JP2730398B2 - Multi-room air conditioning system - Google Patents

Multi-room air conditioning system

Info

Publication number
JP2730398B2
JP2730398B2 JP4123161A JP12316192A JP2730398B2 JP 2730398 B2 JP2730398 B2 JP 2730398B2 JP 4123161 A JP4123161 A JP 4123161A JP 12316192 A JP12316192 A JP 12316192A JP 2730398 B2 JP2730398 B2 JP 2730398B2
Authority
JP
Japan
Prior art keywords
indoor
valve
temperature
capacity
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP4123161A
Other languages
Japanese (ja)
Other versions
JPH05322275A (en
Inventor
章 藤高
宏治 室園
伸二 渡辺
正博 藤川
正明 岡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP4123161A priority Critical patent/JP2730398B2/en
Publication of JPH05322275A publication Critical patent/JPH05322275A/en
Application granted granted Critical
Publication of JP2730398B2 publication Critical patent/JP2730398B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Air Conditioning Control Device (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、1台の室外機に複数台
の室内機を接続し、電動膨張弁にて冷媒流量を制御する
多室形空気調和システムに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a multi-room air conditioning system in which a plurality of indoor units are connected to one outdoor unit, and the flow rate of refrigerant is controlled by an electric expansion valve.

【0002】[0002]

【従来の技術】近年、1台の室外機に複数台の室内機を
接続した多室形空気調和システムが、室外の省スペース
性や美観上の点で一般家庭の消費者にも受け入れられつ
つある。
2. Description of the Related Art In recent years, a multi-room air conditioner system in which a plurality of indoor units are connected to one outdoor unit has been increasingly accepted by consumers of ordinary households in terms of space saving and aesthetic appearance. is there.

【0003】従来、この多室形空気調和システムにおい
て、容量(周波数)可変形圧縮機を用い、冷凍サイクル
の液側冷媒配管に、各室内機への冷媒循環量を制御する
冷媒循環量制御装置を設け、室外機の容量と各室内機の
容量との比率より圧縮機容量、各室内機への冷媒循環量
を制御するものが提案されている(例えば特開昭63−
294462号公報)。
Conventionally, in this multi-chamber air conditioning system, a refrigerant circulating amount control device that uses a variable capacity (frequency) compressor to control the amount of refrigerant circulating to each indoor unit in a liquid side refrigerant pipe of a refrigeration cycle. And a compressor that controls the compressor capacity and the amount of refrigerant circulating to each indoor unit based on the ratio of the capacity of the outdoor unit to the capacity of each indoor unit (for example, Japanese Patent Application Laid-Open No.
294462).

【0004】以下、図面を参照しながら上記従来の多室
形空気調和システムについて説明する。
Hereinafter, the conventional multi-room air conditioning system will be described with reference to the drawings.

【0005】図14は、従来の多室形空気調和システム
の冷凍サイクル図である。この多室形空気調和システム
は、1台の室外ユニット50に分岐ユニット51を介し
て複数台、本従来例では2台の室内ユニット52a、5
2bを接続して構成される。室外ユニット50にはイン
バータ53により容量制御運転が行なわれる圧縮機54
が搭載されている。冷凍サイクルは、室外ユニット50
内に組み込まれた圧縮機54、四方弁55、室外熱交換
器56、暖房用膨張機構57、レシーバ58を順次経て
分岐ユニット51内に延び、この分岐ユニット51内で
液側冷媒配管59を室内ユニット52a、52bの数に
応じて分岐させている。分岐された液側冷媒配管60
a、60bには冷媒循環量制御装置61及び冷房用膨張
機構62がそれぞれ設けられ、各冷媒配管60a、60
bは室内ユニット52a、52bの室内熱交換器63
a、63bに接続される。この室内熱交換器63a、6
3bからのガス側冷媒配管64a、64bには分岐ユニ
ット51内で開閉弁としての電磁弁65a、65bが設
けられ、その後冷媒配管66へと合流する。この冷媒配
管66は四方弁55を経て圧縮機54に接続される。暖
房用及び冷房用膨張機構57、62は膨張弁67、68
からなり、この膨張弁67、68をそれぞれバイパスす
るように膨張弁バイパス回路が設けられ、このバイパス
回路に逆止弁69、70が備えられている。一方、分岐
ユニット51内に設けられる冷媒循環量制御装置61
は、液側冷媒分岐配管60a、60bに設けられた電動
流量調整弁71a、71bであり、この電動流量調整弁
71a、71bの弁開度は対応する室内ユニット52
a、52bの容量と室外ユニット50の容量との比率に
応じて図15に示すように設定され、これにより各室内
ユニット52a、52bを流れる冷媒流量を制御する。
FIG. 14 is a refrigeration cycle diagram of a conventional multi-chamber air conditioning system. In the multi-room air conditioning system, a plurality of, for example, two indoor units 52a, 5
2b. The outdoor unit 50 has a compressor 54 in which a capacity control operation is performed by an inverter 53.
Is installed. The refrigeration cycle includes the outdoor unit 50
A compressor 54, a four-way valve 55, an outdoor heat exchanger 56, a heating expansion mechanism 57, and a receiver 58 are sequentially extended into the branch unit 51, and a liquid-side refrigerant pipe 59 is installed in the branch unit 51. Branching is performed according to the number of units 52a and 52b. Liquid-side refrigerant pipe 60 branched
a and 60b are provided with a refrigerant circulation amount control device 61 and a cooling expansion mechanism 62, respectively.
b is the indoor heat exchanger 63 of the indoor units 52a and 52b.
a, 63b. This indoor heat exchanger 63a, 6
Solenoid valves 65a and 65b as on-off valves are provided in the branch unit 51 in the gas-side refrigerant pipes 64a and 64b from 3b, and then merge into the refrigerant pipe 66. This refrigerant pipe 66 is connected to the compressor 54 via the four-way valve 55. The heating and cooling expansion mechanisms 57, 62 are provided with expansion valves 67, 68.
An expansion valve bypass circuit is provided to bypass the expansion valves 67 and 68, respectively, and check valves 69 and 70 are provided in the bypass circuit. On the other hand, the refrigerant circulation amount control device 61 provided in the branch unit 51
Are electric flow regulating valves 71a, 71b provided in the liquid-side refrigerant branch pipes 60a, 60b, and the opening degree of the electric flow regulating valves 71a, 71b is set to the corresponding indoor unit 52.
15 is set according to the ratio between the capacities of the a and 52b and the capacity of the outdoor unit 50, thereby controlling the flow rate of the refrigerant flowing through each of the indoor units 52a and 52b.

【0006】この多室形空気調和システムにおいて、冷
房運転時には、四方弁55を冷房側にセットし、圧縮機
54から吐出された冷媒は、四方弁55を経て室外熱交
換器56へと流れ、ここで凝縮された後に電動流量調整
弁71a、71bを経て膨張弁68にて断熱膨張し、室
内熱交換器63a、63bへと流れてここで室内を冷房
して蒸発し、四方弁55を経て圧縮機16に吸入され
る。
In this multi-chamber air conditioning system, during cooling operation, the four-way valve 55 is set to the cooling side, and the refrigerant discharged from the compressor 54 flows through the four-way valve 55 to the outdoor heat exchanger 56, After being condensed here, it is adiabatically expanded by the expansion valve 68 through the electric flow rate regulating valves 71a and 71b, flows to the indoor heat exchangers 63a and 63b, cools and evaporates the room, and passes through the four-way valve 55. It is sucked into the compressor 16.

【0007】一方暖房運転時には、四方弁55を暖房側
にセットし、圧縮機54から吐出された冷媒は、四方弁
55を経て室内熱交換器63a、63bへと流れ、ここ
で暖房に利用されて凝縮された後に逆止弁70、電動流
量調整弁71a、71bを経て膨張弁67にて断熱膨張
し、室外熱交換器56へと流れてここで蒸発し、四方弁
55を経て圧縮機54に吸入される。
On the other hand, during the heating operation, the four-way valve 55 is set to the heating side, and the refrigerant discharged from the compressor 54 flows through the four-way valve 55 to the indoor heat exchangers 63a and 63b, where it is used for heating. After being condensed, it is adiabatically expanded by the expansion valve 67 through the check valve 70 and the electric flow regulating valves 71a and 71b, flows to the outdoor heat exchanger 56, evaporates there, and passes through the four-way valve 55 to the compressor 54. Inhaled.

【0008】ここで、容量が5HP(馬力)の室外ユニ
ット50に容量が2HPの室内ユニット52aと容量が
3HPの室内ユニット52bを接続し、圧縮機54を駆
動するインバータ53の最高出力周波数を90Hzの場
合の冷房運転時を考える。室内ユニット52a、52b
の2台から圧縮機ON信号が出力されている場合は要求
インバータ出力周波数Pfは下記数式で表わされる。
Here, an indoor unit 52a having a capacity of 2HP and an indoor unit 52b having a capacity of 3HP are connected to an outdoor unit 50 having a capacity of 5HP (horsepower), and the maximum output frequency of the inverter 53 for driving the compressor 54 is 90 Hz. Consider the cooling operation in the case of. Indoor units 52a, 52b
If the two compressors ON signal is outputted required inverter output frequency P f is expressed by the following equation.

【0009】[0009]

【数1】 (Equation 1)

【0010】この時、電動流量調整弁71a、71bの
弁開度は図15よりそれぞれ50%、72%にセットさ
れる。
At this time, the valve openings of the electric flow control valves 71a and 71b are set to 50% and 72%, respectively, from FIG.

【0011】また、室内ユニット52aのみから圧縮機
ON信号が出力されている場合は要求インバータ出力周
波数Pfは下記数式で表わされる。
Further, when the compressor ON signal only from the indoor unit 52a is outputted required inverter output frequency P f represented by the following formula.

【0012】[0012]

【数2】 (Equation 2)

【0013】この時、電動流量調整弁71a、71bの
弁開度はそれぞれ50%、0%にセットされる。
At this time, the valve openings of the electric flow regulating valves 71a and 71b are set to 50% and 0%, respectively.

【0014】このように、この多室形空気調和システム
は室内ユニットの容量に見合った圧縮機容量、電動流量
調整弁の弁開度を定めて制御するため、室内ユニットの
容量を変更しても冷媒流量を最適に保つことができる。
As described above, this multi-chamber air conditioning system determines and controls the compressor capacity and the valve opening of the electric flow control valve in accordance with the capacity of the indoor unit. The refrigerant flow rate can be kept optimal.

【0015】[0015]

【発明が解決しようとする課題】しかしながら、上記従
来の多室形空気調和システムには以下のような課題があ
った。
However, the above-mentioned conventional multi-room air conditioning system has the following problems.

【0016】すなわち、例えば暖房運転の場合、室内ユ
ニットが設置されている各部屋では、暖房開始時には大
きな能力で素早く室温を高め、室温が設定値に近づくに
つれて次第に能力を絞り室温を設定値付近に保つ必要が
あるが、一例として2馬力と3馬力の2台の室内ユニッ
トを設置した場合、それぞれの部屋に必要な能力が変化
しても2馬力と3馬力のほぼ一定能力しか得ることがで
きず、室温が設定値を越えて上昇するとサーモオフとな
ってその室内ユニットに接続された電動流量調整弁を全
閉とし、その後室温が設定値以下となるとサーモオンと
なって電動流量調整弁を所定開度とするというようなサ
ーモオン、サーモオフを繰り返し、室温変動による快適
性の低下と共に、消費電力の増加を招いていた。また、
この解決策として圧縮機容量を各部屋の必要能力の総和
に応じて変化させるようにしても、それぞれの能力は
2:3の比率でしか得ることができないので、例えば要
求能力が3:2である場合には1室は能力不足となって
室温が設定値まで到達せず、もう1室は能力過大となっ
て室温は設定値を越えてサーモオフとなり、その後サー
モオン、サーモオフを繰り返すため、やはり快適性の低
下と消費電力の増加を招いていた。
That is, for example, in the case of heating operation, in each room where the indoor unit is installed, the room temperature is quickly increased with a large capacity at the start of heating, and as the room temperature approaches the set value, the capacity is gradually reduced to bring the room temperature close to the set value. Although it is necessary to keep it, as an example, if two indoor units of 2 hp and 3 hp are installed, even if the required capacity changes in each room, only approximately 2 hp and 3 hp can be obtained. When the room temperature rises above the set value, it turns off the thermostat and fully closes the motorized flow control valve connected to the indoor unit, and then turns on when the room temperature falls below the set value and opens the motorized flow control valve a predetermined amount. Repeated thermo-on and thermo-off such that the degree of temperature was reduced led to a decrease in comfort due to fluctuations in room temperature and an increase in power consumption. Also,
As a solution to this, even if the compressor capacity is changed in accordance with the sum of the required capacity of each room, each capacity can be obtained only at a ratio of 2: 3. In some cases, one room has insufficient capacity and the room temperature does not reach the set value, and the other room has excessive capacity and the room temperature exceeds the set value and is turned off. This leads to a decrease in power and an increase in power consumption.

【0017】本発明の多室形空気調和システムは上記課
題に鑑み、冷凍サイクルの構成を複雑にすることなく、
複数室のそれぞれの要求能力に応じた能力を発揮するこ
とで、快適性の向上及び省エネルギーを図ることを目的
としている。
In view of the above problems, the multi-chamber air conditioning system of the present invention does not complicate the configuration of a refrigeration cycle.
The purpose is to improve comfort and save energy by demonstrating the ability according to the required capacity of each of the multiple rooms.

【0018】また、本発明の他の多室形空気調和システ
ムは、冷凍サイクルを最適に保ちつつ、複数室のそれぞ
れの要求能力に応じた能力を発揮することで、快適性の
向上及び省エネルギーを図ることを目的としている。
Further, another multi-room air conditioning system of the present invention exhibits an improvement in comfort and energy savings by exerting the capacity according to the required capacity of each of the plurality of chambers while maintaining an optimum refrigeration cycle. It is intended for planning.

【0019】[0019]

【課題を解決するための手段】上記課題を解決するため
に本発明の多室形空気調和システムは、容量(周波数)
可変形圧縮機、四方弁、室外熱交換器、電気的に弁制御
可能とした主電動膨張弁を有する1台の室外機と、室内
熱交換器を有する複数台の室内機とを、前記室外機に設
けて主に冷媒液が流れる液側主管を分岐した液側分岐管
及び前記室外機に設けて主に冷媒ガスが流れるガス側主
管を分岐したガス側分岐管を介して接続し、前記液側分
岐管のそれぞれに電気的に弁開度を制御可能とした電動
膨張弁を介装して冷凍サイクルを構成し、前記室内機の
それぞれに、希望する室内温度を設定可能な室内温度設
定手段と室内温度を検出する室内温度検出手段とを設
け、この室内温度設定手段と室内温度検出手段とから設
定室内温度と室内温度との差温を算出する差温算出手段
を設け、さらに前記室内機のそれぞれの定格容量を判別
する容量判別手段及び前記室内機のそれぞれについて運
転中か停止中かを判別するオンオフ判別手段を設け、前
記差温が取り得る温度範囲を複数個の温度ゾーンに分割
し、各温度ゾーン毎にかつ室内機の定格容量毎に室内負
荷に対応する負荷定数を定めて記憶する負荷定数記憶手
段を設け、室内機の定格容量毎に弁初期開度を定めて記
憶する弁初期開度記憶手段を設け、前記差温算出手段、
前記容量判別手段、前記オンオフ判別手段、前記負荷定
数記憶手段より得られるデータを用いて所定周期毎に圧
縮機容量を算出し、この算出結果に基づいて前記容量
(周波数)可変形圧縮機の容量を制御する圧縮機容量制
御手段を設け、前記室内機の複数台が運転中の場合に
は、前記データ及び前記弁初期開度記憶手段より得られ
るデータを用いて所定周期毎に運転中の室内機に接続さ
れた各電動膨張弁の弁開度を算出し、この算出結果に基
づいて前記電動膨張弁の弁開度を制御する弁開度制御手
段を設けたものである。
In order to solve the above-mentioned problems, a multi-room air conditioning system according to the present invention has a capacity (frequency).
A single outdoor unit having a variable compressor, a four-way valve, an outdoor heat exchanger, a main motor-operated expansion valve that can be electrically controlled, and a plurality of indoor units having an indoor heat exchanger, A liquid-side branch pipe branching from a liquid-side main pipe in which the refrigerant liquid mainly flows and a gas-side branch pipe branching from a gas-side main pipe in which the refrigerant gas mainly flows in the outdoor unit and provided in the outdoor unit; A refrigeration cycle is configured by interposing an electric expansion valve capable of electrically controlling the valve opening in each of the liquid side branch pipes, and an indoor temperature setting capable of setting a desired indoor temperature in each of the indoor units. Means and an indoor temperature detecting means for detecting the indoor temperature, and a differential temperature calculating means for calculating a differential temperature between the set indoor temperature and the indoor temperature from the indoor temperature setting means and the indoor temperature detecting means, further comprising: Capacity determination means for determining the rated capacity of each machine and On / off determining means for determining whether each of the indoor units is operating or stopped is provided, a temperature range in which the temperature difference can be taken is divided into a plurality of temperature zones, and a rated capacity of each of the temperature zones and the indoor unit is provided. A load constant storage means for determining and storing a load constant corresponding to the indoor load for each indoor load; a valve initial opening storage means for determining and storing a valve initial opening for each rated capacity of the indoor unit; means,
A compressor capacity is calculated at predetermined intervals using data obtained from the capacity determination means, the on / off determination means, and the load constant storage means, and a capacity of the variable capacity (frequency) compressor is calculated based on the calculation result. When a plurality of the indoor units are in operation, the compressor and the operating room are operated at predetermined intervals using the data and the data obtained from the valve initial opening degree storage means. A valve opening control means for calculating the valve opening of each electric expansion valve connected to the motor and controlling the valve opening of the electric expansion valve based on the calculation result.

【0020】また、本発明の他の多室形空気調和システ
ムは、容量(周波数)可変形圧縮機、四方弁、室外熱交
換器、電気的に弁制御可能とした主電動膨張弁を有する
1台の室外機と、室内熱交換器を有する複数台の室内機
とを、前記室外機に設けて主に冷媒液が流れる液側主管
を分岐した液側分岐管及び前記室外機に設けて主に冷媒
ガスが流れるガス側主管を分岐したガス側分岐管を介し
て接続し、前記液側分岐管のそれぞれに電気的に弁開度
を制御可能とした電動膨張弁を介装して冷凍サイクルを
構成し、前記室内機のそれぞれに、希望する室内温度を
設定可能な室内温度設定手段と室内温度を検出する室内
温度検出手段とを設け、この室内温度設定手段と室内温
度検出手段とから設定室内温度と室内温度との差温を算
出する差温算出手段を設け、さらに前記室内機のそれぞ
れの定格容量を判別する容量判別手段及び前記室内機の
それぞれについて運転中か停止中かを判別するオンオフ
判別手段を設け、前記差温が取り得る温度範囲を複数個
の温度ゾーンに分割し、各温度ゾーン毎にかつ室内機の
定格容量毎に室内負荷に対応する負荷定数を定めて記憶
する負荷定数記憶手段を設け、前記差温算出手段、前記
容量判別手段、前記オンオフ判別手段、前記負荷定数記
憶手段より得られるデータを用いて所定周期毎に圧縮機
容量を算出し、この算出結果に基づいて前記容量(周波
数)可変形圧縮機の容量を制御する圧縮機容量制御手段
を設け、運転中の室内機台数及び定格容量の組合せ毎に
各室内機に接続された電動膨張弁毎の弁初期開度を定め
て記憶する弁初期開度記憶手段を設け、前記室内機の複
数台が運転中の場合には、前記データ及びこの弁初期開
度記憶手段より得られる弁初期開度のデータを用いて所
定周期毎に運転中の室内機に接続された各電動膨張弁の
弁開度を算出し、この算出結果に基づいて前記電動膨張
弁の弁開度を制御する弁開度制御手段を設けたものであ
る。
Another multi-chamber air conditioning system of the present invention has a variable capacity (frequency) compressor, a four-way valve, an outdoor heat exchanger, and a main motor-operated expansion valve which can be electrically controlled. A plurality of outdoor units and a plurality of indoor units having an indoor heat exchanger are provided in the outdoor unit, and a liquid-side branch pipe branching off a liquid-side main pipe through which a refrigerant liquid mainly flows and the outdoor unit are provided. The gas-side main pipe through which the refrigerant gas flows is connected via a branched gas-side branch pipe, and each of the liquid-side branch pipes is provided with an electrically-operable expansion valve capable of electrically controlling the valve opening. And each of the indoor units is provided with an indoor temperature setting means capable of setting a desired indoor temperature and an indoor temperature detecting means for detecting the indoor temperature, and is set from the indoor temperature setting means and the indoor temperature detecting means. Differential temperature calculator that calculates the difference between indoor temperature and indoor temperature Further provided with capacity determining means for determining the rated capacity of each of the indoor units, and on / off determining means for determining whether the indoor units are in operation or stopped for each of the indoor units, wherein a plurality of temperature ranges in which the differential temperature can be taken are provided. Load constant storage means for dividing and storing a load constant corresponding to the indoor load for each temperature zone and for each rated capacity of the indoor unit, wherein the temperature difference calculating means and the capacity determining means are provided. A compressor for calculating a compressor capacity at predetermined intervals using data obtained from the on / off determining means and the load constant storage means, and controlling a capacity of the capacity (frequency) variable compressor based on the calculation result. Valve capacity control means is provided, and valve initial opening storage means is provided for determining and storing a valve initial opening for each electric expansion valve connected to each indoor unit for each combination of the number of operating indoor units and the rated capacity. When a plurality of the indoor units are in operation, the indoor unit is connected to the operating indoor unit at predetermined intervals using the data and the data of the valve initial opening obtained from the valve initial opening storage means. A valve opening control means for calculating the valve opening of each electric expansion valve and controlling the valve opening of the electric expansion valve based on the calculation result is provided.

【0021】また、本発明の他の多室形空気調和システ
ムは、容量(周波数)可変形圧縮機、四方弁、室外熱交
換器、電気的に弁制御可能とした主電動膨張弁を有する
1台の室外機と、室内熱交換器を有する複数台の室内機
とを、前記室外機に設けて主に冷媒液が流れる液側主管
を分岐した液側分岐管及び前記室外機に設けて主に冷媒
ガスが流れるガス側主管を分岐したガス側分岐管を介し
て接続し、前記液側分岐管のそれぞれに電気的に弁開度
を制御可能とした電動膨張弁を介装して冷凍サイクルを
構成し、前記室内機のそれぞれに、希望する室内温度を
設定可能な室内温度設定手段と室内温度を検出する室内
温度検出手段とを設け、この室内温度設定手段と室内温
度検出手段とから設定室内温度と室内温度との差温を算
出する差温算出手段を設け、さらに前記室内機のそれぞ
れの定格容量を判別する容量判別手段及び前記室内機の
それぞれについて運転中か停止中かを判別するオンオフ
判別手段を設け、前記差温が取り得る温度範囲を複数個
の温度ゾーンに分割し、各温度ゾーン毎にかつ室内機の
定格容量毎に室内負荷に対応する負荷定数を定めて記憶
する負荷定数記憶手段を設け、前記差温算出手段、前記
容量判別手段、前記オンオフ判別手段、前記負荷定数記
憶手段より得られるデータを用いて所定周期毎に圧縮機
容量を算出し、この算出結果に基づいて前記容量(周波
数)可変形圧縮機の容量を制御する圧縮機容量制御手段
を設け、前記データを用いて近似式にて各室内機に接続
された電動膨張弁毎の弁初期開度を算出する弁初期開度
算出手段を設け、前記室内機の複数台が運転中の場合に
は、前記データ及びこの弁初期開度算出手段より得られ
る弁初期開度のデータを用いて所定周期毎に運転中の室
内機に接続された各電動膨張弁の弁開度を算出し、この
算出結果に基づいて前記電動膨張弁の弁開度を制御する
弁開度制御手段を設けたものである。
Another multi-chamber air conditioning system of the present invention has a variable capacity (frequency) compressor, a four-way valve, an outdoor heat exchanger, and a main motor-operated expansion valve which can be electrically controlled. A plurality of outdoor units and a plurality of indoor units having an indoor heat exchanger are provided in the outdoor unit, and a liquid-side branch pipe branching off a liquid-side main pipe through which a refrigerant liquid mainly flows and the outdoor unit are provided. The gas-side main pipe through which the refrigerant gas flows is connected via a branched gas-side branch pipe, and each of the liquid-side branch pipes is provided with an electrically-operable expansion valve capable of electrically controlling the valve opening. And each of the indoor units is provided with an indoor temperature setting means capable of setting a desired indoor temperature and an indoor temperature detecting means for detecting the indoor temperature, and is set from the indoor temperature setting means and the indoor temperature detecting means. Differential temperature calculator that calculates the difference between indoor temperature and indoor temperature Further provided with capacity determining means for determining the rated capacity of each of the indoor units, and on / off determining means for determining whether the indoor units are in operation or stopped for each of the indoor units, wherein a plurality of temperature ranges in which the differential temperature can be taken are provided. Load constant storage means for dividing and storing a load constant corresponding to the indoor load for each temperature zone and for each rated capacity of the indoor unit, wherein the temperature difference calculating means and the capacity determining means are provided. A compressor for calculating a compressor capacity at predetermined intervals using data obtained from the on / off determining means and the load constant storage means, and controlling a capacity of the capacity (frequency) variable compressor based on the calculation result. A valve capacity control means, and a valve initial opening calculating means for calculating a valve initial opening for each electric expansion valve connected to each indoor unit by an approximate expression using the data. Is operating, the valve opening of each electric expansion valve connected to the operating indoor unit is performed at predetermined intervals using the data and the data of the valve initial opening obtained by the valve initial opening calculating means. And a valve opening control means for controlling the valve opening of the electric expansion valve based on the calculation result.

【0022】また、本発明の他の多室形空気調和システ
ムは、容量(周波数)可変形圧縮機に吸入される冷媒の
過熱度を所定周期毎に検出する過熱度検出手段を設け、
室外熱交換器と液側分岐管に接続された電動膨張弁の間
に接続された主電動膨張弁の弁開度をこの過熱度検出手
段により検出された過熱度のデータに対応して決定する
弁開度決定手段を設け、弁開度制御手段にてこの弁開度
を制御するものである。
Further, another multi-chamber air conditioning system according to the present invention is provided with superheat degree detecting means for detecting the superheat degree of the refrigerant sucked into the variable capacity (frequency) compressor at predetermined intervals.
The valve opening of the main motor-operated expansion valve connected between the outdoor heat exchanger and the motor-operated expansion valve connected to the liquid-side branch pipe is determined in accordance with the superheat degree data detected by the superheat degree detection means. A valve opening determining means is provided, and the valve opening controlling means controls the valve opening.

【0023】また、本発明の他の多室形空気調和システ
ムは、室外熱交換器と液側分岐管に接続された電動膨張
弁の間に接続された主電動膨張弁の弁開度を圧縮機容量
制御手段により算出された圧縮機容量に対応して決定す
る弁開度決定手段を設け、弁開度制御手段にてこの弁開
度を制御するものである。
Further, another multi-chamber air conditioning system of the present invention reduces the valve opening of a main motor-operated expansion valve connected between an outdoor heat exchanger and a motor-operated expansion valve connected to a liquid side branch pipe. There is provided a valve opening determining means for determining the valve opening corresponding to the compressor capacity calculated by the machine capacity controlling means, and the valve opening controlling means controls the valve opening.

【0024】また、本発明の他の多室形空気調和システ
ムは、容量(周波数)可変形圧縮機から吐出される冷媒
の温度を所定周期毎に検出する吐出温度検出手段と、吐
出温度を圧縮機容量制御手段により算出された圧縮機容
量に対応して決定する圧縮機吐出温度決定手段を設け、
室外熱交換器と液側分岐管に接続された電動膨張弁の間
に接続された主電動膨張弁の弁開度を、吐出温度検出手
段により検出された吐出温度のデータに対応して決定す
る弁開度決定手段を設け、弁開度制御手段にてこの弁開
度を制御するものである。
Further, another multi-chamber air conditioning system according to the present invention comprises a discharge temperature detecting means for detecting the temperature of the refrigerant discharged from the variable capacity (frequency) compressor at predetermined intervals, and compressing the discharge temperature. Compressor discharge temperature determining means for determining in accordance with the compressor capacity calculated by the capacity control means,
The valve opening of the main electric expansion valve connected between the outdoor heat exchanger and the electric expansion valve connected to the liquid side branch pipe is determined in accordance with the discharge temperature data detected by the discharge temperature detecting means. A valve opening determining means is provided, and the valve opening controlling means controls the valve opening.

【0025】[0025]

【作用】本発明は、上記手段により次のような作用を有
する。
The present invention has the following functions by the above means.

【0026】すなわち、室内機のそれぞれに、希望する
室内温度を設定可能な室内温度設定手段と室内温度を検
出する室内温度検出手段とを設け、この室内温度設定手
段と室内温度検出手段とから設定室内温度と室内温度と
の差温を算出する差温算出手段を設け、さらに前記室内
機のそれぞれの定格容量を判別する容量判別手段及び前
記室内機のそれぞれについて運転中か停止中かを判別す
るオンオフ判別手段を設け、前記差温が取り得る温度範
囲を複数個の温度ゾーンに分割し、各温度ゾーン毎にか
つ室内機の定格容量毎に室内負荷に対応する負荷定数を
定めて記憶する負荷定数記憶手段を設け、室内機の定格
容量毎に弁初期開度を定めて記憶する弁初期開度記憶手
段を設け、前記差温算出手段、前記容量判別手段、前記
オンオフ判別手段、前記負荷定数記憶手段より得られる
データを用いて所定周期毎に圧縮機容量を算出し、この
算出結果に基づいて前記容量(周波数)可変形圧縮機の
容量を制御する圧縮機容量制御手段を設け、前記室内機
の複数台が運転中の場合には、前記データ及び前記弁初
期開度記憶手段より得られるデータを用いて所定周期毎
に運転中の室内機に接続された各電動膨張弁の弁開度を
算出し、この算出結果に基づいて前記電動膨張弁の弁開
度を制御する弁開度制御手段を設けることで、各部屋の
要求能力の総和に応じて圧縮機周波数を制御し、かつ各
部屋毎の負荷に応じて各電動膨張弁の開度を決定するた
め、必要な能力を必要な部屋に配分することができ、快
適性の向上及び省エネルギーを図ることができる。
That is, each of the indoor units is provided with an indoor temperature setting means for setting a desired indoor temperature and an indoor temperature detecting means for detecting the indoor temperature, and the indoor temperature setting means and the indoor temperature detecting means are used for setting. A differential temperature calculating means for calculating a temperature difference between the indoor temperature and the indoor temperature; a capacity determining means for determining a rated capacity of each of the indoor units; and determining whether each of the indoor units is operating or stopped. On / off determining means for dividing a temperature range in which the temperature difference can be taken into a plurality of temperature zones, and determining and storing a load constant corresponding to the indoor load for each temperature zone and for each rated capacity of the indoor unit. A constant storage means is provided, and a valve initial opening storage means for determining and storing a valve initial opening for each rated capacity of the indoor unit is provided, wherein the differential temperature calculating means, the capacity determining means, and the on / off determining means are provided. Compressor capacity control means for calculating a compressor capacity at predetermined intervals using data obtained from the load constant storage means and controlling the capacity of the capacity (frequency) variable compressor based on the calculation result. When a plurality of the indoor units are in operation, using the data and the data obtained from the valve initial opening storage means, each of the electric expansion valves connected to the operating indoor unit at predetermined intervals is used. By calculating the valve opening and providing valve opening control means for controlling the valve opening of the electric expansion valve based on the calculation result, the compressor frequency is controlled in accordance with the total required capacity of each room. In addition, since the degree of opening of each electric expansion valve is determined according to the load of each room, necessary capacity can be allocated to necessary rooms, and improvement in comfort and energy saving can be achieved.

【0027】また、室内機のそれぞれに、希望する室内
温度を設定可能な室内温度設定手段と室内温度を検出す
る室内温度検出手段とを設け、この室内温度設定手段と
室内温度検出手段とから設定室内温度と室内温度との差
温を算出する差温算出手段を設け、さらに前記室内機の
それぞれの定格容量を判別する容量判別手段及び前記室
内機のそれぞれについて運転中か停止中かを判別するオ
ンオフ判別手段を設け、前記差温が取り得る温度範囲を
複数個の温度ゾーンに分割し、各温度ゾーン毎にかつ室
内機の定格容量毎に室内負荷に対応する負荷定数を定め
て記憶する負荷定数記憶手段を設け、前記差温算出手
段、前記容量判別手段、前記オンオフ判別手段、前記負
荷定数記憶手段より得られるデータを用いて所定周期毎
に圧縮機容量を算出し、この算出結果に基づいて前記容
量(周波数)可変形圧縮機の容量を制御する圧縮機容量
制御手段を設け、運転中の室内機台数及び定格容量の組
合せ毎に各室内機に接続された電動膨張弁毎の弁初期開
度を定めて記憶する弁初期開度記憶手段を設け、前記室
内機の複数台が運転中の場合には、前記データ及びこの
弁初期開度記憶手段より得られる弁初期開度のデータを
用いて所定周期毎に運転中の室内機に接続された各電動
膨張弁の弁開度を算出し、この算出結果に基づいて前記
電動膨張弁の弁開度を制御する弁開度制御手段を設ける
ことで、各部屋の要求能力の総和に応じて圧縮機周波数
を制御し、かつ各部屋毎の負荷に応じて各電動膨張弁の
開度を決定するため、必要な能力を必要な部屋に配分す
ることができ、さらに弁初期開度を室内機の運転台数及
びその定格容量の組合せ毎に定めているので、よりきめ
細かく高い精度の能力制御が可能であり、快適性の向上
及び省エネルギーを図ることができる。
Each of the indoor units is provided with an indoor temperature setting means for setting a desired indoor temperature and an indoor temperature detecting means for detecting the indoor temperature. The indoor temperature setting means and the indoor temperature detecting means are used for setting. A differential temperature calculating means for calculating a temperature difference between the indoor temperature and the indoor temperature; a capacity determining means for determining a rated capacity of each of the indoor units; and determining whether each of the indoor units is operating or stopped. On / off determining means for dividing a temperature range in which the temperature difference can be taken into a plurality of temperature zones, and determining and storing a load constant corresponding to the indoor load for each temperature zone and for each rated capacity of the indoor unit. A constant storage means for calculating a compressor capacity at predetermined intervals using data obtained from the temperature difference calculating means, the capacity determining means, the on / off determining means, and the load constant storing means; A compressor capacity control means for controlling the capacity of the variable capacity (frequency) compressor based on the calculation result is provided, and the electric motor connected to each indoor unit for each combination of the number of operating indoor units and the rated capacity is provided. Valve initial opening storage means for determining and storing a valve initial opening for each expansion valve is provided, and when a plurality of indoor units are in operation, the data and a valve obtained from the valve initial opening storing means are provided. Using the data of the initial opening degree, the valve opening degree of each electric expansion valve connected to the operating indoor unit is calculated every predetermined cycle, and the valve opening degree of the electric expansion valve is controlled based on the calculation result. By providing the valve opening control means, it is necessary to control the compressor frequency according to the sum of the required capacity of each room, and to determine the opening of each electric expansion valve according to the load of each room. The capacity can be allocated to the required room, and the valve Since determined for each combination of the number of operating units and their rated capacity of the machine, it is capable of capacity control more finely accuracy can be improved and energy saving comfort.

【0028】また、室内機のそれぞれに、希望する室内
温度を設定可能な室内温度設定手段と室内温度を検出す
る室内温度検出手段とを設け、この室内温度設定手段と
室内温度検出手段とから設定室内温度と室内温度との差
温を算出する差温算出手段を設け、さらに前記室内機の
それぞれの定格容量を判別する容量判別手段及び前記室
内機のそれぞれについて運転中か停止中かを判別するオ
ンオフ判別手段を設け、前記差温が取り得る温度範囲を
複数個の温度ゾーンに分割し、各温度ゾーン毎にかつ室
内機の定格容量毎に室内負荷に対応する負荷定数を定め
て記憶する負荷定数記憶手段を設け、前記差温算出手
段、前記容量判別手段、前記オンオフ判別手段、前記負
荷定数記憶手段より得られるデータを用いて所定周期毎
に圧縮機容量を算出し、この算出結果に基づいて前記容
量(周波数)可変形圧縮機の容量を制御する圧縮機容量
制御手段を設け、前記データを用いて近似式にて各室内
機に接続された電動膨張弁毎の弁初期開度を算出する弁
初期開度算出手段を設け、前記室内機の複数台が運転中
の場合には、前記データ及びこの弁初期開度算出手段よ
り得られる弁初期開度のデータを用いて所定周期毎に運
転中の室内機に接続された各電動膨張弁の弁開度を算出
し、この算出結果に基づいて前記電動膨張弁の弁開度を
制御する弁開度制御手段を設けることで、弁初期開度を
室内機の運転台数及びその定格容量の組合せ毎に近似式
で求めているので、よりきめ細かく高い精度の能力制御
が可能であり、快適性の向上及び省エネルギーを図るこ
とができる。また、弁初期開度のテーブルを必要としな
いので、さらに室内機の組合せが増加しても、記憶回路
の容量を増加させる必要がない。
Each of the indoor units is provided with an indoor temperature setting means for setting a desired indoor temperature and an indoor temperature detecting means for detecting the indoor temperature. The indoor temperature setting means and the indoor temperature detecting means are used for setting. A differential temperature calculating means for calculating a temperature difference between the indoor temperature and the indoor temperature; a capacity determining means for determining a rated capacity of each of the indoor units; and determining whether each of the indoor units is operating or stopped. On / off determining means for dividing a temperature range in which the temperature difference can be taken into a plurality of temperature zones, and determining and storing a load constant corresponding to the indoor load for each temperature zone and for each rated capacity of the indoor unit. A constant storage unit is provided, and a compressor capacity is calculated at predetermined intervals using data obtained from the differential temperature calculation unit, the capacity determination unit, the on / off determination unit, and the load constant storage unit. A compressor capacity control means for controlling the capacity of the variable capacity (frequency) compressor based on the calculation result, and using an approximation formula using the data, for each electric expansion valve connected to each indoor unit. A valve initial opening calculating means for calculating a valve initial opening is provided, and when a plurality of the indoor units are operating, the data and the valve initial opening data obtained from the valve initial opening calculating means are provided. A valve opening control means for calculating a valve opening of each electric expansion valve connected to the operating indoor unit for each predetermined cycle, and controlling the valve opening of the electric expansion valve based on the calculation result. By providing this, the initial valve opening is determined by an approximate expression for each combination of the number of operating indoor units and the rated capacity thereof, so that more detailed and high-precision capacity control is possible, and improvement of comfort and energy saving are achieved. be able to. Further, since a table of the valve initial opening is not required, it is not necessary to increase the capacity of the storage circuit even when the number of indoor units further increases.

【0029】また、容量(周波数)可変形圧縮機に吸入
される冷媒の過熱度を所定周期毎に検出する過熱度検出
手段を設け、室外熱交換器と液側分岐管に接続された電
動膨張弁の間に接続された主電動膨張弁の弁開度をこの
過熱度検出手段により検出された過熱度のデータに対応
して決定する弁開度決定手段を設け、弁開度制御手段に
てこの弁開度を制御することで、圧縮機吸入冷媒の過熱
度を所定値に保つように制御を行なうため、冷凍サイク
ルをよりきめ細かく最適に制御しながら、快適性の向上
及び省エネルギーを図ることができる。
Further, a superheat degree detecting means for detecting the superheat degree of the refrigerant sucked into the variable capacity (frequency) compressor at predetermined intervals is provided, and the electric expansion connected to the outdoor heat exchanger and the liquid side branch pipe is provided. Valve opening degree determining means for determining the valve opening degree of the main motor-operated expansion valve connected between the valves in accordance with the superheat degree data detected by the superheat degree detecting means is provided, and the valve opening degree control means By controlling the valve opening degree to control the superheat degree of the refrigerant drawn into the compressor to a predetermined value, it is possible to improve comfort and save energy while controlling the refrigeration cycle more finely and optimally. it can.

【0030】また、室外熱交換器と液側分岐管に接続さ
れた電動膨張弁の間に接続された主電動膨張弁の弁開度
を圧縮機容量制御手段により算出された圧縮機容量に対
応して決定する弁開度決定手段を設け、弁開度制御手段
にてこの弁開度を制御することで、圧縮機周波数に対応
して主電動膨張弁の弁開度を決定するため、構成を複雑
にすることなく、冷凍サイクルを最適に保ちながら快適
性の向上及び省エネルギーを図ることができる。
The valve opening of the main motor-operated expansion valve connected between the outdoor heat exchanger and the motor-operated expansion valve connected to the liquid side branch pipe corresponds to the compressor capacity calculated by the compressor capacity control means. A valve opening determining means for determining the valve opening of the main electric expansion valve corresponding to the compressor frequency by controlling the valve opening by the valve opening control means. Without increasing the complexity of the refrigeration cycle, it is possible to improve comfort and save energy while maintaining the refrigeration cycle optimally.

【0031】また、容量(周波数)可変形圧縮機から吐
出される冷媒の温度を所定周期毎に検出する吐出温度検
出手段と、吐出温度を圧縮機容量制御手段により算出さ
れた圧縮機容量に対応して決定する圧縮機吐出温度決定
手段を設け、室外熱交換器と液側分岐管に接続された電
動膨張弁の間に接続された主電動膨張弁の弁開度を、吐
出温度検出手段により検出された吐出温度データに対応
して決定する弁開度決定手段を設け、弁開度制御手段に
てこの弁開度を制御することで、圧縮機吐出温度を所定
値に保つように制御を行なうため、構成を複雑にするこ
となく、冷凍サイクルをよりきめ細かく最適に制御しな
がら、快適性の向上及び省エネルギーを図ることができ
る。
Also, a discharge temperature detecting means for detecting the temperature of the refrigerant discharged from the variable capacity (frequency) compressor at predetermined intervals, and a discharge temperature corresponding to the compressor capacity calculated by the compressor capacity control means. The compressor discharge temperature determining means is provided for determining the opening degree of the main electric expansion valve connected between the outdoor heat exchanger and the electric expansion valve connected to the liquid side branch pipe. By providing a valve opening determining means for determining in accordance with the detected discharge temperature data, the valve opening control means controls the valve opening to control the compressor discharge temperature to be maintained at a predetermined value. Therefore, it is possible to improve comfort and save energy while controlling the refrigeration cycle more precisely and optimally without complicating the configuration.

【0032】[0032]

【実施例】以下、本発明の実施例について、図面を参考
に説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0033】図1は、本発明の多室形空気調和システム
の第1の実施例における冷凍サイクル図である。なお、
本実施例においては1台の室外機1に3台の室内機2
a、2b、2cを接続した場合について説明する。
FIG. 1 is a refrigeration cycle diagram of a first embodiment of the multi-room air conditioning system according to the present invention. In addition,
In this embodiment, one outdoor unit 1 and three indoor units 2
The case where a, b, and c are connected will be described.

【0034】同図において、室外機1内にはインバータ
駆動の周波数可変形圧縮機3(以下単に圧縮機と称
す)、室外熱交換器4、冷暖房切換用の四方弁5が設け
られ、また室内機2a、2b、2c内にそれぞれ室内熱
交換器6a、6b、6cが設けられている。そして、こ
の室外機1と室内機2a、2b、2cとは、室外機1内
に設けた液側主管7より分岐した液側分岐管8a、8
b、8c及び室外機1内に設けたガス側主管9より分岐
したガス側分岐管10a、10b、10cとで接続され
ている。液側分岐管8a、8b、8cにはそれぞれステ
ッピングモータを用いて弁開度をパルス制御可能とした
電動膨張弁11a、11b、11cを介装し、また液側
主管7上には冷媒液を貯溜可能なレシーバ12を設け、
このレシーバ12を冷暖房共中間圧に保つために主電動
膨張弁13が設けられている。また、レシーバ12と圧
縮機3への吸入管14とを結ぶバイパス回路15が設け
られ、このバイパス回路15には補助絞り16が設けら
れている。また、各室内機2a、2b、2cには各室内
機が設置されている部屋の室温を検出する室内温度セン
サ17a、17b、17c及び居住者が希望する運転モ
ード(冷房または暖房)と室温と運転、停止を設定でき
る運転設定回路18a、18b、18cが設けられてい
る。また吸入管14には、ここを流れる冷媒の温度を検
出する吸入温度センサ19が設けられ、バイパス回路1
5には吸入管14を流れる冷媒の飽和温度を検出する飽
和温度センサ20が設けられている。
In FIG. 1, an outdoor unit 1 is provided with an inverter-driven variable frequency compressor 3 (hereinafter simply referred to as a compressor), an outdoor heat exchanger 4, and a four-way valve 5 for switching between cooling and heating. The indoor heat exchangers 6a, 6b, 6c are provided in the units 2a, 2b, 2c, respectively. The outdoor unit 1 and the indoor units 2a, 2b, 2c are connected to liquid side branch pipes 8a, 8 branched from the liquid side main pipe 7 provided in the outdoor unit 1.
b, 8c and gas side branch pipes 10a, 10b, 10c branched from a gas side main pipe 9 provided in the outdoor unit 1. The liquid-side branch pipes 8a, 8b, and 8c are provided with electric expansion valves 11a, 11b, and 11c each of which can be pulse-controlled by using a stepping motor, and a refrigerant liquid is provided on the liquid-side main pipe 7. A receiver 12 capable of storing is provided.
A main motor-operated expansion valve 13 is provided to maintain the receiver 12 at an intermediate pressure for cooling and heating. Further, a bypass circuit 15 for connecting the receiver 12 and the suction pipe 14 to the compressor 3 is provided, and the bypass circuit 15 is provided with an auxiliary throttle 16. Each of the indoor units 2a, 2b, and 2c has an indoor temperature sensor 17a, 17b, and 17c for detecting the room temperature of the room in which each indoor unit is installed, and an operation mode (cooling or heating) desired by the occupant and the room temperature. Operation setting circuits 18a, 18b, and 18c capable of setting operation and stop are provided. The suction pipe 14 is provided with a suction temperature sensor 19 for detecting the temperature of the refrigerant flowing therethrough.
5 is provided with a saturation temperature sensor 20 for detecting the saturation temperature of the refrigerant flowing through the suction pipe 14.

【0035】この冷凍サイクルにおいて、冷房時は圧縮
機3から吐出された冷媒は、四方弁5より室外熱交換器
4へと流れてここで室外空気と熱交換して凝縮液化し、
主電動膨張弁13で減圧されて中間圧となる。そして、
レシーバ12に一部の液冷媒を貯溜し、残りは液側分岐
管8a、8b、8cへと分岐する。電動膨張弁11a、
11b、11cの弁開度は、後述する制御方法でそれぞ
れの部屋の負荷に見合った開度になるように制御される
ため、冷媒もそれぞれの負荷に応じた流量で低圧となっ
て室内熱交換器6a、6b、6cへと流れて蒸発した
後、ガス側分岐管10a、10b、10cよりガス側主
管9、四方弁5を通過して再び圧縮機3に吸入される。
また、レシーバ12からごくわずかの液冷媒がバイパス
回路15へと流れ、補助絞り16で減圧されて吸入管1
4へと流れる。この時、補助絞り16を通過した冷媒は
気液2相流で、かつ圧力は吸入管14を流れる冷媒とほ
ぼ等しいので、飽和温度センサ20にてその飽和温度を
検出できる。また、圧縮機周波数は、総負荷に応じて後
述する制御方法で決定される。
In this refrigeration cycle, during cooling, the refrigerant discharged from the compressor 3 flows from the four-way valve 5 to the outdoor heat exchanger 4, where it exchanges heat with outdoor air to condense and liquefy.
The pressure is reduced by the main electric expansion valve 13 to an intermediate pressure. And
A part of the liquid refrigerant is stored in the receiver 12, and the rest branches to the liquid side branch pipes 8a, 8b, 8c. Electric expansion valve 11a,
Since the valve opening of the valves 11b and 11c is controlled by a control method described later so as to be in accordance with the load of each room, the refrigerant also has a low pressure at a flow rate corresponding to each load, and the indoor heat exchange is performed. After flowing to the devices 6a, 6b, and 6c and evaporating, the gas passes through the gas-side branch pipes 10a, 10b, and 10c, passes through the gas-side main pipe 9, and the four-way valve 5, and is again sucked into the compressor 3.
Also, a very small amount of liquid refrigerant flows from the receiver 12 to the bypass circuit 15, and is decompressed by the auxiliary throttle 16, and
Flows to 4. At this time, since the refrigerant that has passed through the auxiliary throttle 16 is a gas-liquid two-phase flow and the pressure is substantially equal to the refrigerant flowing through the suction pipe 14, the saturation temperature sensor 20 can detect the saturation temperature. The compressor frequency is determined by a control method described later according to the total load.

【0036】暖房時は圧縮機3から吐出された冷媒は、
四方弁5を切換えてガス側主管9よりガス側分岐管10
a、10b、10cへと分岐し、室内熱交換器6a、6
b、6cへと流れて凝縮液化し、液側分岐管8a、8
b、8c上の電動膨張弁11a、11b、11cで減圧
されて中間圧となる。電動膨張弁11a、11b、11
cの弁開度は、冷房時と同様に後述する制御方法でそれ
ぞれの部屋の負荷に見合った開度になるように制御され
るため、冷媒もそれぞれの負荷に応じた流量で室内熱交
換器6a、6b、6cを流れる。中間圧となった冷媒
は、レシーバ12に一部の液冷媒が貯溜され、残りは主
電動膨張弁13で減圧されて低圧となって室外熱交換器
4を流れて蒸発した後、四方弁5を通過して再び圧縮機
3に吸入される。また、レシーバ12からごくわずかの
液冷媒がバイパス回路15へと流れ、補助絞り16で減
圧されて吸入管14へと流れる。冷房時と同様に、補助
絞り16を通過した冷媒は気液2相流で、かつ圧力は吸
入管14を流れる冷媒とほぼ等しいので、飽和温度セン
サ20にてその飽和温度を検出できる。また、圧縮機周
波数は、冷房時と同様に総負荷に応じて後述する制御方
法で決定される。
At the time of heating, the refrigerant discharged from the compressor 3
The four-way valve 5 is switched so that the gas-side branch pipe 10
a, 10b, and 10c, and the indoor heat exchangers 6a and 6c
b, 6c to condense and liquefy, and the liquid side branch pipes 8a, 8
The pressure is reduced by the electric expansion valves 11a, 11b, and 11c on b and 8c to an intermediate pressure. Electric expansion valves 11a, 11b, 11
The valve opening of c is controlled by a control method described later to be an opening corresponding to the load of each room as in the case of cooling, so that the refrigerant is also supplied to the indoor heat exchanger at a flow rate corresponding to each load. 6a, 6b and 6c. The intermediate-pressure refrigerant is partially stored in the receiver 12, and the remaining refrigerant is reduced in pressure by the main electric expansion valve 13 to become a low pressure, flows through the outdoor heat exchanger 4 and evaporates, and then is evaporated. And is sucked into the compressor 3 again. Also, a very small amount of liquid refrigerant flows from the receiver 12 to the bypass circuit 15, is depressurized by the auxiliary throttle 16, and flows to the suction pipe 14. As in the case of cooling, the refrigerant that has passed through the auxiliary throttle 16 is a gas-liquid two-phase flow, and the pressure is almost equal to that of the refrigerant flowing through the suction pipe 14. Therefore, the saturation temperature sensor 20 can detect the saturation temperature. Further, the compressor frequency is determined by a control method described later according to the total load as in the case of cooling.

【0037】次に、圧縮機周波数及び電動膨張弁開度の
制御方法について説明する。図2は圧縮機周波数及び電
動膨張弁開度の制御の流れを示すブロック図、図3は室
内温度Trと設定温度Tsとの差温ΔTの温度ゾーン分割
図、図4は過熱度SHと主電動膨張弁の開度変更量との
関係図である。
Next, a method of controlling the compressor frequency and the electric expansion valve opening will be described. Figure 2 is a block diagram showing the control flow of the compressor frequency and motor-operated expansion valve opening, FIG 3 is a temperature zone division diagram of differential temperature ΔT between the set temperature T s and the room temperature T r, 4 superheat degree SH FIG. 7 is a relationship diagram between the main electric expansion valve and the opening change amount of the main electric expansion valve.

【0038】まず、室内機2aにおいて、室内温度セン
サ17aの出力を室内温度検出回路21より温度信号と
して差温演算回路22に送出し、また設定判別回路23
にて運転設定回路18aで設定された設定温度及び運転
モードを判別して差温演算回路22に送出してここで差
温ΔT(=Tr−Ts)を算出し、図3に示す負荷ナンバ
ーLn値に変換してこれを差温信号とする。例えば冷房
運転時でTr=27.3℃、Ts=26℃とすると、差温
ΔT=1.3℃でLn=6となる。またON−OFF判
別回路24にて、運転設定回路18aで設定された室内
機2aの運転(ON)または停止(OFF)を判別し、
さらに定格容量記憶回路25に室内機2aの定格容量を
記憶しておき、これらの定格容量信号、差温信号、運転
モード信号、ON−OFF判別信号を信号送出回路26
より室外機1の信号受信回路27へ送る。室内機2b、
2cからも同様の信号が信号受信回路27へ送られる。
信号受信回路27で受けた信号は圧縮機周波数演算回路
28と膨張弁開度演算回路29へ送出される。ただし、
異なった運転モード信号が存在する場合、最初に運転を
開始した室内機の運転モードが優先され、異なった運転
モードの室内機は停止しているとみなしてON−OFF
判別信号は常にOFFを送出する。
First, in the indoor unit 2a, the output of the indoor temperature sensor 17a is sent from the indoor temperature detecting circuit 21 to the temperature difference calculating circuit 22 as a temperature signal.
Then, the set temperature and the operation mode set by the operation setting circuit 18a are discriminated and sent to the temperature difference calculating circuit 22, where the temperature difference ΔT (= T r −T s ) is calculated, and the load shown in FIG. The value is converted into a number Ln value and is used as a differential temperature signal. For example, if T r = 27.3 ° C. and T s = 26 ° C. during the cooling operation, Ln = 6 at the temperature difference ΔT = 1.3 ° C. Further, the ON-OFF determination circuit 24 determines whether the indoor unit 2a is set to the operation (ON) or stop (OFF) set by the operation setting circuit 18a.
Further, the rated capacity of the indoor unit 2a is stored in the rated capacity storage circuit 25, and the rated capacity signal, the differential temperature signal, the operation mode signal, and the ON / OFF determination signal are transmitted to the signal transmission circuit 26.
The signal is sent to the signal receiving circuit 27 of the outdoor unit 1. Indoor unit 2b,
A similar signal is sent from 2c to the signal receiving circuit 27.
The signal received by the signal receiving circuit 27 is sent to a compressor frequency calculating circuit 28 and an expansion valve opening calculating circuit 29. However,
If a different operation mode signal exists, the operation mode of the indoor unit that started operation first has priority, and the indoor unit in the different operation mode is regarded as stopped and turned ON-OFF.
The discrimination signal always sends OFF.

【0039】圧縮機周波数演算回路28にて室内機2
a、2b、2cのそれぞれの定格容量信号、差温信号、
運転モード信号、ON−OFF判別信号より下記(表
1)に示す負荷定数テーブル30から負荷定数を読み出
し、この負荷定数の総和に定数を乗じて圧縮機3の周波
数を決定する。
In the compressor frequency calculation circuit 28, the indoor unit 2
a, the rated capacity signal of each of 2b, 2c, the differential temperature signal,
The load constant is read from the load constant table 30 shown in the following (Table 1) from the operation mode signal and the ON-OFF determination signal, and the sum of the load constants is multiplied by a constant to determine the frequency of the compressor 3.

【0040】[0040]

【表1】 [Table 1]

【0041】一例として、室内機2a、2b、2cから
の信号が下記(表2)の場合について説明する。
As an example, a case where the signals from the indoor units 2a, 2b, 2c are as shown in Table 2 below will be described.

【0042】[0042]

【表2】 [Table 2]

【0043】(表1)と(表2)より、室内機2a、2
b、2cの負荷定数はそれぞれ1.5、1.0、1.9
となり、従って圧縮機3の周波数Hzは、Aを定数とす
ると Hz=A×(1.5+1.0+1.9)=A×4.4 となり、この演算結果を周波数信号として圧縮機駆動回
路(図示せず)に送出して圧縮機3の周波数の制御を行
なう。以降、所定周期毎に室内機2a、2b、2cのそ
れぞれの定格容量信号、差温信号、運転モード信号、O
N−OFF判別信号より演算を行ない、演算結果を周波
数信号として圧縮機駆動回路(図示せず)に送出して圧
縮機3の周波数の制御を行なう。
From (Table 1) and (Table 2), the indoor units 2a, 2a
The load constants of b and 2c are 1.5, 1.0 and 1.9, respectively.
Therefore, the frequency Hz of the compressor 3 is given by: Hz = A × (1.5 + 1.0 + 1.9) = A × 4.4 where A is a constant, and the calculation result is used as a frequency signal as a compressor drive circuit (FIG. (Not shown) to control the frequency of the compressor 3. Thereafter, the rated capacity signal, the differential temperature signal, the operation mode signal, the O
Calculation is performed based on the N-OFF determination signal, and the calculation result is sent to a compressor drive circuit (not shown) as a frequency signal to control the frequency of the compressor 3.

【0044】膨張弁開度演算回路29においても同様
に、室内機2a、2b、2cのそれぞれの定格容量信
号、差温信号、運転モード信号、ON−OFF判別信号
より(表1)に示す負荷定数テーブル30から負荷定数
を選び、さらに室内機2a、2b、2cのそれぞれの定
格容量より下記(表3)に示す定格容量毎の弁初期開度
テーブル31から読み出す。なお、弁初期開度は、異な
った定格容量の室内機の組合せでも、各室内機が所定の
能力制御ができるように決定する。
Similarly, in the expansion valve opening calculation circuit 29, the load shown in Table 1 is obtained from the rated capacity signal, the differential temperature signal, the operation mode signal, and the ON / OFF discrimination signal of each of the indoor units 2a, 2b, 2c. The load constant is selected from the constant table 30, and is read from the valve initial opening table 31 for each rated capacity shown in the following (Table 3) from the rated capacity of each of the indoor units 2a, 2b, and 2c. Note that the valve initial opening is determined so that each indoor unit can perform predetermined capacity control even with a combination of indoor units having different rated capacities.

【0045】[0045]

【表3】 [Table 3]

【0046】電動膨張弁11a、11b、11cの弁開
度はそれぞれの負荷定数をその負荷定数の所定値で割っ
たものに弁初期開度を乗じたものである。圧縮機周波数
算出例の場合と同様に、室内機2a、2b、2cからの
信号が(表2)の場合について説明する。
The valve opening of the electric expansion valves 11a, 11b, 11c is obtained by dividing each load constant by a predetermined value of the load constant and multiplying the result by the initial valve opening. As in the case of the compressor frequency calculation example, the case where the signals from the indoor units 2a, 2b, and 2c are (Table 2) will be described.

【0047】室内機2a、2b、2cの(負荷定数/所
定負荷定数)はそれぞれ(1.5/2.0)、(1.0
/2.5)、(1.9/3.2)であり、また弁初期開
度はそれぞれ100、130、180である。従って、
電動膨張弁11a、11b、11cの弁開度は、75、
52、107となる(小数点以下第1位を四捨五入)。
この演算結果を膨張弁開度信号として膨張弁駆動回路
(図示せず)に送出する。 従って、電動膨張弁11
a、11b、11cの弁開度はそれぞれ75パルス、5
2パルス、107パルスとなり、以降、所定周期毎に、
差温信号、運転モード信号、ON−OFF判別信号より
電動膨張弁11a、11b、11cの弁開度を算出し、
これらの演算結果を膨張弁開度信号として膨張弁駆動回
路(図示せず)に送出する。また、吸入温度センサ19
の出力を吸入温度検出回路32より温度信号として過熱
度演算回路33に送出し、飽和温度センサ20の出力を
飽和温度検出回路34より温度信号として過熱度演算回
路33に送出し、ここで過熱度SH(=吸入温度−飽和
温度)を算出して膨張弁開度演算回路29に送出する。
膨張弁開度演算回路29では、送られてきた過熱度SH
に応じて、図4に示すように弁開度変更パルス数を算出
し、主電動膨張弁13の駆動回路(図示せず)に送出し
制御する。
The (load constant / predetermined load constant) of the indoor units 2a, 2b and 2c are (1.5 / 2.0) and (1.0
/2.5) and (1.9 / 3.2), and the initial valve openings are 100, 130 and 180, respectively. Therefore,
The valve opening degree of the electric expansion valves 11a, 11b, 11c is 75,
52, 107 (rounded to one decimal place).
This calculation result is sent to an expansion valve drive circuit (not shown) as an expansion valve opening signal. Therefore, the electric expansion valve 11
The valve opening degrees of a, 11b, and 11c are 75 pulses, 5
2 pulses, 107 pulses, and thereafter, every predetermined period,
The valve openings of the electric expansion valves 11a, 11b, 11c are calculated from the temperature difference signal, the operation mode signal, and the ON-OFF determination signal,
These calculation results are sent to an expansion valve drive circuit (not shown) as an expansion valve opening signal. Also, the suction temperature sensor 19
Is sent from the suction temperature detection circuit 32 to the superheat degree calculation circuit 33 as a temperature signal, and the output of the saturation temperature sensor 20 is sent from the saturation temperature detection circuit 34 to the superheat degree calculation circuit 33 as a temperature signal. SH (= suction temperature−saturation temperature) is calculated and sent to the expansion valve opening calculation circuit 29.
In the expansion valve opening calculating circuit 29, the sent superheat SH
, The number of valve opening change pulses is calculated as shown in FIG. 4 and sent to a drive circuit (not shown) of the main electric expansion valve 13 to be controlled.

【0048】上記説明は、主に冷房時について行なった
が、暖房時についても同様に制御可能である。
Although the above description has been made mainly for cooling, the same can be applied to heating.

【0049】このように、各部屋の要求能力の総和に応
じて圧縮機周波数を制御し、かつ各部屋毎の負荷に応じ
て各電動膨張弁の開度を決定するため、必要な能力を必
要な部屋に配分することができ、また同時に室外熱交換
器と液側分岐管に接続された電動膨張弁の間に接続され
た主電動膨張弁により圧縮機吸入冷媒の過熱度を所定値
に保つように制御を行なっている。従って、冷凍サイク
ルをきめ細かく最適に制御しながら、快適性の向上及び
省エネルギーを図ることができる。次に、本発明の第2
の実施例について、図面を参照しながら説明する。な
お、第2の実施例における冷凍サイクルは、図1に示す
第1の実施例の場合と同一であるので説明を省略する。
図5は本発明の第2の実施例における圧縮機周波数及び
電動膨張弁開度の制御の流れを示すブロック図である。
同図が第1の実施例のブロック図である図2と異なる点
は、室内機の定格容量に対応して定めた弁初期開度テー
ブル31のかわりに室内機の運転台数及びその定格容量
の組合せ毎に定めた弁初期開度テーブル35を用いてい
ることである。この弁初期開度テーブル35は下記(表
4)のようにあらわされる。
As described above, since the compressor frequency is controlled in accordance with the sum of the required capacity of each room, and the opening degree of each electric expansion valve is determined in accordance with the load in each room, necessary capacity is required. The superheat degree of the refrigerant suctioned by the compressor is maintained at a predetermined value by the main electric expansion valve connected between the outdoor heat exchanger and the electric expansion valve connected to the liquid side branch pipe at the same time. Is controlled as follows. Therefore, it is possible to improve comfort and save energy while controlling the refrigeration cycle finely and optimally. Next, the second embodiment of the present invention
Will be described with reference to the drawings. The refrigeration cycle in the second embodiment is the same as that in the first embodiment shown in FIG.
FIG. 5 is a block diagram showing the flow of control of the compressor frequency and the electric expansion valve opening in the second embodiment of the present invention.
This figure differs from FIG. 2 which is a block diagram of the first embodiment, in that the number of operating indoor units and the rated capacity thereof are replaced with the valve initial opening degree table 31 determined corresponding to the rated capacity of the indoor units. That is, a valve initial opening table 35 determined for each combination is used. The valve initial opening table 35 is represented as shown in the following (Table 4).

【0050】[0050]

【表4】 [Table 4]

【0051】そして、電動膨張弁11a、11b、11
cの弁開度はそれぞれの負荷定数をその負荷定数の所定
値で割ったものに弁初期開度を乗じたものである。
The electric expansion valves 11a, 11b, 11
The valve opening of c is obtained by multiplying the value obtained by dividing each load constant by a predetermined value of the load constant and the initial valve opening.

【0052】このように、弁初期開度を室内機の運転台
数及びその定格容量の組合せ毎に定めているので、より
きめ細かく高い精度の能力制御が可能であり、快適性の
向上及び省エネルギーを図ることができる。
As described above, since the initial valve opening is determined for each combination of the number of operating indoor units and the rated capacity thereof, more detailed and high-precision capacity control is possible, and improvement in comfort and energy saving are achieved. be able to.

【0053】次に、本発明の第3の実施例について、図
面を参照しながら説明する。なお、第3の実施例におけ
る冷凍サイクルは、図1に示す第1の実施例の場合と同
一であるので説明を省略する。図6は本発明の第3の実
施例における圧縮機周波数及び電動膨張弁開度の制御の
流れを示すブロック図である。同図が第1の実施例及び
第2の実施例と異なる点は、定格容量毎の弁初期開度テ
ーブル31や弁初期開度テーブル35を用いていないこ
とである。すなわち、弁初期開度は膨張弁開度演算回路
29にて室内機の運転台数とそれぞれの定格容量より、
近似式にて算出する。
Next, a third embodiment of the present invention will be described with reference to the drawings. The refrigeration cycle in the third embodiment is the same as that in the first embodiment shown in FIG. FIG. 6 is a block diagram showing the flow of control of the compressor frequency and the electric expansion valve opening in the third embodiment of the present invention. This figure differs from the first and second embodiments in that the valve initial opening table 31 and the valve initial opening table 35 for each rated capacity are not used. That is, the initial valve opening is calculated by the expansion valve opening calculation circuit 29 from the number of operating indoor units and the respective rated capacities.
It is calculated by an approximate expression.

【0054】例えば室内機2aの弁初期開度はf(室内
機2aの定格容量、運転台数、他に運転中の室内機の定
格容量)であらわされる(fは関数を示す)。室内機2
b、2cについても同様にあらわすことができる。そし
て、電動膨張弁11a、11b、11cの弁開度はそれ
ぞれの負荷定数をその負荷定数の所定値で割ったものに
弁初期開度を乗じたものである。
For example, the initial valve opening of the indoor unit 2a is represented by f (the rated capacity of the indoor unit 2a, the number of operating units, and the rated capacity of the indoor unit in operation) (f is a function). Indoor unit 2
The same applies to b and 2c. The valve opening of the electric expansion valves 11a, 11b, 11c is obtained by multiplying the load constant by dividing the load constant by a predetermined value of the load constant by the valve initial opening.

【0055】このように、弁初期開度を室内機の運転台
数及びその定格容量の組合せ毎に近似式で求めているの
で、よりきめ細かく高い精度の能力制御が可能であり、
快適性の向上及び省エネルギーを図ることができる。ま
た、弁初期開度のテーブルを必要としないので、さらに
室内機の組合せが増加しても、記憶回路の容量を増加さ
せる必要がない。なお、上記実施例において、室内機2
aの弁初期開度はf(室内機2aの定格容量、運転台
数、他に運転中の室内機の定格容量)であらわされると
したが、f(室内機2aの定格容量、室内機2aの負荷
定数、運転台数、他に運転中の室内機の定格容量)とし
て近似式を作成することでさらに精度を高めることがで
きる(室内機2b、2cについても同様)。
As described above, since the initial valve opening is determined by the approximate expression for each combination of the number of operating indoor units and the rated capacity thereof, more precise and high-precision capability control is possible.
It is possible to improve comfort and save energy. Further, since a table of the valve initial opening is not required, it is not necessary to increase the capacity of the storage circuit even when the number of indoor units further increases. In the above embodiment, the indoor unit 2
The initial valve opening of a is represented by f (the rated capacity of the indoor unit 2a, the number of operating units, and the rated capacity of the indoor unit in operation), but f (the rated capacity of the indoor unit 2a, the rated capacity of the indoor unit 2a). The accuracy can be further improved by creating an approximate expression as the load constant, the number of operating units, and the rated capacity of the indoor unit during operation (the same applies to the indoor units 2b and 2c).

【0056】次に第4の実施例について説明する。図7
は、本発明の多室形空気調和システムの第4の実施例に
おける冷凍サイクル図である。この冷凍サイクルが上記
第1〜第3の実施例の場合と異なる点は、吸入管14を
流れる冷媒の過熱度を検出する回路やセンサがないこと
である。すなわち、図7の冷凍サイクルでは図1の冷凍
サイクルのバイパス回路15、飽和温度センサ20、吸
入温度センサ19がない。また、図8は本実施例の圧縮
機周波数及び電動膨張弁開度の制御の流れを示すブロッ
ク図、図9は圧縮機周波数と主電動膨張弁の弁開度との
関係図を示す。
Next, a fourth embodiment will be described. FIG.
FIG. 8 is a refrigeration cycle diagram in a fourth embodiment of the multi-room air conditioning system of the present invention. This refrigeration cycle differs from the first to third embodiments in that there is no circuit or sensor for detecting the degree of superheating of the refrigerant flowing through the suction pipe 14. That is, the refrigeration cycle of FIG. 7 does not include the bypass circuit 15, the saturation temperature sensor 20, and the suction temperature sensor 19 of the refrigeration cycle of FIG. FIG. 8 is a block diagram showing the flow of control of the compressor frequency and the electric expansion valve opening of the present embodiment, and FIG. 9 is a diagram showing the relationship between the compressor frequency and the valve opening of the main electric expansion valve.

【0057】本実施例における圧縮機周波数及び電動膨
張弁開度の制御方法について説明すると、図8におい
て、圧縮機周波数演算回路28にて室内機2a、2b、
2cのそれぞれの定格容量信号、差温信号、運転モード
信号、ON−OFF判別信号より(表1)に示す負荷定
数テーブル30から負荷定数を読み出し、この負荷定数
の総和に定数を乗じて圧縮機3の周波数を決定する点ま
では、上記第1〜第3の実施例と同じである。この演算
結果を周波数信号として圧縮機駆動回路(図示せず)に
送出して圧縮機3の周波数の制御を行なうと共に、膨張
弁開度演算回路29にも送出する。以降、所定周期毎に
室内機2a、2b、2cのそれぞれの定格容量信号、差
温信号、運転モード信号、ON−OFF判別信号より演
算を行ない、演算結果を周波数信号として圧縮機駆動回
路(図示せず)に送出して圧縮機3の周波数の制御を行
なうと共に、膨張弁開度演算回路29にも送出する。
The control method of the compressor frequency and the electric expansion valve opening in this embodiment will be described. In FIG. 8, the compressor units 2a, 2b,
2c, the load constant is read from the load constant table 30 shown in (Table 1) from the rated capacity signal, the differential temperature signal, the operation mode signal, and the ON-OFF discrimination signal, and the sum of the load constants is multiplied by a constant. The third embodiment is the same as the first to third embodiments up to the point of determining the third frequency. The calculation result is sent as a frequency signal to a compressor drive circuit (not shown) to control the frequency of the compressor 3 and to the expansion valve opening calculation circuit 29. Thereafter, at predetermined intervals, calculations are performed based on the rated capacity signal, the differential temperature signal, the operation mode signal, and the ON / OFF determination signal of the indoor units 2a, 2b, and 2c, and the calculation result is used as a frequency signal as a compressor drive circuit (FIG. (Not shown) to control the frequency of the compressor 3 and also to the expansion valve opening calculation circuit 29.

【0058】膨張弁開度演算回路29においても同様
に、室内機2a、2b、2cのそれぞれの定格容量信
号、差温信号、運転モード信号、ON−OFF判別信号
より(表1)に示す負荷定数テーブル30から負荷定数
を選び、さらに室内機2a、2b、2cのそれぞれの定
格容量より(表3)に示す定格容量毎の弁初期開度テー
ブル31から弁初期開度を読み出す。電動膨張弁11
a、11b、11cの弁開度はそれぞれの負荷定数をそ
の負荷定数の所定値で割ったものに弁初期開度を乗じた
ものである。また、膨張弁開度演算回路29では、圧縮
機周波数演算回路28から送出された周波数信号に対応
する主電動膨張弁13の開度を算出する。ここで、第1
の実施例の場合と同様に、室内機2a、2b、2cから
の信号が(表2)の場合について具体的に説明する。
Similarly, in the expansion valve opening calculation circuit 29, the load shown in Table 1 is obtained from the rated capacity signal, the differential temperature signal, the operation mode signal, and the ON-OFF discrimination signal of the indoor units 2a, 2b, 2c. The load constant is selected from the constant table 30, and the valve initial opening is read from the valve initial opening table 31 for each rated capacity shown in (Table 3) from the respective rated capacities of the indoor units 2a, 2b, 2c. Electric expansion valve 11
The valve openings a, 11b, and 11c are obtained by multiplying a value obtained by dividing each load constant by a predetermined value of the load constant and an initial valve opening. The expansion valve opening calculation circuit 29 calculates the opening of the main electric expansion valve 13 corresponding to the frequency signal sent from the compressor frequency calculation circuit 28. Here, the first
Similar to the embodiment, the case where the signals from the indoor units 2a, 2b, and 2c are (Table 2) will be specifically described.

【0059】室内機2a、2b、2cの(負荷定数/所
定負荷定数)はそれぞれ(1.5/2.0)、(1.0
/2.5)、(1.9/3.2)であり、また弁初期開
度はそれぞれ1.0、1.2、1.4である。従って、
電動膨張弁11a、11b、11cの弁開度は、75、
52、107となる(小数点以下第1位を四捨五入)。
また、圧縮機周波数演算回路28より送出された周波数
より、図9に示す関係を用いて主電動膨張弁13の弁開
度を算出する。
The (load constant / predetermined load constant) of the indoor units 2a, 2b and 2c are (1.5 / 2.0) and (1.0
/2.5) and (1.9 / 3.2), and the initial valve opening is 1.0, 1.2 and 1.4, respectively. Therefore,
The valve opening degree of the electric expansion valves 11a, 11b, 11c is 75,
52, 107 (rounded to one decimal place).
Further, the valve opening of the main electric expansion valve 13 is calculated from the frequency transmitted from the compressor frequency calculation circuit 28 using the relationship shown in FIG.

【0060】圧縮機周波数演算回路28より送出された
周波数が75Hzの場合を考えると図9より、主電動膨
張弁13の弁開度は400パルスとなる。この演算結果
を膨張弁開度信号として膨張弁駆動回路(図示せず)に
送出する。以降、所定周期毎に圧縮機周波数演算回路2
8より送出された周波数信号に応じて、主電動膨張弁1
3の弁開度を変更し、また室内機2a、2b、2cのそ
れぞれの定格容量信号、差温信号、運転モード信号、O
N−OFF判別信号より電動膨張弁11a、11b、1
1cの弁開度を算出し、演算結果を膨張弁開度信号とし
て膨張弁駆動回路(図示せず)に送出する。
Considering the case where the frequency transmitted from the compressor frequency calculation circuit 28 is 75 Hz, the valve opening of the main electric expansion valve 13 is 400 pulses from FIG. This calculation result is sent to an expansion valve drive circuit (not shown) as an expansion valve opening signal. Thereafter, the compressor frequency calculation circuit 2
8, the main motor-operated expansion valve 1
3, and the rated capacity signal, the differential temperature signal, the operation mode signal, and the O of each of the indoor units 2a, 2b, and 2c.
From the N-OFF determination signal, the electric expansion valves 11a, 11b, 1
1c is calculated, and the calculation result is sent to an expansion valve drive circuit (not shown) as an expansion valve opening signal.

【0061】このように、各部屋の要求能力の総和に応
じて圧縮機周波数を制御し、かつ各部屋毎の負荷に応じ
て各電動膨張弁の開度を決定するため、必要な能力を必
要な部屋に配分することができ、また同時に圧縮機周波
数に対応して主電動膨張弁の弁開度を決定するため、構
成を複雑にすることなく、冷凍サイクルを最適に保ちな
がら快適性の向上及び省エネルギーを図ることができ
る。
As described above, since the compressor frequency is controlled in accordance with the sum of the required capacity of each room and the opening degree of each electric expansion valve is determined in accordance with the load in each room, necessary capacity is required. Can be allocated to different rooms, and at the same time, the valve opening of the main electric expansion valve is determined according to the compressor frequency. And energy saving can be achieved.

【0062】次に第5の実施例について説明する。図1
0は、本発明の多室形空気調和システムの第5の実施例
における冷凍サイクル図である。この冷凍サイクルが上
記第4の実施例の場合と異なる点は、吐出管36にここ
を流れる冷媒の温度を検出する吐出温度センサ37が設
けられている点である。また、図11は本実施例の圧縮
機周波数及び電動膨張弁開度の制御の流れを示すブロッ
ク図、図12は圧縮機周波数と主電動膨張弁の弁開度と
の関係図を示す。
Next, a fifth embodiment will be described. FIG.
0 is a refrigeration cycle diagram in the fifth embodiment of the multi-room air conditioning system of the present invention. This refrigeration cycle differs from the fourth embodiment in that a discharge temperature sensor 37 for detecting the temperature of the refrigerant flowing through the discharge pipe 36 is provided. FIG. 11 is a block diagram showing the flow of control of the compressor frequency and the electric expansion valve opening of the present embodiment, and FIG. 12 is a diagram showing the relationship between the compressor frequency and the valve opening of the main electric expansion valve.

【0063】本実施例における圧縮機周波数及び電動膨
張弁開度の制御方法について説明すると、図11におい
て、圧縮機周波数演算回路28にて室内機2a、2b、
2cのそれぞれの定格容量信号、差温信号、運転モード
信号、ON−OFF判別信号より(表1)に示す負荷定
数テーブル30から負荷定数を読み出し、この負荷定数
の総和に定数を乗じて圧縮機3の周波数を決定する点ま
では、上記第1〜第4の実施例と同じである。この演算
結果を周波数信号として圧縮機駆動回路(図示せず)に
送出して圧縮機3の周波数の制御を行なうと共に、吐出
温度演算回路38にも送出する。以降、所定周期毎に室
内機2a、2b、2cのそれぞれの定格容量信号、差温
信号、運転モード信号、ON−OFF判別信号より演算
を行ない、演算結果を周波数信号として圧縮機駆動回路
(図示せず)に送出して圧縮機3の周波数の制御を行な
うと共に、吐出温度演算回路38にも送出する。
A method of controlling the compressor frequency and the degree of opening of the electric expansion valve in this embodiment will be described. In FIG. 11, the indoor units 2a, 2b,
2c, the load constant is read from the load constant table 30 shown in (Table 1) from the rated capacity signal, the differential temperature signal, the operation mode signal, and the ON-OFF discrimination signal, and the sum of the load constants is multiplied by a constant. The third embodiment is the same as the first to fourth embodiments up to the point of determining the frequency. The calculation result is sent as a frequency signal to a compressor drive circuit (not shown) to control the frequency of the compressor 3 and to the discharge temperature calculation circuit 38. Thereafter, at predetermined intervals, calculations are performed based on the rated capacity signal, the differential temperature signal, the operation mode signal, and the ON / OFF determination signal of the indoor units 2a, 2b, and 2c, and the calculation result is used as a frequency signal as a compressor drive circuit (FIG. (Not shown) to control the frequency of the compressor 3 and also to the discharge temperature calculation circuit 38.

【0064】膨張弁開度演算回路29においても同様
に、室内機2a、2b、2cのそれぞれの定格容量信
号、差温信号、運転モード信号、ON−OFF判別信号
より(表1)に示す負荷定数テーブル30から負荷定数
を選び、さらに室内機2a、2b、2cのそれぞれの定
格容量より(表3)に示す定格容量毎の弁初期開度テー
ブル31から弁初期開度を読み出す。電動膨張弁11
a、11b、11cの弁開度はそれぞれの負荷定数をそ
の負荷定数の所定値で割ったものに弁初期開度を乗じた
ものである。また、吐出温度演算回路38では、圧縮機
周波数演算回路28から送出された周波数信号に対応す
る目標吐出温度を算出し温度信号として吐出温度差演算
回路40に送出し、また、吐出温度センサ37の出力を
吐出温度検出回路39より温度信号として吐出温度差演
算回路40に送出し、ここで吐出温度差(=吐出温度−
目標吐出温度)ΔTdisを算出して膨張弁開度演算回
路29に送出する。膨張弁開度演算回路29では、送ら
れてきた吐出温度差ΔTdisに応じて、図13に示す
ように弁開度変更パルス数を算出し、主電動膨張弁13
の駆動回路(図示せず)に送出し制御する。
Similarly, in the expansion valve opening calculating circuit 29, the load shown in Table 1 is obtained from the rated capacity signal, the differential temperature signal, the operation mode signal, and the ON / OFF discrimination signal of the indoor units 2a, 2b, 2c. The load constant is selected from the constant table 30, and the valve initial opening is read from the valve initial opening table 31 for each rated capacity shown in (Table 3) from the respective rated capacities of the indoor units 2a, 2b, 2c. Electric expansion valve 11
The valve openings a, 11b, and 11c are obtained by multiplying a value obtained by dividing each load constant by a predetermined value of the load constant and an initial valve opening. The discharge temperature calculating circuit 38 calculates a target discharge temperature corresponding to the frequency signal sent from the compressor frequency calculating circuit 28 and sends it to the discharge temperature difference calculating circuit 40 as a temperature signal. The output is sent from the discharge temperature detection circuit 39 to the discharge temperature difference calculation circuit 40 as a temperature signal, where the discharge temperature difference (= discharge temperature−
The target discharge temperature) ΔTdis is calculated and sent to the expansion valve opening calculation circuit 29. The expansion valve opening calculation circuit 29 calculates the valve opening change pulse number according to the received discharge temperature difference ΔTdis as shown in FIG.
To a driving circuit (not shown).

【0065】このように、各部屋の要求能力の総和に応
じて圧縮機周波数を制御し、かつ各部屋毎の負荷に応じ
て各電動膨張弁の開度を決定するため、必要な能力を必
要な部屋に配分することができ、また同時に圧縮機吐出
温度を所定値に保つように制御するため、構成を複雑に
することなく、冷凍サイクルをより最適に保ちながら快
適性の向上及び省エネルギーを図ることができる。
As described above, since the compressor frequency is controlled in accordance with the sum of the required capacity of each room, and the opening degree of each electric expansion valve is determined in accordance with the load in each room, necessary capacity is required. To control the compressor discharge temperature to a predetermined value at the same time, to improve comfort and save energy while keeping the refrigeration cycle more optimal without complicating the structure. be able to.

【0066】[0066]

【発明の効果】上記実施例より明かなように本発明の多
室形空気調和システムは、室内機のそれぞれに、希望す
る室内温度を設定可能な室内温度設定手段と室内温度を
検出する室内温度検出手段とを設け、この室内温度設定
手段と室内温度検出手段とから設定室内温度と室内温度
との差温を算出する差温算出手段を設け、さらに前記室
内機のそれぞれの定格容量を判別する容量判別手段及び
前記室内機のそれぞれについて運転中か停止中かを判別
するオンオフ判別手段を設け、前記差温が取り得る温度
範囲を複数個の温度ゾーンに分割し、各温度ゾーン毎に
かつ室内機の定格容量毎に室内負荷に対応する負荷定数
を定めて記憶する負荷定数記憶手段を設け、室内機の定
格容量毎に弁初期開度を定めて記憶する弁初期開度記憶
手段を設け、前記差温算出手段、前記容量判別手段、前
記オンオフ判別手段、前記負荷定数記憶手段より得られ
るデータを用いて所定周期毎に圧縮機容量を算出し、こ
の算出結果に基づいて前記容量(周波数)可変形圧縮機
の容量を制御する圧縮機容量制御手段を設け、前記室内
機の複数台が運転中の場合には、前記データ及び前記弁
初期開度記憶手段より得られるデータを用いて所定周期
毎に運転中の室内機に接続された各電動膨張弁の弁開度
を算出し、この算出結果に基づいて前記電動膨張弁の弁
開度を制御する弁開度制御手段を設けることで、各部屋
の要求能力の総和に応じて圧縮機周波数を制御し、かつ
各部屋毎の負荷に応じて各電動膨張弁の開度を決定する
ため、必要な能力を必要な部屋に配分することができ、
快適性の向上及び省エネルギーを図ることができる。
As is clear from the above embodiment, the multi-room air conditioning system according to the present invention has an indoor temperature setting means for setting a desired indoor temperature and an indoor temperature for detecting the indoor temperature in each of the indoor units. Detecting means, a differential temperature calculating means for calculating a difference between the set indoor temperature and the indoor temperature from the indoor temperature setting means and the indoor temperature detecting means, and further determining a rated capacity of each of the indoor units. A capacity discriminating means and on / off discriminating means for discriminating whether each of the indoor units is in operation or stopped is provided, a temperature range in which the temperature difference can be taken is divided into a plurality of temperature zones, and each of the temperature zones and the indoor A load constant storage means for determining and storing a load constant corresponding to the indoor load is provided for each rated capacity of the unit, and a valve initial opening storage means for determining and storing a valve initial opening for each rated capacity of the indoor unit is provided, Said The compressor capacity is calculated at predetermined intervals using data obtained from the temperature calculation means, the capacity determination means, the on / off determination means, and the load constant storage means, and the capacity (frequency) variable type is calculated based on the calculation result. Compressor capacity control means for controlling the capacity of the compressor is provided, and when a plurality of the indoor units are in operation, the data and the data obtained from the valve initial opening degree storage means are used at predetermined intervals. By calculating the valve opening of each electric expansion valve connected to the operating indoor unit and providing valve opening control means for controlling the valve opening of the electric expansion valve based on the calculation result, each room is provided. To control the compressor frequency according to the sum of the required capacity of each, and to determine the opening of each electric expansion valve according to the load of each room, it is possible to allocate the necessary capacity to the necessary room,
It is possible to improve comfort and save energy.

【0067】また、室内機のそれぞれに、希望する室内
温度を設定可能な室内温度設定手段と室内温度を検出す
る室内温度検出手段とを設け、この室内温度設定手段と
室内温度検出手段とから設定室内温度と室内温度との差
温を算出する差温算出手段を設け、さらに前記室内機の
それぞれの定格容量を判別する容量判別手段及び前記室
内機のそれぞれについて運転中か停止中かを判別するオ
ンオフ判別手段を設け、前記差温が取り得る温度範囲を
複数個の温度ゾーンに分割し、各温度ゾーン毎にかつ室
内機の定格容量毎に室内負荷に対応する負荷定数を定め
て記憶する負荷定数記憶手段を設け、前記差温算出手
段、前記容量判別手段、前記オンオフ判別手段、前記負
荷定数記憶手段より得られるデータを用いて所定周期毎
に圧縮機容量を算出し、この算出結果に基づいて前記容
量(周波数)可変形圧縮機の容量を制御する圧縮機容量
制御手段を設け、運転中の室内機台数及び定格容量の組
合せ毎に各室内機に接続された電動膨張弁毎の弁初期開
度を定めて記憶する弁初期開度記憶手段を設け、前記室
内機の複数台が運転中の場合には、前記データ及びこの
弁初期開度記憶手段より得られる弁初期開度のデータを
用いて所定周期毎に運転中の室内機に接続された各電動
膨張弁の弁開度を算出し、この算出結果に基づいて前記
電動膨張弁の弁開度を制御する弁開度制御手段を設ける
ことで、各部屋の要求能力の総和に応じて圧縮機周波数
を制御し、かつ各部屋毎の負荷に応じて各電動膨張弁の
開度を決定するため、必要な能力を必要な部屋に配分す
ることができ、さらに弁初期開度を室内機の運転台数及
びその定格容量の組合せ毎に定めているので、よりきめ
細かく高い精度の能力制御が可能であり、快適性の向上
及び省エネルギーを図ることができる。
Further, each of the indoor units is provided with an indoor temperature setting means for setting a desired indoor temperature and an indoor temperature detecting means for detecting the indoor temperature, and the indoor temperature setting means and the indoor temperature detecting means are used for setting. A differential temperature calculating means for calculating a temperature difference between the indoor temperature and the indoor temperature; a capacity determining means for determining a rated capacity of each of the indoor units; and determining whether each of the indoor units is operating or stopped. On / off determining means for dividing a temperature range in which the temperature difference can be taken into a plurality of temperature zones, and determining and storing a load constant corresponding to the indoor load for each temperature zone and for each rated capacity of the indoor unit. A constant storage unit is provided, and a compressor capacity is calculated at predetermined intervals using data obtained from the differential temperature calculation unit, the capacity determination unit, the on / off determination unit, and the load constant storage unit. A compressor capacity control means for controlling the capacity of the variable capacity (frequency) compressor based on the calculation result is provided, and the electric motor connected to each indoor unit for each combination of the number of operating indoor units and the rated capacity is provided. Valve initial opening storage means for determining and storing a valve initial opening for each expansion valve is provided, and when a plurality of indoor units are in operation, the data and a valve obtained from the valve initial opening storing means are provided. Using the data of the initial opening degree, the valve opening degree of each electric expansion valve connected to the operating indoor unit is calculated every predetermined cycle, and the valve opening degree of the electric expansion valve is controlled based on the calculation result. By providing the valve opening control means, it is necessary to control the compressor frequency according to the sum of the required capacity of each room, and to determine the opening of each electric expansion valve according to the load of each room. The capacity can be allocated to the required room, and the valve Since determined for each combination of the number of operating units and their rated capacity of the machine, it is capable of capacity control more finely accuracy can be improved and energy saving comfort.

【0068】また、室内機のそれぞれに、希望する室内
温度を設定可能な室内温度設定手段と室内温度を検出す
る室内温度検出手段とを設け、この室内温度設定手段と
室内温度検出手段とから設定室内温度と室内温度との差
温を算出する差温算出手段を設け、さらに前記室内機の
それぞれの定格容量を判別する容量判別手段及び前記室
内機のそれぞれについて運転中か停止中かを判別するオ
ンオフ判別手段を設け、前記差温が取り得る温度範囲を
複数個の温度ゾーンに分割し、各温度ゾーン毎にかつ室
内機の定格容量毎に室内負荷に対応する負荷定数を定め
て記憶する負荷定数記憶手段を設け、前記差温算出手
段、前記容量判別手段、前記オンオフ判別手段、前記負
荷定数記憶手段より得られるデータを用いて所定周期毎
に圧縮機容量を算出し、この算出結果に基づいて前記容
量(周波数)可変形圧縮機の容量を制御する圧縮機容量
制御手段を設け、前記データを用いて近似式にて各室内
機に接続された電動膨張弁毎の弁初期開度を算出する弁
初期開度算出手段を設け、前記室内機の複数台が運転中
の場合には、前記データ及びこの弁初期開度算出手段よ
り得られる弁初期開度のデータを用いて所定周期毎に運
転中の室内機に接続された各電動膨張弁の弁開度を算出
し、この算出結果に基づいて前記電動膨張弁の弁開度を
制御する弁開度制御手段を設けることで、弁初期開度を
室内機の運転台数及びその定格容量の組合せ毎に近似式
で求めているので、よりきめ細かく高い精度の能力制御
が可能であり、快適性の向上及び省エネルギーを図るこ
とができる。また、弁初期開度のテーブルを必要としな
いので、さらに室内機の組合せが増加しても、記憶回路
の容量を増加させる必要がない。
Each of the indoor units is provided with an indoor temperature setting means capable of setting a desired indoor temperature and an indoor temperature detecting means for detecting the indoor temperature. A differential temperature calculating means for calculating a temperature difference between the indoor temperature and the indoor temperature; a capacity determining means for determining a rated capacity of each of the indoor units; and determining whether each of the indoor units is operating or stopped. On / off determining means for dividing a temperature range in which the temperature difference can be taken into a plurality of temperature zones, and determining and storing a load constant corresponding to the indoor load for each temperature zone and for each rated capacity of the indoor unit. A constant storage unit is provided, and a compressor capacity is calculated at predetermined intervals using data obtained from the differential temperature calculation unit, the capacity determination unit, the on / off determination unit, and the load constant storage unit. A compressor capacity control means for controlling the capacity of the variable capacity (frequency) compressor based on the calculation result, and using an approximation formula using the data, for each electric expansion valve connected to each indoor unit. A valve initial opening calculating means for calculating a valve initial opening is provided, and when a plurality of the indoor units are operating, the data and the valve initial opening data obtained from the valve initial opening calculating means are provided. A valve opening control means for calculating a valve opening of each electric expansion valve connected to the operating indoor unit for each predetermined cycle, and controlling the valve opening of the electric expansion valve based on the calculation result. By providing this, the initial valve opening is determined by an approximate expression for each combination of the number of operating indoor units and the rated capacity thereof, so that more detailed and high-precision capacity control is possible, and improvement of comfort and energy saving are achieved. be able to. Further, since a table of the valve initial opening is not required, it is not necessary to increase the capacity of the storage circuit even when the number of indoor units further increases.

【0069】また、容量(周波数)可変形圧縮機に吸入
される冷媒の過熱度を所定周期毎に検出する過熱度検出
手段を設け、室外熱交換器と液側分岐管に接続された電
動膨張弁の間に接続された主電動膨張弁の弁開度をこの
過熱度検出手段により検出された過熱度のデータに対応
して決定する弁開度決定手段を設け、弁開度制御手段に
てこの弁開度を制御することで、圧縮機吸入冷媒の過熱
度を所定値に保つように制御を行なうため、冷凍サイク
ルをよりきめ細かく最適に制御しながら、快適性の向上
及び省エネルギーを図ることができる。
Further, a superheat degree detecting means for detecting the superheat degree of the refrigerant drawn into the variable capacity (frequency) compressor at predetermined intervals is provided, and the electric expansion connected to the outdoor heat exchanger and the liquid side branch pipe is provided. Valve opening degree determining means for determining the valve opening degree of the main motor-operated expansion valve connected between the valves in accordance with the superheat degree data detected by the superheat degree detecting means is provided, and the valve opening degree control means By controlling the valve opening degree to control the superheat degree of the refrigerant drawn into the compressor to a predetermined value, it is possible to improve comfort and save energy while controlling the refrigeration cycle more finely and optimally. it can.

【0070】また、室外熱交換器と液側分岐管に接続さ
れた電動膨張弁の間に接続された主電動膨張弁の弁開度
を圧縮機容量制御手段により算出された圧縮機容量に対
応して決定する弁開度決定手段を設け、弁開度制御手段
にてこの弁開度を制御することで、圧縮機周波数に対応
して主電動膨張弁の弁開度を決定するため、構成を複雑
にすることなく、冷凍サイクルを最適に保ちながら快適
性の向上及び省エネルギーを図ることができる。
The valve opening of the main motor-operated expansion valve connected between the outdoor heat exchanger and the motor-operated expansion valve connected to the liquid side branch pipe corresponds to the compressor capacity calculated by the compressor capacity control means. A valve opening determining means for determining the valve opening of the main electric expansion valve corresponding to the compressor frequency by controlling the valve opening by the valve opening control means. Without increasing the complexity of the refrigeration cycle, it is possible to improve comfort and save energy while maintaining the refrigeration cycle optimally.

【0071】また、容量(周波数)可変形圧縮機から吐
出される冷媒の温度を所定周期毎に検出する吐出温度検
出手段と、吐出温度を圧縮機容量制御手段により算出さ
れた圧縮機容量に対応して決定する圧縮機吐出温度決定
手段を設け、室外熱交換器と液側分岐管に接続された電
動膨張弁の間に接続された主電動膨張弁の弁開度を、吐
出温度検出手段により検出された吐出温度データに対応
して決定する弁開度決定手段を設け、弁開度制御手段に
てこの弁開度を制御することで、圧縮機吐出温度を所定
値に保つように制御を行なうため、構成を複雑にするこ
となく、冷凍サイクルをよりきめ細かく最適に制御しな
がら、快適性の向上及び省エネルギーを図ることができ
る。
A discharge temperature detecting means for detecting the temperature of the refrigerant discharged from the variable capacity (frequency) compressor at predetermined intervals, and a discharge temperature corresponding to the compressor capacity calculated by the compressor capacity control means. The compressor discharge temperature determining means is provided for determining the opening degree of the main electric expansion valve connected between the outdoor heat exchanger and the electric expansion valve connected to the liquid side branch pipe. By providing a valve opening determining means for determining in accordance with the detected discharge temperature data, the valve opening control means controls the valve opening to control the compressor discharge temperature to be maintained at a predetermined value. Therefore, it is possible to improve comfort and save energy while controlling the refrigeration cycle more precisely and optimally without complicating the configuration.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の多室形空気調和システムの第1の実施
例における冷凍サイクル図
FIG. 1 is a refrigeration cycle diagram in a first embodiment of a multi-room air conditioning system of the present invention.

【図2】同実施例における圧縮機周波数及び電動膨張弁
開度の制御ブロック図
FIG. 2 is a control block diagram of a compressor frequency and an electric expansion valve opening degree in the embodiment.

【図3】差温ΔTの温度ゾーン分割図FIG. 3 is a temperature zone division diagram of the differential temperature ΔT.

【図4】過熱度SHと主電動膨張弁の開度変更量との関
係図
FIG. 4 is a relationship diagram between the degree of superheat SH and the amount of change in the opening degree of the main electric expansion valve.

【図5】本発明の多室形空気調和システムの第2の実施
例における圧縮機周波数及び電動膨張弁開度の制御ブロ
ック図
FIG. 5 is a control block diagram of a compressor frequency and an electric expansion valve opening in a second embodiment of the multi-chamber air conditioning system of the present invention.

【図6】本発明の多室形空気調和システムの第3の実施
例における圧縮機周波数及び電動膨張弁開度の制御ブロ
ック図
FIG. 6 is a control block diagram of a compressor frequency and an electric expansion valve opening in a third embodiment of the multi-chamber air conditioning system of the present invention.

【図7】本発明の多室形空気調和システムの第4の実施
例における冷凍サイクル図
FIG. 7 is a refrigeration cycle diagram in a fourth embodiment of the multi-chamber air conditioning system of the present invention.

【図8】同実施例における圧縮機周波数及び電動膨張弁
開度の制御ブロック図
FIG. 8 is a control block diagram of a compressor frequency and an electric expansion valve opening degree in the embodiment.

【図9】同実施例における圧縮機周波数と主電動膨張弁
の弁開度との関係図
FIG. 9 is a relationship diagram between a compressor frequency and a valve opening of a main electric expansion valve in the embodiment.

【図10】本発明の多室形空気調和システムの第5の実
施例における冷凍サイクル図
FIG. 10 is a refrigeration cycle diagram in a fifth embodiment of the multi-chamber air conditioning system of the present invention.

【図11】同実施例における圧縮機周波数及び電動膨張
弁開度の制御ブロック図
FIG. 11 is a control block diagram of a compressor frequency and an electric expansion valve opening degree in the embodiment.

【図12】同実施例における圧縮機周波数と目標吐出温
度との関係図
FIG. 12 is a diagram showing a relationship between a compressor frequency and a target discharge temperature in the embodiment.

【図13】目標吐出温度と吐出温度の差ΔTdisと主
電動膨張弁の開度変更量との関係図
FIG. 13 is a relationship diagram between a difference ΔTdis between a target discharge temperature and a discharge temperature and an opening change amount of a main electric expansion valve.

【図14】従来の多室形空気調和システムの冷凍サイク
ル図
FIG. 14 is a refrigeration cycle diagram of a conventional multi-chamber air conditioning system.

【図15】同システムの室内外ユニットの容量比率と電
動流量調整弁の弁開度との関係図
FIG. 15 is a diagram showing the relationship between the capacity ratio of the indoor and outdoor units of the system and the valve opening of the electric flow control valve.

【符号の説明】[Explanation of symbols]

1 室外機 2a 室内機 2b 室内機 2c 室内機 3 容量(周波数)可変形圧縮機 4 室外熱交換器 5 四方弁 6a 室内熱交換器 6b 室内熱交換器 6c 室内熱交換器 7 液側主管 8a 液側分岐管 8b 液側分岐管 8c 液側分岐管 9 ガス側主管 10a ガス側分岐管 10b ガス側分岐管 10c ガス側分岐管 11a 電動膨張弁 11b 電動膨張弁 11c 電動膨張弁 12 レシーバ 13 主電動膨張弁 14 吸入管 15 バイパス回路 16 補助絞り 17a 室内温度センサ 17b 室内温度センサ 17c 室内温度センサ 18a 運転設定回路 18b 運転設定回路 18c 運転設定回路 19 吸入温度センサ 20 飽和温度センサ 21 室内温度検出回路 22 差温演算回路 23 設定判別回路 24 ON−OFF判別回路 25 定格容量記憶回路 26 信号送出回路 27 信号受信回路 28 圧縮機周波数演算回路 29 膨張弁開度演算回路 30 負荷定数テーブル 31 弁初期開度テーブル 32 吸入温度検出回路 33 過熱度演算回路 34 飽和温度検出回路 35 弁初期開度テーブル 36 吐出管 37 吐出温度センサ 38 吐出温度演算回路 39 吐出温度検出回路 40 吐出温度差演算回路 Reference Signs List 1 outdoor unit 2a indoor unit 2b indoor unit 2c indoor unit 3 variable capacity (frequency) compressor 4 outdoor heat exchanger 5 four-way valve 6a indoor heat exchanger 6b indoor heat exchanger 6c indoor heat exchanger 7 liquid side main pipe 8a liquid Side branch pipe 8b Liquid side branch pipe 8c Liquid side branch pipe 9 Gas side main pipe 10a Gas side branch pipe 10b Gas side branch pipe 10c Gas side branch pipe 11a Electric expansion valve 11b Electric expansion valve 11c Electric expansion valve 12 Receiver 13 Main electric expansion Valve 14 Suction pipe 15 Bypass circuit 16 Auxiliary throttle 17a Indoor temperature sensor 17b Indoor temperature sensor 17c Indoor temperature sensor 18a Operation setting circuit 18b Operation setting circuit 18c Operation setting circuit 19 Suction temperature sensor 20 Saturation temperature sensor 21 Indoor temperature detection circuit 22 Differential temperature Calculation circuit 23 Setting discrimination circuit 24 ON-OFF discrimination circuit 25 Rated capacity storage circuit 6 Signal sending circuit 27 Signal receiving circuit 28 Compressor frequency calculating circuit 29 Expansion valve opening calculating circuit 30 Load constant table 31 Valve initial opening table 32 Suction temperature detecting circuit 33 Superheat degree calculating circuit 34 Saturation temperature detecting circuit 35 Valve initial opening Degree table 36 Discharge pipe 37 Discharge temperature sensor 38 Discharge temperature calculation circuit 39 Discharge temperature detection circuit 40 Discharge temperature difference calculation circuit

───────────────────────────────────────────────────── フロントページの続き (72)発明者 藤川 正博 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (72)発明者 岡部 正明 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (56)参考文献 特開 昭61−24937(JP,A) 特開 平1−193563(JP,A) ──────────────────────────────────────────────────の Continuing on the front page (72) Inventor Masahiro Fujikawa 1006 Kazuma Kadoma, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (56) References JP-A-61-24937 (JP, A) JP-A-1-193563 (JP, A)

Claims (10)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】容量(周波数)可変形圧縮機、四方弁、室
外熱交換器、電気的に弁制御可能とした主電動膨張弁を
有する1台の室外機と、室内熱交換器を有する複数台の
室内機とを、前記室外機に設けて主に冷媒液が流れる液
側主管を分岐した液側分岐管及び前記室外機に設けて主
に冷媒ガスが流れるガス側主管を分岐したガス側分岐管
を介して接続し、前記液側分岐管のそれぞれに電気的に
弁開度を制御可能とした電動膨張弁を介装して冷凍サイ
クルを構成し、前記室内機のそれぞれに、希望する室内
温度を設定可能な室内温度設定手段と室内温度を検出す
る室内温度検出手段とを設け、この室内温度設定手段と
室内温度検出手段とから設定室内温度と室内温度との差
温を算出する差温算出手段を設け、さらに前記室内機の
それぞれの定格容量を判別する容量判別手段及び前記室
内機のそれぞれについて運転中か停止中かを判別するオ
ンオフ判別手段を設け、前記差温が取り得る温度範囲を
複数個の温度ゾーンに分割し、各温度ゾーン毎にかつ室
内機の定格容量毎に室内負荷に対応する負荷定数を定め
て記憶する負荷定数記憶手段を設け、室内機の定格容量
毎に弁初期開度を定めて記憶する弁初期開度記憶手段を
設け、前記差温算出手段、前記容量判別手段、前記オン
オフ判別手段、前記負荷定数記憶手段より得られるデー
タを用いて所定周期毎に圧縮機容量を算出し、この算出
結果に基づいて前記容量(周波数)可変形圧縮機の容量
を制御する圧縮機容量制御手段を設け、前記室内機の複
数台が運転中の場合には、前記データ及び前記弁初期開
度記憶手段より得られるデータを用いて所定周期毎に運
転中の室内機に接続された各電動膨張弁の弁開度を算出
し、この算出結果に基づいて前記電動膨張弁の弁開度を
制御する弁開度制御手段を設けた多室形空気調和システ
ム。
1. An outdoor unit having a variable capacity (frequency) variable compressor, a four-way valve, an outdoor heat exchanger, a main motor-operated expansion valve which can be electrically controlled, and a plurality of units having an indoor heat exchanger. A liquid-side branch pipe provided in the outdoor unit and branching a liquid-side main pipe through which refrigerant liquid mainly flows, and a gas side provided in the outdoor unit and branching a gas-side main pipe through which refrigerant gas mainly flows. A refrigeration cycle is configured by connecting via a branch pipe and interposing an electric expansion valve capable of electrically controlling the valve opening degree in each of the liquid side branch pipes, and setting a desired one in each of the indoor units. An indoor temperature setting means capable of setting an indoor temperature and an indoor temperature detecting means for detecting an indoor temperature are provided, and a difference between the set indoor temperature and the indoor temperature is calculated from the indoor temperature setting means and the indoor temperature detecting means. Temperature calculating means, and furthermore, each of the indoor units has a rated capacity. And an on / off determining unit for determining whether the indoor unit is operating or stopped for each of the indoor units, dividing a temperature range in which the temperature difference can be taken into a plurality of temperature zones, And a load constant storage means for determining and storing a load constant corresponding to an indoor load for each rated capacity of the indoor unit, and a valve initial opening storage means for determining and storing a valve initial opening for each rated capacity of the indoor unit. A compressor capacity is calculated at predetermined intervals using data obtained from the differential temperature calculating means, the capacity determining means, the on / off determining means, and the load constant storing means, and the capacity is calculated based on the calculation result. (Frequency) Compressor capacity control means for controlling the capacity of the variable compressor is provided, and when a plurality of the indoor units are operating, the data and the data obtained from the valve initial opening storage means are used. Valve opening degree control means for calculating the valve opening degree of each electric expansion valve connected to the operating indoor unit at predetermined intervals, and controlling the valve opening degree of the electric expansion valve based on the calculation result. Multi-room air conditioning system.
【請求項2】運転中の室内機のそれぞれについて、負荷
定数記憶手段より定格容量及び現在の差温に対応する負
荷定数及び負荷定数の所定値を読み出し、弁初期開度記
憶手段より定格容量に対応する弁初期開度を読み出し、
各室内機毎に負荷定数の所定値の逆数と負荷定数と弁初
期開度の積を算出し、各室内機に接続された電動膨張弁
の弁開度を、この積となるよう制御する請求項1記載の
多室形空気調和システム。
2. For each of the operating indoor units, a rated capacity and a load constant corresponding to the present differential temperature and a predetermined value of the load constant are read out from the load constant storage means, and the rated capacity is read from the valve initial opening degree storage means. Read the corresponding valve initial opening,
A request for calculating a product of a reciprocal of a predetermined value of a load constant, a load constant, and a valve initial opening for each indoor unit, and controlling the valve opening of the electric expansion valve connected to each indoor unit to be the product. Item 4. The multi-room air conditioning system according to Item 1.
【請求項3】容量(周波数)可変形圧縮機、四方弁、室
外熱交換器、電気的に弁制御可能とした主電動膨張弁を
有する1台の室外機と、室内熱交換器を有する複数台の
室内機とを、前記室外機に設けて主に冷媒液が流れる液
側主管を分岐した液側分岐管及び前記室外機に設けて主
に冷媒ガスが流れるガス側主管を分岐したガス側分岐管
を介して接続し、前記液側分岐管のそれぞれに電気的に
弁開度を制御可能とした電動膨張弁を介装して冷凍サイ
クルを構成し、前記室内機のそれぞれに、希望する室内
温度を設定可能な室内温度設定手段と室内温度を検出す
る室内温度検出手段とを設け、この室内温度設定手段と
室内温度検出手段とから設定室内温度と室内温度との差
温を算出する差温算出手段を設け、さらに前記室内機の
それぞれの定格容量を判別する容量判別手段及び前記室
内機のそれぞれについて運転中か停止中かを判別するオ
ンオフ判別手段を設け、前記差温が取り得る温度範囲を
複数個の温度ゾーンに分割し、各温度ゾーン毎にかつ室
内機の定格容量毎に室内負荷に対応する負荷定数を定め
て記憶する負荷定数記憶手段を設け、前記差温算出手
段、前記容量判別手段、前記オンオフ判別手段、前記負
荷定数記憶手段より得られるデータを用いて所定周期毎
に圧縮機容量を算出し、この算出結果に基づいて前記容
量(周波数)可変形圧縮機の容量を制御する圧縮機容量
制御手段を設け、運転中の室内機台数及び定格容量の組
合せ毎に各室内機に接続された電動膨張弁毎の弁初期開
度を定めて記憶する弁初期開度記憶手段を設け、前記室
内機の複数台が運転中の場合には、前記データ及びこの
弁初期開度記憶手段より得られる弁初期開度のデータを
用いて所定周期毎に運転中の室内機に接続された各電動
膨張弁の弁開度を算出し、この算出結果に基づいて前記
電動膨張弁の弁開度を制御する弁開度制御手段を設けた
多室形空気調和システム。
3. An outdoor unit having a variable capacity (frequency) compressor, a four-way valve, an outdoor heat exchanger, a main motor-operated expansion valve which can be electrically controlled, and a plurality of units having an indoor heat exchanger. A liquid-side branch pipe provided in the outdoor unit and branching a liquid-side main pipe through which refrigerant liquid mainly flows, and a gas side provided in the outdoor unit and branching a gas-side main pipe through which refrigerant gas mainly flows. A refrigeration cycle is configured by connecting via a branch pipe and interposing an electric expansion valve capable of electrically controlling the valve opening degree in each of the liquid side branch pipes, and setting a desired one in each of the indoor units. An indoor temperature setting means capable of setting an indoor temperature and an indoor temperature detecting means for detecting an indoor temperature are provided, and a difference between the set indoor temperature and the indoor temperature is calculated from the indoor temperature setting means and the indoor temperature detecting means. Temperature calculating means, and furthermore, each of the indoor units has a rated capacity. And an on / off determining unit for determining whether the indoor unit is operating or stopped for each of the indoor units, dividing a temperature range in which the temperature difference can be taken into a plurality of temperature zones, And a load constant storage means for determining and storing a load constant corresponding to the indoor load for each rated capacity of the indoor unit, wherein the differential temperature calculation means, the capacity determination means, the on / off determination means, and the load constant storage means Compressor capacity control means for calculating the compressor capacity at predetermined intervals using the obtained data and controlling the capacity of the variable capacity (frequency) compressor based on the calculation result is provided. A valve initial opening storage means for determining and storing a valve initial opening for each electric expansion valve connected to each indoor unit for each combination of the number and the rated capacity is provided, and when a plurality of the indoor units are in operation, Is before Using the data and the data of the valve initial opening obtained from the valve initial opening storage means, the valve opening of each electric expansion valve connected to the operating indoor unit is calculated every predetermined cycle, and the calculation result is A multi-chamber air conditioning system provided with a valve opening control means for controlling a valve opening of the electric expansion valve based on the control.
【請求項4】運転中の室内機のそれぞれについて、負荷
定数記憶手段より定格容量及び現在の差温に対応する負
荷定数及び負荷定数の所定値を読み出し、弁初期開度記
憶手段より運転中の室内機台数及び定格容量の組合せに
対応する弁初期開度を読み出し、各室内機毎に負荷定数
の所定値の逆数と負荷定数と弁初期開度の積を算出し、
各室内機に接続された電動膨張弁の弁開度を、この積と
なるよう制御する請求項3記載の多室形空気調和システ
ム。
4. For each of the operating indoor units, a rated capacity and a load constant corresponding to the present differential temperature and a predetermined value of the load constant are read from the load constant storage means, and the operating constant is read from the valve initial opening storage means. Read the valve initial opening corresponding to the combination of the number of indoor units and the rated capacity, calculate the product of the reciprocal of the predetermined value of the load constant, the load constant and the valve initial opening for each indoor unit,
The multi-room air conditioning system according to claim 3, wherein the valve opening of the electric expansion valve connected to each indoor unit is controlled so as to be the product.
【請求項5】容量(周波数)可変形圧縮機、四方弁、室
外熱交換器、電気的に弁制御可能とした主電動膨張弁を
有する1台の室外機と、室内熱交換器を有する複数台の
室内機とを、前記室外機に設けて主に冷媒液が流れる液
側主管を分岐した液側分岐管及び前記室外機に設けて主
に冷媒ガスが流れるガス側主管を分岐したガス側分岐管
を介して接続し、前記液側分岐管のそれぞれに電気的に
弁開度を制御可能とした電動膨張弁を介装して冷凍サイ
クルを構成し、前記室内機のそれぞれに、希望する室内
温度を設定可能な室内温度設定手段と室内温度を検出す
る室内温度検出手段とを設け、この室内温度設定手段と
室内温度検出手段とから設定室内温度と室内温度との差
温を算出する差温算出手段を設け、さらに前記室内機の
それぞれの定格容量を判別する容量判別手段及び前記室
内機のそれぞれについて運転中か停止中かを判別するオ
ンオフ判別手段を設け、前記差温が取り得る温度範囲を
複数個の温度ゾーンに分割し、各温度ゾーン毎にかつ室
内機の定格容量毎に室内負荷に対応する負荷定数を定め
て記憶する負荷定数記憶手段を設け、前記差温算出手
段、前記容量判別手段、前記オンオフ判別手段、前記負
荷定数記憶手段より得られるデータを用いて所定周期毎
に圧縮機容量を算出し、この算出結果に基づいて前記容
量(周波数)可変形圧縮機の容量を制御する圧縮機容量
制御手段を設け、前記データを用いて近似式にて各室内
機に接続された電動膨張弁毎の弁初期開度を算出する弁
初期開度算出手段を設け、前記室内機の複数台が運転中
の場合には、前記データ及びこの弁初期開度算出手段よ
り得られる弁初期開度のデータを用いて所定周期毎に運
転中の室内機に接続された各電動膨張弁の弁開度を算出
し、この算出結果に基づいて前記電動膨張弁の弁開度を
制御する弁開度制御手段を設けた多室形空気調和システ
ム。
5. An outdoor unit having a variable capacity (frequency) compressor, a four-way valve, an outdoor heat exchanger, a main motor-operated expansion valve which can be electrically controlled, and a plurality of units having an indoor heat exchanger. A liquid-side branch pipe provided in the outdoor unit and branching a liquid-side main pipe through which refrigerant liquid mainly flows, and a gas side provided in the outdoor unit and branching a gas-side main pipe through which refrigerant gas mainly flows. A refrigeration cycle is configured by connecting via a branch pipe and interposing an electric expansion valve capable of electrically controlling the valve opening degree in each of the liquid side branch pipes, and setting a desired one in each of the indoor units. An indoor temperature setting means capable of setting an indoor temperature and an indoor temperature detecting means for detecting an indoor temperature are provided, and a difference between the set indoor temperature and the indoor temperature is calculated from the indoor temperature setting means and the indoor temperature detecting means. Temperature calculating means, and furthermore, each of the indoor units has a rated capacity. And an on / off determining means for determining whether the indoor unit is operating or stopped for each of the indoor units, dividing a temperature range in which the temperature difference can be taken into a plurality of temperature zones, and And a load constant storage means for determining and storing a load constant corresponding to the indoor load for each rated capacity of the indoor unit, wherein the differential temperature calculation means, the capacity determination means, the on / off determination means, and the load constant storage means Compressor capacity is calculated at predetermined intervals using the obtained data, and compressor capacity control means for controlling the capacity of the capacity (frequency) variable compressor based on the calculation result is provided. A valve initial opening calculating means for calculating a valve initial opening for each electric expansion valve connected to each indoor unit by an approximate expression is provided, and when a plurality of the indoor units are operating, the data and First The valve opening of each motor-operated expansion valve connected to the operating indoor unit is calculated at predetermined intervals using data on the valve initial opening obtained by the valve opening calculating means, and the electric expansion is performed based on the calculation result. A multi-chamber air conditioning system provided with valve opening control means for controlling the valve opening of a valve.
【請求項6】運転中の室内機のそれぞれについて、負荷
定数記憶手段より定格容量及び現在の差温に対応する負
荷定数及び負荷定数の所定値を読み出し、弁初期開度算
出手段により運転中の室内機台数及び定格容量のデータ
を用いて弁初期開度を算出し、各室内機毎に負荷定数の
所定値の逆数と負荷定数と弁初期開度の積を算出し、各
室内機に接続された電動膨張弁の弁開度を、この積とな
るよう制御する請求項5記載の多室形空気調和システ
ム。
6. For each of the operating indoor units, a rated capacity and a load constant corresponding to the current differential temperature and a predetermined value of the load constant are read out from the load constant storage means, and the valve initial opening degree calculating means reads out the operating constants. Calculate the valve initial opening using the data of the number of indoor units and the rated capacity, calculate the product of the reciprocal of the predetermined value of the load constant, the load constant and the valve initial opening for each indoor unit, and connect to each indoor unit The multi-room air conditioning system according to claim 5, wherein the controlled valve opening degree of the electric expansion valve is controlled to be equal to the product.
【請求項7】運転中の室内機のそれぞれについて、負荷
定数記憶手段より定格容量及び現在の差温に対応する負
荷定数及び負荷定数の所定値を読み出し、弁初期開度算
出手段により負荷定数及び運転中の室内機台数及び定格
容量のデータを用いて弁初期開度を算出し、各室内機毎
に負荷定数の所定値の逆数と負荷定数と弁初期開度の積
を算出し、各室内機に接続された電動膨張弁の弁開度
を、この積となるよう制御する請求項5記載の多室形空
気調和システム。
7. For each of the operating indoor units, a rated constant and a load constant corresponding to the current differential temperature and a predetermined value of the load constant are read from the load constant storage means, and the load constant and the load constant are read by the valve initial opening calculating means. Using the data of the number of indoor units in operation and the rated capacity, the valve initial opening is calculated, and the product of the reciprocal of a predetermined value of the load constant, the load constant, and the valve initial opening for each indoor unit is calculated. The multi-room air conditioning system according to claim 5, wherein the valve opening of the electric expansion valve connected to the air conditioner is controlled so as to be the product.
【請求項8】容量(周波数)可変形圧縮機に吸入される
冷媒の過熱度を所定周期毎に検出する過熱度検出手段を
設け、室外熱交換器と液側分岐管に接続された電動膨張
弁の間に接続された主電動膨張弁の弁開度をこの過熱度
検出手段により検出された過熱度のデータに対応して決
定する弁開度決定手段を設け、弁開度制御手段にてこの
弁開度を制御する請求項1〜請求項7のいずれかに記載
の多室形空気調和システム。
8. An electric expansion connected to an outdoor heat exchanger and a liquid-side branch pipe, provided with superheat degree detection means for detecting the degree of superheat of the refrigerant sucked into the variable capacity (frequency) compressor at predetermined intervals. Valve opening degree determining means for determining the valve opening degree of the main motor-operated expansion valve connected between the valves in accordance with the superheat degree data detected by the superheat degree detecting means is provided, and the valve opening degree control means The multi-room air conditioning system according to claim 1, wherein the valve opening is controlled.
【請求項9】室外熱交換器と液側分岐管に接続された電
動膨張弁の間に接続された主電動膨張弁の弁開度を圧縮
機容量制御手段により算出された圧縮機容量に対応して
決定する弁開度決定手段を設け、弁開度制御手段にてこ
の弁開度を制御する請求項1〜請求項7のいずれかに記
載の多室形空気調和システム。
9. The valve opening of the main electric expansion valve connected between the outdoor heat exchanger and the electric expansion valve connected to the liquid side branch pipe corresponds to the compressor capacity calculated by the compressor capacity control means. The multi-chamber air conditioning system according to any one of claims 1 to 7, further comprising a valve opening degree determining means for determining the valve opening degree, wherein the valve opening degree controlling means controls the valve opening degree.
【請求項10】容量(周波数)可変形圧縮機から吐出さ
れる冷媒の温度を所定周期毎に検出する吐出温度検出手
段と、吐出温度を圧縮機容量制御手段により算出された
圧縮機容量に対応して決定する圧縮機吐出温度決定手段
を設け、室外熱交換器と液側分岐管に接続された電動膨
張弁の間に接続された主電動膨張弁の弁開度を、吐出温
度検出手段により検出された吐出温度のデータに対応し
て決定する弁開度決定手段を設け、弁開度制御手段にて
この弁開度を制御する請求項1〜請求項7のいずれかに
記載の多室形空気調和システム。
10. A discharge temperature detecting means for detecting a temperature of a refrigerant discharged from a variable capacity (frequency) compressor at predetermined intervals, and a discharge temperature corresponding to a compressor capacity calculated by a compressor capacity control means. The compressor discharge temperature determining means is provided for determining the opening degree of the main electric expansion valve connected between the outdoor heat exchanger and the electric expansion valve connected to the liquid side branch pipe. The multi-chamber according to any one of claims 1 to 7, further comprising a valve opening determining means for determining the opening degree in accordance with the data of the detected discharge temperature, wherein the valve opening controlling means controls the valve opening. Type air conditioning system.
JP4123161A 1992-05-15 1992-05-15 Multi-room air conditioning system Expired - Fee Related JP2730398B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4123161A JP2730398B2 (en) 1992-05-15 1992-05-15 Multi-room air conditioning system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4123161A JP2730398B2 (en) 1992-05-15 1992-05-15 Multi-room air conditioning system

Publications (2)

Publication Number Publication Date
JPH05322275A JPH05322275A (en) 1993-12-07
JP2730398B2 true JP2730398B2 (en) 1998-03-25

Family

ID=14853696

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4123161A Expired - Fee Related JP2730398B2 (en) 1992-05-15 1992-05-15 Multi-room air conditioning system

Country Status (1)

Country Link
JP (1) JP2730398B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3275669B2 (en) * 1995-11-28 2002-04-15 松下電器産業株式会社 Multi-room air conditioning system
JP2009047367A (en) * 2007-08-21 2009-03-05 Mitsubishi Electric Corp Air conditioner
JP2011127805A (en) * 2009-12-16 2011-06-30 Mitsubishi Electric Corp Air conditioning device
CN106556099B (en) * 2015-09-25 2019-05-17 日立江森自控空调有限公司 The control method of the electric expansion valve of the indoor unit of multi-online air-conditioning system
CN117490182A (en) * 2023-12-28 2024-02-02 珠海格力电器股份有限公司 Indoor temperature control method, multi-split air conditioner, storage medium and electronic equipment

Also Published As

Publication number Publication date
JPH05322275A (en) 1993-12-07

Similar Documents

Publication Publication Date Title
JP3327158B2 (en) Multi-room air conditioner
US6807815B2 (en) Air conditioning system and method for operating the same
CA2530895C (en) Air-conditioning system with multiple indoor and outdoor units and control system therefore
WO2003001129A1 (en) Freezing device
JP2974179B2 (en) Multi-room air conditioner
JPH0762569B2 (en) Operation control device for air conditioner
EP2535667A1 (en) Refrigeration cycle device
JPH06257828A (en) Multi-chamber type air conditioning system
JP2730398B2 (en) Multi-room air conditioning system
JPH06257827A (en) Multi chamber type air conditioning system
JP3223918B2 (en) Multi-room air conditioning system
JP2730381B2 (en) Multi-room air conditioner
JP2000283568A (en) Refrigerating device and control method therefor
JPH08189690A (en) Heating and dehumidifying operation controller for multi-room split type air conditioner
JPH1096545A (en) Air conditioner and control method thereof
JP3334184B2 (en) Multi-room air conditioner
JP2002147819A (en) Refrigeration unit
JP4151219B2 (en) Multi-chamber air conditioner
JP3097350B2 (en) Multi-room air conditioner
JP2003254635A (en) Multi-chamber type air conditioner
JP3275669B2 (en) Multi-room air conditioning system
JP2000018685A (en) Multi-room type air conditioner
JP4906255B2 (en) refrigerator
JP2006046782A (en) Air conditioner and operation method of air conditioner
JP2893844B2 (en) Air conditioner

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071219

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081219

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091219

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees