JPH0610569B2 - Operation controller for heat recovery type air conditioner - Google Patents

Operation controller for heat recovery type air conditioner

Info

Publication number
JPH0610569B2
JPH0610569B2 JP63206688A JP20668888A JPH0610569B2 JP H0610569 B2 JPH0610569 B2 JP H0610569B2 JP 63206688 A JP63206688 A JP 63206688A JP 20668888 A JP20668888 A JP 20668888A JP H0610569 B2 JPH0610569 B2 JP H0610569B2
Authority
JP
Japan
Prior art keywords
refrigerant
heat exchanger
capacity
high pressure
low pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63206688A
Other languages
Japanese (ja)
Other versions
JPH0257873A (en
Inventor
真理 佐田
和生 米本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP63206688A priority Critical patent/JPH0610569B2/en
Publication of JPH0257873A publication Critical patent/JPH0257873A/en
Publication of JPH0610569B2 publication Critical patent/JPH0610569B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0231Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units with simultaneous cooling and heating

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は室外ユニットに対して複数の室内ユニットを個
別に冷暖房運転可能に接続した熱回収形空気調和装置の
運転制御装置に係り、特に高圧値と低圧値とに応じて室
外側の能力制御を行うようにしたものの改良に関する。
Description: TECHNICAL FIELD The present invention relates to an operation control device of a heat recovery type air conditioner in which a plurality of indoor units are individually connected to an outdoor unit so as to be capable of heating / cooling operation, and particularly to a high pressure The present invention relates to an improvement of the outdoor capacity control according to the low pressure value and the low pressure value.

(従来の技術) 従来より、例えば特開昭61−110859号公報に開
示される如く、室外ユニットに対して複数の室内ユニッ
トを並列に接続し、かつ各室内ユニットの利用側熱交換
器のガスラインとの接続を吐出ラインと吸入ラインとに
個別に切換えるように構成して、各室内ユニットを個別
に冷暖房運転可能にしたいわゆる熱回収形空気調和装置
の運転制御装置として、吐出ラインに高圧センサ、吸入
ラインに低圧センサをそれぞれ配置して、それぞれ運転
中における高圧信号と低圧信号の目標値に対する過大、
適正、過小の3種類の組み合わせからなる合計9種類の
信号に応じて、高圧及び低圧が所定の範囲に収束するよ
うに、室外ユニット側の熱源側熱交換器の蒸発,凝縮サ
イクルの切換えと、熱源側熱交換器の冷媒流量を調節す
る流量調節機構の開度と、圧縮機の運転容量とを制御す
ることにより、各室内ユニットにおける空調負荷に応じ
た適切な運転を確保しようとするものは知られている。
(Prior Art) Conventionally, as disclosed in, for example, Japanese Patent Laid-Open No. 61-110859, a plurality of indoor units are connected in parallel to an outdoor unit, and a gas of a heat exchanger on the use side of each indoor unit is connected. A high-pressure sensor in the discharge line as an operation control device of a so-called heat recovery type air conditioner that is configured to individually switch the connection with the discharge line and the suction line to enable individual heating and cooling operation of each indoor unit. , The low pressure sensor is arranged in the suction line, and the high voltage signal and the low voltage signal during operation are excessive with respect to the target value,
Switching between the evaporation and condensation cycles of the heat source side heat exchanger on the outdoor unit side so that the high pressure and the low pressure converge to a predetermined range in accordance with a total of nine types of signals consisting of three types of combinations of proper and undersized. By controlling the opening of the flow rate adjusting mechanism that adjusts the refrigerant flow rate of the heat source side heat exchanger and the operating capacity of the compressor, there is one that tries to ensure proper operation according to the air conditioning load in each indoor unit. Are known.

(発明が解決しようとする課題) 上記熱回収形空気調和装置の運転制御装置により、室内
ユニット側で空調負荷に応じて個別に冷房運転、暖房運
転を任意に行いながら、室外ユニット側で総合的な冷暖
房能力のバランスを維持するように制御することができ
る。
(Problems to be solved by the invention) By the operation control device of the heat recovery type air conditioner, while performing the cooling operation and the heating operation individually according to the air conditioning load on the indoor unit side, the outdoor unit side is comprehensively operated. It can be controlled to maintain a good balance of air conditioning capacity.

ところで、その場合、具体的には、上記高圧が過大、適
正、過小のときをそれぞれ過剰暖房能力信号、適正暖房
能力信号、不足暖房能力信号とし、低圧が過小、適正、
過大のときを過剰冷房能力信号、適正冷房能力信号、不
足冷房能力信号とすると、下記表に示すように、2つの
信号に対して、冷房要求能力と暖房要求能力との大小関
係に応じて熱源側熱交換器のサイクル切換えと流量制御
機構の開度とを凝縮作用側又は蒸発作用側に制御すると
ともに、一方が適正暖(冷)房能力信号で他方が不足冷
(暖)房能力信号のとき、又は双方が不足暖(冷)房能
力信号のときには圧縮機の運転容量を増大するように制
御し、一方が適正暖(冷)房能力信号で他方が過剰冷
(暖)房能力信号のときには圧縮機の運転容量を減少す
るように制御している(ただし、下記表において、「容
量増加」,「容量減少」はそれぞれ圧縮機(1)の運転
容量の増加,減少側への調節を示し、「凝縮作用方
向」,「蒸発作用方向」とはそれぞれ熱源側熱交換器の
凝縮サイクルへの切換えおよび流量制御機構の開度の増
大側への調節と、熱源側熱交換器の蒸発サイクルへの切
換えおよび流量制御機構の開度の増大側への調節とを示
す)。
By the way, in that case, specifically, when the high pressure is excessive, proper, or too small, the excess heating capacity signal, the proper heating capacity signal, and the insufficient heating capacity signal are respectively set, and the low pressure is too small, proper, or
Assuming that the excess cooling capacity signal, the proper cooling capacity signal, and the insufficient cooling capacity signal when the temperature is excessive, as shown in the table below, the heat source is supplied to the two signals according to the magnitude relationship between the cooling required capacity and the heating required capacity. The cycle switching of the side heat exchanger and the opening degree of the flow rate control mechanism are controlled to the condensing action side or the evaporating action side, and one of them is an appropriate heating (cooling) capability signal and the other is an insufficient cooling (heating) capability signal. When either or both are insufficient warm (cooling) capacity signals, control is performed to increase the operating capacity of the compressor. One of them is an appropriate warm (cooling) capacity signal and the other is an excessive cooling (warming) capacity signal. Occasionally, the operating capacity of the compressor is controlled to decrease (however, in the table below, "capacity increase" and "capacity decrease" are respectively adjusted to increase and decrease the operating capacity of the compressor (1). Show "condensation direction", "evaporation direction" To the condensing cycle of the heat source side heat exchanger and adjusting the opening of the flow rate control mechanism to the increasing side, and to the evaporation cycle of the heat source side heat exchanger and to the increasing side of the flow rate controlling mechanism. Adjustment).

しかしながら、過剰暖房能力信号で不足冷房能力信号の
ときおよび過剰冷房能力信号で不足暖房能力信号のとき
には、いずれも流量制御機構の開度を制御するだけで圧
縮機の運転容量を制御していないために、次のような問
題がある。
However, when the excess heating capacity signal is the insufficient cooling capacity signal and when the excess cooling capacity signal is the insufficient heating capacity signal, the operating capacity of the compressor is not controlled only by controlling the opening degree of the flow rate control mechanism. There are the following problems.

すなわち、例えば室内ユニットの全数が冷房運転を行っ
ている場合、過剰暖房能力信号があり、冷房能力が不足
していても、熱源側熱交換器を凝縮方向に作用させる制
御しか行っていないので、流量制御機構の開度が全開値
又は過冷却度が下限値に達すると、それ以上室外ユニッ
ト側の能力を上昇できないことになる。その一方、高圧
の目標値を高く設定することによりそのような不都合を
解消しようとすれば、必然的に成績係数が悪化すること
になる。
That is, for example, when all the indoor units are performing the cooling operation, there is an excess heating capacity signal, and even if the cooling capacity is insufficient, since only the control for causing the heat source side heat exchanger to act in the condensation direction is performed, When the opening degree of the flow rate control mechanism reaches the fully open value or the supercooling degree reaches the lower limit value, the capacity of the outdoor unit side cannot be further increased. On the other hand, if an attempt is made to eliminate such inconvenience by setting the high pressure target value high, the coefficient of performance will inevitably deteriorate.

同様に、室内ユニットの全数が暖房運転を行っている場
合、過剰冷房能力信号があり、暖房能力が不足していて
も、熱源側熱交換器を蒸発方向に作用させるだけの制御
となり、上記と同じく室外ユニット側で所定の能力を確
保することができないことになる。
Similarly, when all the indoor units are performing heating operation, even if there is an excess cooling capacity signal and the heating capacity is insufficient, the control is such that only the heat source side heat exchanger acts in the evaporation direction. Similarly, it becomes impossible for the outdoor unit to secure a predetermined capacity.

本発明は斯かる点に鑑みてなされたものであり、その目
的は、室内ユニットの全数が冷房運転又は暖房運転時に
おいて冷房能力又は暖房能力が不足している場合、圧縮
機の容量を制御することにより、室外ユニット側の能力
不足を生ずることなく、所定の熱回収運転を行うことに
ある。
The present invention has been made in view of the above problems, and an object thereof is to control the capacity of a compressor when all the indoor units have insufficient cooling capacity or heating capacity during cooling operation or heating operation. As a result, a predetermined heat recovery operation can be performed without causing a capacity shortage on the outdoor unit side.

(課題を解決するための手段) 上記目的を達成するため本発明の第1の解決手段は、第
1図に示すように、容量可変形圧縮機(1)、熱源側熱
交換器(3)および該熱源側熱交換器(3)への冷媒流
量調節機能と減圧機能とを備えた流量制御機構(4)を
有する室外ユニット(X)に対し、利用側熱交換器
(7)および該利用側熱交換器(7)用の減圧機構
(6)を有する複数の室内ユニット(A)〜(C)を並
列に冷媒配管(11)で接続してなる冷媒回路(12)
を備えるとともに、上記各熱交換器(3),(7)〜
(7)が蒸発器として機能する蒸発サイクル又は凝縮器
として機能する凝縮サイクルで冷媒が循環するように、
各熱交換器(3),(7)〜(7)の冷媒回路(12)
のガスライン(11b)との接続を吐出ライン(11
c)側と吸入ライン(11d)側とに個別に切換える接
続切換機構(51)を備えた熱回収形空気調和装置を前
提とする。
(Means for Solving the Problem) In order to achieve the above object, the first solution means of the present invention is, as shown in FIG. 1, a variable capacity compressor (1), a heat source side heat exchanger (3). Also, for the outdoor unit (X) having a flow rate control mechanism (4) having a refrigerant flow rate adjusting function and a pressure reducing function for the heat source side heat exchanger (3), the use side heat exchanger (7) and the utilization A refrigerant circuit (12) in which a plurality of indoor units (A) to (C) having a pressure reducing mechanism (6) for a side heat exchanger (7) are connected in parallel by a refrigerant pipe (11).
And the heat exchangers (3), (7) to
(7) so that the refrigerant circulates in the evaporation cycle functioning as an evaporator or the condensation cycle functioning as a condenser,
Refrigerant circuit (12) of each heat exchanger (3), (7) to (7)
The gas line (11b) of the discharge line (11b)
It is premised on the heat recovery type air conditioner provided with a connection switching mechanism (51) for individually switching between the c) side and the suction line (11d) side.

そして、該熱回収形空気調和装置の運転制御装置とし
て、上記冷媒回路(12)の吐出ラインに配置され、高
圧を検出する高圧検出手段(Pc)と、吸入ライン(1
1d)に配置され、低圧を検出する低圧検出手段(P
e)と、熱源側熱交換器(3)における冷媒の過冷却度
を検出する気液差温検出手段(50)と、上記高圧検出
手段(Pc)および低圧検出手段(Pe)の出力を受
け、高圧および低圧がいずれも適正範囲よりも高いとき
に、上記熱源側熱交換器(3)を凝縮作用方向に制御す
る冷媒作用制御手段(52)と、該冷媒作用制御手段
(52)および上記気液差温検出手段(50)の出力を
受け、冷媒作用制御手段(52)による制御時に冷媒の
過冷却度が下限値に達したとき又は流量制御機構(4)
の開度が全開になったときには、上記圧縮機(1)の運
転容量を増大側に変更する容量制御手段(53)とを設
ける構成としたものである。
Then, as an operation control device of the heat recovery type air conditioner, a high pressure detecting means (Pc) which is arranged in the discharge line of the refrigerant circuit (12) and detects a high pressure, and an intake line (1).
1d), which is a low pressure detection means (P
e), gas-liquid differential temperature detection means (50) for detecting the degree of supercooling of the refrigerant in the heat source side heat exchanger (3), and outputs of the high pressure detection means (Pc) and low pressure detection means (Pe). , A refrigerant action control means (52) for controlling the heat source side heat exchanger (3) in the condensation action direction when both the high pressure and the low pressure are higher than the appropriate range, the refrigerant action control means (52) and the above. When the supercooling degree of the refrigerant reaches the lower limit value during the control by the refrigerant action control means (52) by receiving the output of the gas-liquid differential temperature detection means (50) or the flow rate control mechanism (4)
When the opening of the compressor is fully opened, a capacity control means (53) for changing the operating capacity of the compressor (1) to the increasing side is provided.

また、第2の解決手段は、上記第1の解決手段と同様の
熱回収形空気調和装置を前提とし、さらに、同様の高圧
検出手段(Pc)および低圧検出手段(Pe)を設け
る。
Further, the second solving means is premised on the heat recovery type air conditioner similar to the first solving means, and is further provided with the same high pressure detecting means (Pc) and low pressure detecting means (Pe).

さらに、熱源側熱交換器(3)における冷媒の過熱度を
検出する気液差温検出手段(50)と、上記高圧検出手
段(Pc)および低圧検出手段(Pe)の出力を受け、
高圧および低圧がいずれも適正範囲よりも低いときに、
上記熱源側熱交換器(3)を蒸発作用方向に制御する冷
媒作用制御手段(52)と、該冷媒作用制御手段(5
2)および上記気液差温検出手段(50)の出力を受
け、冷媒作用制御手段(52)による制御時に冷媒の過
熱度が下限値に達したとき又は流量制御機構(4)の開
度が全開になったときには、上記圧縮機(1)の運転容
量を増大側に変更する容量制御手段(53)とを設けた
ものである。
Further, receiving the outputs of the gas-liquid differential temperature detecting means (50) for detecting the degree of superheat of the refrigerant in the heat source side heat exchanger (3) and the high pressure detecting means (Pc) and the low pressure detecting means (Pe),
When both high pressure and low pressure are lower than the proper range,
Refrigerant action control means (52) for controlling the heat source side heat exchanger (3) in the evaporation action direction, and the refrigerant action control means (5)
2) and the output of the gas-liquid differential temperature detection means (50), when the degree of superheat of the refrigerant reaches the lower limit value or the opening degree of the flow rate control mechanism (4) during the control by the refrigerant action control means (52). When fully opened, a capacity control means (53) for changing the operating capacity of the compressor (1) to the increasing side is provided.

(作用) 以上の構成により、請求項(1)の発明では、高圧検出手
段(Pc)で検出される高圧値および低圧検出手段(P
e)で検出される低圧値がいずれも所定の適正範囲より
も高く、過剰暖房能力信号と不足冷房能力信号とが得ら
れるような場合、例えば装置の全数冷房運転時に、熱源
側熱交換器(3)の凝縮能力が不足するような場合に
は、冷媒作用制御手段(52)により、熱源側熱交換器
(3)の凝縮能力が増大する方向に、つまり接続切換機
構(51)の切換えにより熱源側熱交換器(3)が凝縮
サイクルに、かつ流量制御機構(4)の開度が増加する
ように制御される。
(Operation) With the above configuration, in the invention of claim (1), the high pressure value and the low pressure detection means (Pc) detected by the high pressure detection means (Pc).
In the case where the low pressure values detected in e) are both higher than the predetermined appropriate range and the excess heating capacity signal and the insufficient cooling capacity signal are obtained, for example, at the time of 100% cooling operation of the device, the heat source side heat exchanger ( When the condensing capacity of 3) is insufficient, the refrigerant action control means (52) increases the condensing capacity of the heat source side heat exchanger (3), that is, by switching the connection switching mechanism (51). The heat source side heat exchanger (3) is controlled in the condensation cycle and the opening degree of the flow rate control mechanism (4) is increased.

そして、その開度調節によっても適正条件に達せずその
間に過冷却度が下限値に達して開度がそれ以上増加でき
ないとき又は開度自体が全開値になったときには、容量
制御手段(53)により、圧縮機(1)の運転容量が増
大するように制御されるので、冷媒流量が増加し、熱源
側熱交換器(3)の凝縮能力が増大することになる。よ
って、装置の運転中における冷房能力と暖房能力のバラ
ンスが崩れるのが有効に防止され、快適な空調感が維持
されることになる。
When the proper condition is not reached even by adjusting the opening degree and the degree of supercooling reaches the lower limit value during that time so that the opening degree cannot be further increased or when the opening degree itself becomes the fully open value, the capacity control means (53) Thus, the operating capacity of the compressor (1) is controlled to increase, so that the refrigerant flow rate increases and the condensing capacity of the heat source side heat exchanger (3) increases. Therefore, the balance between the cooling capacity and the heating capacity during the operation of the device is effectively prevented from being upset, and a comfortable air conditioning feeling is maintained.

また、請求項(2)の発明では、高圧値と低圧値がいずれ
も適正範囲よりも低く、不足暖房能力信号と過剰冷房能
力信号とが得られるような場合、例えば室内ユニット
(A)〜(C)の全数暖房運転時において熱源側熱交換
器(3)の蒸発能力が不足するような場合には、冷媒作
用制御手段(52)により、熱源側熱交換器(3)の蒸
発能力が増大する方向に、つまり接続切換機構(51)
の切換えにより熱源側熱交換器(3)が蒸発サイクル
に、かつ流量制御機構(4)の開度が増加するように制
御される。
Further, in the invention of claim (2), when both the high pressure value and the low pressure value are lower than the proper ranges and the insufficient heating capacity signal and the excessive cooling capacity signal are obtained, for example, the indoor units (A) to ( When the evaporation capacity of the heat source side heat exchanger (3) is insufficient during the total heating operation of C), the refrigerant operation control means (52) increases the evaporation capacity of the heat source side heat exchanger (3). Direction, that is, the connection switching mechanism (51)
The heat source side heat exchanger (3) is controlled to switch to the evaporation cycle and the opening degree of the flow rate control mechanism (4) is increased by switching.

そして、その開度調節によっても適正条件に達せずその
間に過熱度が下限値に達して開度がそれ以上増加できな
いとき又は開度自体が全開値になったときには、容量制
御手段(53)のより、圧縮決(1)の運転容量が増大
するように制御されるので、冷媒流量が増大し、熱源側
熱交換器(3)の蒸発能力が増大することになる。よっ
て、上記請求項(1)の発明と同様の効果を得ることがで
きる。
When the proper condition is not reached even by adjusting the opening and the degree of superheat reaches the lower limit during that time, and the opening cannot be further increased, or when the opening itself reaches the fully open value, the capacity control means (53) As a result, the operating capacity of the compression decision (1) is controlled to increase, so that the refrigerant flow rate increases and the evaporation capacity of the heat source side heat exchanger (3) increases. Therefore, it is possible to obtain the same effect as that of the invention of claim (1).

(実施例) 以下、本発明の実施例について、第2図以下の図面に基
づき説明する。
(Embodiment) An embodiment of the present invention will be described below with reference to the drawings starting from FIG.

第2図は本発明の実施例に係る空気調和装置の全体構成
を示し、一台の室外ユニット(X)に対し、三台の室内
ユニット(A)〜(C)が並列に配置されている。上記
室外ユニット(X)には、インバータ(図示せず)によ
り運転周波数可変に駆動される容量可変形の圧縮機
(1)と、冷媒の流れ方向に応じて凝縮器又は蒸発器と
して機能する熱源側熱交換器としての室外熱交換器
(3)と、該室外熱交換器(3)が凝縮器として機能す
る凝縮サイクル時には図中実線のごとく、蒸発器として
機能する蒸発サイクル時には図中破線のごとく、つまり
室外熱交換器(3)への冷媒の流れを蒸発サイクルと凝
縮サイクルとに切換える第1四路切換弁(2)と、上記
室外熱交換器(3)への冷媒流量を調節するとともに、
室外熱交換器(3)が蒸発器として機能するときには冷
媒の減圧をも行う流量制御機構としての第1電動膨張弁
(4)と、液冷媒を貯溜するためのレシーバ(5)と、
圧縮機(1)への吸入ガス中の液冷媒を分離するための
アキュムレータ(8)とが配置されている。
FIG. 2 shows the overall configuration of the air conditioner according to the embodiment of the present invention, in which three indoor units (A) to (C) are arranged in parallel with respect to one outdoor unit (X). . The outdoor unit (X) includes a variable capacity compressor (1) driven by an inverter (not shown) with a variable operating frequency, and a heat source functioning as a condenser or an evaporator depending on the flow direction of the refrigerant. An outdoor heat exchanger (3) as a side heat exchanger and a solid line in the figure during a condensation cycle in which the outdoor heat exchanger (3) functions as a condenser, and a dashed line in the figure during an evaporation cycle that functions as an evaporator. That is, that is, the first four-way switching valve (2) that switches the flow of the refrigerant to the outdoor heat exchanger (3) between the evaporation cycle and the condensation cycle, and the refrigerant flow rate to the outdoor heat exchanger (3) is adjusted. With
A first electric expansion valve (4) as a flow rate control mechanism that also reduces the pressure of the refrigerant when the outdoor heat exchanger (3) functions as an evaporator; a receiver (5) for storing liquid refrigerant;
An accumulator (8) for separating the liquid refrigerant in the suction gas to the compressor (1) is arranged.

また、上記各室内ユニット(A)〜(C)はいずれも同
一構成であって、冷媒の流れに応じて蒸発器又は凝縮器
として機能する利用側熱交換器としての室内熱交換器
(7)と、該室内熱交換器(7)への冷媒を減圧する減
圧機構としての第2電動膨張弁(6)とが配置されてい
る。
In addition, the indoor units (A) to (C) have the same configuration, and the indoor heat exchanger (7) as a use-side heat exchanger functions as an evaporator or a condenser according to the flow of the refrigerant. And a second electric expansion valve (6) as a pressure reducing mechanism for reducing the pressure of the refrigerant to the indoor heat exchanger (7).

そして、上記各ユニット(X),(A)〜(C)内の各
機器(1)〜(8)は、それぞれ冷媒配管(11)によ
り順次冷媒の流通可能に接続されていて、各ユニット
(X),(A)〜(C)の熱交換器(3),(7)〜
(7)で付与された熱を冷媒を介して相互に熱交換する
冷媒回路(12)が構成されている。
The respective devices (1) to (8) in the respective units (X) and (A) to (C) are sequentially connected to each other by a refrigerant pipe (11) so that the refrigerant can flow. X), (A)-(C) heat exchangers (3), (7)-
A refrigerant circuit (12) for exchanging heat between the heat given in (7) through the refrigerant is configured.

ここで、上記冷媒回路(12)のガスライン(11b)
には、各室内ユニット(A)〜(C)について、各熱交
換器(7)〜(7)が蒸発器として機能する蒸発サイク
ル時には図中実線のごとく、凝縮器として機能する凝縮
サイクル時には図中破線のごとく切換わり、各熱交換器
(7)〜(7)の上記ガスライン(11b)との接続を
圧縮機(1)の吐出ライン(11c)側と吸入ライン
(11d)側とにそれぞれ個別に切換える第2〜第4四
路切換弁(14)〜(16)が配置されている。上記第
1四路切換弁(2)および第2〜第4四路切換弁(1
4)〜(16)により、各熱交換器(3),(7)〜
(7)が蒸発器として機能する蒸発サイクル又は凝縮器
として機能する凝縮サイクルで冷媒が循環するように、
各熱交換器(3),(7)〜(7)のガスライン(11
b)との接続を吐出ライン(11c)側と吸入ライン
(11d)側とに個別に切換える接続切換機構(51)
が構成されている。
Here, the gas line (11b) of the refrigerant circuit (12)
For each indoor unit (A) to (C), the solid line in the figure indicates the evaporation cycle in which the heat exchangers (7) to (7) function as evaporators, and the diagram indicates the condensation cycle in which the heat exchangers (7) to (7) function as condensers. Switching is performed as indicated by the middle broken line, and the connection between the heat exchangers (7) to (7) and the gas line (11b) is connected to the discharge line (11c) side and the suction line (11d) side of the compressor (1). Second to fourth four-way switching valves (14) to (16) for individually switching are arranged. The first four-way switching valve (2) and the second to fourth four-way switching valves (1
4) to (16), each heat exchanger (3), (7) to
(7) so that the refrigerant circulates in the evaporation cycle functioning as an evaporator or the condensation cycle functioning as a condenser,
Gas line (11) of each heat exchanger (3), (7)-(7)
Connection switching mechanism (51) for individually switching the connection with b) to the discharge line (11c) side and the suction line (11d) side
Is configured.

一方、室外ユニット(X)には、センサ類が設置されて
いて、(Pc)は吐出ライン(11c)に配置され、高
圧値Tcを検出する高圧検出手段としての高圧センサ、
(Pe)は吸入ライン(11d)に配置され、低圧値T
eを検出する低圧検出手段としての低圧センサ、(Th
1)は室外熱交換器(3)の液管側に取付けられ、液管
温度T1を検出するための液管センサ、(Th2)は、室
外熱交換器(3)のガス管側に取付けられ、ガス管温度
T2 を検出するためのガス管センサ(Th2)であって、
上記高圧センサ(Pc)、低圧センサ(Pe)、液管セ
ンサ(Th1)およびガス管センサ(Th2)により、冷媒
の気液差温(つまり室外熱交換器(3)の蒸発サイクル
時には過熱度Sh、凝縮サイクル時には過冷却度Sc)
を検出するようにした気液差温検出手段(50)構成さ
れている。また、上記各センサ(Pc),(Pe),
(Th1),(Th2)は、装置全体の運転を制御するため
のコントローラ(10)と信号の入力可能に接続されて
いて、該コントローラ(10)により、各センサ(P
c),(Pe),(Th1),(Th2)の信号に応じて、
装置を各室内の要求能力に応じた各運転モードで制御す
るようになされている。
On the other hand, sensors are installed in the outdoor unit (X), (Pc) is arranged in the discharge line (11c), and a high-pressure sensor as a high-pressure detection means for detecting the high-pressure value Tc,
(Pe) is placed in the suction line (11d) and has a low pressure value T
a low pressure sensor as a low pressure detection means for detecting e, (Th
1) is attached to the liquid pipe side of the outdoor heat exchanger (3), a liquid pipe sensor for detecting the liquid pipe temperature T1, (Th2) is attached to the gas pipe side of the outdoor heat exchanger (3) A gas pipe sensor (Th2) for detecting the gas pipe temperature T2,
By the high pressure sensor (Pc), the low pressure sensor (Pe), the liquid pipe sensor (Th1) and the gas pipe sensor (Th2), the superheat degree Sh in the vapor-liquid differential temperature of the refrigerant (that is, during the evaporation cycle of the outdoor heat exchanger (3)) , Subcooling degree Sc during the condensation cycle)
The gas-liquid differential temperature detection means (50) is configured to detect In addition, each of the sensors (Pc), (Pe),
(Th1) and (Th2) are connected to a controller (10) for controlling the operation of the entire apparatus so that signals can be input, and the controller (10) allows each sensor (P) to operate.
c), (Pe), (Th1), (Th2) signals,
The device is controlled in each operation mode according to the required capacity in each room.

なお、第2図において、(17)〜(20)は各四路切
換弁(2),(14)〜(16)の各熱交換器(3),
(7)〜(7)への接続ポートに対向する一接続ポート
と吸入ライン(11d)との間に介設されたキャピラリ
ー、(21a)〜(21c)はそれぞれ液ライン(11
a),吸入ライン(11d)および吐出ライン(11
c)の室外ユニット(X)出口に介設された手動開閉弁
である。
In FIG. 2, (17) to (20) are heat exchangers (3) of the four-way switching valves (2), (14) to (16),
Capillarys (21a) to (21c) provided between one connection port facing the connection ports to (7) to (7) and the suction line (11d) are liquid lines (11).
a), suction line (11d) and discharge line (11
It is a manual on-off valve provided at the outlet of the outdoor unit (X) in c).

室内ユニット(A)〜(C)の全数冷房運転時、各四路
切換弁(2),(14)〜(16)が図中実線のごとく
切換わり、第1電動膨張弁(4)を開き気味に、かつ各
第2電動膨張弁(6)〜(6)の開度を適度に調節しな
がら運転が行われ、吐出冷媒が室外熱交換器(3)で凝
縮された後、各室内ユニット(A)〜(C)の室内熱交
換器(7)〜(7)で蒸発するように循環する。
During total cooling operation of the indoor units (A) to (C), the four-way switching valves (2), (14) to (16) are switched as shown by solid lines in the figure, and the first electric expansion valve (4) is opened. Each indoor unit is operated after the discharge refrigerant is condensed in the outdoor heat exchanger (3) while the operation is performed moderately while appropriately adjusting the openings of the second electric expansion valves (6) to (6). The indoor heat exchangers (7) to (7) of (A) to (C) circulate so as to evaporate.

また、各室内ユニット(A)〜(C)が同時に暖房運転
を行うときには、各四路切換弁(2),(14)〜(1
6)がいずれも図中破線側に切換わり、上記と逆の冷媒
の流れによる運転が行われる。なお、説明は省略する
が、上記各室内ユニット(A)〜(C)のうちいずれが
一台だけが運転していて、他が停止中であっても、上記
と類似の運転状態となる。
When the indoor units (A) to (C) simultaneously perform the heating operation, the four-way switching valves (2), (14) to (1).
All of 6) are switched to the broken line side in the figure, and the operation is performed by the refrigerant flow opposite to the above. Although not described, even if only one of the indoor units (A) to (C) is operating and the other is stopped, the operating state is similar to the above.

また、この装置では、各室内の要求能力に応じて、接続
切換機構(51)の接続状態が切換えられ、各室内ユニ
ット(A)〜(C)個別に冷暖房運転を行ういわゆる複
合運転モードによる運転が行われる。例えば、室内ユニ
ット(A),(B)が冷房運転、室内ユニット(C)が
暖房運転を行うことにより、各室内の要求に応じた運転
を行うことができる。すなわち、各四路切換弁(2),
(14),(15)が図中実線のごとく、第4四路切換
弁(16)が図中破線のごとく切換わり、第1電動膨張
弁(4)および室内ユニット(C)の第2電動膨張弁
(6)が開き気味の状態で、かつ室内ユニット(A),
(B)の第2電動膨張弁(6),(6)の開度を適度に
調節しながら運転を行い、吐出冷媒が室外熱交換器
(3)および室外ユニット(C)の室内熱交換器(7)
で凝縮された後、室内ユニット(A),(B)の室内熱
交換器(7),(7)で蒸発するように循環することに
より、各室内の条件の違いに対応した冷暖房同時運転を
行って、互いに室内側で熱を回収しあう回収運転が行わ
れる。
Further, in this device, the connection state of the connection switching mechanism (51) is switched according to the required capacity in each room, and operation in a so-called combined operation mode is performed in which each indoor unit (A) to (C) individually performs cooling and heating operation. Is done. For example, the indoor units (A) and (B) perform the cooling operation, and the indoor unit (C) performs the heating operation, so that the operation according to the demand in each room can be performed. That is, each four-way switching valve (2),
(14) and (15) are switched as shown by the solid line in the figure, and the fourth four-way switching valve (16) is switched as shown by the broken line in the figure, and the first electric expansion valve (4) and the second electric motor of the indoor unit (C) are switched. With the expansion valve (6) slightly open, and the indoor unit (A),
(B) The second electric expansion valves (6), (6) are operated while appropriately adjusting the openings, and the refrigerant discharged is the outdoor heat exchanger (3) and the indoor heat exchanger of the outdoor unit (C). (7)
After being condensed in, the indoor heat exchangers (7) and (7) of the indoor units (A) and (B) circulate so as to evaporate, so that the simultaneous heating and cooling operation corresponding to the difference in the conditions in each room can be performed. Then, a recovery operation is performed in which heat is mutually recovered on the indoor side.

そして、上記室内ユニット(A)〜(C)の運転時、室
外ユニット(X)では、上記高圧センサ(Pc)および
低圧センサ(Pe)の信号に応じて第1電動膨張弁
(4)の開度ARおよび圧縮機(1)で運転容量が下記表
のように制御される。
Then, during operation of the indoor units (A) to (C), in the outdoor unit (X), the first electric expansion valve (4) is opened in response to the signals of the high pressure sensor (Pc) and the low pressure sensor (Pe). The operating capacity is controlled by the AR and the compressor (1) as shown in the table below.

ただし、上記表において、不足暖房能力信号、適正暖房
能力信号、過剰暖房能力信号はそれぞれ上記高圧センサ
(Pc)で検出される高圧Tcの値が適正範囲に対して
過小、範囲内、過大の場合を示し、不足冷房能力信号、
適正冷房能力信号、過剰冷房能力信号は上記低圧センサ
(Pe)で検出される低圧Teの値がそれぞれ過大、適
正、過小のときを示す。また、「容量増加」,「容量減
少」はそれぞれ圧縮機(1)の運転容量の増加,減少側
への調節を示し、「凝縮作用方向」,「蒸発作用方向」
とは、それぞれ室外熱交換器(3)の凝縮サイクルへの
切換えおよび第1電動膨張弁(4)の開度ARの増大側へ
の調節と、室外熱交換器(3)の蒸発サイクルへの切換
えおよび第1電動膨張弁(4)の開度ARの増大側への調
節とを示す。
However, in the above table, when the value of high pressure Tc detected by the high pressure sensor (Pc) is too small, within the range, or too large for the insufficient heating capacity signal, the appropriate heating capacity signal, and the excessive heating capacity signal, respectively. Indicates the insufficient cooling capacity signal,
The appropriate cooling capacity signal and the excessive cooling capacity signal indicate when the value of the low pressure Te detected by the low pressure sensor (Pe) is excessive, appropriate, or insufficient, respectively. Further, "capacity increase" and "capacity decrease" indicate the increase and decrease of the operating capacity of the compressor (1), respectively, and "condensation action direction" and "evaporation action direction" are indicated.
Are the switching of the outdoor heat exchanger (3) to the condensation cycle, the adjustment of the opening AR of the first electric expansion valve (4) to the increasing side, and the switching of the outdoor heat exchanger (3) to the evaporation cycle. Switching and adjustment of the opening degree AR of the first electric expansion valve (4) to the increasing side.

上記表に示すように、高圧センサ(Pc)および低圧セ
ンサ(Pe)の信号に対して、一方が適正暖(冷)房能
力信号で他方が不足冷(暖)房能力信号のとき、又は双
方が不足暖(冷)房能力信号のときには圧縮機(1)の
運転容量を増大するように制御し、一方が適正暖(冷)
房能力信号で他方が過剰冷(暖)房能力信号のときには
圧縮機(1)の運転容量を減小するように制御してい
る。
As shown in the above table, when one of the signals of the high pressure sensor (Pc) and the low pressure sensor (Pe) is an appropriate warm (cooling) capacity signal and the other is an insufficient cooling (warm) cooling capacity signal, or both. Is an insufficient warm (cool) air capacity signal, control is performed to increase the operating capacity of the compressor (1), and one is appropriately warm (cool).
When the other is the excess cooling (warming) air conditioning signal in the air conditioning capacity signal, the operating capacity of the compressor (1) is controlled to be reduced.

また、第1電動膨張弁(4)の開度ARについては、一方
が過剰暖房能力信号で他方が適正冷房能力信号のとき、
あるいは一方が適正暖房能力信号で他方が不足冷房能力
信号のときには、室外熱交換器(3)をより凝縮側に機
能させるべく、接続切換機構(51)の切換えにより室
外熱交換器(3)を凝縮サイクルにし、かつ第1電動膨
張弁(4)の開度ARを増大する。また、一方が不足暖房
能力信号で他方が適正冷房能力信号のとき、あるいは一
方が適正暖房能力信号で他方が過剰冷房能力信号のとき
には、室外熱交換器(3)をより蒸発側に機能させるべ
く、室外熱交換器(3)を蒸発サイクルにし、かつ第1
電動膨張弁(4)の開度ARを増大するようになされてい
る。
As for the opening AR of the first electric expansion valve (4), when one is the excess heating capacity signal and the other is the proper cooling capacity signal,
Alternatively, when one is an appropriate heating capacity signal and the other is an insufficient cooling capacity signal, the outdoor heat exchanger (3) is switched by switching the connection switching mechanism (51) so that the outdoor heat exchanger (3) functions more toward the condensation side. A condensation cycle is set and the opening AR of the first electric expansion valve (4) is increased. In addition, when one is an insufficient heating capacity signal and the other is an appropriate cooling capacity signal, or when one is an appropriate heating capacity signal and the other is an excessive cooling capacity signal, the outdoor heat exchanger (3) should function toward the evaporation side. The outdoor heat exchanger (3) in an evaporation cycle, and
The opening AR of the electric expansion valve (4) is increased.

ここで、本発明の特徴として、上記表において一方が不
足暖房能力信号で他方が過剰冷房能力信号のとき、およ
び一方が過剰暖房能力信号で他方が不足冷房能力信号の
ときには、つまり、室内ユニット(A)〜(C)の全数
が暖房運転もしくは冷房運動時、室外熱交換器(3)側
の凝縮若しくは蒸発能力が不足するときには、以下のよ
うにして、第1電動膨張弁(4)の開度ARおよび圧縮機
(1)の運転容量が制御される。
Here, as a feature of the present invention, in the above table, when one is an insufficient heating capacity signal and the other is an excessive cooling capacity signal, and when one is an excessive heating capacity signal and the other is an insufficient cooling capacity signal, that is, the indoor unit ( When the total number of A) to (C) is insufficient for the condensation or evaporation capacity on the outdoor heat exchanger (3) side during the heating operation or the cooling operation, the first electric expansion valve (4) is opened as follows. AR and the operating capacity of the compressor (1) are controlled.

すなわち、室内ユニット(A)〜(C)が全数暖房運転
時等に室外熱交換器(3)の蒸発能力が不足している場
合には、第3図のフローチャートに示すように、ステッ
プSで上記気液差温検出手段(50)の信号から、過
熱度Shが圧縮機(1)で液圧縮に生じない範囲で決定
される所定の下限値Shmin以下か否かを判別して、過熱
度Shが下限値に達していない間は、ステップSで室
外熱交換器(3)をより蒸発側に機能させるべく、接続
切換機構(51)の切換えにより室外熱交換器(3)が
蒸発サイクルになるように、かつ第1電動膨張弁(4)
の開度ARが増大するように制御する。そして、ステップ
で、適正条件に入ったか否かを判別して、適正条件
に入らない場合は、上記ステップを繰返し、その間にス
テップSの判別で過熱度Shが下限値Shminに達する
か、第1電動膨張弁(4)の開度ARが全開値ARmax にな
ると、第1電動膨張弁(4)の開度AR制御だけでは適正
条件に保持できないと判断してステップSに移行し、
圧縮機(1)の運転容量を増加するように制御する。
That is, when the indoor unit (A) ~ (C) is insufficient evaporating ability of the outdoor heat exchanger (3) to all heating operation or the like, as shown in the flow chart of FIG. 3, Step S 1 From the signal of the gas-liquid differential temperature detecting means (50), it is determined whether or not the superheat degree Sh is equal to or lower than a predetermined lower limit value Shmin determined within a range where liquid compression does not occur in the compressor (1), and the overheat is determined. while the degree Sh does not reach the lower limit value, in order to function outdoor heat exchanger in step S 2 of (3) more evaporation side, the outdoor heat exchanger by switching the connection switching mechanism (51) (3) is evaporated The first electric expansion valve (4) so that it becomes a cycle
The opening AR is controlled so as to increase. Then, if in step S 3, it is determined whether or not entered a proper condition, if not enter the proper conditions, repeat the above steps, superheat Sh reaches the lower limit Shmin in the determination of step S 1 during which When the opening AR of the first electric expansion valve (4) reaches the fully open value ARmax, it is determined that the opening AR control of the first electric expansion valve (4) alone cannot maintain the proper condition, and the process proceeds to step S 4. ,
The operating capacity of the compressor (1) is controlled to increase.

また、室内ユニット(A)〜(C)の全数冷房運転時等
に室外熱交換器(3)の凝縮能力が不足している場合に
は、第4図のフローチャートに示すように、ステップS
′〜S′で上記第3図のステップS〜Sに対応
した制御を行い、ステップS′で、上記気液差温検出
手段(50)の信号から、過冷却度Scが所定の下限値
Scmin以下か否かを判別し、下限値Scminよりも大きけ
れば、ステップS2′で、室外熱交換器(3)をより凝
縮側に機能させるべく、接続切換機構(51)の切換え
により室外熱交換器(3)が蒸発サイクルになるよう
に、かつ第1電動膨張弁(4)の開度ARが増大するよう
に制御する一方、その調節によっても次のステップS
における判別で適正条件に入らず、制御を繰り返すうち
にステップSにおいて過冷却度Scが下限値Scminに
達するか、開度ARが全開値ARmaxになると、ステップS
′に移行して、圧縮機(1)の運転容量を増加するよ
うに制御する。
Further, when the outdoor heat exchanger (3) lacks the condensing capacity during the total cooling operation of the indoor units (A) to (C), as shown in the flowchart of FIG.
The control corresponding to steps S 1 to S 4 in FIG. 3 is performed at 1 ′ to S 4 ′, and at step S 1 ′, the supercooling degree Sc is determined from the signal of the gas-liquid differential temperature detecting means (50). If it is larger than the lower limit value Scmin, it is judged whether or not it is less than or equal to a predetermined lower limit value Scmin, and in step S2 ', the connection switching mechanism (51) is switched so that the outdoor heat exchanger (3) functions more toward the condensation side. as the outdoor heat exchanger (3) is the evaporation cycle by and while opening AR of the first electric expansion valve (4) is controlled to increase, the next step S 3 by this regulation
Without entering the proper conditions in the determination of whether the degree of supercooling Sc in step S 1 after repeated control reaches a lower limit Scmin, the opening AR is fully opened value ARMAX, step S
Control proceeds to 4 ', and the operating capacity of the compressor (1) is increased.

上記フローにおいて、請求項(1)の発明では、ステップ
′により、高圧Tcおよび低圧Teがいずれも適正
範囲よりも高いときに、室外熱交換器(熱源側熱交換
器)(3)を凝縮作用方向に制御する冷媒作用制御手段
(52)が構成され、ステップS′により、冷媒作用
制御手段(52)および気液差温検出手段(50)の出
力を受け、冷媒作用制御手段(52)による制御時に冷
媒の過冷却度Scが下限値Scminに達したとき又は第1
電動膨張弁(流量制御機構)(4)の開度ARが全開値AR
maxになったときには、上記圧縮機(1)の運転容量を
増大側に変更する容量制御手段(53)が構成されてい
る。
In the above flow, according to the invention of claim (1), when the high pressure Tc and the low pressure Te are both higher than the proper ranges in step S 2 ′, the outdoor heat exchanger (heat source side heat exchanger) (3) is turned on. Refrigerant action control means (52) for controlling the condensation action direction is configured, and in step S 4 ′, the refrigerant action control means (52) receives the outputs of the refrigerant action control means (52) and the gas-liquid differential temperature detection means (50). 52) When the supercooling degree Sc of the refrigerant reaches the lower limit value Scmin during the control by 52) or the first
The opening AR of the electric expansion valve (flow control mechanism) (4) is the fully open value AR
A capacity control means (53) is arranged to change the operating capacity of the compressor (1) to the increasing side when it reaches the maximum.

また、請求項(2)の発明では、ステップSにより、高
圧Tcおよび低圧Teがいずれも適正範囲よりも低いと
きに、上記熱源側熱交換器(3)を蒸発作用方向に制御
する冷媒作用制御手段(52)が構成され、ステップS
により、冷媒作用制御手段(52)および気液差温検
出手段(50)の出力を受け、冷媒作用制御手段(5
2)による制御時に冷媒の過熱度Shが期限値Shminに
達したとき又は第1電動膨張弁(4)の開度ARが全開値
ARmax になったときには、上記圧縮機(1)の運転容量
を増大側に変更する容量制御手段(53)が構成されて
いる。
Further, in the present invention (2), the step S 2, when the high pressure Tc and low Te is lower than both the proper range, the refrigerant acts to control the heat source-side heat exchanger (3) in the vaporisation direction The control means (52) is constituted, and step S
4 , the refrigerant action control means (52) and the gas-liquid differential temperature detection means (50) receive the outputs, and the refrigerant action control means (5)
When the superheat degree Sh of the refrigerant reaches the deadline value Shmin during the control by 2) or the opening degree AR of the first electric expansion valve (4) is the fully open value.
A capacity control means (53) is arranged to change the operating capacity of the compressor (1) to the increasing side when ARmax is reached.

したがって、請求項(1)の発明では、高圧センサ(P
c)で検出される高圧値Tcおよび低圧センサ(Pe)
で検出される低圧値Teがいずれも所定の適正範囲より
も高く、過剰暖房能力信号と不足冷房能力信号とが得ら
れるような場合、例えば装置の全数冷房運転時に、室外
熱交換器(3)の凝縮能力が不足するような場合には、
冷媒作用制御手段(52)により、第1電動膨張弁
(4)の開度ARが室外熱交換器(3)の凝縮能力を増大
する方向につまり開度ARが増加するように制御されると
ともに、その開度調節によっても適正条件に達せずその
間に過冷却度Scが下限値Scminに達して開度ARがそれ
以上増加できないとき又は開度AR自体が全開値ARmax に
なったときには、容量制御手段(53)により、圧縮機
(1)の運転容量が増大するように制御されるので、冷
媒流量が増大し、室外熱交換器(3)の能力が増大する
ことになる。よって、装置の運転中における冷房能力と
暖房能力のバランスが崩れるのを有効に防止して、快適
な空調感を維持することができるのである。
Therefore, in the invention of claim (1), the high pressure sensor (P
High pressure value Tc and low pressure sensor (Pe) detected in c)
When the low-pressure value Te detected at 1 is higher than the predetermined proper range and the excess heating capacity signal and the insufficient cooling capacity signal are obtained, for example, during the total cooling operation of the device, the outdoor heat exchanger (3) If the condensation capacity of is insufficient,
The opening control AR of the first electric expansion valve (4) is controlled by the refrigerant action control means (52) in a direction to increase the condensation capacity of the outdoor heat exchanger (3), that is, the opening AR is increased. However, when the proper condition is not reached even by adjusting the opening degree and the supercooling degree Sc reaches the lower limit value Scmin during that time, and the opening degree AR cannot be further increased, or when the opening degree AR itself becomes the full opening value ARmax, the capacity control is performed. By the means (53), the operating capacity of the compressor (1) is controlled to increase, so that the refrigerant flow rate increases and the capacity of the outdoor heat exchanger (3) increases. Therefore, it is possible to effectively prevent the balance between the cooling capacity and the heating capacity from being disturbed during the operation of the device, and to maintain a comfortable air-conditioning feeling.

また、請求項(2)の発明では、不足暖房能力信号と過剰
冷房能力信号とが得られるような場合、例えば室内ユニ
ット(A)〜(C)の全数暖房運転時において室外熱交
換器(3)の蒸発能力が不足するような場合には、冷媒
作用制御手段(52)により、第1電動膨張弁(4)の
開度ARが室外熱交換器(3)の凝縮能力を増大する方向
につまり開度ARが増加するように制御されるとともに、
その開度調節によっても適正条件に達せずその間に過熱
度Shが下限値Shminに達して開度ARがそれ以上増加で
きないとき又は開度AR自体が全開値ARmaxになったとき
には、容量制御手段(53)により、圧縮機(1)の運
転容量が増大するように制御されるので、冷媒流量が増
大し、室外熱交換器(3)の能力が増大することにな
る。よって、上記請求項(1)の発明と同様の効果を得る
ことができる。
Further, in the invention of claim (2), when the insufficient heating capacity signal and the excessive cooling capacity signal are obtained, for example, during the total heating operation of the indoor units (A) to (C), the outdoor heat exchanger (3 ), The refrigerant action control means (52) causes the opening degree AR of the first electric expansion valve (4) to increase the condensing ability of the outdoor heat exchanger (3). That is, the opening AR is controlled so as to increase,
When the proper condition is not reached even by adjusting the opening degree and the superheat degree Sh reaches the lower limit value Shmin during that time, and the opening degree AR cannot be further increased, or when the opening degree AR itself reaches the fully open value ARmax, the capacity control means ( By 53), the operating capacity of the compressor (1) is controlled to increase, so that the refrigerant flow rate increases and the capacity of the outdoor heat exchanger (3) increases. Therefore, it is possible to obtain the same effect as that of the invention of claim (1).

(発明の効果) 以上説明したように、請求項(1)の発明によれば、室外
ユニットに対して複数の室内ユニットを接続し、各室内
ユニットを個別に冷暖房運転可能にした熱回収形空気調
和装置において、吐出ラインおよび吸入ラインでそれぞ
れ高圧および低圧を検出し、高圧および低圧がいずれも
適正範囲よりも高い場合には、熱源側熱交換器の凝縮能
力が増大するように流量制御機構の開度を制御するとと
もに、その制御中の冷媒の過冷却度が下限値に達したと
き又は開度が全開になったときには圧縮機の運転容量を
増大させるようにしたので、室内ユニットが全数冷房運
転時に熱源側熱交換器の凝縮能力が不足するような場合
にも、熱源側熱交換器への冷媒流量が必要量確保され、
冷暖房能力のバランスを維持することができる。
(Effect of the invention) As described above, according to the invention of claim (1), a plurality of indoor units are connected to the outdoor unit, and each indoor unit can be individually cooled and heated so that the heat recovery type air can be operated. In the air conditioner, high pressure and low pressure are detected in the discharge line and the suction line, respectively, and when both high pressure and low pressure are higher than the proper range, the flow rate control mechanism of the heat source side heat exchanger is increased so as to increase the condensing capacity. In addition to controlling the opening, the operating capacity of the compressor is increased when the degree of supercooling of the refrigerant under control reaches the lower limit value or when the opening is fully opened. Even when the condensing capacity of the heat source side heat exchanger is insufficient during operation, the required amount of refrigerant flow to the heat source side heat exchanger is secured,
The balance of air conditioning capacity can be maintained.

また、請求項(2)の発明によれば、上記と同様の熱回収
形空気調和装置において、高圧および低圧がいずれも適
正範囲よりも低い場合には、熱源側熱交換器の蒸発能力
が増大するように流量制御機構の開度を制御するととも
に、その制御中の冷媒の過熱度が下限値に達したとき又
は開度が全開になったときには圧縮機の運転容量を増大
させるようにしたので、室内ユニットが全数暖房運転時
に熱源側熱交換器の蒸発能力が不足するような場合に
も、熱源側熱交換器への冷媒流量が必要量確保され、冷
暖房能力のバランスを維持することができる。
Further, according to the invention of claim (2), in the heat recovery type air conditioner similar to the above, when the high pressure and the low pressure are both lower than the proper range, the evaporation capacity of the heat source side heat exchanger is increased. In order to control the opening of the flow rate control mechanism so as to increase the operating capacity of the compressor when the degree of superheat of the refrigerant under control reaches the lower limit value or when the opening is fully opened. , Even when the indoor unit has a shortage of evaporation capacity of the heat source side heat exchanger during total heating operation, the required amount of refrigerant flow to the heat source side heat exchanger is secured and the balance of the cooling and heating capacity can be maintained. .

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の構成を示すブロック図である。第2図
以下は本発明の実施例を示し、第2図はその冷媒系統
図、第3図は高圧及び低圧がいずれも低い場合の制御内
容を示すフローチャート図、第4図は高圧及び低圧がい
ずれも低い場合の制御内容を示すフローチャート図であ
る。 (1)…圧縮機、(3)…室外熱交換器(熱源側熱交換
器)、(4)…第1電動膨張弁(流量制御機構)、
(6)…第2電動膨張弁(減圧機構)、(7)…室内熱
交換器(利用側熱交換器)、(11)…冷媒配管、(1
1b)…ガスライン、(11c)…吐出ライン、(11
d)…吸入ライン、(12)…冷媒回路、(50)…気
液差温検出手段、(51)…接続切換機構、(52)…
冷媒作用制御手段、(53)…容量制御手段、(X)…
室外ユニット、(A)〜(C)…室内ユニット。
FIG. 1 is a block diagram showing the configuration of the present invention. 2 and the following shows an embodiment of the present invention, FIG. 2 is a refrigerant system diagram thereof, FIG. 3 is a flow chart showing the control contents when both high pressure and low pressure are low, and FIG. It is a flowchart figure which shows the control content when both are low. (1) ... compressor, (3) ... outdoor heat exchanger (heat source side heat exchanger), (4) ... first electric expansion valve (flow control mechanism),
(6) ... Second electric expansion valve (pressure reducing mechanism), (7) ... Indoor heat exchanger (use side heat exchanger), (11) ... Refrigerant piping, (1)
1b) ... Gas line, (11c) ... Discharge line, (11
d) ... Suction line, (12) ... Refrigerant circuit, (50) ... Gas-liquid differential temperature detecting means, (51) ... Connection switching mechanism, (52) ...
Refrigerant action control means, (53) ... Capacity control means, (X) ...
Outdoor unit, (A) to (C) ... Indoor unit.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】容量可変形圧縮機(1)、熱源側熱交換器
(3)および該熱源側熱交換器(3)への冷媒流量調節
機能と減圧機能とを備えた流量制御機構(4)を有する
室外ユニット(X)に対し、利用側熱交換器(7)およ
び該利用側熱交換器(7)用の減圧機構(6)を有する
複数の室内ユニット(A)〜(C)を並列に冷媒配管
(11)で接続してなる冷媒回路(12)を備えるとと
もに、上記各熱交換器(3),(7)〜(7)が蒸発器
として機能する蒸発サイクル又は凝縮器として機能する
凝縮サイクルで冷媒が循環するように、各熱交換器
(3),(7)〜(7)の冷媒回路(12)のガスライ
ン(11b)との接続を吐出ライン(11c)側と吸入
ライン(11d)側とに個別に切換える接続切換機構
(51)を備えた熱回収形空気調和装置において、上記
冷媒回路(12)の吐出ラインに配置され、高圧を検出
する高圧検出手段(Pc)と、吸入ライン(11d)に
配置され、低圧を検出する低圧検出手段(Pe)と、熱
源側熱交換器(3)における冷媒の過冷却度を検出する
気液差温検出手段(50)と、上記高圧検出手段(P
c)および低圧検出手段(Pe)の出力を受け、高圧お
よび低圧がいずれも適正範囲よりも高いときに、上記熱
源側熱交換器(3)を凝縮作用方向に制御する冷媒作用
制御手段(52)と、該冷媒作用制御手段(52)およ
び上記気液差温検出手段(50)の出力を受け、冷媒作
用制御手段(52)による制御時に冷媒の過冷却度が下
限値に達したとき又は流量制御機構(4)の開度が全開
になったときには、上記圧縮機(1)の運転容量を増大
側に変更する容量制御手段(53)とを備えたことを特
徴とする熱回収形空気調和装置の運転制御装置。
Claim: What is claimed is: 1. A variable capacity compressor (1), a heat source side heat exchanger (3), and a flow rate control mechanism (4) having a refrigerant flow rate adjusting function and a pressure reducing function for the heat source side heat exchanger (3). A plurality of indoor units (A) to (C) having a use side heat exchanger (7) and a pressure reducing mechanism (6) for the use side heat exchanger (7). A refrigerant circuit (12) connected in parallel with a refrigerant pipe (11) is provided, and each of the heat exchangers (3), (7) to (7) functions as an evaporation cycle or a condenser. The refrigerant line (12) of each heat exchanger (3), (7) to (7) is connected to the discharge line (11c) side and the suction side so that the refrigerant circulates in the condensation cycle. Heat recovery type equipped with a connection switching mechanism (51) for individually switching to the line (11d) side In the air conditioner, a high pressure detecting means (Pc) which is arranged in the discharge line of the refrigerant circuit (12) and detects a high pressure, and a low pressure detecting means (Pe) which is arranged in the suction line (11d) and detects a low pressure. , A gas-liquid differential temperature detecting means (50) for detecting the degree of supercooling of the refrigerant in the heat source side heat exchanger (3), and the high pressure detecting means (P
c) and the output of the low pressure detection means (Pe), the refrigerant action control means (52) for controlling the heat source side heat exchanger (3) in the condensation action direction when both the high pressure and the low pressure are higher than the proper range. ) And the outputs of the refrigerant action control means (52) and the gas-liquid difference temperature detection means (50), and when the degree of supercooling of the refrigerant reaches the lower limit value during the control by the refrigerant action control means (52), or A heat recovery type air comprising: a capacity control means (53) for changing the operating capacity of the compressor (1) to an increasing side when the opening degree of the flow rate control mechanism (4) is fully opened. Operation control device for the harmony device.
【請求項2】容量可変形圧縮機(1)、熱源側熱交換器
(3)および該熱源側熱交換器(3)への冷媒流量調節
機能と減圧機能とを備えた流量制御機構(4)を有する
室外ユニット(X)に対し、利用側熱交換器(7)およ
び該利用側熱交換器(7)用の減圧機構(6)を有する
複数の室内ユニット(A)〜(C)を並列に冷媒配管
(11)で接続してなる冷媒回路(12)を備えるとと
もに、上記各熱交換器(3),(7)〜(7)が蒸発器
として機能する蒸発サイクル又は凝縮器として機能する
凝縮サイクルで冷媒が循環するように、各熱交換器
(3),(7)〜(7)の冷媒回路(12)のガスライ
ン(11b)との接続を吐出ライン(11c)側と吸入
ライン(11d)側とに個別に切換える接続切換機構
(51)を備えた熱回収形空気調和装置において、上記
冷媒回路(12)の吐出ラインに配置され、高圧を検出
する高圧検出手段(Pc)と、吸入ライン(11d)に
配置され、低圧を検出する低圧検出手段(Pe)と、熱
源側熱交換器(3)における冷媒の過熱度を検出する気
液差温検出手段(50)と、上記高圧検出手段(Pc)
および低圧検出手段(Pe)の出力を受け、高圧および
低圧がいずれも適正範囲よりも低いときに、上記熱源側
熱交換器(3)を蒸発作用方向に制御する冷媒作用制御
手段(52)と、該冷媒作用制御手段(52)および上
記気液差温検出手段(50)の出力を受け、冷媒作用制
御手段(52)による制御時に冷媒の過熱度が下限値に
達したとき又は流量制御機構(4)の開度が全開になっ
たときには、上記圧縮機(1)の運転容量を増大側に変
更する容量制御手段(53)とを備えたことを特徴とす
る熱回収形空気調和装置の運転制御装置。
2. A variable capacity compressor (1), a heat source side heat exchanger (3), and a flow rate control mechanism (4) having a function of adjusting the refrigerant flow rate to the heat source side heat exchanger (3) and a pressure reducing function. A plurality of indoor units (A) to (C) having a use side heat exchanger (7) and a pressure reducing mechanism (6) for the use side heat exchanger (7). A refrigerant circuit (12) connected in parallel with a refrigerant pipe (11) is provided, and each of the heat exchangers (3), (7) to (7) functions as an evaporation cycle or a condenser. The refrigerant line (12) of each heat exchanger (3), (7) to (7) is connected to the discharge line (11c) side and the suction side so that the refrigerant circulates in the condensation cycle. Heat recovery type equipped with a connection switching mechanism (51) for individually switching to the line (11d) side In the air conditioner, a high pressure detecting means (Pc) which is arranged in the discharge line of the refrigerant circuit (12) and detects a high pressure, and a low pressure detecting means (Pe) which is arranged in the suction line (11d) and detects a low pressure. A gas-liquid differential temperature detecting means (50) for detecting the degree of superheat of the refrigerant in the heat source side heat exchanger (3), and the high pressure detecting means (Pc)
And refrigerant action control means (52) for controlling the heat source side heat exchanger (3) in the evaporative action direction when the high pressure and the low pressure are both lower than the proper range by receiving the output of the low pressure detection means (Pe). When the superheat of the refrigerant reaches the lower limit value during the control by the refrigerant action control means (52) by receiving the outputs of the refrigerant action control means (52) and the gas-liquid differential temperature detection means (50), or the flow rate control mechanism. A heat recovery type air conditioner comprising: a capacity control means (53) for changing the operating capacity of the compressor (1) to an increasing side when the opening degree of (4) is fully opened. Operation control device.
JP63206688A 1988-08-19 1988-08-19 Operation controller for heat recovery type air conditioner Expired - Lifetime JPH0610569B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63206688A JPH0610569B2 (en) 1988-08-19 1988-08-19 Operation controller for heat recovery type air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63206688A JPH0610569B2 (en) 1988-08-19 1988-08-19 Operation controller for heat recovery type air conditioner

Publications (2)

Publication Number Publication Date
JPH0257873A JPH0257873A (en) 1990-02-27
JPH0610569B2 true JPH0610569B2 (en) 1994-02-09

Family

ID=16527467

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63206688A Expired - Lifetime JPH0610569B2 (en) 1988-08-19 1988-08-19 Operation controller for heat recovery type air conditioner

Country Status (1)

Country Link
JP (1) JPH0610569B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2893844B2 (en) * 1990-04-23 1999-05-24 三菱電機株式会社 Air conditioner
JP2875665B2 (en) * 1991-01-10 1999-03-31 三菱電機株式会社 Air conditioner

Also Published As

Publication number Publication date
JPH0257873A (en) 1990-02-27

Similar Documents

Publication Publication Date Title
US6843066B2 (en) Air conditioning system and method for controlling the same
CA2530895C (en) Air-conditioning system with multiple indoor and outdoor units and control system therefore
WO2000019155A1 (en) Refrigerator
JPH0762569B2 (en) Operation control device for air conditioner
WO2006013938A1 (en) Freezing apparatus
JPH06257828A (en) Multi-chamber type air conditioning system
JP2564905B2 (en) Operation controller for heat recovery type air conditioner
JP2522065B2 (en) Operation control device for air conditioner
JPH0610569B2 (en) Operation controller for heat recovery type air conditioner
JPH0749900B2 (en) Heat recovery type air conditioner
JP2730398B2 (en) Multi-room air conditioning system
JPH06257827A (en) Multi chamber type air conditioning system
JP3149625B2 (en) Operation control device for air conditioner
JP2503659B2 (en) Heat storage type air conditioner
JPH0833245B2 (en) Refrigeration system operation controller
JPH02223757A (en) Air conditioner
JPH09145130A (en) Multi-room type air conditioner system
JPH05332637A (en) Air conditioner
JP2698179B2 (en) Air conditioning
JPH06317360A (en) Multi-chamber type air conditioner
JP2536313B2 (en) Operation control device for air conditioner
JP2716559B2 (en) Cooling / heating mixed type multi-room air conditioner
JP2002228284A (en) Refrigerating machine
JPH046355A (en) Multiple-room type air-conditioner
JP2541173B2 (en) Air conditioner