity is continuously controlled. FIG. 2 shows a control block diagram in such control.

例えば室外熱交換器(4a),(4b)凝縮器として用い
る場合、必要な熱交換能力に応じて室外熱交換器(4
a),(4b)両方を用いるか、室外熱交換器(4b)のみ
を用いるか、あるいはバイパス路(28)により冷媒を一
部バイパスさせながら室外熱交換器を用いるかが選択さ
れて各開閉弁(26a),(26b),(27a),(27b),バ
イパス弁(29)の開閉がなされ、さらに室外送風機
(9)の回転数が制御される。第3図にそれぞれの場合
における室外送風機の回転数と凝縮機の熱交換能力の関
係を示し、室外熱交換器(4a),(4b)両方を用いた場
合、室外熱交換器(4b)のみを用いた場合、バイパス路
(28)によりバイパスする場合の順にAKcも低くなり、
かつそれぞれにおいて室外送風機(9)の回転数に対し
てAKcが連続的に変化している。
For example, when used as an outdoor heat exchanger (4a) or (4b) condenser, the outdoor heat exchanger (4a) depends on the required heat exchange capacity.
a), (4b) Both use, only the outdoor heat exchanger (4b), or use the outdoor heat exchanger while partially bypassing the refrigerant by the bypass path (28), each opening and closing The valves (26a), (26b), (27a), (27b) and the bypass valve (29) are opened and closed, and the rotational speed of the outdoor blower (9) is controlled. Fig. 3 shows the relationship between the rotational speed of the outdoor blower and the heat exchange capacity of the condenser in each case. When both the outdoor heat exchangers (4a) and (4b) were used, only the outdoor heat exchanger (4b) was used. When AKc is used, AKc also decreases in the order of bypassing by the bypass path (28),
In each case, AKc continuously changes with respect to the rotation speed of the outdoor blower (9).

このようにすれば圧縮機の容量を制御すると共に、室
外熱交換器容量を決定する各種機器の制御によって、室
外熱交換器の容量を0−100%までリニアに制御し、室
外機側機器のみの一括同時の演算制御によって室外機
(1)内で自律的な能力制御が行える。
In this way, the capacity of the compressor is controlled, and the capacity of the outdoor heat exchanger is linearly controlled from 0 to 100% by controlling various devices that determine the capacity of the outdoor heat exchanger. , The autonomous capacity control can be performed in the outdoor unit (1).

また、第4図は上記高圧Pd,低圧Psのかわりにこの空
気調和装置全体における冷媒の凝縮温度CT,蒸発温度ET
を検出して室外機(1)の制御を行う場合の構成図を示
す。(34)は各室内機(6a)〜(6c)に設けられた冷媒
温度センサー、(35)はこの冷媒温度センサー(34)の
検知温度に基づき電子膨張弁(12a)〜(12c)を制御
し、各室内機(6a)〜(6c)の自律制御を行うためのマ
イコン、(36)は室外熱交換器(4b)に設けられた温度
センサーである。このような場合、冷媒温度センサー
(34)、温度センサー(36)の検知温度中、最大のもの
を凝縮温度CT、最小のものを蒸発温度ETとし、それぞれ
目標凝縮温度CT、目標蒸発温度ETとの偏差△CT,△E
Tを求め、上記高圧Pd,低圧Psの場合と同様にして次式か
ら△Qcomp,△AK0を求め、 同様に熱交換能力を制御してもよい。この場合、例え
ば室内側において最大と最小の温度をマイコン(35)等
で選択し、これを室外側に伝送し、室外側の検知温度と
比較するなどの方法があるが、少なくとも室内−室外間
に信号の伝送路がひとつは必要となる。しかしながら圧
力検知器に比べ温度センサーの方がコスト面で有利であ
る。また、圧力センサーと温度センサーとを組み合わせ
て制御しても良い。
FIG. 4 shows the refrigerant condensation temperature CT and evaporation temperature ET in the entire air conditioner instead of the high pressure Pd and the low pressure Ps.
FIG. 3 is a configuration diagram in the case of detecting an external unit and controlling the outdoor unit (1). (34) is a refrigerant temperature sensor provided in each of the indoor units (6a) to (6c), and (35) controls the electronic expansion valves (12a) to (12c) based on the detected temperature of the refrigerant temperature sensor (34). A microcomputer for performing autonomous control of each of the indoor units (6a) to (6c), and (36) is a temperature sensor provided in the outdoor heat exchanger (4b). In this case, the refrigerant temperature sensor (34), in the temperature detected by the temperature sensor (36), condensing the largest one temperature CT, the smallest and the evaporation temperature ET, respectively target condensing temperature CT *, the target evaporation temperature ET * Deviation from △ CT, △ E
It sought T, the following equation △ qcomp, the △ AK 0 calculated the high-pressure Pd, as in the case of low pressure Ps, Similarly, the heat exchange capacity may be controlled. In this case, for example, there is a method of selecting the maximum and minimum temperatures on the indoor side by the microcomputer (35) or the like, transmitting this to the outdoor side, and comparing it with the detected temperature on the outdoor side. In addition, one signal transmission path is required. However, a temperature sensor is more cost-effective than a pressure detector. Further, the control may be performed by combining a pressure sensor and a temperature sensor.

[発明の効果] この発明の多室式空気調和機は、容量可変圧縮機と四
方弁と室外熱交換器と室外送風機とを有する室外機と、
この室外機に2本の配管で接続され、前記室外機からの
冷媒の流れを変える分流コントローラと、この分流コン
トローラと配管を介してそれぞれ並列に接続された複数
の室内熱交換器を有する室内機と、を備え冷房暖房同時
運転可能な空気調和機において、前記室外機に設けられ
前記室外熱交換器の入り口側および出口側配管のそれぞ
れに設けられた開閉弁の開閉と、前記室外熱交換器の入
り口および出口配管とを接続っし、かつ途中にバイパス
弁を有するバイパス配管のバイパス弁の開閉と、室外送
風機の回転数変化とにより前記室外熱交換器へ流れる冷
媒量と風量を変化させて室外熱交換器の熱交換能力を連
続的に調整可能な室外熱交換器熱交換能力調整手段と、
前記圧縮機又は室外熱交換器と室内熱交換器の近傍に配
置され前記圧縮機又は室外熱交換器と室内熱交換器を流
れる冷媒の状態を検出する冷媒状態検出手段と、前記冷
媒状態検出手段の検出した検出結果とあらかじめ設定さ
れた目標値とを比較して前記圧縮機および前記室外熱交
換器の必要能力を演算し、この演算結果に基づいて前記
圧縮機の容量を制御するとともに、前記室外熱交換器熱
交換能力調整手段を調整し、上記室外熱交換器の能力を
制御する制御装置とを備えた構成としたから、天候・気
候等の環境条件の変化によって室外機側の負荷または室
内機側の負荷が変化したり、各室内機の仕様変更・増減
工事等によって冷凍サイクル全体の総冷・暖房能力が変
化したも、冷凍サイクル全体の負荷をバランスさせ、制
御回路を簡単に出きる効果を有する。
[Effects of the Invention] A multi-room air conditioner of the present invention includes an outdoor unit having a variable capacity compressor, a four-way valve, an outdoor heat exchanger, and an outdoor blower,
An indoor unit having a branch controller connected to the outdoor unit via two pipes and changing a flow of the refrigerant from the outdoor unit, and a plurality of indoor heat exchangers connected in parallel with the branch controller and the pipes, respectively. An air conditioner capable of simultaneously operating cooling and heating, comprising: an opening / closing valve provided on the outdoor unit and provided on each of an inlet side pipe and an outlet side pipe of the outdoor heat exchanger; and the outdoor heat exchanger. By connecting the inlet and outlet pipes, and by opening and closing the bypass valve of the bypass pipe having a bypass valve in the middle, and by changing the number of revolutions of the outdoor blower, the amount of refrigerant and the amount of air flowing to the outdoor heat exchanger are changed. An outdoor heat exchanger heat exchange capacity adjusting means capable of continuously adjusting the heat exchange capacity of the outdoor heat exchanger,
Refrigerant state detecting means arranged near the compressor or the outdoor heat exchanger and the indoor heat exchanger for detecting the state of refrigerant flowing through the compressor or the outdoor heat exchanger and the indoor heat exchanger; and the refrigerant state detecting means Comparing the detected result of the detected and a preset target value to calculate the required capacity of the compressor and the outdoor heat exchanger, and controlling the capacity of the compressor based on the calculated result, The outdoor heat exchanger heat exchange capacity adjusting means is adjusted, and a control device for controlling the capacity of the outdoor heat exchanger is provided. Even if the load on the indoor unit changes or the total cooling / heating capacity of the entire refrigeration cycle changes due to changes in the specifications or increase / decrease construction of each indoor unit, etc., the load on the entire refrigeration cycle is balanced and the control circuit can be easily implemented. Having that effect.

また、冷媒状態検出手段は、圧縮機の吐出および吸入
する冷媒の圧力或いは冷凍サイクルの冷媒の凝縮温度と
蒸発温度を検出する構成としたから、簡単な計測で信頼
生の高い空気調和機を得る効果を有する。」 また、制御装置は、演算した室外熱交換器の必要能力
に応じて四方弁を切換え、室外熱交換器の機能を放熱又
は吸熱機能へ切換えるよう構成したから、室外機側機器
のみの一括同時演算制御によった、自律的に冷凍サイク
ル全体の負荷バランスをスピーディの精度良く安定させ
ると共に、信頼性野田かい空気調和機を得る効果を有す
る。
Further, since the refrigerant state detecting means is configured to detect the pressure of the refrigerant discharged and sucked by the compressor or the condensation temperature and the evaporation temperature of the refrigerant in the refrigeration cycle, a highly reliable air conditioner can be obtained by simple measurement. Has an effect. In addition, the control device is configured to switch the four-way valve according to the calculated required capacity of the outdoor heat exchanger and switch the function of the outdoor heat exchanger to the heat radiation or heat absorption function. The arithmetic control makes it possible to autonomously stabilize the load balance of the entire refrigeration cycle with high speed and accuracy, and to obtain a reliable Noda air conditioner.

【図面の簡単な説明】[Brief description of the drawings]

第1図はこの発明の一実施例による多室式空気調和機を
示す構成図、第2図は制御ブロック図、第3図はその動
作制御を説明する説明図、第4図は別の発明の実施例に
よる多室式空気調和機の構成図、第5図は多室式空気調
和機を示す構成図である。 図において、(1)は室外機、(6a)〜(6c)は室内
機、(8a)〜(8c)は室内熱交換器、(12a)〜(12c)
は電子膨張弁、(17),(18)は連絡配管、(19)は分
流コントローラ、(20)は高圧管部、(21)は低圧管
部、(22)は中圧管部、(24a)〜(24c),(25a)〜
(25c)は電磁開閉弁、(26a),(26b),(27a),
(27b)は開閉弁、(28)はバイパス路、(29)はバイ
パス弁、(30)は高圧検知器、(31)は低圧検知器、
(32)は制御装置、(34)は冷媒温度センサー、(36)
は温度センサーである。 なお、各図中同一符号は同一または相当部分を示す。
FIG. 1 is a block diagram showing a multi-room air conditioner according to one embodiment of the present invention, FIG. 2 is a control block diagram, FIG. 3 is an explanatory diagram for explaining the operation control thereof, and FIG. 4 is another invention. FIG. 5 is a block diagram showing a multi-room air conditioner according to the embodiment of the present invention. In the figure, (1) is an outdoor unit, (6a) to (6c) are indoor units, (8a) to (8c) are indoor heat exchangers, and (12a) to (12c).
Is an electronic expansion valve, (17) and (18) are communication pipes, (19) is a diversion controller, (20) is a high-pressure pipe, (21) is a low-pressure pipe, (22) is a medium-pressure pipe, and (24a). ~ (24c), (25a) ~
(25c) is a solenoid on-off valve, (26a), (26b), (27a),
(27b) is an on-off valve, (28) is a bypass, (29) is a bypass valve, (30) is a high pressure detector, (31) is a low pressure detector,
(32) is a control device, (34) is a refrigerant temperature sensor, (36)
Is a temperature sensor. In the drawings, the same reference numerals indicate the same or corresponding parts.

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】容量可変圧縮機と四方弁と室外熱交換器と
室外送風機とを有する室外機と、この室外機に2本の配
管で接続され、前記室外機からの冷媒の流れを変える分
流コントローラと、この分流コントローラと配管を介し
てそれぞれ並列に接続された複数の室内熱交換器を有す
る室内機と、を備え冷房暖房同時運転可能な空気調和機
において、 前記室外機に設けられ前記室外熱交換器の入り口側およ
び出口側配管のそれぞれに設けられた開閉弁の開閉と、 前記室外熱交換器の入り口および出口配管とを接続し、
かつ途中にバイパス弁を有するバイパス配管のバイパス
弁の開閉と、室外送風機の回転数変化と、 により前記室外熱交換器へ流れる冷媒量と風量を変化さ
せて、室外熱交換器の熱交換能力を連続的に調整可能な
室外熱交換器熱交換能力調整手段と、 前記圧縮機又は室外熱交換器と室内熱交換器の近傍に配
置され前記圧縮機又は室外熱交換器と室内熱交換器を流
れる冷媒の状態を検出する冷媒状態検出手段と、 前記冷媒状態検出手段の検出した検出結果とあらかじめ
設定された目標値とを比較して前記圧縮機および前記室
外熱交換器の必要能力を演算し、この演算結果に基づい
て前記圧縮機の容量を制御するとともに、前記室外熱交
換器熱交換能力調整手段を調整し、前記室外熱交換器の
能力を制御する制御装置と、を備えたことを特徴とする
多室式空気調和機。
1. An outdoor unit having a variable capacity compressor, a four-way valve, an outdoor heat exchanger, and an outdoor blower, and a diversion connected to the outdoor unit by two pipes to change a flow of a refrigerant from the outdoor unit. An air conditioner comprising: a controller; and an indoor unit having a plurality of indoor heat exchangers connected in parallel to each other through a pipe with the branch flow controller. Opening and closing of on-off valves provided on each of the inlet and outlet pipes of the heat exchanger, and connecting the inlet and outlet pipes of the outdoor heat exchanger,
Opening and closing a bypass valve of a bypass pipe having a bypass valve in the middle, and a change in the number of revolutions of the outdoor blower, changing the amount of refrigerant and the amount of air flowing to the outdoor heat exchanger by changing the heat exchange capacity of the outdoor heat exchanger. An outdoor heat exchanger heat exchange capacity adjusting means which can be continuously adjusted, and which is arranged near the compressor or the outdoor heat exchanger and the indoor heat exchanger and flows through the compressor or the outdoor heat exchanger and the indoor heat exchanger. Refrigerant state detection means for detecting the state of the refrigerant, and calculates the required capacity of the compressor and the outdoor heat exchanger by comparing a detection result detected by the refrigerant state detection means and a preset target value, A controller that controls the capacity of the compressor based on the calculation result, adjusts the outdoor heat exchanger heat exchange capacity adjusting means, and controls the capacity of the outdoor heat exchanger. Toss Multi-room type air conditioner.
【請求項2】冷媒状態検出手段は、圧縮機の吐出および
吸入する冷媒の圧力或いは冷凍サイクルの冷媒の凝縮温
度と蒸発温度を検出することを特徴とする請求項1記載
の多室式空気調和機。
2. A multi-chamber air conditioner according to claim 1, wherein said refrigerant state detecting means detects a pressure of refrigerant discharged and sucked by said compressor or a condensation temperature and an evaporation temperature of refrigerant in a refrigeration cycle. Machine.
【請求項3】制御装置は、演算した室外熱交換器の必要
能力に応じて四方弁を、切り換え,室外熱交換器の機能
を放熱又は吸熱機能へ切り換えることを特徴とする請求
項1記載の多室式空気調和機。
3. The control device according to claim 1, wherein the control device switches the four-way valve according to the calculated required capacity of the outdoor heat exchanger, and switches the function of the outdoor heat exchanger to the heat radiation or heat absorption function. Multi-room air conditioner.
JP2107917A 1990-03-19 1990-04-23 Air conditioner Expired - Lifetime JP2893844B2 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP2107917A JP2893844B2 (en) 1990-04-23 1990-04-23 Air conditioner
AU72991/91A AU636726B2 (en) 1990-03-19 1991-03-18 Air conditioning system
EP91302356A EP0448345B1 (en) 1990-03-19 1991-03-19 Air conditioning system
ES91302356T ES2047984T3 (en) 1990-03-19 1991-03-19 AIR CONDITIONING SYSTEM.
US07/672,071 US5142879A (en) 1990-03-19 1991-03-19 Air conditioning system
EP92202252A EP0509619B1 (en) 1990-03-19 1991-03-19 Air conditioning system
ES92202252T ES2085552T3 (en) 1990-03-19 1991-03-19 AIR CONDITIONING SYSTEM.
DE69116855T DE69116855T2 (en) 1990-03-19 1991-03-19 air conditioner
DE69100574T DE69100574T2 (en) 1990-03-19 1991-03-19 Air conditioner.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2107917A JP2893844B2 (en) 1990-04-23 1990-04-23 Air conditioner

Publications (2)

Publication Number Publication Date
JPH046355A JPH046355A (en) 1992-01-10
JP2893844B2 true JP2893844B2 (en) 1999-05-24

Family

ID=14471328

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2107917A Expired - Lifetime JP2893844B2 (en) 1990-03-19 1990-04-23 Air conditioner

Country Status (1)

Country Link
JP (1) JP2893844B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11060771B2 (en) 2016-10-25 2021-07-13 Samsung Electronics Co., Ltd. Air conditioner with a refrigerant ratio adjustor

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5540555A (en) * 1994-10-04 1996-07-30 Unosource Controls, Inc. Real time remote sensing pressure control system using periodically sampled remote sensors
US10001304B2 (en) 2013-05-31 2018-06-19 Mitsubishi Electric Corporation Heat medium relay unit and air-conditioning apparatus including the heat medium relay unit
JP6636151B2 (en) * 2016-06-30 2020-01-29 三菱電機株式会社 Air conditioner
WO2020217379A1 (en) * 2019-04-25 2020-10-29 三菱電機株式会社 Refrigeration cycle device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61110859A (en) * 1984-11-02 1986-05-29 ダイキン工業株式会社 Heat recovery type air conditioner
JPH0610569B2 (en) * 1988-08-19 1994-02-09 ダイキン工業株式会社 Operation controller for heat recovery type air conditioner
JP2522361B2 (en) * 1988-10-12 1996-08-07 三菱電機株式会社 Air conditioner

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11060771B2 (en) 2016-10-25 2021-07-13 Samsung Electronics Co., Ltd. Air conditioner with a refrigerant ratio adjustor

Also Published As

Publication number Publication date
JPH046355A (en) 1992-01-10

Similar Documents

Publication Publication Date Title
US5237833A (en) Air-conditioning system
AU660124B2 (en) Air conditioning apparatus
CA2530895C (en) Air-conditioning system with multiple indoor and outdoor units and control system therefore
EP0448345A1 (en) Air conditioning system
JP2974179B2 (en) Multi-room air conditioner
JP6628911B1 (en) Refrigeration cycle device
KR920007811B1 (en) Air conditioner
KR20070017269A (en) Pipe inspection operation and method of Multi air conditioner
JP2893844B2 (en) Air conditioner
JPH09280681A (en) Air conditioner
KR20120114997A (en) Air conditoner
JP3384150B2 (en) Multi-room air conditioner and operation method thereof
JP2531256B2 (en) Air conditioner
JP2502197B2 (en) Refrigeration cycle equipment
JP3661014B2 (en) Refrigeration equipment
JPH0833225B2 (en) Multi-room air conditioner
JP2800362B2 (en) Multi-room air conditioner
JP2974381B2 (en) Air conditioner
JP2716559B2 (en) Cooling / heating mixed type multi-room air conditioner
JP2534926B2 (en) Multi-room air conditioner
JP2904354B2 (en) Air conditioner
JP3199746B2 (en) Multi-room air conditioner
JPH0689923B2 (en) Air conditioner
JPH0670515B2 (en) Multi-room air conditioner
JP2522371B2 (en) Air conditioner

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080305

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090305

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100305

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100305

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110305

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110305

Year of fee payment: 12