JP3223918B2 - Multi-room air conditioning system - Google Patents
Multi-room air conditioning systemInfo
- Publication number
- JP3223918B2 JP3223918B2 JP29633799A JP29633799A JP3223918B2 JP 3223918 B2 JP3223918 B2 JP 3223918B2 JP 29633799 A JP29633799 A JP 29633799A JP 29633799 A JP29633799 A JP 29633799A JP 3223918 B2 JP3223918 B2 JP 3223918B2
- Authority
- JP
- Japan
- Prior art keywords
- capacity
- indoor
- load
- air volume
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2400/00—General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
- F25B2400/07—Details of compressors or related parts
- F25B2400/075—Details of compressors or related parts with parallel compressors
- F25B2400/0751—Details of compressors or related parts with parallel compressors the compressors having different capacities
Landscapes
- Air Conditioning Control Device (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、1台の室外機に複数台
の室内機を接続し、電動膨張弁にて冷媒流量を制御する
多室形空気調和システムに関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a multi-room air conditioning system in which a plurality of indoor units are connected to one outdoor unit, and the flow rate of refrigerant is controlled by an electric expansion valve.
【0002】[0002]
【従来の技術】近年、1台の室外機に複数台の室内機を
接続した多室形空気調和システムが、室外の省スペース
性やエクステリア性や少ない電源容量の点でその需要を
伸ばしている。2. Description of the Related Art In recent years, a demand for a multi-room air conditioning system in which a plurality of indoor units are connected to one outdoor unit has been increasing in terms of outdoor space saving, exterior characteristics, and small power supply capacity. .
【0003】従来、この多室形空気調和システムにおい
て、容量(周波数)可変形圧縮機を用い、冷凍サイクル
の液側冷媒配管に、各室内機への冷媒流量を制御する冷
媒流量制御装置を設け、室外機の容量と各室内機の容量
との比較により圧縮機容量を制御し、各室内機への冷媒
流量を制御するものが提案されている。(例えば特開平
6-257827号公報) 以下、図面を参照しながら上記従来の多室形空気調和シ
ステムについて説明する。Conventionally, in this multi-chamber air conditioning system, a refrigerant flow control device for controlling a refrigerant flow to each indoor unit is provided in a liquid side refrigerant pipe of a refrigeration cycle using a variable capacity (frequency) compressor. There has been proposed an apparatus that controls the compressor capacity by comparing the capacity of an outdoor unit and the capacity of each indoor unit, and controls the flow rate of refrigerant to each indoor unit. (For example,
The conventional multi-room air conditioning system will be described below with reference to the drawings.
【0004】図1は、従来の多室形空気調和システムの
冷凍サイクル図である。FIG. 1 is a refrigeration cycle diagram of a conventional multi-room air conditioning system.
【0005】この多室形空気調和システムは1台の室外
機1と1台の分岐機2と複数台の室内機、本従来例では
3台の室内機3a、3b、3cを接続して構成される。
室外機1内にはインバータ駆動の周波数可変形圧縮機4
(以下単に圧縮機と称す)、室外熱交換器5、冷暖房切
換用の四方弁6、電動膨張弁7が設けられ、また室内機
3a、3b、3c内にそれぞれ室内熱交換器8a、8
b、8cが設けられている。そして、この室外機1と分
岐2とは接続し、液側主管9は分岐機内部で液側分岐管
10a、10b,10cとに分岐されている。そして分
岐機内の液側分岐管それぞれには電動膨張弁11a、1
1b、11cが設けられている。分岐機2と室内機3
a、3b、3cとは、液側分岐管10a、10b、10
cおよびガス側分岐管12a、12b、12cとで接続
されている。そして分岐機2と室外機1とはガス側主管
13で接続されている。[0005] This multi-room air conditioning system is constructed by connecting one outdoor unit 1, one branch unit 2 and a plurality of indoor units, in this example, three indoor units 3a, 3b and 3c. Is done.
In the outdoor unit 1, an inverter-driven frequency variable compressor 4 is provided.
(Hereinafter simply referred to as a compressor), an outdoor heat exchanger 5, a four-way valve 6 for cooling / heating switching, and an electric expansion valve 7, and the indoor heat exchangers 8a, 8c in the indoor units 3a, 3b, 3c, respectively.
b, 8c are provided. The outdoor unit 1 is connected to the branch 2, and the liquid-side main pipe 9 is branched into liquid-side branch pipes 10a, 10b, and 10c inside the branch unit. Each of the liquid-side branch pipes in the branching machine has an electric expansion valve 11a, 1
1b and 11c are provided. Branch machine 2 and indoor unit 3
a, 3b, 3c are the liquid side branch pipes 10a, 10b, 10c.
c and the gas side branch pipes 12a, 12b, 12c. The branch unit 2 and the outdoor unit 1 are connected by a gas-side main pipe 13.
【0006】また、室外機1内部の液側主管と圧縮機4
への吸入管14とを結ぶバイパス回路15が設けられ、
このバイパス回路15には補助絞り16が設けられてい
る。また、各室内機3a、3b、3cには各室内機が設
置されている部屋の室温を検出する室内温度センサ17
a、17b、17cおよび居住者が希望する運転モード
(冷房または暖房)と室温と運転、停止を設定できる運
転設定回路30a、30b、30cが設けられている。
また、室外機1には冷凍サイクルの低圧飽和温を検出す
る飽和温センサ18および圧縮機4の吸入温度を検出す
る吸入温センサ19が設けられている。The liquid side main pipe inside the outdoor unit 1 and the compressor 4
A bypass circuit 15 for connecting the suction pipe 14 to the
An auxiliary aperture 16 is provided in the bypass circuit 15. Each of the indoor units 3a, 3b, and 3c has an indoor temperature sensor 17 for detecting the room temperature of the room in which the indoor unit is installed.
a, 17b, 17c and operation setting circuits 30a, 30b, 30c capable of setting an operation mode (cooling or heating) desired by the occupant, room temperature, operation, and stop are provided.
The outdoor unit 1 is provided with a saturation temperature sensor 18 for detecting a low pressure saturation temperature of the refrigeration cycle and a suction temperature sensor 19 for detecting a suction temperature of the compressor 4.
【0007】この冷凍サイクルにおいて、冷房時は圧縮
機4から吐出された冷媒は、四方弁6より室外熱交換器
5へと流れてここで室外空気と熱交換して凝縮液化し、
電動膨張弁7で減圧されて中間圧となる。そして、バイ
パス回路15に一部の液冷媒を分流し、残りは液側主管
9を流れて分岐機内部の液側分岐管10a、10b、1
0cへと分岐する。電動膨張弁7の弁開度は、圧縮機4
が最も効率良くかつ液圧縮しないように制御され(記述
せず)、また電動膨張弁11a、11b、11cの弁開
度は、れぞれの部屋の負荷に見合った開度になるように
制御されるため(記述せず)、冷媒もそれぞれの負荷に
応じた流量で低圧となって室内熱交換器8a、8b、8
cへと流れて蒸発した後、分岐機2内部のガス側分岐管
12a、12b、12cよりガス側主管13、四方弁6
を通過して再び圧縮機4に吸入される。また、バイパス
回路15からの液冷媒は補助絞り16で減圧されて吸入
管14へと流れる。また、圧縮機周波数は総負荷に応じ
て後述する制御方法で決定される。In this refrigeration cycle, during cooling, the refrigerant discharged from the compressor 4 flows from the four-way valve 6 to the outdoor heat exchanger 5 where it exchanges heat with outdoor air to condense and liquefy.
The pressure is reduced by the electric expansion valve 7 to an intermediate pressure. Then, a part of the liquid refrigerant is diverted to the bypass circuit 15, and the rest flows through the liquid-side main pipe 9, and flows into the liquid-side branch pipes 10 a, 10 b, and 1 inside the branching machine.
Branch to 0c. The valve opening of the electric expansion valve 7 is
Are controlled so that they are most efficient and liquid compression is not performed (not described), and the valve openings of the electric expansion valves 11a, 11b, and 11c are controlled so as to correspond to the load of each room. (Not described), the refrigerant also has a low pressure at a flow rate corresponding to each load, and the indoor heat exchangers 8a, 8b, 8
c, and after evaporating, the gas-side branch pipes 12a, 12b, 12c inside the branching machine 2 pass through the gas-side main pipe 13, the four-way valve 6
And is sucked into the compressor 4 again. The liquid refrigerant from the bypass circuit 15 is decompressed by the auxiliary throttle 16 and flows to the suction pipe 14. Further, the compressor frequency is determined by a control method described later according to the total load.
【0008】暖房時は圧縮機4から吐出された冷媒は、
四方弁6を切換えてガス側主管13より分岐機2内部の
ガス側分岐管12a、12b、12cへと分岐し、室内
熱交換器8a、8b、8cへと流れて凝縮液化し、液側
分岐管10a、10b、10c上の電動膨張弁11a、
11b、11cで減圧されて中間圧となる。電動膨張弁
11a、11b、11cの弁開度は、冷房時と同様にそ
れぞれの部屋の負荷に見合った開度に制御されるため
(記述せず)、冷媒もそれに応じた流量で室内熱交換器
8a、8b、8cを流れる。中間圧となった冷媒は、バ
イパス回路15に一部の液冷媒を分流し、残りは電動膨
張弁7で減圧されて低圧となって室外熱交換器5を流れ
て蒸発した後、四方弁6を通過して再び圧縮機4に吸入
される。また、バイパス回路15からの液冷媒は補助絞
り16で減圧されて減圧されて吸入管14へと流れる。
また、圧縮機周波数は冷房時と同様に総負荷に応じて後
述する制御方法で決定される。At the time of heating, the refrigerant discharged from the compressor 4
The four-way valve 6 is switched to branch from the gas-side main pipe 13 to the gas-side branch pipes 12a, 12b, and 12c inside the branching machine 2, flow to the indoor heat exchangers 8a, 8b, and 8c, condense and liquefy, and branch to the liquid side. Motorized expansion valve 11a on pipes 10a, 10b, 10c,
The pressure is reduced to an intermediate pressure at 11b and 11c. The valve opening of the electric expansion valves 11a, 11b, 11c is controlled to an opening corresponding to the load of each room as in the case of cooling (not described), so that the refrigerant exchanges indoor heat at a flow rate corresponding thereto. Flow through the vessels 8a, 8b, 8c. The refrigerant having the intermediate pressure diverts a part of the liquid refrigerant to the bypass circuit 15, and the remainder is reduced in pressure by the electric expansion valve 7 to a low pressure, flows through the outdoor heat exchanger 5, evaporates, and then evaporates. And is sucked into the compressor 4 again. The liquid refrigerant from the bypass circuit 15 is decompressed by the auxiliary throttle 16 and decompressed, and flows to the suction pipe 14.
Further, the compressor frequency is determined by a control method described later according to the total load as in the case of cooling.
【0009】次に、圧縮機周波数の制御方法について説
明する。図2は圧縮機周波数の制御のブロック図、図3
は室内温度Trと設定温度Tsとの差温△Tの温度ゾー
ン分割図である。Next, a method of controlling the compressor frequency will be described. FIG. 2 is a block diagram of control of the compressor frequency, and FIG.
FIG. 3 is a temperature zone division diagram of a difference temperature ΔT between the room temperature Tr and the set temperature Ts.
【0010】まず、室内機3aにおいて、室内温度セン
サ17aの出力を室内温度検知回路31より温度信号と
して差温演算回路32に送出し、また室内温度設定記憶
回路33にて運転設定回路30aで設定された設定温度
および運転モードを判別して差温演算回路32に送出し
てここで差温△T(=Tr−Ts)を算出し、図2に示
す負荷ナンバーLn値に変換してこれを差温信号とす
る。たとえば冷房運転時で、Tr=27.3℃、Ts=
26℃とすると、差温△T=1.3℃でLn=6とな
る。またON−OFF判別回路34にて、運転設定回路
30aで設定された室内機3aの運転(ON)または停
止(OFF)を判別し、さらに定格容量記憶回路35に
室内機3aの定格容量を記憶しておき、これらの定格容
量信号、差温信号、運転モード信号、ON−OFF判別
信号を信号送出回路38より分岐機2の信号受信回路4
1へ送る。室内機3b、3cからも同様の信号が信号受
信回路41へ送られる。信号受信回路41で受けた信号
は下表1に示す負荷定数テーブルから負荷定数を読み出
して負荷定数演算回路42に送信し、負荷定数演算回路
にて総負荷の演算を行って負荷定数の総和を信号送出回
路43より室外機1の信号受信回路50へ送る。First, in the indoor unit 3a, the output of the indoor temperature sensor 17a is sent from the indoor temperature detecting circuit 31 to the differential temperature calculating circuit 32 as a temperature signal, and is set by the operation setting circuit 30a in the indoor temperature setting storage circuit 33. The determined set temperature and operation mode are discriminated and sent to the temperature difference calculating circuit 32, where the temperature difference ΔT (= Tr−Ts) is calculated, converted into the load number Ln value shown in FIG. The difference temperature signal is used. For example, at the time of cooling operation, Tr = 27.3 ° C., Ts =
Assuming that the temperature is 26 ° C., Ln = 6 at the temperature difference ΔT = 1.3 ° C. Further, the ON-OFF determination circuit 34 determines whether the indoor unit 3a is operated (ON) or stopped (OFF) set by the operation setting circuit 30a, and further stores the rated capacity of the indoor unit 3a in the rated capacity storage circuit 35. The rated capacity signal, the differential temperature signal, the operation mode signal, and the ON / OFF discrimination signal are transmitted from the signal transmitting circuit 38 to the signal receiving circuit 4 of the branching machine 2.
Send to 1. A similar signal is sent from the indoor units 3b and 3c to the signal receiving circuit 41. The signal received by the signal receiving circuit 41 reads out a load constant from the load constant table shown in Table 1 below and transmits the read load constant to the load constant calculation circuit 42. The load constant calculation circuit calculates the total load and calculates the sum of the load constants. The signal is sent from the signal sending circuit 43 to the signal receiving circuit 50 of the outdoor unit 1.
【0011】圧縮機周波数演算回路51にて分岐機2の
負荷定数の総和に定数を乗じて圧縮機4の周波数を決定
する。A compressor frequency calculation circuit 51 determines the frequency of the compressor 4 by multiplying the sum of the load constants of the branching machine 2 by a constant.
【0012】[0012]
【表1】 [Table 1]
【0013】一例として、室内機3a、3b、3cから
の信号が下記表2の場合について説明する。As an example, a case where signals from the indoor units 3a, 3b and 3c are shown in Table 2 below will be described.
【0014】[0014]
【表2】 [Table 2]
【0015】表1と表2より、室内機3a、3b、3c
の負荷定数はそれぞれ1.5、1.0、1.9となり、
圧縮機の周波数Hzは、Aを定数とすると Hz=A×(1.5+1.0+1.9)=A×4.4 となり、この演算結果を周波数信号として圧縮機駆動回
路に送出して圧縮機4の周波数制御を行う。以降、所定
周期毎に室内機3a、3b、3cのそれぞれの定格容量
信号、差温信号、運転モード信号、ON−OFF判別信
号より演算を行い、演算結果を周波数信号として圧縮機
駆動回路に送出して圧縮機4の周波数制御を行う。According to Tables 1 and 2, the indoor units 3a, 3b, 3c
Are 1.5, 1.0, and 1.9, respectively.
Assuming that A is a constant, the frequency Hz of the compressor is as follows: Hz = A × (1.5 + 1.0 + 1.9) = A × 4.4, and the calculation result is sent to the compressor drive circuit as a frequency signal to be transmitted to the compressor. 4 is performed. Thereafter, a calculation is performed based on the rated capacity signal, the differential temperature signal, the operation mode signal, and the ON / OFF determination signal of each of the indoor units 3a, 3b, and 3c at predetermined intervals, and the calculation result is transmitted to the compressor drive circuit as a frequency signal. Then, the frequency of the compressor 4 is controlled.
【0016】このように、各部屋の要求能力の総和に応
じて圧縮機周波数を制御することで最も効率良くかつ冷
凍サイクル上の信頼性を得ることができ、また各部屋毎
の負荷に応じて、必要な能力を必要な部屋に配分するこ
とができ、快適性の向上および省エネルギーを図ること
ができる。As described above, by controlling the compressor frequency in accordance with the sum of the required capacity of each room, the most efficient and reliable on the refrigeration cycle can be obtained. , Necessary abilities can be allocated to necessary rooms, thereby improving comfort and saving energy.
【0017】[0017]
【発明が解決しようとする課題】しかしながら、上記従
来の多室形空気調和システムには以下のような課題があ
った。However, the above-mentioned conventional multi-room air conditioning system has the following problems.
【0018】すなわち、たとえば冷房運転で室内機3
a、3b、3cを同時に運転開始した場合、差温信号が
ともにLn=6で室内機3a、3b、3cの定格容量が
表2と同じ値であったとすると、圧縮機4の周波数Hz
は、Hz=A×(2.0+2.5)=A×4.5とな
る。室内機3a、3b、3cの差温信号がすべてLn=
6のときは同様に、Hz=A×(2.0+2.5+3.
2)=A×7.7となり、これを仮に圧縮機4の運転許
容値だとすると4.5/7.7=0.58となり、約4
割の余裕を残していることになる。すなわち、室内機3
a、3b、3cは最大負荷状態で、室外機4に対して室
内機の最大能力を要求しているのに対して、室外機4は
約4割の能力の余裕を残して、室内機3a、3b、3c
に冷媒を供給していることになる。したがって、室内機
の能力は最大負荷時においても、室外機4に能力余裕が
あるにもかかわらず、負荷定数に応じた定格容量しか出
すことができず、設定温度に達するのに多くの時間を要
していた。That is, for example, in the cooling operation, the indoor unit 3
a, 3b, and 3c, when the differential temperature signals are both Ln = 6 and the rated capacities of the indoor units 3a, 3b, and 3c are the same as those in Table 2, the frequency Hz of the compressor 4
Is Hz = A × (2.0 + 2.5) = A × 4.5. The temperature difference signals of the indoor units 3a, 3b, 3c are all Ln =
6, Hz = A × (2.0 + 2.5 + 3.
2) = A × 7.7, and assuming that this is the allowable operating value of the compressor 4, it becomes 4.5 / 7.7 = 0.58, which is about 4
This means that there is some room left. That is, the indoor unit 3
a, 3b, and 3c are in the maximum load state, and require the outdoor unit 4 to have the maximum capacity of the indoor unit. On the other hand, the outdoor unit 4 leaves the indoor unit 3a with a capacity of about 40%. , 3b, 3c
Is supplying the refrigerant. Therefore, even when the capacity of the indoor unit is at the maximum load, only the rated capacity corresponding to the load constant can be obtained even though the outdoor unit 4 has a capacity margin, and much time is required to reach the set temperature. I needed it.
【0019】また、室内機3a、3b、3cが低負荷で
運転中に室内機3aが、最大負荷状態で運転開始した場
合でも、同じ問題を生じていた。The same problem occurs even when the indoor unit 3a starts operating under the maximum load state while the indoor units 3a, 3b, 3c operate at a low load.
【0020】本発明の多室形空気調和システムは上記課
題に鑑み、冷凍サイクルの構成はそのままで複雑にする
ことなく、最大負荷の室内機があるなかで室外機4の能
力に余裕がある場合には、その能力余裕分を最大負荷の
室内機に供給することを目的としている。In view of the above-mentioned problems, the multi-room air conditioning system of the present invention does not complicate the configuration of the refrigeration cycle and has a sufficient capacity of the outdoor unit 4 with the indoor unit having the maximum load. The purpose of this is to supply the capacity margin to the indoor unit having the maximum load.
【0021】また、本発明の多室形空気調和システムは
負荷の少ない室内機に対して、要求能力以上の能力を供
給することなく、最大負荷にある室内機にのみ余裕ある
室外能力を供給して、快適性の向上および省エネルギ−
を図ることを目的としている。In addition, the multi-room air conditioning system of the present invention supplies an indoor unit with a small load to a room unit having a maximum load without supplying a capacity higher than a required capacity. To improve comfort and save energy
The purpose is to plan.
【0022】[0022]
【課題を解決するための手段】上記課題を解決するため
に本発明の多室形空気調和システムは、室内機のそれぞ
れに、希望する室内温度を設定可能な室内温度設定手段
と室内温度を検出する室内温度検出手段とを設け、この
室内温度設定手段と室内温度検出手段とから設定室内温
度と室内温度との差温を算出する差温算出手段を設け、
さらに前記室内機のそれぞれの定格容量を判別する容量
判別手段および前記室内機のそれぞれについて運転中か
停止中かを判別するオンオフ判別手段を設け、前記差温
が取り得る温度範囲を複数個の温度ゾーンに分割し、さ
らに前記温度ゾーン範囲内で前記室内機のそれぞれに定
格風量可変手段と定格風量設定値を設け、各温度ゾーン
毎にかつ室内機の定格容量毎に室内負荷に対応する負荷
定数を定めるとともに、冷房では所定温度ゾーン以上暖
房では所定温度ゾーン以下の空調負荷極大ゾーンを設
け、室内機の定格容量毎に定格容量以上の負荷定数を定
めて記憶する負荷定数記憶手段を設け、前記差温算出手
段、前記容量判別手段、前記オンオフ判別手段、前記負
荷定数記憶手段より得られるデータを用いて所定周期毎
に圧縮機容量を算出する際に1室でも空調負荷極大ゾー
ンに相当する差温信号がある場合、圧縮機容量が運転許
容値に満たない時には、前記負荷定数記憶手段より得ら
れる空調負荷極大ゾーンの負荷定数を用いて算出した容
量とし、この容量値に基づいて前記容量(周波数)可変
形圧縮機の容量を制御する圧縮機容量制御手段を設け、
圧縮機容量が運転許容値をみたしている時は運転許容値
の範囲内で圧縮機容量制御手段を設け、さらに前記定格
風量設定値より得られる設定値より設定風量が大きくな
るような定格風量可変域には設定されていない空調負荷
極大ゾーン風量設定値を用いて前記各々室内機の風量可
変制御を行うことで、負荷の少ない室内機に対しては、
その負荷に応じた能力を供給し、最大負荷にある室内機
にのみ余裕ある室外能力を供給するよう圧縮機周波数を
制御するため、設定温度に到達するまでの時間を早くす
ることができ、快適性の向上および省エネルギ−を図る
ことができる。In order to solve the above-mentioned problems, a multi-room air conditioning system according to the present invention comprises an indoor temperature setting means capable of setting a desired indoor temperature in each of the indoor units and detecting the indoor temperature. Provided a room temperature detecting means, and a room temperature calculating means for calculating a temperature difference between the set room temperature and the room temperature from the room temperature setting means and the room temperature detecting means,
Further, capacity determining means for determining the rated capacity of each of the indoor units and on / off determining means for determining whether each of the indoor units is in operation or stopped is provided. Divided into zones, further provided with a rated air flow variable means and a rated air flow set value for each of the indoor units within the temperature zone range, and a load constant corresponding to an indoor load for each temperature zone and for each of the rated capacities of the indoor units. In addition to the above, a maximum air conditioning load zone of a predetermined temperature zone or less is provided for cooling in a predetermined temperature zone or more, and a load constant storage unit for determining and storing a load constant of a rated capacity or more for each rated capacity of an indoor unit is provided, The compressor capacity is calculated at predetermined intervals using data obtained from the temperature difference calculating means, the capacity determining means, the on / off determining means, and the load constant storing means. When there is a differential temperature signal corresponding to the air conditioning load maximum zone even in one room, when the compressor capacity is less than the allowable operation value, the load constant of the air conditioning load maximum zone obtained from the load constant storage means is used. Compressor capacity control means for controlling the capacity of the variable capacity (frequency) compressor based on the calculated capacity and the capacity value;
When the compressor capacity meets the operation allowance, a compressor capacity control means is provided within the range of the operation allowance, and the rated air flow is set such that the set air flow is larger than the set value obtained from the rated air flow set value. By performing the air volume variable control of each indoor unit using the air conditioning load maximum zone air volume set value that is not set in the variable range, for indoor units with a small load,
Since the compressor frequency is controlled to supply the capacity according to the load and to supply the extra outdoor capacity only to the indoor unit with the maximum load, the time to reach the set temperature can be shortened, and the comfort can be increased. Performance and energy saving.
【0023】また、1室でも空調負荷極大ゾーンに相当
する差温信号がある場合、圧縮機容量が運転許容値に満
たない時には、前記負荷定数記憶手段より得られる空調
負荷極大ゾーンの負荷定数を用いて算出した容量とし、
この容量値に基づいて前記容量(周波数)可変形圧縮機
の容量を制御する圧縮機容量制御手段を設け、圧縮機容
量が運転許容値をみたしている時は運転許容値の範囲内
で圧縮機容量制御手段を設け、さらに前記定格風量設定
値より得られる設定値より設定風量が大きくなるような
定格風量可変域には設定されていない空調負荷極大ゾー
ン風量設定値を用いて前記各々室内機の風量可変制御を
行う場合は、圧縮機容量が可変した後、遅延時間を設け
て行うものである。空調負荷極大ゾーン風量設定値を用
いて前記各々室内機の風量可変制御を行うことで、負荷
の少ない室内機に対しては、その負荷に応じた能力を供
給し、最大負荷にある室内機にのみ余裕ある室外能力を
供給するよう圧縮機周波数を制御するため、設定温度に
到達するまでの時間を早くすることができ、快適性の向
上および省エネルギ−を図ることができるとともに、圧
縮機容量可変後に遅延時間を設けて風量可変制御を行う
ことで、冷房では急速な室内風量アップによってパスバ
ランスが崩れてファン結露が発生するのを防いだり、暖
房では高圧を上昇させずに室内風量をアップさせると冷
風感があって快適性が著しく悪くなりかつサブクールが
過大に取れすぎて適切な冷凍サイクルを構成することが
できなくなることを防ぎ、品質の向上を図ることができ
る。Further , even one room corresponds to the maximum zone of the air conditioning load.
If there is a differential temperature signal, the compressor capacity is
Air conditioner is obtained from the load constant storage means.
The capacity calculated using the load constant of the load maximum zone,
Based on this capacity value, the capacity (frequency) variable type compressor
A compressor capacity control means for controlling the capacity of the compressor.
If the quantity meets the operation allowance, it is within the operation allowance
The compressor capacity control means is provided, and the rated air volume is further set.
If the set air volume is larger than the set value obtained from the value
Maximum air-conditioning load zone not set in the rated air flow variable range
The air volume variable control of each indoor unit is performed using the air volume set value.
If you do, set a delay time after the compressor capacity is changed.
It is what you do. Use the air-conditioning load maximum zone airflow setting value
By performing variable air volume control of each indoor unit, the load
For indoor units with a small number, provide the capacity according to the load.
Power supply, and provide sufficient outdoor capacity only for the indoor unit with the maximum load.
To control the compressor frequency to supply
Time to reach can be shortened, improving comfort
By performing a variable air volume control with a delay time after the compressor capacity is varied, it is possible to prevent the path balance from being lost due to the rapid indoor air volume increase and to cause fan condensation due to rapid indoor air volume increase. Preventing or increasing the indoor air volume without raising the high pressure during heating prevents a feeling of cool air, which significantly deteriorates comfort and prevents excessive subcools from forming an appropriate refrigeration cycle. , Quality can be improved.
【0024】また、1室でも空調負荷極大ゾーンに相当
する差温信号がある場合、圧縮機容量が運転許容値に満
たない時には、前記負荷定数記憶手段より得られる空調
負荷極大ゾーンの負荷定数を用いて算出した容量とし、
この容量値に基づいて前記容量(周波数)可変形圧縮機
の容量を制御する圧縮機容量制御手段を設け、圧縮機容
量が運転許容値をみたしている時は運転許容値の範囲内
で圧縮機容量制御手段を設け、さらに前記定格風量設定
値より得られる設定値より設定風量が大きくなるような
定格風量可変域には設定されていない空調負荷極大ゾー
ン風量設定値を用いて前記各々室内機の風量可変制御を
行うとともに、各々室内機の風量可変制御を行って、空
調負荷極大ゾーンが解除されて風量が空調負荷極大ゾー
ン風量設定値より定格風量可変域まで下がるときに、一
定時間保持しながら段階的に風量ダウンを行って所定の
設定風量になるように風量可変制御行うものである。空
調負荷極大ゾーン風量設定値を用いて前記各々室内機の
風量可変制御を行うことで、負荷の少ない室内機に対し
ては、その負荷に応じた能力を供給し、最大負荷にある
室内機にのみ余裕ある室外能力を供給するよう圧縮機周
波数を制御するため、設定温度に到達するまでの時間を
早くすることができ、快適性の向上および省エネルギ−
を図ることができるとともに、各々室内機の風量可変制
御を行って、空調負荷極大ゾーンが解除されて風量が空
調負荷極大ゾーン風量設定値より定格風量可変域まで下
がるときに、一定時間保持しながら段階的に風量ダウン
を行って所定の設定風量になるように風量可変制御行う
ことにより、急速な風量ダウンを防いで実聴的な違和感
を無くして快適性の向上を図ることができる。Further , even one room corresponds to the maximum air conditioning load zone.
If there is a differential temperature signal, the compressor capacity is
Air conditioner is obtained from the load constant storage means.
The capacity calculated using the load constant of the load maximum zone,
Based on this capacity value, the capacity (frequency) variable type compressor
A compressor capacity control means for controlling the capacity of the compressor.
If the quantity meets the operation allowance, it is within the operation allowance
The compressor capacity control means is provided, and the rated air volume is further set.
If the set air volume is larger than the set value obtained from the value
Maximum air-conditioning load zone not set in the rated air flow variable range
The air volume variable control of each indoor unit is performed using the air volume set value.
In addition to performing air volume variable control of each indoor unit,
The maximum load adjustment zone is released and the air volume increases
When the air flow falls below the rated air flow variable range
While maintaining the fixed time, gradually reduce the air volume and
The variable air volume control is performed so that the air volume is set. Sky
The maximum load of the indoor unit using
By performing variable air volume control, indoor units with small loads can be controlled.
Supply the capacity corresponding to the load, and
Compressor circumference to supply extra outdoor capacity to indoor units only
To control the wave number, set the time to reach the set temperature.
Faster, improved comfort and energy saving
While performing the air volume variable control of each indoor unit, when the air conditioning load maximum zone is released and the air volume falls from the air conditioning load maximum zone air volume set value to the rated air volume variable range, while maintaining a certain time, By performing the air volume variable control so as to reduce the air volume stepwise so that the air volume becomes a predetermined set air volume, it is possible to prevent a rapid air volume reduction and eliminate a sense of incongruity that is actually heard, thereby improving comfort.
【0025】また、1室でも空調負荷極大ゾーンに相当
する差温信号がある場合、圧縮機容量が運転許容値に満
たない時には、前記負荷定数記憶手段より得られる空調
負荷極大ゾーンの負荷定数を用いて算出した容量とし、
この容量値に基づいて前記容量(周波数)可変形圧縮機
の容量を制御する圧縮機容量制御手段を設け、圧縮機容
量が運転許容値をみたしている時は運転許容値の範囲内
で圧縮機容量制御手段を設け、さらに前記定格風量設定
値より得られる設定値より設定風量が大きくなるような
定格風量可変域には設定されていない空調負荷極大ゾー
ン風量設定値を用いて前記各々室内機の風量可変制御を
行うとともに、空調負荷極大ゾーンに相当する差温信号
を検知してからの時間経過を記憶する時間経過記憶手段
を設け、その時間経過記憶手段より得られるデータにて
圧縮機容量制御・室内風量制御を時間制限にて制御する
ものである。空調負荷極大ゾーン風量設定値を用いて前
記各々室内機の風量可変制御を行うことで、負荷の少な
い室内機に対しては、その負荷に応じた能力を供給し、
最大負荷にある室内機にのみ余裕ある室外能力を供給す
るよう圧縮機周波数を制御するため、設定温度に到達す
るまでの時間を早くすることができ、快適性の向上およ
び省エネルギ−を図ることができるとともに、空調負荷
極大ゾーンに相当する差温信号を検知してからの時間経
過を記憶する時間経過記憶手段を設け、その時間経過記
憶手段より得られるデータにて圧縮機容量制御・室内風
量制御を時間制限にて制御することにより、冷房時の冷
やすすぎによる吹き出し回りの結露や霧吹き現象を防ぐ
ことができ、品質の向上及び快適性の向上を図ることが
できる。Further , even one room corresponds to the maximum zone of the air conditioning load.
If there is a differential temperature signal, the compressor capacity is
Air conditioner is obtained from the load constant storage means.
The capacity calculated using the load constant of the load maximum zone,
Based on this capacity value, the capacity (frequency) variable type compressor
A compressor capacity control means for controlling the capacity of the compressor.
If the quantity meets the operation allowance, it is within the operation allowance
The compressor capacity control means is provided, and the rated air volume is further set.
If the set air volume is larger than the set value obtained from the value
Maximum air-conditioning load zone not set in the rated air flow variable range
The air volume variable control of each indoor unit is performed using the air volume set value.
The difference temperature signal corresponding to the air conditioning load maximum zone
Time lapse storage means for storing the time lapse since the detection of
With the data obtained from the time lapse storage means.
Control compressor capacity control and indoor air volume control with time limit
Things. Using the air conditioning load maximum zone airflow setting value
Note that by performing variable air volume control of each indoor unit,
Supply the capacity according to the load to
Supply extra room capacity only to the indoor unit with the maximum load
To reach the set temperature in order to control the compressor frequency
Time to get to work faster, improving comfort and
And time lapse storage means for storing the time lapse since the detection of the temperature difference signal corresponding to the air conditioning load maximum zone, and using the data obtained from the time lapse storage means. By controlling the compressor capacity control and indoor air volume control with a time limit, it is possible to prevent dew condensation around the blow-off and mist blowing phenomenon due to rinsing during cooling, and improve quality and comfort. .
【0026】[0026]
【発明の実施の形態】以下、本発明の実施の形態につい
て、図面を参考に説明する。Embodiments of the present invention will be described below with reference to the drawings.
【0027】本発明の多室形空気調和システムの第1の
実施の形態における冷凍サイクル図は従来例と同じであ
るため説明を省略する。なお、本実施の形態においては
1台の室外機1に1台の分岐機2と3台の室内機3a、
3b、3cを接続した場合について説明する。 図2は
圧縮機周波数の制御の流れを示すブロック図、図4は室
内温度Trと設定温度Tsとの差温△Tの温度ゾーン分
割図である。The refrigeration cycle diagram of the first embodiment of the multi-chamber air conditioning system according to the present invention is the same as that of the conventional example, and therefore the description is omitted. In this embodiment, one branch unit 2 and three indoor units 3a are provided for one outdoor unit 1;
The case where 3b and 3c are connected will be described. FIG. 2 is a block diagram showing the flow of control of the compressor frequency, and FIG. 4 is a temperature zone division diagram of a temperature difference ΔT between the room temperature Tr and the set temperature Ts.
【0028】まず、室内機3aにおいて、室内温度セン
サ17aの出力を室内温度検出回路19aより温度信号
として差温演算回路32に送出し、また室内温度設定記
憶回路33にて運転設定回路30aで設定された設定温
度および運転モードを判別して、差温演算回路32に送
出する。ここで、差温△T(=Tr−Ts)を算出し、
図4に示す負荷ナンバーLn値に変換してこれを差温信
号とする。たとえば、冷房運転時でTr=29.3℃、
Ts=26℃とすると、差温△T=3.3℃で空調負荷
極大ゾーンLn=8となる。またON−OFF判別回路
34にて、運転設定回路30aで設定された室内機3a
の運転(ON)または停止(OFF)を判別し、さらに
定格容量記憶回路35に室内機3aの定格容量を記憶し
ておき、これらの定格容量信号、差温信号、運転モード
信号、ON−OFF判別信号を信号送出回路38より分
岐機2の信号受信回路41へ送る。室内機3b、3cか
らも同様の信号が信号受信回路41へ送られる。信号受
信回路41で受けた信号は、下表3に示す負荷定数テー
ブルから負荷定数を読み出して負荷定数演算回路42に
送信し、負荷定数演算回路にて総負荷の演算を行って負
荷定数の総和を信号送出回路43より室外機1の信号受
信回路50へ送る。First, in the indoor unit 3a, the output of the indoor temperature sensor 17a is sent from the indoor temperature detecting circuit 19a to the differential temperature calculating circuit 32 as a temperature signal, and is set by the operation setting circuit 30a in the indoor temperature setting storage circuit 33. The determined set temperature and operation mode are determined and sent to the differential temperature calculation circuit 32. Here, the temperature difference ΔT (= Tr−Ts) is calculated,
The value is converted into a load number Ln value shown in FIG. For example, Tr = 29.3 ° C. during cooling operation,
Assuming that Ts = 26 ° C., the air-conditioning load maximum zone Ln = 8 at the temperature difference ΔT = 3.3 ° C. The ON / OFF determination circuit 34 sets the indoor unit 3a set by the operation setting circuit 30a.
Of the indoor unit 3a is stored in the rated capacity storage circuit 35, and these rated capacity signal, differential temperature signal, operation mode signal, ON-OFF The determination signal is sent from the signal sending circuit 38 to the signal receiving circuit 41 of the branching machine 2. A similar signal is sent from the indoor units 3b and 3c to the signal receiving circuit 41. The signal received by the signal receiving circuit 41 reads a load constant from the load constant table shown in Table 3 below, transmits the read load constant to the load constant calculation circuit 42, calculates the total load in the load constant calculation circuit, and sums the load constants. From the signal transmission circuit 43 to the signal reception circuit 50 of the outdoor unit 1.
【0029】圧縮機周波数演算回路51にて分岐機2の
負荷定数の総和に定数を乗じて圧縮機4の周波数を決定
する。The compressor frequency calculation circuit 51 determines the frequency of the compressor 4 by multiplying the sum of the load constants of the branching machine 2 by a constant.
【0030】[0030]
【表3】 [Table 3]
【0031】一例として、冷房時の運転開始時におい
て、室内機3a、3b、3cからの信号が下記表4の場
合について説明する。As an example, a case where the signals from the indoor units 3a, 3b and 3c at the start of the cooling operation, as shown in Table 4 below, will be described.
【0032】[0032]
【表4】 [Table 4]
【0033】表3と表4より、室内機3a、3b、3c
の負荷定数はそれぞれ2.4、3.0、0となり、した
がって圧縮機4の周波数Hzは、Aを定数とすると Hz=A×(2.4+3.0+0)=A×5.4 となる。From Tables 3 and 4, the indoor units 3a, 3b, 3c
Are 2.4, 3.0, and 0, respectively. Therefore, the frequency Hz of the compressor 4 is given by: Hz = A × (2.4 + 3.0 + 0) = A × 5.4 where A is a constant.
【0034】圧縮機4の運転許容値は室内機3a、3
b、3cの定格容量に相当する2.0、2.5、3.2
の合計値7.7とすれば、周波数の演算結果は圧縮機
4の運転許容値に達しておらず、約3割の余裕度を残し
ており、この演算結果を周波数信号として圧縮機駆動回
路(図示せず)に送出して、圧縮機4の周波数制御を行
う。以降、所定周期毎に室内機3a、3b、3cのそれ
ぞれの定格容量信号、差温信号、運転モード信号、ON
−OFF判別信号より演算を行い、室内機2台ともLn
=7になるまで上記周波数を継続し、演算結果を周波数
信号として圧縮機駆動回路(図示せず)に送出して圧縮
機4の周波数制御を行う。The allowable operation value of the compressor 4 is determined by the indoor units 3a, 3
2.0, 2.5, 3.2 corresponding to the rated capacities of b and 3c
Is 7.7, the frequency calculation result is
4 and has a margin of about 30%, and sends the calculation result as a frequency signal to a compressor drive circuit (not shown) to control the frequency of the compressor 4. Do. Thereafter, the rated capacity signal, the differential temperature signal, the operation mode signal, and the ON
-Calculation is performed from the OFF determination signal, and both indoor units are Ln
= 7, and the calculation result is sent to a compressor drive circuit (not shown) as a frequency signal to control the frequency of the compressor 4.
【0035】次に、表5のように室内機3a、3bが低
負荷で運転中に、室内機3cを運転開始した場合につい
て説明する。Next, a case where the operation of the indoor unit 3c is started while the indoor units 3a and 3b are operating at a low load as shown in Table 5 will be described.
【0036】[0036]
【表5】 [Table 5]
【0037】表3と表5より、室内機3a、3b、3c
の負荷定数はそれぞれ0.8、1.0、3.8となり、
したがって圧縮機4の周波数Hzは、同様に Hz=A×(0.8+1.0+3.8)=A×5.6 となり、周波数の演算結果は圧縮機4の運転許容値に達
しておらず、約3割の余裕度を残しており、この演算結
果を周波数信号として圧縮機駆動回路(図示せず)に送
出して、圧縮機4の周波数制御を行う。以降、所定周期
毎に室内機3a、3b、3cのそれぞれの定格容量信
号、差温信号、運転モード信号、ON−OFF判別信号
より演算を行い、室内機3a、3bの負荷が同じであれ
ば、室内機3cがLn=7になるまで上記周波数を継続
し、演算結果を周波数信号として圧縮機駆動回路(図示
せず)に送出して圧縮機4の周波数制御を行う。According to Tables 3 and 5, the indoor units 3a, 3b, 3c
Are 0.8, 1.0 and 3.8, respectively.
Accordingly, the frequency Hz of the compressor 4 is similarly given by Hz = A × (0.8 + 1.0 + 3.8) = A × 5.6, and the frequency calculation result has not reached the allowable operation value of the compressor 4; A margin of about 30% is left, and the calculation result is sent to a compressor drive circuit (not shown) as a frequency signal to control the frequency of the compressor 4. Thereafter, calculation is performed from each of the rated capacity signals, the differential temperature signals, the operation mode signals, and the ON / OFF discrimination signals of the indoor units 3a, 3b, 3c at predetermined intervals, and if the loads of the indoor units 3a, 3b are the same. The frequency is continued until the indoor unit 3c reaches Ln = 7, and the calculation result is sent to a compressor drive circuit (not shown) as a frequency signal to control the frequency of the compressor 4.
【0038】なお、室内機3a、3bの負荷がLn=7
の場合には、 Hz=A×(2.0+2.5+3.8)=A×8.3 となり、圧縮機4の運転許容値を越えるため、周波数は Hz=A×7.7 となる圧縮機4の運転許容値として、圧縮機駆動回路に
送出して、圧縮機4の周波数制御を行う。The load on the indoor units 3a and 3b is Ln = 7.
In the case of, Hz = A × (2.0 + 2.5 + 3.8) = A × 8.3, which exceeds the allowable operating value of the compressor 4, and the frequency becomes Hz = A × 7.7. The frequency is transmitted to the compressor drive circuit as the allowable operation value of 4 to control the frequency of the compressor 4.
【0039】次に室内風量設定について説明する。図5
は、室内ファン速設定図である。Next, the setting of the indoor air volume will be described. FIG.
FIG. 7 is an indoor fan speed setting diagram.
【0040】ユーザーが設定できる風量範囲は、通常の
一例としてはHi、Me+、Me、Me−、Loの5速
が上げられる。ここで、設定風量としては最大のHiで
空調負荷極大ゾーン信号を検知した場合、ユーザーがリ
モコン等による外部操作では設定できないHi設定を上
回る空調負荷極大風量設定PHiとなるように風量設定
変更を行う。そして室内機の負荷がLn=7になると、
元の設定風量Hiへと変更を行う。The air volume range that can be set by the user is, for example, five speeds of Hi, Me +, Me, Me-, and Lo as one example. Here, when the air conditioning load maximum zone signal is detected at the maximum Hi as the set air volume, the air volume setting is changed so that the air conditioning load maximum air volume setting PHi exceeds the Hi setting that cannot be set by the user through an external operation using a remote controller or the like. . And when the load of the indoor unit becomes Ln = 7,
Change to the original set airflow Hi.
【0041】上記説明は、主に冷房時について行った
が、暖房時についても同様に制御可能である。Although the above description has been made mainly for cooling, heating can also be controlled similarly.
【0042】このように、負荷の少ない室内機に対して
は、その負荷に応じた能力を供給し、空調負荷極大ゾー
ンにある室内機にのみ、室内機の定格容量を上回る能力
を目標に、余裕ある室外能力を供給するよう圧縮機周波
数と室内風量を制御するため、設定温度に到達するまで
の時間を早くすることができ、快適性の向上および省エ
ネルギ−を図ることができる。As described above, the capacity corresponding to the load is supplied to the indoor unit having a small load, and only the indoor unit in the maximum air-conditioning load zone is designed to have a capacity exceeding the rated capacity of the indoor unit. Since the compressor frequency and the indoor air volume are controlled so as to supply a sufficient outdoor capacity, the time until the set temperature is reached can be shortened, and the comfort can be improved and the energy can be saved.
【0043】次に、本発明の第2の実施の形態について
説明する。なお、第2の実施の形態における冷凍サイク
ルも、第1の実施の形態と同じなので説明を省略する。
図6は本発明の第2の実施の形態における室内負荷定数
と圧縮機周波数と室内風量の相関を示すタイムチャート
図である。第1の実施の形態と同様、第2の実施の形態
においても、設定風量が最大のHiにおいて空調負荷極
大ゾーン信号を検知した場合、ユーザーがリモコン等に
よる外部操作では設定できないHi設定を上回る空調負
荷極大風量設定PHiとなるように風量設定変更を行
う。同図が第1の実施の形態と異なる点は、ある室内機
が負荷定数をLn=8と信号を検出して圧縮機周波数を
可変しても、それと同時に室内風量をPHiとせず30
秒間時間遅延させて冷凍サイクルが安定してからから風
量設定をPHiへと可変させる遅延時間が設定されてい
ることである。このため、第1の実施の形態から得られ
る作用効果に加えて、冷房では急速な室内風量アップに
よってパスバランスが崩れてファン結露が発生するのを
防いだり、暖房では高圧を上昇させずに室内風量をアッ
プさせると冷風感があって快適性が著しく悪くなりかつ
サブクールが過大に取れすぎて適切な冷凍サイクルを構
成することができなくなるような、品質の向上を図るこ
とができる。Next, a second embodiment of the present invention will be described. Note that the refrigeration cycle in the second embodiment is the same as that in the first embodiment, and a description thereof will be omitted.
FIG. 6 is a time chart showing the correlation between the indoor load constant, the compressor frequency, and the indoor air flow according to the second embodiment of the present invention. As in the first embodiment, the second embodiment
Also, when the set air volume is the maximum Hi, the air conditioning load
When a large zone signal is detected, the user
Air conditioning load exceeding Hi setting that cannot be set by external operation due to
Change the air volume setting to achieve the maximum load air volume setting PHi.
U. This figure is different from the first embodiment in that even if an indoor unit detects a signal with a load constant of Ln = 8 and changes the compressor frequency, the indoor air volume is not changed to PHi at the same time.
The delay time is set such that the air volume setting is changed to PHi after the refrigeration cycle is stabilized by delaying the time by seconds. For this reason, it is obtained from the first embodiment.
In addition to the effects of cooling, the rapid rise of indoor air volume in cooling can prevent the path balance from breaking down and prevent fan condensation, and the heating can increase the indoor air volume without increasing the high pressure, resulting in a feeling of cool air and comfortable. It is possible to improve the quality such that the refrigerating property becomes extremely poor and the subcool is too large to form an appropriate refrigeration cycle.
【0044】次に、本発明の第3の実施の形態について
説明する。なお、第3の実施の形態における冷凍サイク
ルも、第1の実施の形態と同じなので説明を省略する。
図7は本発明の第3の実施の形態における室内負荷定数
と圧縮機周波数と室内風量の相関を示すタイムチャート
図である。第1の実施の形態と同様、第2の実施の形態
においても、設定風量が最大のHiにおいて空調負荷極
大ゾーン信号を検知した場合、ユーザーがリモコン等に
よる外部操作では設定できないHi設定を上回る空調負
荷極大風量設定PHiとなるように風量設定変更を行
う。同図が第1の実施の形態と異なる点は、ある室内機
の負荷定数がLn=8からLn=7へと空調負荷極大ゾ
ーンが解除されたときに、それと同時に冷房を一例に挙
げて説明すると室内設定風量をFanNo19(PH
i)からFanNo12(Hi)へといきなり変更せず
に、FanNo1から2タップダウンのFanNo17
で10秒間保持し、その後同じ動作を繰り返して、空調
負荷が入る前の設定風量であるfanNo12(Hi)
へと室内設定風量を可変させることにある。このため、
第1の実施の形態から得られる作用効果に加えて、急速
な風量ダウンを防いで実聴的な違和感を無くして快適性
の向上を図ることができる。Next, a third embodiment of the present invention will be described. Note that the refrigeration cycle in the third embodiment is the same as that in the first embodiment, and a description thereof will be omitted.
FIG. 7 is a time chart showing the correlation between the indoor load constant, the compressor frequency, and the indoor air flow according to the third embodiment of the present invention. As in the first embodiment, the second embodiment
Also, when the set air volume is the maximum Hi, the air conditioning load
When a large zone signal is detected, the user
Air conditioning load exceeding Hi setting that cannot be set by external operation due to
Change the air volume setting to achieve the maximum load air volume setting PHi.
U. The difference of this figure from the first embodiment is that when the load constant of an indoor unit changes from Ln = 8 to Ln = 7 and the air-conditioning load maximum zone is canceled, cooling will be described as an example at the same time. Then, the indoor set air volume is changed to FanNo19 (PH
From i) to FanNo12 (Hi), without any change, FanNo17 two tap down from FanNo1
For 10 seconds, and then repeats the same operation to set the air volume fanNo12 (Hi) before the air conditioning load is applied.
The purpose is to vary the indoor air volume. For this reason,
In addition to the functions and effects obtained from the first embodiment, it is possible to prevent a rapid decrease in the amount of airflow, eliminate the sense of incongruity in actual listening, and improve comfort.
【0045】次に、本発明の第4の実施の形態について
説明する。なお、第4の実施の形態における冷凍サイク
ルも、第1の実施の形態と同じでので説明を省略する。
図8は本発明の第3の実施の形態における室内負荷定数
と圧縮機周波数と室内風量の相関を示すタイムチャート
図である。第1の実施の形態と同様、第2の実施の形態
においても、設定風量が最大のHiにおいて空調負荷極
大ゾーン信号を検知した場合、ユーザーがリモコン等に
よる外部操作では設定できないHi設定を上回る空調負
荷極大風量設定PHiとなるように風量設定変更を行
う。同図が第1の実施の形態と異なる点は、ある室内機
の負荷定数がLn=7からLn=8へと変化したときに
Ln=8の経過時間が1時間を超えると、差温信号によ
る演算ではLn=8であるにもかかわらず強制的にLn
=7として一定時間(T1)空調負荷極大ゾーンを解除
させることにある。このため、第1の実施の形態から得
られる作用効果に加えて、冷房時の冷やすすぎによる吹
き出し回りの結露や霧吹き現象を防ぐことができ、品質
の向上及び快適性の向上を図ることができる。Next, a fourth embodiment of the present invention will be described. Note that the refrigeration cycle in the fourth embodiment is the same as that in the first embodiment, and thus the description is omitted.
FIG. 8 is a time chart showing the correlation between the indoor load constant, the compressor frequency, and the indoor air flow according to the third embodiment of the present invention. As in the first embodiment, the second embodiment
Also, when the set air volume is the maximum Hi, the air conditioning load
When a large zone signal is detected, the user
Air conditioning load exceeding Hi setting that cannot be set by external operation due to
Change the air volume setting to achieve the maximum load air volume setting PHi.
U. This figure differs from the first embodiment in that when the load constant of a certain indoor unit changes from Ln = 7 to Ln = 8 and the elapsed time of Ln = 8 exceeds one hour, the differential temperature signal Is forced to be Ln even though Ln = 8
= 7 for releasing the air conditioning load maximum zone for a certain time (T1). For this reason, it can be obtained from the first embodiment.
In addition to the functions and effects that can be obtained, it is possible to prevent dew condensation around the blow-off and mist blowing caused by rinsing during cooling, thereby improving quality and comfort.
【0046】[0046]
【発明の効果】上記実施の形態より明らかなように、本
発明の多室形空気調和システムは、室内機のそれぞれ
に、希望する室内温度を設定可能な室内温度設定手段と
室内温度を検出する室内温度検出手段とを設け、この室
内温度設定手段と室内温度検出手段とから設定室内温度
と室内温度との差温を算出する差温算出手段を設け、さ
らに前記室内機のそれぞれの定格容量を判別する容量判
別手段および前記室内機のそれぞれについて運転中か停
止中かを判別するオンオフ判別手段を設け、前記差温が
取り得る温度範囲を複数個の温度ゾーンに分割し、さら
に前記温度ゾーン範囲内で前記室内機のそれぞれに定格
風量可変手段と定格風量設定値を設け、各温度ゾーン毎
にかつ室内機の定格容量毎に室内負荷に対応する負荷定
数を定めるとともに、冷房では所定温度ゾーン以上暖房
では所定温度ゾーン以下の空調負荷極大ゾーンを設け、
室内機の定格容量毎に定格容量以上の負荷定数を定めて
記憶する負荷定数記憶手段を設け、前記差温算出手段、
前記容量判別手段、前記オンオフ判別手段、前記負荷定
数記憶手段より得られるデータを用いて所定周期毎に圧
縮機容量を算出する際に1室でも空調負荷極大ゾーンに
相当する差温信号がある場合、圧縮機容量が運転許容値
に満たない時には、前記負荷定数記憶手段より得られる
空調負荷極大ゾーンの負荷定数を用いて算出した容量と
し、この容量値に基づいて前記容量(周波数)可変形圧
縮機の容量を制御する圧縮機容量制御手段を設け、圧縮
機容量が運転許容値をみたしている時は運転許容値の範
囲内で圧縮機容量制御手段を設け、さらに前記定格風量
設定値より得られる設定値より設定風量が大きくなるよ
うな定格風量可変域には設定されていない空調負荷極大
ゾーン風量設定値を用いて前記各々室内機の風量可変制
御を行うことで、負荷の少ない室内機に対しては、その
負荷に応じた能力を供給し、最大負荷にある室内機にの
み余裕ある室外能力を供給するよう圧縮機周波数を制御
するため、設定温度に到達するまでの時間を早くするこ
とができ、快適性の向上および省エネルギ−を図ること
ができる。As is clear from the above embodiment, the multi-room air conditioning system of the present invention detects the indoor temperature and the indoor temperature setting means capable of setting a desired indoor temperature for each indoor unit. An indoor temperature detecting means, and a differential temperature calculating means for calculating a differential temperature between the set indoor temperature and the indoor temperature from the indoor temperature setting means and the indoor temperature detecting means, and further defining a rated capacity of each of the indoor units. A capacity discriminating means for discriminating and an on / off discriminating means for discriminating whether the indoor unit is in operation or stopped is provided, a temperature range in which the temperature difference can be taken is divided into a plurality of temperature zones, and the temperature zone range is further divided. Within each of the indoor units is provided a rated air flow variable means and a rated air flow set value, and a load constant corresponding to an indoor load is determined for each temperature zone and for each rated capacity of the indoor unit. The cooling provided the air-conditioning load maximum zone below the predetermined temperature zone in the heating above a predetermined temperature zone,
Load constant storage means for determining and storing a load constant equal to or greater than the rated capacity for each rated capacity of the indoor unit is provided, and the differential temperature calculating means,
When calculating the compressor capacity at predetermined intervals using the data obtained from the capacity determination means, the on / off determination means, and the load constant storage means, when there is a differential temperature signal corresponding to the air conditioning load maximum zone even in one room. When the compressor capacity is less than the allowable operation value, the capacity is calculated using the load constant of the maximum air conditioning load zone obtained from the load constant storage means, and the capacity (frequency) variable compression is calculated based on this capacity value. The compressor capacity control means for controlling the capacity of the compressor is provided, and when the compressor capacity meets the operation allowance value, the compressor capacity control means is provided within a range of the operation allowance value. By performing the air volume variable control of each of the indoor units by using the air conditioning load maximum zone air volume set value that is not set in the rated air volume variable range such that the set air volume is larger than the obtained set value, For the indoor unit with a small load, the capacity corresponding to the load is supplied, and the compressor frequency is controlled so that the indoor unit with the maximum load is supplied with the extra outdoor capacity only until the set temperature is reached. Can be shortened, and comfort can be improved and energy can be saved.
【0047】また、1室でも空調負荷極大ゾーンに相当
する差温信号がある場合、圧縮機容量が運転許容値に満
たない時には、前記負荷定数記憶手段より得られる空調
負荷極大ゾーンの負荷定数を用いて算出した容量とし、
この容量値に基づいて前記容量(周波数)可変形圧縮機
の容量を制御する圧縮機容量制御手段を設け、圧縮機容
量が運転許容値をみたしている時は運転許容値の範囲内
で圧縮機容量制御手段を設け、さらに前記定格風量設定
値より得られる設定値より設定風量が大きくなるような
定格風量可変域には設定されていない空調負荷極大ゾー
ン風量設定値を用いて前記各々室内機の風量可変制御を
行う場合は、圧縮機容量が可変した後、遅延時間を設け
て行うものである。空調負荷極大ゾーン風量設定値を用
いて前記各々室内機の風量可変制御を行うことで、負荷
の少ない室内機に対しては、その負荷に応じた能力を供
給し、最大負荷にある室内機にのみ余裕ある室外能力を
供給するよう圧縮機周波数を制御するため、設定温度に
到達するまでの時間を早くすることができ、快適性の向
上および省エネルギ−を図ることができるとともに、圧
縮機容量可変後に遅延時間を設けて風量可変制御を行う
ことで、冷房では急速な室内風量アップによってパスバ
ランスが崩れてファン結露が発生するのを防いだり、暖
房では高圧を上昇させずに室内風量をアップさせると冷
風感があって快適性が著しく悪くなりかつサブクールが
過大に取れすぎて適切な冷凍サイクルを構成することが
できなくなることを防ぎ、品質の向上を図ることができ
る。In addition, even one room corresponds to the maximum air-conditioning load zone.
If there is a differential temperature signal, the compressor capacity is
Air conditioner is obtained from the load constant storage means.
The capacity calculated using the load constant of the load maximum zone,
Based on this capacity value, the capacity (frequency) variable type compressor
A compressor capacity control means for controlling the capacity of the compressor.
If the quantity meets the operation allowance, it is within the operation allowance
The compressor capacity control means is provided, and the rated air volume is further set.
If the set air volume is larger than the set value obtained from the value
Maximum air-conditioning load zone not set in the rated air flow variable range
The air volume variable control of each indoor unit is performed using the air volume set value.
If you do, set a delay time after the compressor capacity is changed.
It is what you do. Use the air-conditioning load maximum zone airflow setting value
By performing variable air volume control of each indoor unit, the load
For indoor units with a small number, provide the capacity according to the load.
Power supply, and provide sufficient outdoor capacity only for the indoor unit with the maximum load.
To control the compressor frequency to supply
Time to reach can be shortened, improving comfort
By performing a variable air volume control with a delay time after the compressor capacity is varied, it is possible to prevent the path balance from being lost due to the rapid indoor air volume increase and to cause fan condensation due to rapid indoor air volume increase. Preventing or increasing the indoor air volume without raising the high pressure during heating prevents a feeling of cool air, which significantly deteriorates comfort and prevents excessive subcools from forming an appropriate refrigeration cycle. , Quality can be improved.
【0048】また、1室でも空調負荷極大ゾーンに相当
する差温信号がある場合、圧縮機容量が運転許容値に満
たない時には、前記負荷定数記憶手段より得られる空調
負荷極大ゾーンの負荷定数を用いて算出した容量とし、
この容量値に基づいて前記容量(周波数)可変形圧縮機
の容量を制御する圧縮機容量制御手段を設け、圧縮機容
量が運転許容値をみたしている時は運転許容値の範囲内
で圧縮機容量制御手段を設け、さらに前記定格風量設定
値より得られる設定値より設定風量が大きくなるような
定格風量可変域には設定されていない空調負荷極大ゾー
ン風量設定値を用いて前記各々室内機の風量可変制御を
行うとともに、各々室内機の風量可変制御を行って、空
調負荷極大ゾーンが解除されて風量が空調負荷極大ゾー
ン風量設定値より定格風量可変域まで下がるときに、一
定時間保持しながら段階的に風量ダウンを行って所定の
設定風量になるように風量可変制御行うものである。空
調負荷極大ゾーン風量設定値を用いて前記各々室内機の
風量可変制御を行うことで、負荷の少ない室内機に対し
ては、その負荷に応じた能力を供給し、最大負荷にある
室内機にのみ余裕ある室外能力を供給するよう圧縮機周
波数を制御するため、設定温度に到達するまでの時間を
早くすることができ、快適性の向上および省エネルギ−
を図ることができるとともに、各々室内機の風量可変制
御を行って、空調負荷極大ゾーンが解除されて風量が空
調負荷極大ゾーン風量設定値より定格風量可変域まで下
がるときに、一定時間保持しながら段階的に風量ダウン
を行って所定の設定風量になるように風量可変制御行う
ことにより、急速な風量ダウンを防いで実聴的な違和感
を無くして快適性の向上を図ることができる。In addition, even one room corresponds to the maximum air conditioning load zone.
If there is a differential temperature signal, the compressor capacity is
Air conditioner is obtained from the load constant storage means.
The capacity calculated using the load constant of the load maximum zone,
Based on this capacity value, the capacity (frequency) variable type compressor
A compressor capacity control means for controlling the capacity of the compressor.
If the quantity meets the operation allowance, it is within the operation allowance
The compressor capacity control means is provided, and the rated air volume is further set.
If the set air volume is larger than the set value obtained from the value
Maximum air-conditioning load zone not set in the rated air flow variable range
The air volume variable control of each indoor unit is performed using the air volume set value.
In addition to performing air volume variable control of each indoor unit,
The maximum load adjustment zone is released and the air volume increases
When the air flow falls below the rated air flow variable range
While maintaining the fixed time, gradually reduce the air volume and
The variable air volume control is performed so that the air volume is set. Sky
The maximum load of the indoor unit using
By performing variable air volume control, indoor units with small loads can be controlled.
Supply the capacity corresponding to the load, and
Compressor circumference to supply extra outdoor capacity to indoor units only
To control the wave number, set the time to reach the set temperature.
Faster, improved comfort and energy saving
While performing the air volume variable control of each indoor unit, when the air conditioning load maximum zone is released and the air volume falls from the air conditioning load maximum zone air volume set value to the rated air volume variable range, while maintaining a certain time, By performing the air volume variable control so as to reduce the air volume stepwise so that the air volume becomes a predetermined set air volume, it is possible to prevent a rapid air volume reduction and eliminate a sense of incongruity that is actually heard, thereby improving comfort.
【0049】また、1室でも空調負荷極大ゾーンに相当
する差温信号がある場合、圧縮機容量が運転許容値に満
たない時には、前記負荷定数記憶手段より得られる空調
負荷極大ゾーンの負荷定数を用いて算出した容量とし、
この容量値に基づいて前記容量(周波数)可変形圧縮機
の容量を制御する圧縮機容量制御手段を設け、圧縮機容
量が運転許容値をみたしている時は運転許容値の範囲内
で圧縮機容量制御手段を設け、さらに前記定格風量設定
値より得られる設定値より設定風量が大きくなるような
定格風量可変域には設定されていない空調負荷極大ゾー
ン風量設定値を用いて前記各々室内機の風量可変制御を
行うとともに、空調負荷極大ゾーンに相当する差温信号
を検知してからの時間経過を記憶する時間経過記憶手段
を設け、その時間経過記憶手段より得られるデータにて
圧縮機容量制御・室内風量制御を時間制限にて制御する
ものである。空調負荷極大ゾーン風量設定値を用いて前
記各々室内機の風量可変制御を行うことで、負荷の少な
い室内機に対しては、その負荷に応じた能力を供給し、
最大負荷にある室内機にのみ余裕ある室外能力を供給す
るよう圧縮機周波数を制御するため、設定温度に到達す
るまでの時間を早くすることができ、快適性の向上およ
び省エネルギ−を図ることができるとともに、空調負荷
極大ゾーンに相当する差温信号を検知してからの時間経
過を記憶する時間経過記憶手段を設け、その時間経過記
憶手段より得られるデータにて圧縮機容量制御・室内風
量制御を時間制限にて制御することにより、冷房時の冷
やすすぎによる吹き出し回りの結露や霧吹き現象を防ぐ
ことができ、品質の向上及び快適性の向上を図ることが
できる。 Also, even one room corresponds to the maximum air conditioning load zone.
If there is a differential temperature signal, the compressor capacity is
Air conditioner is obtained from the load constant storage means.
The capacity calculated using the load constant of the load maximum zone,
Based on this capacity value, the capacity (frequency) variable type compressor
A compressor capacity control means for controlling the capacity of the compressor.
If the quantity meets the operation allowance, it is within the operation allowance
The compressor capacity control means is provided, and the rated air volume is further set.
If the set air volume is larger than the set value obtained from the value
Maximum air-conditioning load zone not set in the rated air flow variable range
The air volume variable control of each indoor unit is performed using the air volume set value.
The difference temperature signal corresponding to the air conditioning load maximum zone
Time lapse storage means for storing the time lapse since the detection of
With the data obtained from the time lapse storage means.
Control compressor capacity control and indoor air volume control with time limit
Things. Using the air conditioning load maximum zone airflow setting value
Note that by performing variable air volume control of each indoor unit,
Supply the capacity according to the load to
Supply extra room capacity only to the indoor unit with the maximum load
To reach the set temperature in order to control the compressor frequency
Time to get to work faster, improving comfort and
And time lapse storage means for storing the time lapse since the detection of the temperature difference signal corresponding to the air conditioning load maximum zone, and using the data obtained from the time lapse storage means. By controlling the compressor capacity control and indoor air volume control with a time limit, it is possible to prevent dew condensation around the blow-off and mist blowing phenomenon due to rinsing during cooling, and improve quality and comfort. .
【図1】本発明の多室空気調和システムの冷凍サイクル
図FIG. 1 is a refrigeration cycle diagram of the multi-room air conditioning system of the present invention.
【図2】同実施の形態における圧縮機周波数の制御ブロ
ック図FIG. 2 is a control block diagram of a compressor frequency in the embodiment.
【図3】従来例の差温△Tの温度ゾーン分割図FIG. 3 is a temperature zone division diagram of a differential temperature ΔT of a conventional example.
【図4】第一の実施の形態におけ差温△Tの温度ゾーン
分割図FIG. 4 is a temperature zone division diagram of a temperature difference ΔT in the first embodiment.
【図5】第一の実施の形態における室内ファン速設定図FIG. 5 is an indoor fan speed setting diagram in the first embodiment.
【図6】第2の実施の形態における室内負荷定数と圧縮
機周波数と室内風量の相関を示すタイムチャートFIG. 6 is a time chart illustrating a correlation between an indoor load constant, a compressor frequency, and an indoor air flow according to the second embodiment.
【図7】第3の実施の形態における室内負荷定数と圧縮
機周波数と室内風量の相関を示すタイムチャートFIG. 7 is a time chart showing a correlation between an indoor load constant, a compressor frequency, and an indoor air flow according to a third embodiment.
【図8】第4の実施の形態における室内負荷定数と圧縮
機周波数と室内風量の相関を示すタイムチャートFIG. 8 is a time chart showing a correlation between an indoor load constant, a compressor frequency, and an indoor air flow according to a fourth embodiment.
【図9】室内機負荷と圧縮機周波数の相関図FIG. 9 is a correlation diagram between indoor unit load and compressor frequency.
1 室外機 2 分岐機 3a、3b、3c 室内機 4 圧縮機 5 室外熱交換器 6 四方弁 7 電動膨張弁 8a、8b、8c 室内熱交換器 9 液側主管 10a、10b、10c 液側分岐管 11a、11b、11c 電動膨張弁 12a、12b、12c ガス側分岐管 13 ガス側主管 14 吸入管 15 バイパス回路 16 補助絞り 17a、17b、17c 吸入温センサ 18 飽和温センサ 19 吸入温センサ 20a、20b、20c 配管温センサ DESCRIPTION OF SYMBOLS 1 Outdoor unit 2 Branching machine 3a, 3b, 3c Indoor unit 4 Compressor 5 Outdoor heat exchanger 6 Four-way valve 7 Electric expansion valve 8a, 8b, 8c Indoor heat exchanger 9 Liquid side main pipe 10a, 10b, 10c Liquid side branch pipe 11a, 11b, 11c Electric expansion valve 12a, 12b, 12c Gas-side branch pipe 13 Gas-side main pipe 14 Suction pipe 15 Bypass circuit 16 Auxiliary throttle 17a, 17b, 17c Suction temperature sensor 18 Saturation temperature sensor 19 Suction temperature sensor 20a, 20b 20c pipe temperature sensor
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭62−225842(JP,A) 特開 平1−208644(JP,A) 特開 平2−64341(JP,A) 特開 平1−269872(JP,A) 特開 平4−20734(JP,A) (58)調査した分野(Int.Cl.7,DB名) F24F 11/02 102 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-62-225842 (JP, A) JP-A-1-208644 (JP, A) JP-A-2-64341 (JP, A) JP-A-1- 269872 (JP, A) JP-A-4-20734 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) F24F 11/02 102
Claims (4)
室外熱交換器を有する1台の室外機と、室内熱交換器を
有する複数台の室内機とを、前記室外機に設けて主に冷
媒液が流れる液側主管を分岐した液側分岐管および前記
室外機に設けて主に冷媒ガスが流れるガス側主管を分岐
したガス側分岐管を介して接続し、前記液側分岐管のそ
れぞれに電気的に弁開度を制御可能とした電動膨張弁を
介装して冷凍サイクルを構成し、前記室内機のそれぞれ
に、希望する室内温度を設定可能な室内温度設定手段と
室内温度を検出する室内温度検出手段とを設け、この室
内温度設定手段と室内温度検出手段とから設定室内温度
と室内温度との差温を算出する差温算出手段を設け、さ
らに前記室内機のそれぞれの定格容量を判別する容量判
別手段および前記室内機のそれぞれについて運転中か停
止中かを判別するオンオフ判別手段を設け、前記差温が
取り得る温度範囲を複数個の温度ゾーンに分割し、さら
に前記温度ゾーン範囲内で前記室内機のそれぞれに定格
風量可変手段と定格風量設定値を設け、各温度ゾーン毎
にかつ室内機の定格容量毎に室内負荷に対応する負荷定
数を定めるとともに、冷房では所定温度ゾーン以上暖房
では所定温度ゾーン以下の空調負荷極大ゾーンを設け、
室内機の定格容量毎に定格容量以上の負荷定数を定めて
記憶する負荷定数記憶手段を設け、前記差温算出手段、
前記容量判別手段、前記オンオフ判別手段、前記負荷定
数記憶手段より得られるデータを用いて所定周期毎に圧
縮機容量を算出する際に1室でも空調負荷極大ゾーンに
相当する差温信号がある場合、圧縮機容量が運転許容値
に満たない時には、前記負荷定数記憶手段より得られる
空調負荷極大ゾーンの負荷定数を用いて算出した容量と
し、この容量値に基づいて前記容量(周波数)可変形圧
縮機の容量を制御する圧縮機容量制御手段を設け、圧縮
機容量が運転許容値をみたしている時は運転許容値の範
囲内で圧縮機容量制御手段を設け、さらに前記定格風量
設定値より得られる設定値より設定風量が大きくなるよ
うな定格風量可変域には設定されていない空調負荷極大
ゾーン風量設定値を用いて前記各々室内機の風量可変制
御を行うことを特徴とする多室形空気調和システム。1. A capacity (frequency) variable compressor, a four-way valve,
One outdoor unit having an outdoor heat exchanger, and a plurality of indoor units having an indoor heat exchanger, a liquid-side branch pipe provided in the outdoor unit and branching a liquid-side main pipe through which a refrigerant liquid mainly flows, and A motor-operated expansion valve which is provided in the outdoor unit and is connected to a gas-side main pipe through which a gas-side main pipe through which refrigerant gas mainly flows is branched, so that a valve opening can be electrically controlled for each of the liquid-side branch pipes. A refrigeration cycle is configured by interposing a room temperature, and an indoor temperature setting unit that can set a desired indoor temperature and an indoor temperature detection unit that detects an indoor temperature are provided in each of the indoor units. A differential temperature calculating means for calculating a temperature difference between the set indoor temperature and the indoor temperature from the indoor temperature detecting means, and a capacity determining means for determining a rated capacity of each of the indoor units, and an operation of each of the indoor units. Whether it is stopped or stopped A temperature range in which the temperature difference can be obtained is divided into a plurality of temperature zones, and a rated air volume variable device and a rated air volume set value are provided for each of the indoor units within the temperature zone range. A load constant corresponding to the indoor load is determined for each temperature zone and for each rated capacity of the indoor unit, and an air conditioning load maximal zone of a predetermined temperature zone or less for cooling is provided for a predetermined temperature zone or more for cooling,
Load constant storage means for determining and storing a load constant equal to or greater than the rated capacity for each rated capacity of the indoor unit is provided, and the differential temperature calculating means,
When calculating the compressor capacity at predetermined intervals using the data obtained from the capacity determination means, the on / off determination means, and the load constant storage means, when there is a differential temperature signal corresponding to the air conditioning load maximum zone even in one room. When the compressor capacity is less than the allowable operation value, the capacity is calculated using the load constant of the maximum air conditioning load zone obtained from the load constant storage means, and the capacity (frequency) variable compression is calculated based on this capacity value. The compressor capacity control means for controlling the capacity of the compressor is provided, and when the compressor capacity meets the operation allowance value, the compressor capacity control means is provided within a range of the operation allowance value. It is characterized in that the air volume variable control of each of the indoor units is performed using the airflow load maximum zone air volume set value which is not set in the rated air volume variable region where the set air volume becomes larger than the obtained set value. Multi-room air conditioning system according to.
設定風量が大きくなるような定格風量可変域には設定さ
れていない空調負荷極大ゾーン風量設定値を用 いて各々
室内機の風量可変制御を行う場合は、圧縮機容量が可変
した後、遅延時間を設けて行うことを特徴とする請求項
1記載の多室形空気調和システム。 2. A set value obtained from a rated air flow set value.
Set the rated airflow variable range so that the set airflow becomes large.
Are each have use have not the air conditioning load maximum zone air volume set value
When performing variable air volume control of indoor units, the compressor capacity is variable.
After that, a delay time is provided to perform the operation.
2. The multi-room air conditioning system according to 1.
調負荷極大ゾーンが解除されて風量が空調負荷極大ゾー
ン風量設定値より定格風量可変域まで下がるときに、一
定時間保持しながら段階的に風量ダウンを行って所定の
設定風量になるように風量可変制御行うことを特徴とす
る請求項1記載の多室形空気調和システム。 3. An air volume variable control of each indoor unit is performed, and
The maximum load adjustment zone is released and the air volume increases
When the air flow falls below the rated air flow variable range
While maintaining the fixed time, gradually reduce the air volume and
It is characterized by performing air volume variable control so as to reach the set air volume.
The multi-room air conditioning system according to claim 1.
を検知してからの時間経過を記憶する時間経過記憶手段
を設け、その時間経過記憶手段より得られるデータにて
圧縮機容量制御・室内風量制御を時間制限にて制御する
ことを特徴とする請求項1記載の多室形空気調和システ
ム。 4. A temperature difference signal corresponding to an air-conditioning load maximum zone.
Time lapse storage means for storing the time lapse since the detection of
With the data obtained from the time lapse storage means.
Control compressor capacity control and indoor air volume control with time limit
The multi-chamber air conditioning system according to claim 1, wherein
M
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29633799A JP3223918B2 (en) | 1999-10-19 | 1999-10-19 | Multi-room air conditioning system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29633799A JP3223918B2 (en) | 1999-10-19 | 1999-10-19 | Multi-room air conditioning system |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2001116330A JP2001116330A (en) | 2001-04-27 |
JP3223918B2 true JP3223918B2 (en) | 2001-10-29 |
Family
ID=17832247
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP29633799A Expired - Fee Related JP3223918B2 (en) | 1999-10-19 | 1999-10-19 | Multi-room air conditioning system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3223918B2 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100474892B1 (en) * | 2002-03-05 | 2005-03-08 | 엘지전자 주식회사 | Methode for controlling a heating of air-conditioner |
JP6279310B2 (en) * | 2013-12-20 | 2018-02-14 | 三菱重工サーマルシステムズ株式会社 | Control device for air conditioner and control method for air conditioner |
JP5910719B1 (en) * | 2014-12-15 | 2016-04-27 | ダイキン工業株式会社 | Air conditioner |
CN111023408B (en) * | 2019-11-25 | 2021-06-15 | 顿汉布什(中国)工业有限公司 | Air conditioning unit design calculation and matched software compiling method |
CN114352511B (en) * | 2021-12-28 | 2024-02-23 | 南京尚爱机械制造有限公司 | Method for reducing idle load of air compressor in multi-machine operation of air compressor |
CN115031356B (en) * | 2022-06-30 | 2024-04-12 | 深圳市英维克科技股份有限公司 | Variable frequency air conditioner control method, device, electronic equipment and medium |
CN116017963B (en) * | 2023-03-28 | 2023-06-16 | 浙江德塔森特数据技术有限公司 | Intelligent regulation cabinet refrigerating capacity regulating method and intelligent regulation cabinet |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62225842A (en) * | 1986-03-26 | 1987-10-03 | Mitsubishi Electric Corp | Air conditioner |
JPH01208644A (en) * | 1988-02-16 | 1989-08-22 | Mitsubishi Electric Corp | Temperature controller of air conditioner |
JPH01269872A (en) * | 1988-04-20 | 1989-10-27 | Daikin Ind Ltd | Operating control device of refrigerator |
JPH0264341A (en) * | 1988-08-30 | 1990-03-05 | Toshiba Corp | Control method for air conditioner |
JPH0420734A (en) * | 1990-05-11 | 1992-01-24 | Kubota Corp | Air conditioning system |
-
1999
- 1999-10-19 JP JP29633799A patent/JP3223918B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2001116330A (en) | 2001-04-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3137114B1 (en) | Multi-room air conditioner | |
JP3327158B2 (en) | Multi-room air conditioner | |
CA2530895C (en) | Air-conditioning system with multiple indoor and outdoor units and control system therefore | |
JP2003194384A (en) | Heat pump type air conditioner | |
JP2001248937A (en) | Heat pump hot water supply air conditioner | |
JP3223918B2 (en) | Multi-room air conditioning system | |
JPH06257828A (en) | Multi-chamber type air conditioning system | |
US20060207273A1 (en) | Method of controlling over-load cooling operation of air conditioner | |
JPH1096545A (en) | Air conditioner and control method thereof | |
KR20040003707A (en) | Method for controlling compressor frequency for airconditioner | |
JP3458293B2 (en) | Operation control device for multi-room air conditioner | |
JP3334184B2 (en) | Multi-room air conditioner | |
JP4151219B2 (en) | Multi-chamber air conditioner | |
JP3275669B2 (en) | Multi-room air conditioning system | |
JP4131630B2 (en) | Multi-chamber air conditioner and control method thereof | |
CN113614469B (en) | Air conditioner | |
JP2730398B2 (en) | Multi-room air conditioning system | |
JPH06257827A (en) | Multi chamber type air conditioning system | |
JPH08189690A (en) | Heating and dehumidifying operation controller for multi-room split type air conditioner | |
JP3097350B2 (en) | Multi-room air conditioner | |
JP2947254B1 (en) | Multi-room air conditioner | |
JP3380384B2 (en) | Control device for air conditioner | |
JP3286817B2 (en) | Multi-room air conditioner | |
KR100667097B1 (en) | Operation method for multi type air conditioner | |
JP3109369B2 (en) | Air conditioner |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20070824 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080824 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080824 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090824 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090824 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100824 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110824 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110824 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120824 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130824 Year of fee payment: 12 |
|
LAPS | Cancellation because of no payment of annual fees |