JP3275669B2 - Multi-room air conditioning system - Google Patents

Multi-room air conditioning system

Info

Publication number
JP3275669B2
JP3275669B2 JP30871495A JP30871495A JP3275669B2 JP 3275669 B2 JP3275669 B2 JP 3275669B2 JP 30871495 A JP30871495 A JP 30871495A JP 30871495 A JP30871495 A JP 30871495A JP 3275669 B2 JP3275669 B2 JP 3275669B2
Authority
JP
Japan
Prior art keywords
indoor
temperature
capacity
load
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP30871495A
Other languages
Japanese (ja)
Other versions
JPH09145130A (en
Inventor
邦泰 内山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP30871495A priority Critical patent/JP3275669B2/en
Publication of JPH09145130A publication Critical patent/JPH09145130A/en
Application granted granted Critical
Publication of JP3275669B2 publication Critical patent/JP3275669B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To improve comfortable environment and attain energy saving state by a method wherein in the case that a capability of an outdoor device has a surplus for an indoor device, while a maximum load is supplied to the indoor device, the surplus capacity is supplied to the indoor device of maximum load. SOLUTION: In the case that a capacity of a compressor is calculated for every predetermined period under application of data obtained through a difference temperature calculating circuit 2, a rated capacity memory circuit 5, an ON-OFF discriminating circuit 4 and a load constant table 10 and further in the case that there is a difference temperature signal corresponding to a maximum air conditioning load zone even in one room and a capacity of the compressor is not fulfilled up to an operation allowable value, it is calculated by applying a load constant in the maximum air conditioning load obtained by the load constant memory means. Then, there is provided a compressor capacity control means for use in controlling a capacity of a capacity (frequency) variable type compressor, and also there is provided a valve opening degree control means for calculating a degree of opening of each of electrical expansion valves connected to an indoor device being operated for every predetermined period under application of the aforesaid data and data obtained by the memory means for storing an initial degree of opening of the aforesaid valve and for controlling a degree of opening of the electrical expansion valve in response to a result of this calculation.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、1台の室外機に複
数台の室内機を接続し、電動膨張弁にて冷媒流量を制御
する多室形空気調和システムに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a multi-room air conditioning system in which a plurality of indoor units are connected to one outdoor unit, and the flow rate of refrigerant is controlled by an electric expansion valve.

【0002】[0002]

【従来の技術】近年、1台の室外機に複数台の室内機を
接続した多室形空気調和システムが、室外の省スペース
性やエクステリア性や少ない電源容量の点でその需要を
伸ばしている。
2. Description of the Related Art In recent years, a demand for a multi-room air conditioning system in which a plurality of indoor units are connected to one outdoor unit has been increasing in terms of outdoor space saving, exterior characteristics, and small power supply capacity. .

【0003】従来、この多室形空気調和システムにおい
て、容量(周波数)可変形圧縮機を用い、冷凍サイクル
の液側冷媒配管に、各室内機への冷媒流量を制御する冷
媒流量制御装置を設け、室外機の容量と各室内機の容量
との比較により圧縮機容量を制御し、各室内機への冷媒
流量を制御するものが提案されている(例えば特開平6
−257827号公報)。
Conventionally, in this multi-chamber air conditioning system, a refrigerant flow control device for controlling a refrigerant flow to each indoor unit is provided in a liquid side refrigerant pipe of a refrigeration cycle using a variable capacity (frequency) compressor. There has been proposed an apparatus in which the compressor capacity is controlled by comparing the capacity of an outdoor unit and the capacity of each indoor unit, and the flow rate of refrigerant to each indoor unit is controlled (for example, Japanese Patent Application Laid-Open No. Hei 6-1994).
-257827).

【0004】以下、図面を参照しながら上記従来の多室
形空気調和システムについて説明する。
Hereinafter, the conventional multi-room air conditioning system will be described with reference to the drawings.

【0005】図9は、従来の多室形空気調和システムの
冷凍サイクル図である。この多室形空気調和システムは
1台の室外機20に複数台の室内機、本従来例では3台
の室内機21a、21b、21cを接続して構成され
る。室外機20内にはインバータ駆動の周波数可変形圧
縮機22(以下単に圧縮機と称す)、室外熱交換器2
3、冷暖房切換用の四方弁24が設けられ、また室内機
21a、21b、21c内にそれぞれ室内熱交換器25
a、25b、25cが設けられている。そして、この室
外機20と室内機21a、21b、21cとは、室外機
20内に設けた液側主管26より分岐した液側分岐管2
7a、27b、27cおよび室外機20内に設けたガス
側主管28より分岐したガス側分岐管29a、29b、
29cとで接続されている。液側分岐管27a、27
b、27cにはそれぞれ電動膨張弁30a、30b、3
0cを介装し、また液側主管26上には冷媒液を貯留可
能なレシーバ31を設け、このレシーバ31を冷暖房共
中間圧に保つために補助絞り32が設けられている。ま
た、レシーバ31と圧縮機22への吸入管33とを結ぶ
バイパス回路34が設けられ、このバイパス回路34に
は補助絞り35が設けられている。また、各室内機21
a、21b、21cには各室内機が設置されている部屋
の室温を検出する室内温度センサ36a、36b、36
cおよび居住者が希望する運転モード(冷房または暖
房)と室温と運転、停止を設定できる運転設定回路37
a、37b、37cが設けられている。
FIG. 9 is a refrigeration cycle diagram of a conventional multi-room air conditioning system. This multi-room air conditioning system is configured by connecting one indoor unit 20 to a plurality of indoor units, in this example, three indoor units 21a, 21b, 21c. An inverter-driven frequency variable compressor 22 (hereinafter simply referred to as a compressor), an outdoor heat exchanger 2
3. A four-way valve 24 for switching between air conditioning and heating is provided, and the indoor heat exchangers 25 are provided in the indoor units 21a, 21b and 21c, respectively.
a, 25b, and 25c are provided. The outdoor unit 20 and the indoor units 21a, 21b, 21c are connected to the liquid side branch pipe 2 branched from the liquid side main pipe 26 provided in the outdoor unit 20.
7a, 27b, 27c and gas side branch pipes 29a, 29b branched from a gas side main pipe 28 provided in the outdoor unit 20;
29c. Liquid side branch pipe 27a, 27
b and 27c have electric expansion valves 30a, 30b, 3
On the liquid side main pipe 26, a receiver 31 capable of storing the refrigerant liquid is provided, and an auxiliary throttle 32 is provided for maintaining the receiver 31 at an intermediate pressure for cooling and heating. Further, a bypass circuit 34 for connecting the receiver 31 and the suction pipe 33 to the compressor 22 is provided, and the bypass circuit 34 is provided with an auxiliary throttle 35. In addition, each indoor unit 21
a, 21b, and 21c include indoor temperature sensors 36a, 36b, and 36 that detect the room temperature of the room where each indoor unit is installed.
c and an operation setting circuit 37 which can set an operation mode (cooling or heating) desired by the occupant, room temperature, operation and stop.
a, 37b and 37c are provided.

【0006】この冷凍サイクルにおいて、冷房時は圧縮
機22から吐出された冷媒は、四方弁24より室外熱交
換器23へと流れてここで室外空気と熱交換して凝縮液
化し、補助絞り32で減圧されて中間圧となる。そし
て、レシーバ31に一部の液冷媒を貯留し、残りは液側
分岐管27a、27b、27cへと分岐する。電動膨張
弁30a、30b、30cの弁開度は、後述する制御方
法でそれぞれの部屋の負荷に見合った開度になるように
制御されるため、冷媒もそれぞれの負荷に応じた流量で
低圧となって室内熱交換器25a、25b、25cへと
流れて蒸発した後、ガス側分岐管29a、29b、29
cよりガス側主管28、四方弁24を通過して再び圧縮
機22に吸入される。また、レシーバ31からごくわず
かの液冷媒がバイパス回路34へと流れ、補助絞り35
で減圧されて吸入管33へと流れる。また、圧縮機周波
数は総負荷に応じて後述する制御方法で決定される。
In this refrigeration cycle, during cooling, the refrigerant discharged from the compressor 22 flows from the four-way valve 24 to the outdoor heat exchanger 23 where it exchanges heat with outdoor air to condense and liquefy, and the auxiliary throttle 32 The pressure is reduced to an intermediate pressure. Then, a part of the liquid refrigerant is stored in the receiver 31, and the rest branches to the liquid side branch pipes 27a, 27b, 27c. The valve opening of the electric expansion valves 30a, 30b, 30c is controlled by a control method described later so as to be an opening corresponding to the load of each room, so that the refrigerant also has a low pressure at a flow rate corresponding to each load. After flowing into the indoor heat exchangers 25a, 25b, 25c and evaporating, the gas-side branch pipes 29a, 29b, 29
c, the gas passes through the gas-side main pipe 28 and the four-way valve 24 and is sucked into the compressor 22 again. Also, a very small amount of liquid refrigerant flows from the receiver 31 to the bypass circuit 34, and the auxiliary throttle 35
And flows to the suction pipe 33. Further, the compressor frequency is determined by a control method described later according to the total load.

【0007】暖房時は圧縮機22から吐出された冷媒
は、四方弁24を切換えてガス側主管28よりガス側分
岐管29a、29b、29cへと分岐し、室内熱交換器
25a、25b、25cへと流れて凝縮液化し、液側分
岐管27a、27b、27c上の電動膨張弁30a、3
0b、30cで減圧されて中間圧となる。電動膨張弁3
0a、30b、30cの弁開度は、冷房時と同様に後述
する制御方法でそれぞれの部屋の負荷に見合った開度に
制御されるため、冷媒もそれに応じた流量で室内熱交換
器25a、25b、25cを流れる。中間圧となった冷
媒は、レシーバ31に一部の液冷媒が貯留され、残りは
補助絞り32で減圧されて低圧となって室外熱交換器2
3を流れて蒸発した後、四方弁24を通過して再び圧縮
機22に吸入される。また、レシーバ31からごくわず
かの液冷媒がバイパス回路34へと流れ、補助絞り35
で減圧されて吸入管33へと流れる。また、圧縮機周波
数は冷房時と同様に総負荷に応じて後述する制御方法で
決定される。
At the time of heating, the refrigerant discharged from the compressor 22 switches the four-way valve 24 to branch from the gas-side main pipe 28 to the gas-side branch pipes 29a, 29b, 29c, and the indoor heat exchangers 25a, 25b, 25c. , And condensed and liquefied, and the electric expansion valves 30a, 3a on the liquid side branch pipes 27a, 27b, 27c
The pressure is reduced at 0b and 30c to an intermediate pressure. Electric expansion valve 3
The opening degrees of the valves 0a, 30b, and 30c are controlled to the opening degrees corresponding to the loads of the respective rooms by a control method described later in the same manner as during cooling, so that the refrigerant also has a flow rate corresponding to the room heat exchanger 25a, It flows through 25b and 25c. In the refrigerant having the intermediate pressure, a part of the liquid refrigerant is stored in the receiver 31, and the remaining refrigerant is reduced in pressure by the auxiliary throttle 32 to have a low pressure, so that the outdoor heat exchanger 2
After passing through 3 and evaporating, it passes through the four-way valve 24 and is sucked into the compressor 22 again. Also, a very small amount of liquid refrigerant flows from the receiver 31 to the bypass circuit 34, and the auxiliary throttle 35
And flows to the suction pipe 33. Further, the compressor frequency is determined by a control method described later according to the total load as in the case of cooling.

【0008】次に、圧縮機周波数および電動膨張弁開度
の制御方法について説明する。図10は圧縮機周波数お
よび電動膨張弁開度の制御の流れを示すブロック図、図
11は室内温度Trと設定温度Tsとの差温ΔTの温度
ゾーン分割図である。
Next, a method for controlling the compressor frequency and the electric expansion valve opening will be described. FIG. 10 is a block diagram showing a flow of control of the compressor frequency and the electric expansion valve opening, and FIG. 11 is a temperature zone division diagram of a temperature difference ΔT between the room temperature Tr and the set temperature Ts.

【0009】まず、室内機21aにおいて、室内温度セ
ンサ36aの出力を室内温度検知回路41より温度信号
として差温演算回路42に送出し、また設定判別回路4
3にて運転設定回路37aで設定された設定温度および
運転モードを判別して差温演算回路42に送出してここ
で差温ΔT(=Tr−Ts)を算出し、図11に示す負
荷ナンバーLn値に変換してこれを差温信号とする。た
とえば冷房運転時で、Tr=27.3℃、Ts=26℃
とすると、差温ΔT=1.3℃でLn=6となる。また
ON−OFF判別回路44にて、運転設定回路37aで
設定された室内機21aの運転(ON)または停止(O
FF)を判別し、さらに定格容量記憶回路45に室内機
21aの定格容量を記憶しておき、これらの定格容量信
号、差温信号、運転モード信号、ON−OFF判別信号
を信号送出回路46より室外機20の信号受信回路47
へ送る。室内機21b、21cからも同様の信号が信号
受信回路47へ送られる。信号受信回路47で受けた信
号は圧縮機周波数演算回路48と膨張弁開度演算回路4
9へ送出される。
First, in the indoor unit 21a, the output of the indoor temperature sensor 36a is sent from the indoor temperature detecting circuit 41 to the differential temperature calculating circuit 42 as a temperature signal.
In step 3, the set temperature and the operation mode set by the operation setting circuit 37a are determined and sent to the temperature difference calculation circuit 42, where the temperature difference ΔT (= Tr−Ts) is calculated, and the load number shown in FIG. The value is converted into an Ln value and is used as a differential temperature signal. For example, during cooling operation, Tr = 27.3 ° C., Ts = 26 ° C.
Then, Ln = 6 at the temperature difference ΔT = 1.3 ° C. The ON-OFF determination circuit 44 operates (ON) or stops (O) the indoor unit 21a set by the operation setting circuit 37a.
FF), and further stores the rated capacity of the indoor unit 21a in the rated capacity storage circuit 45, and outputs the rated capacity signal, the differential temperature signal, the operation mode signal, and the ON-OFF determination signal from the signal transmission circuit 46. Signal receiving circuit 47 of outdoor unit 20
Send to A similar signal is sent from the indoor units 21b and 21c to the signal receiving circuit 47. The signal received by the signal receiving circuit 47 is transmitted to a compressor frequency calculating circuit 48 and an expansion valve opening calculating circuit 4.
9 is sent.

【0010】圧縮機周波数演算回路48にて室内機21
a、21b、21cのそれぞれの定格容量信号、差温信
号、運転モード信号、ON−OFF判別信号より下記表
1に示す負荷定数テーブル50から負荷定数を読み出
し、この負荷定数の総和に定数を乗じて圧縮機22の周
波数を決定する。
In the compressor frequency calculation circuit 48, the indoor unit 21
The load constants are read from the load constant table 50 shown in Table 1 below from the rated capacity signals, the differential temperature signals, the operation mode signals, and the ON / OFF discrimination signals of a, 21b, and 21c, and the sum of the load constants is multiplied by the constant. Thus, the frequency of the compressor 22 is determined.

【0011】[0011]

【表1】 [Table 1]

【0012】一例として、室内機21a、21b、21
cからの信号が下記表2の場合について説明する。
As an example, the indoor units 21a, 21b, 21
The case where the signal from c is as shown in Table 2 below will be described.

【0013】[0013]

【表2】 [Table 2]

【0014】表1と表2より、室内機21a、21b、
21cの負荷定数はそれぞれ1.5、1.0、1.9と
なり、圧縮機22の周波数Hzは、Aを定数とすると、 Hz=A×(1.5+1.0+1.9)=A×4.4 となり、この演算結果を周波数信号として圧縮機駆動回
路に送出して圧縮機22の周波数制御を行う。以降、所
定周期毎に室内機21a、21b、21cのそれぞれの
定格容量信号、差温信号、運転モード信号、ON−OF
F判別信号より演算を行い、演算結果を周波数信号とし
て圧縮機駆動回路に送出して圧縮機22の周波数制御を
行う。
From Tables 1 and 2, the indoor units 21a, 21b,
The load constants of the compressor 21c are 1.5, 1.0, and 1.9, respectively, and the frequency Hz of the compressor 22 is as follows: where A is a constant, Hz = A × (1.5 + 1.0 + 1.9) = A × 4 .4, the result of this operation is sent to the compressor drive circuit as a frequency signal to control the frequency of the compressor 22. Thereafter, the rated capacity signal, the differential temperature signal, the operation mode signal, the ON-OF signal of each of the indoor units 21a, 21b, 21c are provided at predetermined intervals.
Calculation is performed from the F determination signal, and the calculation result is sent to the compressor drive circuit as a frequency signal to control the frequency of the compressor 22.

【0015】膨張弁開度演算回路49においても同様
に、室内機21a、21b、21cそれぞれの定格容量
信号、差温信号、運転モード信号、ON−OFF判別信
号より負荷定数テーブル50から負荷定数を選び、さら
に室内機21a、21b、21cそれぞれの定格容量よ
り弁初期開度テーブル51から読み出す。なお、弁初期
開度は、異なって定格容量の室内機の組合せでも、各室
内機が所定の能力制御ができるように決定する。
Similarly, in the expansion valve opening calculating circuit 49, the load constant from the load constant table 50 is obtained from the rated capacity signal, the differential temperature signal, the operation mode signal, and the ON-OFF discrimination signal of each of the indoor units 21a, 21b, 21c. Then, it is read out from the valve initial opening degree table 51 from the rated capacity of each of the indoor units 21a, 21b, 21c. Note that the valve initial opening is determined so that each indoor unit can perform a predetermined capacity control even with a combination of indoor units having different rated capacities.

【0016】電動膨張弁30a、30b、30cの弁開
度はそれぞれの負荷定数をその負荷定数の所定値で割っ
たものに弁初期開度を乗じたものである。この演算結果
を膨張弁開度信号として膨張弁駆動回路(図示せず)に
送出する。
The valve opening of the electric expansion valves 30a, 30b and 30c is obtained by dividing each load constant by a predetermined value of the load constant and multiplying the result by the initial valve opening. This calculation result is sent to an expansion valve drive circuit (not shown) as an expansion valve opening signal.

【0017】また、吸入温度センサ38の出力を吸入温
度検出回路52より温度信号として過熱度演算回路53
に送出し、飽和温度センサ39の出力を飽和温度検出回
路54より温度信号として過熱度演算回路53に送出
し、ここで過熱度SH(吸入温度−飽和温度)を算出し
て膨張弁開度演算回路49に送出する。膨張弁開度演算
回路49では、送られてきた過熱度SHに応じて、弁開
度変更パルス数を算出し、電動膨張弁30a、30b、
30cの駆動回路(図示せず)に送出し制御する。
The output of the suction temperature sensor 38 is used as a temperature signal by the suction temperature detection circuit 52 as a superheat degree calculation circuit 53.
The output of the saturation temperature sensor 39 is sent from the saturation temperature detection circuit 54 as a temperature signal to the superheat calculation circuit 53, where the superheat SH (suction temperature-saturation temperature) is calculated to calculate the expansion valve opening. It is sent to the circuit 49. The expansion valve opening calculation circuit 49 calculates the number of pulses for changing the valve opening in accordance with the degree of superheat SH sent, and calculates the electric expansion valves 30a, 30b,
The signal is sent to a drive circuit (not shown) of 30c and controlled.

【0018】このように、各部屋の要求能力の総和に応
じて圧縮機周波数を制御し、かつ各部屋毎の負荷に応じ
て各電動膨張弁の開度を決定するため、必要な能力を必
要な部屋に配分することができ、快適性の向上および省
エネルギーを図ることができる。
As described above, since the compressor frequency is controlled in accordance with the total required capacity of each room, and the opening degree of each electric expansion valve is determined in accordance with the load in each room, necessary capacity is required. It can be allocated to a comfortable room, and can improve comfort and save energy.

【0019】[0019]

【発明が解決しようとする課題】しかしながら、上記従
来の多室形空気調和システムには以下のような課題があ
った。
However, the above-mentioned conventional multi-room air conditioning system has the following problems.

【0020】すなわち、たとえば冷房運転で室内機21
a、21bを同時に運転開始した場合、差温信号がとも
にLn=6で室内機21a、21bの定格容量が表2と
同じ値であったとすると、圧縮機22の周波数Hzは、
Hz=A×(2.0+2.5)=A×4.5となる。室
内機21a、21b、21cの差温信号がすべてLn=
6のときは同様に、Hz=A×(2.0+2.5+3.
2)=A×7.7となり、これを仮に圧縮機22の運転
許容値だとすると4.5/7.7=0.58となり、約
4割の余裕を残していることになる。すなわち、室内機
21a、21bは最大負荷状態で、室外機20に対して
室内機の最大能力を要求しているのに対して、室外機2
0は約4割の能力の余裕を残して、室内機21a、21
bに冷媒を供給していることになる。したがって、室内
機の能力は最大負荷時においても、室外機20に能力余
裕があるにもかかわらず、負荷定数に応じた定格容量し
か出すことができず、設定温度に達するのに多くの時間
を要していた。
That is, for example, in the cooling operation, the indoor unit 21
If the differential temperature signals are both Ln = 6 and the rated capacities of the indoor units 21a and 21b are the same as those in Table 2 when the operation of the compressors a and 21b is started at the same time, the frequency Hz of the compressor 22 becomes
Hz = A × (2.0 + 2.5) = A × 4.5. The difference temperature signals of the indoor units 21a, 21b, 21c are all Ln =
6, Hz = A × (2.0 + 2.5 + 3.
2) = A × 7.7, and assuming that this is a permissible operating value of the compressor 22, 4.5 / 7.7 = 0.58, leaving about 40% of room. That is, while the indoor units 21a and 21b are in the maximum load state and request the outdoor unit 20 to have the maximum capacity of the indoor unit, the outdoor unit 2
0 indicates that the indoor units 21a and 21
This means that the refrigerant is supplied to b. Therefore, even when the capacity of the indoor unit is at the maximum load, only the rated capacity corresponding to the load constant can be obtained even though the outdoor unit 20 has a capacity margin, and much time is required to reach the set temperature. I needed it.

【0021】また、室内機21a、21bが低負荷で運
転中に室内機21cが、最大負荷状態で運転開始した場
合でも、同じ問題を生じていた。
Further, the same problem occurs even when the indoor unit 21c starts operating under the maximum load state while the indoor units 21a and 21b are operating at a low load.

【0022】本発明の多室形空気調和システムは上記課
題に鑑み、冷凍サイクルの構成はそのままで複雑にする
ことなく、最大負荷の室内機があるなかで室外機20の
能力に余裕がある場合には、その能力余裕分を最大負荷
の室内機に供給することを目的としている。
In view of the above-mentioned problems, the multi-room air conditioning system of the present invention does not complicate the configuration of the refrigeration cycle, and has a sufficient capacity of the outdoor unit 20 in the presence of the indoor unit with the maximum load. The purpose of this is to supply the capacity margin to the indoor unit having the maximum load.

【0023】また、本発明の多室形空気調和システムは
負荷の少ない室内機に対して、要求能力以上の能力を供
給することなく、最大負荷にある室内機にのみ余裕ある
室外能力を供給して、快適性の向上および省エネルギー
を図ることを目的としている。
In addition, the multi-room air conditioning system of the present invention supplies a sufficient outdoor capacity only to an indoor unit having a maximum load without supplying a capacity exceeding a required capacity to an indoor unit having a small load. The purpose is to improve comfort and save energy.

【0024】[0024]

【課題を解決するための手段】上記課題を解決するため
に本発明の多室形空気調和システムは、容量(周波数)
可変形圧縮機、四方弁、室外熱交換器を有する1台の室
外機と、室内熱交換器を有する複数台の室内機とを、前
記室外機に設けて主に冷媒液が流れる液側主管を分岐し
た液側分岐管および前記室外機に設けて主に冷媒ガスが
流れるガス側主管を分岐したガス側分岐管を介して接続
し、前記液側分岐管のそれぞれに電気的に弁開度を制御
可能とした電動膨張弁を介装して冷凍サイクルを構成
し、前記室内機のそれぞれに、希望する室内温度を設定
可能な室内温度設定手段と室内温度を検出する室内温度
検出手段とを設け、この室内温度設定手段と室内温度検
出手段とから設定室内温度と室内温度との差温を算出す
る差温算出手段を設け、さらに前記室内機のそれぞれの
定格容量を判別する容量判別手段および前記室内機のそ
れぞれについて運転中か停止中かを判別するオンオフ判
別手段を設け、前記差温が取り得る温度範囲を複数個の
温度ゾーンに分割し、各温度ゾーン毎にかつ室内機の定
格容量毎に室内負荷に対応する負荷定数を定めるととも
に、冷房では所定温度ゾーン以上、暖房では所定温度ゾ
ーン以下の空調負荷極大ゾーンを設け、室内機の定格容
量毎に定格容量以上の負荷定数を定めて記憶する負荷定
数記憶手段を設け、室内機の定格容量毎に弁初期開度を
定めて記憶する弁初期開度記憶手段を設け、前記差温算
出手段、前記容量判別手段、前記オンオフ判別手段、前
記負荷定数記憶手段より得られるデータを用いて所定周
期毎に圧縮機容量を算出する際に1室でも空調負荷極大
ゾーンに相当する負荷定数がある場合で、圧縮機容量が
運転許容値に満たない時には、前記負荷定数記憶手段よ
り得られる空調負荷極大ゾーンの負荷定数を用いて算出
した容量とし、この容量値に基づいて前記容量(周波
数)可変形圧縮機の容量を制御する圧縮機容量制御手段
を設け、前記データおよび前記弁初期開度記憶手段より
得られるデータを用いて所定周期毎に運転中の室内機に
接続された各電動膨張弁の弁開度を算出し、この算出結
果に基づいて前記電動膨張弁の弁開度を制御する弁開度
制御手段を設けたものである。
In order to solve the above-mentioned problems, a multi-room air conditioning system according to the present invention has a capacity (frequency).
A liquid-side main pipe in which one outdoor unit having a variable compressor, a four-way valve, and an outdoor heat exchanger, and a plurality of indoor units having an indoor heat exchanger are provided in the outdoor unit, and mainly a refrigerant liquid flows. The liquid side branch pipe and the gas side main pipe, which is provided in the outdoor unit and mainly flows the refrigerant gas, are connected via the branched gas side branch pipe, and the valve opening is electrically connected to each of the liquid side branch pipes. A refrigeration cycle is configured by interposing an electric expansion valve capable of controlling the indoor temperature, and an indoor temperature setting means capable of setting a desired indoor temperature and an indoor temperature detecting means detecting the indoor temperature are provided for each of the indoor units. A temperature difference calculating means for calculating a temperature difference between the set indoor temperature and the indoor temperature from the indoor temperature setting means and the indoor temperature detecting means, a capacity determining means for determining a rated capacity of each of the indoor units, and Operate for each of the indoor units On / off determining means for determining whether the temperature difference is possible is divided into a plurality of temperature zones, and a load corresponding to the indoor load for each temperature zone and for each rated capacity of the indoor unit is provided. In addition to defining constants, a maximum air-conditioning load zone is provided for cooling, which is equal to or higher than a predetermined temperature zone and for heating, which is equal to or lower than a predetermined temperature zone. A valve initial opening storage means for determining and storing a valve initial opening for each rated capacity of the indoor unit, and being obtained from the differential temperature calculating means, the capacity determining means, the on / off determining means, and the load constant storing means. When calculating the compressor capacity for each predetermined cycle using the data, if there is a load constant corresponding to the maximum air conditioning load zone even in one room, and if the compressor capacity is less than the allowable operation value, the negative Compressor capacity control means for controlling the capacity of the variable capacity (frequency) compressor based on the capacity value calculated using the load constant of the air conditioning load maximum zone obtained from the constant storage means; Using the data and the data obtained from the valve initial opening storage means, the valve opening of each electric expansion valve connected to the operating indoor unit is calculated at predetermined intervals, and the electric expansion is calculated based on the calculation result. A valve opening control means for controlling the valve opening of the valve is provided.

【0025】また、本発明の他の多室形空気調和システ
ムは、容量(周波数)可変形圧縮機、四方弁、室外熱交
換器を有する1台の室外機と、室内熱交換器を有する複
数台の室内機とを、前記室外機に設けて主に冷媒液が流
れる液側主管を分岐した液側分岐管および前記室外機に
設けて主に冷媒ガスが流れるガス側主管を分岐したガス
側分岐管を介して接続し、前記液側分岐管のそれぞれに
電気的に弁開度を制御可能とした電動膨張弁を介装して
冷凍サイクルを構成し、前記室内機のそれぞれに、希望
する室内温度を設定可能な室内温度設定手段と室内温度
を検出する室内温度検出手段とを設け、この室内温度設
定手段と室内温度検出手段とから設定室内温度と室内温
度との差温を算出する差温算出手段を設け、さらに前記
室内機のそれぞれの定格容量を判別する容量判別手段お
よび前記室内機のそれぞれについて運転中か停止中かを
判別するオンオフ判別手段を設け、前記差温が取り得る
温度範囲を複数個の温度ゾーンに分割し、各温度ゾーン
毎にかつ室内機の定格容量毎に室内負荷に対応する負荷
定数を定めるとともに、冷房では所定温度ゾーン以上、
暖房では所定温度ゾーン以下の空調負荷極大ゾーンを設
け、室内機の定格容量毎に空調負荷極大ゾーンにあるこ
とを示す差温信号を定めて記憶する負荷定数記憶手段を
設け、室内機の定格容量毎に弁初期開度を定めて記憶す
る弁初期開度記憶手段を設け、前記差温算出手段、前記
容量判別手段、前記オンオフ判別手段、前記負荷定数記
憶手段より得られるデータを用いて所定周期毎に圧縮機
容量を算出する際に1室でも空調負荷極大ゾーンに相当
する差温信号がある場合で、圧縮機容量が運転許容値に
満たない時には、近似式にて空調負荷極大ゾーンにある
室内機の負荷定数値を算出する負荷定数算出手段を設
け、前記データおよびこの負荷定数算出手段より得られ
る負荷定数のデータを用いて圧縮機容量を算出し、この
算出結果に基づいて前記容量(周波数)可変形圧縮機の
容量を制御する圧縮機容量制御手段を設けたものであ
る。
Further, another multi-room air conditioning system according to the present invention provides a single outdoor unit having a variable capacity (frequency) compressor, a four-way valve, and an outdoor heat exchanger, and a plurality of indoor units having an indoor heat exchanger. A liquid-side branch pipe provided in the outdoor unit and branching a liquid-side main pipe through which the refrigerant liquid mainly flows, and a gas side provided in the outdoor unit and branching a gas-side main pipe through which the refrigerant gas mainly flows. A refrigeration cycle is configured by connecting via a branch pipe and interposing an electric expansion valve capable of electrically controlling the valve opening degree in each of the liquid side branch pipes, and setting a desired one in each of the indoor units. An indoor temperature setting means capable of setting an indoor temperature and an indoor temperature detecting means for detecting an indoor temperature are provided, and a difference between the set indoor temperature and the indoor temperature is calculated from the indoor temperature setting means and the indoor temperature detecting means. Temperature calculating means, and further each of the indoor units A capacity discriminating means for discriminating a rated capacity and an on / off discriminating means for discriminating whether the indoor unit is operating or stopped are provided, and a temperature range in which the temperature difference can be taken is divided into a plurality of temperature zones, A load constant corresponding to the indoor load is determined for each zone and for each rated capacity of the indoor unit.
In heating, an air conditioning load maximum zone below a predetermined temperature zone is provided, and a load constant storage means for determining and storing a differential temperature signal indicating that the indoor unit is in the air conditioning load maximum zone is provided for each rated capacity of the indoor unit. A valve initial opening storage means for determining and storing a valve initial opening for each is provided, and a predetermined period is set using data obtained from the temperature difference calculating means, the capacity determining means, the on / off determining means, and the load constant storing means. When calculating the compressor capacity every time, even if there is a differential temperature signal corresponding to the air conditioning load maximum zone even in one room, when the compressor capacity is less than the allowable operation value, the compressor capacity is in the air conditioning load maximum zone by an approximate expression. A load constant calculating means for calculating a load constant value of the indoor unit is provided, a compressor capacity is calculated using the data and the data of the load constant obtained by the load constant calculating means, and a compressor capacity is calculated based on the calculation result. It is provided with a compressor capacity control means for controlling the volume of serial volume (frequency) deformable compressor.

【0026】また、本発明の他の多室形空気調和システ
ムは、容量(周波数)可変形圧縮機、四方弁、室外熱交
換器を有する1台の室外機と、室内熱交換器を有する複
数台の室内機とを、前記室外機に設けて主に冷媒液が流
れる液側主管を分岐した液側分岐管および前記室外機に
設けて主に冷媒ガスが流れるガス側主管を分岐したガス
側分岐管を介して接続し、前記液側分岐管のそれぞれに
電気的に弁開度を制御可能とした電動膨張弁を介装して
冷凍サイクルを構成し、前記室内機のそれぞれに、希望
する室内温度と設定可能な室内温度設定手段と室内温度
を検出する室内温度検出手段とを設け、この室内温度設
定手段と室内温度検出手段とから設定室内温度と室内温
度との差温を算出する差温算出手段を設け、さらに前記
室内機のそれぞれの定格容量を判別する容量判別手段お
よび前記室内機のそれぞれについて運転中か停止中かを
判別するオンオフ判別手段を設け、前記差温が取り得る
温度範囲を複数個の温度ゾーンに分割し、各温度ゾーン
毎にかつ室内機の定格容量毎に室内負荷に対応する負荷
定数を定めるとともに、冷房では所定温度ゾーン以上、
暖房では所定温度ゾーン以下の空調負荷極大ゾーンを設
け、室内機の定格容量毎に空調負荷極大ゾーンにあるこ
とを示す差温信号を定めて記憶する負荷定数記憶手段を
設け、前記差温算出手段、前記容量判別手段、前記オン
オフ判別手段、前記負荷定数記憶手段より得られるデー
タを用いて所定周期毎に圧縮機容量を算出する際に1室
でも空調負荷極大ゾーンに相当する差温信号がある場合
で、圧縮機容量が運転許容値に満たない時には、圧縮機
余裕分から空調負荷極大ゾーンにある室内機の負荷定数
値を算出する負荷定数算出手段を設け、前記データおよ
びこの負荷定数算出手段より得られる負荷定数のデータ
を用いて圧縮機容量を算出し、この算出結果に基づいて
前記容量(周波数)可変形圧縮機の容量を制御する圧縮
機容量制御手段を設けたものである。
Another multi-room air conditioning system according to the present invention comprises a single outdoor unit having a variable capacity (frequency) compressor, a four-way valve, and an outdoor heat exchanger, and a plurality of indoor units having an indoor heat exchanger. A liquid-side branch pipe provided in the outdoor unit and branching a liquid-side main pipe through which the refrigerant liquid mainly flows, and a gas side provided in the outdoor unit and branching a gas-side main pipe through which the refrigerant gas mainly flows. A refrigeration cycle is configured by connecting via a branch pipe and interposing an electric expansion valve capable of electrically controlling the valve opening degree in each of the liquid side branch pipes, and setting a desired one in each of the indoor units. An indoor temperature setting means capable of setting the indoor temperature and an indoor temperature detecting means for detecting the indoor temperature are provided, and a difference between the set indoor temperature and the indoor temperature is calculated from the indoor temperature setting means and the indoor temperature detecting means. Temperature calculating means, and further each of the indoor units A capacity discriminating means for discriminating a rated capacity and an on / off discriminating means for discriminating whether the indoor unit is operating or stopped are provided, and a temperature range in which the temperature difference can be taken is divided into a plurality of temperature zones, A load constant corresponding to the indoor load is determined for each zone and for each rated capacity of the indoor unit.
In heating, an air conditioning load maximum zone below a predetermined temperature zone is provided, and a load constant storage means for determining and storing a differential temperature signal indicating that the indoor unit is in the air conditioning load maximum zone for each rated capacity is provided, When calculating the compressor capacity at predetermined intervals using data obtained from the capacity determination means, the on / off determination means, and the load constant storage means, there is a differential temperature signal corresponding to an air conditioning load maximum zone even in one room. In such a case, when the compressor capacity is less than the allowable operation value, a load constant calculating means for calculating a load constant value of the indoor unit in the maximum air conditioning load zone from the compressor margin is provided, and the data and the load constant calculating means are used. Compressor capacity control means for calculating the compressor capacity using the obtained load constant data and controlling the capacity of the variable capacity (frequency) compressor based on the calculation result. Those digits.

【0027】また、本発明の他の多室形空気調和システ
ムは、容量(周波数)可変形圧縮機、四方弁、室外熱交
換器を有する1台の室外機と、室内熱交換器を有する複
数台の室内機とを、前記室外機に設けて主に冷媒液が流
れる液側主管を分岐した液側分岐管および前記室外機に
設けて主に冷媒ガスが流れるガス側主管を分岐したガス
側分岐管を介して接続し、前記液側分岐管のそれぞれに
電気的に弁開度を制御可能とした電動膨張弁を介装して
冷凍サイクルを構成し、前記室内機のそれぞれに、希望
する室内温度を設定可能な室内温度設定手段と室内温度
を検出する室内温度検出手段とを設け、この室内温度設
定手段と室内温度検出手段とから設定室内温度と室内温
度との差温を算出する差温算出手段を設け、さらに前記
室内機のそれぞれの定格容量を判別する容量判別手段お
よび前記室内機のそれぞれについて運転中か停止中かを
判別するオンオフ判別手段を設け、前記差温が取り得る
温度範囲を複数個の温度ゾーンに分割し、各温度ゾーン
毎にかつ室内機の定格容量毎に室内負荷に対応する負荷
定数を定めるとともに、冷房では所定温度ゾーン以上、
暖房では所定温度ゾーン以下の空調負荷極大ゾーンを設
け、室内機の定格容量毎に空調負荷極大ゾーンにあるこ
とを示す差温信号を定めて記憶する負荷定数記憶手段を
設け、冷凍サイクルの状態を検出する冷凍サイクルデー
タ検出手段を設け、前記差温算出手段、前記容量判別手
段、前記オンオフ判別手段、前記負荷定数記憶手段より
得られるデータを用いて所定周期毎に圧縮機容量を算出
する際に1室でも空調負荷極大ゾーンに相当する差温信
号がある場合で、圧縮機容量が運転許容値に満たない時
には、室内機の運転台数に応じて冷凍サイクルデータの
制御目標値に近づけるように圧縮機容量を算出し、この
算出結果に基づいて前記容量(周波数)可変形圧縮機の
容量を制御する圧縮機容量制御手段を設けたものであ
る。
Another multi-room air conditioning system according to the present invention comprises a single outdoor unit having a variable capacity (frequency) compressor, a four-way valve, and an outdoor heat exchanger, and a plurality of indoor units having an indoor heat exchanger. A liquid-side branch pipe provided in the outdoor unit and branching a liquid-side main pipe through which the refrigerant liquid mainly flows, and a gas side provided in the outdoor unit and branching a gas-side main pipe through which the refrigerant gas mainly flows. A refrigeration cycle is configured by connecting via a branch pipe and interposing an electric expansion valve capable of electrically controlling the valve opening degree in each of the liquid side branch pipes, and setting a desired one in each of the indoor units. An indoor temperature setting means capable of setting an indoor temperature and an indoor temperature detecting means for detecting an indoor temperature are provided, and a difference between the set indoor temperature and the indoor temperature is calculated from the indoor temperature setting means and the indoor temperature detecting means. Temperature calculating means, and further each of the indoor units A capacity discriminating means for discriminating a rated capacity and an on / off discriminating means for discriminating whether the indoor unit is operating or stopped are provided, and a temperature range in which the temperature difference can be taken is divided into a plurality of temperature zones, A load constant corresponding to the indoor load is determined for each zone and for each rated capacity of the indoor unit.
In heating, a maximum air conditioning load zone below a predetermined temperature zone is provided, and a load constant storage means is provided for determining and storing a temperature difference signal indicating that the indoor unit is in the maximum air conditioning load zone for each rated capacity of the indoor unit, and providing a state of the refrigeration cycle. Providing a refrigeration cycle data detecting means for detecting, when calculating the compressor capacity at predetermined intervals using data obtained from the differential temperature calculating means, the capacity determining means, the on / off determining means, the load constant storing means. If there is a differential temperature signal corresponding to the maximum air conditioning load zone even in one room, and the compressor capacity is less than the allowable operating value, the compression is performed to approach the refrigeration cycle data control target value according to the number of operating indoor units. A compressor capacity control means for calculating the capacity of the compressor and controlling the capacity of the variable capacity (frequency) compressor based on the calculation result is provided.

【0028】また、本発明の他の多室形空気調和システ
ムは、容量(周波数)可変形圧縮機、四方弁、室外熱交
換器を有する1台の室外機と、室内熱交換器を有する複
数台の室内機とを、前記室外機に設けて主に冷媒液が流
れる液側主管を分岐した液側分岐管および前記室外機に
設けて主に冷媒ガスが流れるガス側主管を分岐したガス
側分岐管を介して接続し、前記液側分岐管のそれぞれに
電気的に弁開度を制御可能とした電動膨張弁を介装して
冷凍サイクルを構成し、前記室内機のそれぞれに、希望
する室内温度を設定可能な室内温度設定手段と室内温度
を検出する室内温度検出手段とを設け、この室内温度設
定手段と室内温度検出手段とから設定室内温度と室内温
度との差温を算出する差温算出手段を設け、さらに前記
室内機のそれぞれの定格容量を判別する容量判別手段お
よび前記室内機のそれぞれについて運転中か停止中かを
判別するオンオフ判別手段を設け、前記差温が取り得る
温度範囲を複数個の温度ゾーンに分割し、所定周期毎に
前記データを用いて近似式にて各室内機の負荷定数を算
出する負荷定数算出手段を設け、圧縮機容量を算出し
て、この算出結果に基づいて前記容量(周波数)可変形
圧縮機の容量を制御する圧縮機容量制御手段を設けたも
のである。
Further, another multi-room air conditioning system according to the present invention comprises a single outdoor unit having a variable capacity (frequency) compressor, a four-way valve, and an outdoor heat exchanger, and a plurality of indoor units having an indoor heat exchanger. A liquid-side branch pipe provided in the outdoor unit and branching a liquid-side main pipe through which the refrigerant liquid mainly flows, and a gas side provided in the outdoor unit and branching a gas-side main pipe through which the refrigerant gas mainly flows. A refrigeration cycle is configured by connecting via a branch pipe and interposing an electric expansion valve capable of electrically controlling the valve opening degree in each of the liquid side branch pipes, and setting a desired one in each of the indoor units. An indoor temperature setting means capable of setting an indoor temperature and an indoor temperature detecting means for detecting an indoor temperature are provided, and a difference between the set indoor temperature and the indoor temperature is calculated from the indoor temperature setting means and the indoor temperature detecting means. Temperature calculating means, and further each of the indoor units A capacity discriminating means for discriminating a rated capacity and an on / off discriminating means for discriminating whether each of the indoor units is in operation or stopped, dividing a temperature range in which the temperature difference can be taken into a plurality of temperature zones, A load constant calculating means for calculating a load constant of each indoor unit by an approximate expression using the data, calculating a compressor capacity, and based on the calculation result, the capacity (frequency) variable type compressor; The compressor capacity control means for controlling the capacity of the compressor is provided.

【0029】また、本発明の他の多室形空気調和システ
ムは、運転中および運転を開始した室内機のそれぞれに
ついて、負荷定数記憶手段より定格容量および現在の差
温に対応する負荷定数および負荷定数の所定値を読み出
し、弁初期開度記憶手段より定格容量に対応する弁初期
開度を読み出し、1室でも空調負荷極大ゾーンに相当す
る負荷定数がある場合で、圧縮機容量が運転許容値に満
たない時には、空調負荷極大ゾーンにある室内機に接続
された電動膨張弁の弁開度を負荷定数の所定値の逆数と
負荷定数算出手段より算出した負荷定数と弁初期開度の
積として、この積の値となるよう制御する弁開度制御手
段を設けたものである。
In another multi-room air conditioning system according to the present invention, for each of the indoor units during and after operation, the load constant and load corresponding to the rated capacity and the current differential temperature are stored in the load constant storage means. The predetermined value of the constant is read out, the valve opening degree corresponding to the rated capacity is read out from the valve opening degree storage means, and even if there is a load constant corresponding to the air-conditioning load maximum zone even in one room, the compressor capacity becomes the allowable operating value. Is less than the value, the valve opening of the electric expansion valve connected to the indoor unit in the maximum air conditioning load zone is calculated as the product of the reciprocal of a predetermined value of the load constant, the load constant calculated by the load constant calculating means, and the valve initial opening. , A valve opening control means for controlling so as to be a value of the product.

【0030】[0030]

【発明の実施の形態】本発明は、上記手段により次のよ
うな作用をする。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention operates as follows by the above means.

【0031】すなわち、室内機のそれぞれに、希望する
室内温度を設定可能な室内温度設定手段と室内温度を検
出する室内温度検出手段とを設け、この室内温度設定手
段と室内温度検出手段とから設定室内温度と室内温度と
の差温を算出する差温算出手段を設け、さらに前記室内
機のそれぞれの定格容量を判別する容量判別手段および
前記室内機のそれぞれについて運転中か停止中かを判別
するオンオフ判別手段を設け、前記差温が取り得る温度
範囲を複数個の温度ゾーンに分割し、各温度ゾーン毎に
かつ室内機の定格容量毎に室内負荷に対応する負荷定数
を定めるとともに、冷房では所定温度ゾーン以上、暖房
では所定温度ゾーン以下の空調負荷極大ゾーンを設け、
室内機の定格容量毎に定格容量以上の負荷定数を定めて
記憶する負荷定数記憶手段を設け、室内機の定格容量毎
に弁初期開度を定めて記憶する弁初期開度記憶手段を設
け、前記差温算出手段、前記容量判別手段、前記オンオ
フ判別手段、前記負荷定数記憶手段より得られるデータ
を用いて所定周期毎に圧縮機容量を算出する際に1室で
も空調負荷極大ゾーンに相当する負荷定数がある場合
で、圧縮機容量が運転許容値に満たない時には、前記負
荷定数記憶手段より得られる空調負荷極大ゾーンの負荷
定数を用いて算出した容量とし、この容量値に基づいて
前記容量(周波数)可変形圧縮機の容量を制御する圧縮
機容量制御手段を設け、前記データおよび前記弁初期開
度記憶手段より得られるデータを用いて所定周期毎に運
転中の室内機に接続された各電動膨張弁の弁開度を算出
し、この算出結果に基づいて前記電動膨張弁の弁開度を
制御する弁開度制御手段を設けることで、負荷の少ない
室内機に対しては、その負荷に応じた能力を供給し、最
大負荷にある室内機にのみ余裕ある室外能力を供給する
よう圧縮機周波数を制御するため、設定温度に到達する
までの時間を早くすることができ、快適性の向上および
省エネルギーを図ることができる。
That is, each of the indoor units is provided with an indoor temperature setting means for setting a desired indoor temperature and an indoor temperature detecting means for detecting the indoor temperature. A differential temperature calculating means for calculating a temperature difference between the indoor temperature and the indoor temperature; a capacity determining means for determining a rated capacity of each of the indoor units; and determining whether each of the indoor units is operating or stopped. On / off determining means is provided, the temperature range in which the temperature difference can be taken is divided into a plurality of temperature zones, and a load constant corresponding to an indoor load is determined for each temperature zone and for each rated capacity of the indoor unit. Provide a maximum air conditioning load zone equal to or higher than the predetermined temperature zone and lower than the predetermined temperature zone for heating,
Providing load constant storage means for determining and storing a load constant equal to or greater than the rated capacity for each rated capacity of the indoor unit, and providing valve initial opening storage means for determining and storing a valve initial opening for each rated capacity of the indoor unit, When calculating the compressor capacity at predetermined intervals using data obtained from the temperature difference calculating means, the capacity determining means, the on / off determining means, and the load constant storing means, even one room corresponds to the air-conditioning load maximum zone. When there is a load constant and the compressor capacity is less than the allowable operation value, the capacity is calculated using the load constant of the air conditioning load maximum zone obtained from the load constant storage means, and the capacity is calculated based on the capacity value. (Frequency) Compressor capacity control means for controlling the capacity of the variable-type compressor is provided, and is connected to an operating indoor unit at predetermined intervals using the data and the data obtained from the valve initial opening degree storage means. By calculating the valve opening degree of each of the electric expansion valves obtained, and providing the valve opening degree control means for controlling the valve opening degree of the electric expansion valve based on the calculation result, the indoor unit having a small load is provided. In order to supply the capacity according to the load, and to control the compressor frequency so as to supply the extra outdoor capacity only to the indoor unit at the maximum load, the time until the set temperature is reached can be shortened. It is possible to improve comfort and save energy.

【0032】また、室内機のそれぞれに、希望する室内
温度を設定可能な室内温度設定手段と室内温度を検出す
る室内温度検出手段とを設け、この室内温度設定手段と
室内温度検出手段とから設定室内温度と室内温度との差
温を算出する差温算出手段を設け、さらに前記室内機の
それぞれの定格容量を判別する容量判別手段および前記
室内機のそれぞれについて運転中か停止中かを判別する
オンオフ判別手段を設け、前記差温が取り得る温度範囲
を複数個の温度ゾーンに分割し、各温度ゾーン毎にかつ
室内機の定格容量毎に室内負荷に対応する負荷定数を定
めるとともに、冷房では所定温度ゾーン以上、暖房では
所定温度ゾーン以下の空調負荷極大ゾーンを設け、室内
機の定格容量毎に空調負荷極大ゾーンにあることを示す
差温信号を定めて記憶する負荷定数記憶手段を設け、前
記差温算出手段、前記容量判別手段、前記オンオフ判別
手段、前記負荷定数記憶手段より得られるデータを用い
て所定周期毎に圧縮機容量を算出する際に1室でも空調
負荷極大ゾーンに相当する差温信号がある場合で、圧縮
機容量が運転許容値に満たない時には、近似式にて空調
負荷極大ゾーンにある室内機の負荷定数値を算出する負
荷定数算出手段を設け、前記データおよびこの負荷定数
算出手段より得られる負荷定数のデータを用いて圧縮機
容量を算出し、この算出結果に基づいて前記容量(周波
数)可変形圧縮機の容量を制御する圧縮機容量制御手段
を設けることで、空調負荷極大ゾーンにある室内機の負
荷定数値をその室内機の定格容量および差温データを用
いて近似式で求めて圧縮機周波数を制御するため、きめ
細かい負荷対応が可能であり、設定温度に到達するまで
の時間を早くすることができ、快適性の向上および省エ
ネルギーを図ることができる。
Each of the indoor units is provided with an indoor temperature setting means for setting a desired indoor temperature and an indoor temperature detecting means for detecting the indoor temperature. The indoor temperature setting means and the indoor temperature detecting means are used for setting. A differential temperature calculating means for calculating a temperature difference between the indoor temperature and the indoor temperature; a capacity determining means for determining a rated capacity of each of the indoor units; and determining whether each of the indoor units is operating or stopped. On / off determining means is provided, the temperature range in which the temperature difference can be taken is divided into a plurality of temperature zones, and a load constant corresponding to an indoor load is determined for each temperature zone and for each rated capacity of the indoor unit. Provide a maximum air-conditioning load zone equal to or higher than a predetermined temperature zone and a predetermined temperature zone or less for heating, and determine a differential temperature signal indicating that the air conditioner is in the maximum air-conditioning load zone for each rated capacity of the indoor unit. A load constant storing means for storing the temperature difference, the capacity determining means, the on / off determining means, and the load constant storing means. When there is a differential temperature signal corresponding to the maximum air conditioning load zone in the room, and the compressor capacity is less than the allowable operation value, the load constant for calculating the load constant value of the indoor unit in the maximum air conditioning load zone using an approximate expression Calculating means for calculating a compressor capacity using the data and the load constant data obtained by the load constant calculating means, and controlling a capacity of the variable capacity (frequency) compressor based on the calculation result. By providing the compressor capacity control means, the load constant value of the indoor unit in the maximum air conditioning load zone is obtained by an approximate expression using the rated capacity of the indoor unit and the differential temperature data, and the compressor frequency is obtained. Gosuru Therefore, it is possible fine load correspondence, it is possible to quickly the time to reach the set temperature, it is possible to improve and energy saving comfort.

【0033】また、室内機のそれぞれに、希望する室内
温度を設定可能な室内温度設定手段と室内温度を検出す
る室内温度検出手段とを設け、この室内温度設定手段と
室内温度検出手段とから設定室内温度と室内温度との差
温を算出する差温算出手段を設け、さらに前記室内機の
それぞれの定格容量を判別する容量判別手段および前記
室内機のそれぞれについて運転中か停止中かを判別する
オンオフ判別手段を設け、前記差温が取り得る温度範囲
を複数個の温度ゾーンに分割し、各温度ゾーン毎にかつ
室内機の定格容量毎に室内負荷に対応する負荷定数を定
めるとともに、冷房では所定温度ゾーン以上、暖房では
所定温度ゾーン以下の空調負荷極大ゾーンを設け、室内
機の定格容量毎に空調負荷極大ゾーンにあることを示す
差温信号を定めて記憶する負荷定数記憶手段を設け、前
記差温算出手段、前記容量判別手段、前記オンオフ判別
手段、前記負荷定数記憶手段より得られるデータを用い
て所定周期毎に圧縮機容量を算出する際に1室でも空調
負荷極大ゾーンに相当する差温信号がある場合で、圧縮
機容量が運転許容値に満たない時には、圧縮機余裕分か
ら空調負荷極大ゾーンにある室内機の負荷定数値を算出
する負荷定数算出手段を設け、前記データおよびこの負
荷定数算出手段より得られる負荷定数のデータを用いて
圧縮機容量を算出し、この算出結果に基づいて前記容量
(周波数)可変形圧縮機の容量を制御する圧縮機容量制
御手段を設けることで、空調負荷極大ゾーンにある室内
機の負荷定数を、圧縮機容量余裕分を乗じて加算するた
め、圧縮機能力の余裕度を考慮してその余裕能力を有効
利用でき、よりきめ細かい負荷対応が可能であり、設定
温度に到達するまでの時間を早くすることができ、快適
性の向上および省エネルギーを図ることができる。
Each of the indoor units is provided with an indoor temperature setting means for setting a desired indoor temperature and an indoor temperature detecting means for detecting the indoor temperature. The indoor temperature setting means and the indoor temperature detecting means are used for setting. A differential temperature calculating means for calculating a temperature difference between the indoor temperature and the indoor temperature; a capacity determining means for determining a rated capacity of each of the indoor units; and determining whether each of the indoor units is operating or stopped. On / off determining means is provided, the temperature range in which the temperature difference can be taken is divided into a plurality of temperature zones, and a load constant corresponding to an indoor load is determined for each temperature zone and for each rated capacity of the indoor unit. Provide a maximum air-conditioning load zone equal to or higher than a predetermined temperature zone and a predetermined temperature zone or less for heating, and determine a differential temperature signal indicating that the air conditioner is in the maximum air-conditioning load zone for each rated capacity of the indoor unit. A load constant storing means for storing the temperature difference, the capacity determining means, the on / off determining means, and the load constant storing means. When there is a differential temperature signal corresponding to the air conditioning load maximum zone even in the room, and the compressor capacity is less than the allowable operating value, the load constant for calculating the load constant value of the indoor unit in the air conditioning load maximum zone from the compressor margin Calculating means for calculating a compressor capacity using the data and the load constant data obtained by the load constant calculating means, and controlling a capacity of the variable capacity (frequency) compressor based on the calculation result. By providing the compressor capacity control means, the load constant of the indoor unit in the air-conditioning load maximum zone is added by multiplying the compressor capacity margin, so that the margin of the compression function power is considered. Margin capacity can be effectively utilized, it is possible more granular load correspondence, it is possible to quickly the time to reach the set temperature, it is possible to improve and energy saving comfort.

【0034】また、室内機のそれぞれに、希望する室内
温度を設定可能な室内温度設定手段と室内温度を検出す
る室内温度検出手段とを設け、この室内温度設定手段と
室内温度検出手段とから設定室内温度と室内温度との差
温を算出する差温算出手段を設け、さらに前記室内機の
それぞれの定格容量を判別する容量判別手段および前記
室内機のそれぞれについて運転中か停止中かを判別する
オンオフ判別手段を設け、前記差温が取り得る温度範囲
を複数個の温度ゾーンに分割し、各温度ゾーン毎にかつ
室内機の定格容量毎に室内負荷に対応する負荷定数を定
めるとともに、冷房では所定温度ゾーン以上、暖房では
所定温度ゾーン以下の空調負荷極大ゾーンを設け、室内
機の定格容量毎に空調負荷極大ゾーンにあることを示す
差温信号を定めて記憶する負荷定数記憶手段を設け、冷
凍サイクルの状態を検出する冷凍サイクルデータ検出手
段を設け、前記差温算出手段、前記容量判別手段、前記
オンオフ判別手段、前記負荷定数記憶手段より得られる
データを用いて所定周期毎に圧縮機容量を算出する際に
1室でも空調負荷極大ゾーンに相当する差温信号がある
場合で、圧縮機容量が運転許容値に満たない時には、室
内機の運転台数に応じて冷凍サイクルデータの制御目標
値に近づけるように圧縮機容量を算出し、この算出結果
に基づいて前記容量(周波数)可変形圧縮機の容量を制
御する圧縮機容量制御手段を設けることで、空調負荷極
大ゾーンに室内機がある場合、室内機の運転台数に応じ
て、冷凍サイクルデータを制御目標値として、圧縮機の
周波数を制御するため、圧縮機を過負荷状態にすること
なく、きめ細かい負荷対応が可能であり、設定温度に到
達するまでの時間を早くすることができ、快適性の向上
および省エネルギーを図ることができる。
Each of the indoor units is provided with an indoor temperature setting means for setting a desired indoor temperature and an indoor temperature detecting means for detecting the indoor temperature. The indoor temperature setting means and the indoor temperature detecting means are used for setting. A differential temperature calculating means for calculating a temperature difference between the indoor temperature and the indoor temperature; a capacity determining means for determining a rated capacity of each of the indoor units; and determining whether each of the indoor units is operating or stopped. On / off determining means is provided, the temperature range in which the temperature difference can be taken is divided into a plurality of temperature zones, and a load constant corresponding to an indoor load is determined for each temperature zone and for each rated capacity of the indoor unit. Provide a maximum air-conditioning load zone equal to or higher than a predetermined temperature zone and a predetermined temperature zone or less for heating, and determine a differential temperature signal indicating that the air conditioner is in the maximum air-conditioning load zone for each rated capacity of the indoor unit. Providing a load constant storage means for storing, and a refrigeration cycle data detection means for detecting a state of the refrigeration cycle, and storing data obtained from the differential temperature calculation means, the capacity determination means, the on / off determination means, and the load constant storage means. When the compressor capacity is calculated for each predetermined cycle using the temperature difference signal corresponding to the maximum air-conditioning load zone even in one room, if the compressor capacity is less than the operation allowable value, the number of indoor units operated is reduced. Accordingly, the compressor capacity is calculated so as to approach the control target value of the refrigeration cycle data, and compressor capacity control means for controlling the capacity of the capacity (frequency) variable compressor based on the calculation result is provided. If there is an indoor unit in the maximum air-conditioning load zone, the compressor must be operated in accordance with the number of operating indoor units to control the compressor frequency using the refrigeration cycle data as the control target value. Without having to load state, it is possible fine load correspondence, it is possible to quickly the time to reach the set temperature, it is possible to improve and energy saving comfort.

【0035】また、室内機のそれぞれに、希望する室内
温度を設定可能な室内温度設定手段と室内温度を検出す
る室内温度検出手段とを設け、この室内温度設定手段と
室内温度検出手段とから設定室内温度と室内温度との差
温を算出する差温算出手段を設け、さらに前記室内機の
それぞれの定格容量を判別する容量判別手段および前記
室内機のそれぞれについて運転中か停止中かを判別する
オンオフ判別手段を設け、前記差温が取り得る温度範囲
を複数個の温度ゾーンに分割し、所定周期毎に前記デー
タを用いて近似式にて各室内機の負荷定数を算出する負
荷定数算出手段を設け、圧縮機容量を算出して、この算
出結果に基づいて前記容量(周波数)可変形圧縮機の容
量を制御する圧縮機容量制御手段を設けることで、各室
内機の負荷定数を室内機運転台数とそれぞれの定格容量
と各室差温信号より、近似式にて算出しているので、よ
りきめ細かい負荷対応が可能であり、設定温度に到達す
るまでの時間を早くすることができ、快適性の向上およ
び省エネルギーを図ることができる。また、負荷定数テ
ーブルを必要としないので、室内機の組合せが増加して
も、記憶回路の容量を増加させる必要がない。
Each of the indoor units is provided with an indoor temperature setting means for setting a desired indoor temperature and an indoor temperature detecting means for detecting the indoor temperature. A differential temperature calculating means for calculating a temperature difference between the indoor temperature and the indoor temperature; a capacity determining means for determining a rated capacity of each of the indoor units; and determining whether each of the indoor units is operating or stopped. Load constant calculating means for providing an on / off determining means, dividing a temperature range in which the temperature difference can be taken into a plurality of temperature zones, and calculating a load constant of each indoor unit by an approximate expression using the data at predetermined intervals. Is provided, and compressor capacity control means for controlling the capacity of the variable capacity (frequency) compressor based on the calculation result is provided, so that the load constant of each indoor unit is reduced. Calculated by an approximate formula from the number of operating internal units, their respective rated capacities, and each room temperature difference signal, it is possible to respond more finely to the load and shorten the time required to reach the set temperature. Therefore, it is possible to improve comfort and save energy. Further, since a load constant table is not required, it is not necessary to increase the capacity of the storage circuit even if the number of indoor units increases.

【0036】また、運転中および運転を開始した室内機
のそれぞれについて、負荷定数記憶手段より定格容量お
よび現在の差温に対応する負荷定数および負荷定数の所
定値を読み出し、弁初期開度記憶手段より定格容量に対
応する弁初期開度を読み出し、1室でも空調負荷極大ゾ
ーンに相当する負荷定数がある場合で、圧縮機容量が運
転許容値に満たない時には、空調負荷極大ゾーンにある
室内機に接続された電動膨張弁の弁開度を負荷定数の所
定値の逆数と負荷定数算出手段より算出した負荷定数と
弁初期開度の積として、この積の値となるよう制御する
弁開度制御手段を設けることで、室内機の負荷が空調負
荷極大ゾーンにあっても、圧縮機の容量に余裕がある場
合には、その余裕を活かして空調負荷極大ゾーンにある
室内機にその余裕分の能力を供給するように圧縮機周波
数を制御し、その能力に対応して電動膨張弁の開度を制
御するため、冷凍サイクルの能力分配を最適に制御しな
がら、設定温度に到達するまでの時間を早くすることが
でき、快適性の向上および省エネルギーを図ることがで
きる。
Further, for each of the indoor units during and after operation, the rated capacity and the load constant corresponding to the current differential temperature and a predetermined value of the load constant are read out from the load constant storage means, and the valve initial opening degree storage means is read out. Read the initial valve opening corresponding to the rated capacity and read the indoor unit in the maximum air-conditioning load zone when the compressor capacity is less than the allowable operating value if there is a load constant corresponding to the maximum air-conditioning load zone even in one room. The valve opening for controlling the valve opening of the electric expansion valve connected to the valve as a product of the reciprocal of a predetermined value of the load constant, the load constant calculated by the load constant calculating means and the valve initial opening, and the value of this product. By providing the control means, even if the load of the indoor unit is in the maximum air conditioning load zone, if there is a margin in the capacity of the compressor, the extra room is utilized for the indoor unit in the maximum air conditioning load zone. The compressor frequency is controlled to supply the capacity of the compressor, and the opening of the electric expansion valve is controlled in accordance with the capacity. Time can be shortened, and comfort can be improved and energy can be saved.

【0037】[0037]

【実施例】以下、本発明の実施例について、図面を参考
に説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0038】本発明の多室形空気調和システムの第1の
実施例における冷凍サイクル図は従来例と同じであるた
め説明を省略する。なお、本実施例においては1台の室
外機20に3台の室内機21a、21b、21cを接続
した場合について説明する。
The refrigeration cycle diagram in the first embodiment of the multi-chamber air conditioning system of the present invention is the same as that of the conventional example, and therefore the description is omitted. In this embodiment, a case where three indoor units 21a, 21b, and 21c are connected to one outdoor unit 20 will be described.

【0039】図1は圧縮機周波数および電動膨張弁開度
の制御の流れを示すブロック図、図2は室内温度Trと
設定温度Tsとの差温ΔTの温度ゾーン分割図である。
FIG. 1 is a block diagram showing the flow of control of the compressor frequency and the electric expansion valve opening, and FIG. 2 is a temperature zone division diagram of the temperature difference ΔT between the room temperature Tr and the set temperature Ts.

【0040】まず、室内機21aにおいて、室内温度セ
ンサ36aの出力を室内温度検出回路1より温度信号と
して差温演算回路2に送出し、また設定判別回路3にて
運転設定回路37aで設定された設定温度および運転モ
ードを判別して、差温演算回路2に送出する。ここで、
差温ΔT(=Tr−Ts)を算出し、図2に示す負荷ナ
ンバーLn値に変換してこれを差温信号とする。たとえ
ば、冷房運転時でTr=29.3℃、Ts=26℃とす
ると、差温ΔT=3.3℃で空調負荷極大ゾーンLn=
8となる。またON−OFF判別回路4にて、運転設定
回路37aで設定された室内機21aの運転(ON)ま
たは停止(OFF)を判別し、さらに定格容量記憶回路
5に室内機21aの定格容量を記憶しておき、これらの
定格容量信号、差温信号、運転モード信号、ON−OF
F判別信号を信号送出回路6より室外機20の信号受信
回路7へ送る。室内機21b、21cからも同様の信号
が信号受信回路7へ送られる。信号受信回路7で受けた
信号は、圧縮機周波数演算回路8と膨張弁開度演算回路
9へ送出される。ただし、異なった運転モード信号が存
在する場合、最初に運転を開始した室内機の運転モード
が優先され、異なった運転モードの室内機は停止してい
るとみなしてON−OFF判別信号は常にOFFを送出
する。
First, in the indoor unit 21a, the output of the indoor temperature sensor 36a is sent from the indoor temperature detecting circuit 1 to the temperature difference calculating circuit 2 as a temperature signal, and the setting determining circuit 3 sets the output in the operation setting circuit 37a. The set temperature and the operation mode are determined and sent to the differential temperature calculation circuit 2. here,
The temperature difference ΔT (= Tr−Ts) is calculated, converted into the load number Ln value shown in FIG. 2, and used as a temperature difference signal. For example, assuming that Tr = 29.3 ° C. and Ts = 26 ° C. during the cooling operation, the temperature difference ΔT = 3.3 ° C. and the air-conditioning load maximum zone Ln =
It becomes 8. The ON-OFF determination circuit 4 determines whether the indoor unit 21a is operated (ON) or stopped (OFF) set by the operation setting circuit 37a, and further stores the rated capacity of the indoor unit 21a in the rated capacity storage circuit 5. In addition, these rated capacity signal, differential temperature signal, operation mode signal, ON-OF
The F determination signal is sent from the signal sending circuit 6 to the signal receiving circuit 7 of the outdoor unit 20. Similar signals are sent to the signal receiving circuit 7 from the indoor units 21b and 21c. The signal received by the signal receiving circuit 7 is sent to a compressor frequency calculating circuit 8 and an expansion valve opening calculating circuit 9. However, if there is a different operation mode signal, the operation mode of the indoor unit that started operation first has priority, and the ON-OFF determination signal is always OFF, assuming that the indoor unit in the different operation mode is stopped. Is sent.

【0041】圧縮機周波数演算回路8にて室内機21
a、21b、21cのそれぞれの定格容量信号、差温信
号、運転モード信号、ON−OFF判別信号より下記表
3に示す負荷定数テーブル10から負荷定数を読み出
し、この負荷定数の総和に定数を乗じて圧縮機22の周
波数を決定する。
The compressor unit 8 operates the indoor unit 21.
The load constants are read from the load constant table 10 shown in Table 3 below from the respective rated capacity signals a, 21b, and 21c, the differential temperature signal, the operation mode signal, and the ON-OFF determination signal, and the sum of the load constants is multiplied by the constant. Thus, the frequency of the compressor 22 is determined.

【0042】[0042]

【表3】 [Table 3]

【0043】一例として、冷房時の運転開始時におい
て、室内機21a、21b、21cからの信号が下記表
4の場合について説明する。
As an example, a case where signals from the indoor units 21a, 21b, and 21c at the time of starting operation during cooling will be described in Table 4 below.

【0044】[0044]

【表4】 [Table 4]

【0045】表3と表4より、室内機21a、21b、
21cの負荷定数はそれぞれ2.4、3.0、0とな
り、したがって圧縮機22の周波数Hzは、Aを定数と
すると Hz=A×(2.4+3.0+0)=A×5.4 となる。圧縮機22の運転許容値は室内機21a、21
b、21cの定格容量に相当する2.0、2.5、3.
2の合計値7.7とすれば、周波数の演算結果は圧縮機
22の運転許容値に達しておらず、約3割の余裕度を残
しており、この演算結果を周波数信号として圧縮機駆動
回路(図示せず)に送出して、圧縮機22の周波数制御
を行う。以降、所定周期毎に室内機21a、21b、2
1cのそれぞれの定格容量信号、差温信号、運転モード
信号、ON−OFF判別信号より演算を行い、室内機2
台ともLn=7になるまで上記周波数を継続し、演算結
果を周波数信号として圧縮機駆動回路(図示せず)に送
出して圧縮機22の周波数制御を行う。
From Tables 3 and 4, the indoor units 21a, 21b,
The load constants of 21c are 2.4, 3.0, and 0, respectively. Therefore, when A is a constant, the frequency Hz of the compressor 22 is as follows: Hz = A × (2.4 + 3.0 + 0) = A × 5.4 . The allowable operation value of the compressor 22 is the indoor units 21a, 21
b, 21c, 2.0, 2.5, 3.
2, the frequency calculation result does not reach the allowable operation value of the compressor 22, leaving a margin of about 30%, and this calculation result is used as a frequency signal to drive the compressor. The signal is sent to a circuit (not shown) to control the frequency of the compressor 22. Thereafter, the indoor units 21a, 21b, 2
The calculation is performed from the rated capacity signal, the differential temperature signal, the operation mode signal, and the ON / OFF determination signal of each of the indoor units 2c.
The frequency is continued until Ln = 7 for all the units, and the calculation result is sent to a compressor drive circuit (not shown) as a frequency signal to control the frequency of the compressor 22.

【0046】次に、表5のように室内機21a、21b
が低負荷で運転中に、室内機21cを運転開始した場合
について説明する。
Next, as shown in Table 5, the indoor units 21a, 21b
The case where the operation of the indoor unit 21c is started during the operation at low load will be described.

【0047】[0047]

【表5】 [Table 5]

【0048】表3と表5より、室内機21a、21b、
21cの負荷定数はそれぞれ0.8、1.0、3.8と
なり、したがって圧縮機22の周波数Hzは、同様に Hz=A×(0.8+1.0+3.8)=A×5.6 となり、周波数の演算結果は圧縮機22の運転許容値に
達しておらず、約3割の余裕度を残しており、この演算
結果を周波数信号として圧縮機駆動回路(図示せず)に
送出して、圧縮機22の周波数制御を行う。以降、所定
周期毎に室内機21a、21b、21cのそれぞれの定
格容量信号、差温信号、運転モード信号、ON−OFF
判別信号より演算を行い、室内機21a、21bの負荷
が同じであれば、室内機21cがLn=7になるまで上
記周波数を継続し、演算結果を周波数信号として圧縮機
駆動回路(図示せず)に送出して圧縮機22の周波数制
御を行う。なお、室内機21a、21bの負荷がLn=
7の場合には、 Hz=A×(2.0+2.5+3.8)=A×8.3 となり、圧縮機22の運転許容値を越えるため、周波数
はHz=A×7.7となる圧縮機22の運転許容値とし
て、圧縮機駆動回路に送出して、圧縮機22の周波数制
御を行う。
From Tables 3 and 5, the indoor units 21a, 21b,
The load constants of 21c are 0.8, 1.0, and 3.8, respectively, so the frequency Hz of the compressor 22 is similarly given by: Hz = A × (0.8 + 1.0 + 3.8) = A × 5.6 The frequency calculation result does not reach the allowable operation value of the compressor 22 and has a margin of about 30%. The calculation result is sent to a compressor drive circuit (not shown) as a frequency signal. , The frequency of the compressor 22 is controlled. Thereafter, the rated capacity signal, the differential temperature signal, the operation mode signal, and the ON-OFF of each of the indoor units 21a, 21b, and 21c at predetermined intervals.
The calculation is performed based on the determination signal. If the loads on the indoor units 21a and 21b are the same, the above frequency is continued until the indoor unit 21c reaches Ln = 7, and the calculation result is used as a frequency signal as a compressor drive circuit (not shown). ) To control the frequency of the compressor 22. The load of the indoor units 21a and 21b is Ln =
In the case of 7, the frequency becomes Hz = A × (2.0 + 2.5 + 3.8) = A × 8.3, which exceeds the allowable operating value of the compressor 22. As a permissible operation value of the compressor 22, it is sent to the compressor drive circuit to control the frequency of the compressor 22.

【0049】膨張弁開度演算回路9においても同様に、
室内機21a、21b、21cそれぞれの定格容量信
号、差温信号、運転モード信号、ON−OFF判別信号
より表3に示す負荷定数テーブル10から負荷定数を選
び、さらに室内機21a、21b、21cそれぞれの定
格容量より、下記表6に示す定格容量毎の弁初期開度テ
ーブル11から読み出す。なお、弁初期開度は、異なっ
て定格容量の室内機の組合せでも、各室内機が所定の能
力制御ができるように決定する。
Similarly, in the expansion valve opening calculation circuit 9,
A load constant is selected from the load constant table 10 shown in Table 3 based on the rated capacity signal, the differential temperature signal, the operation mode signal, and the ON-OFF determination signal of each of the indoor units 21a, 21b, and 21c. Is read from the valve initial opening table 11 for each rated capacity shown in Table 6 below. Note that the valve initial opening is determined so that each indoor unit can perform a predetermined capacity control even with a combination of indoor units having different rated capacities.

【0050】[0050]

【表6】 [Table 6]

【0051】電動膨張弁30a、30b、30cの弁開
度はそれぞれの負荷定数をその負荷定数の所定値で除し
たものに弁初期開度を乗じたものである。圧縮機周波数
算出例の場合と同様に、まず室内機21a、21b、2
1cからの信号が表4の場合について説明する。
The valve opening of the electric expansion valves 30a, 30b, 30c is obtained by dividing each load constant by a predetermined value of the load constant and multiplying the result by the initial valve opening. As in the case of the compressor frequency calculation example, first, the indoor units 21a, 21b, 2
The case where the signal from 1c is shown in Table 4 will be described.

【0052】室内機21a、21b、21cの(負荷定
数/所定負荷定数)はそれぞれ(2.4/2.0)、
(3.0/2.5)、(0/3.2)であり、また弁初
期開度はそれぞれ100、130、180である。した
がって、電動膨張弁30a、30b、30cの弁開度
は、120、187、0となる(小数点以下第1位を四
捨五入)。この演算結果を膨張弁開度信号として膨張弁
駆動回路(図示せず)に送出する。以降、所定周期毎
に、差温信号、運転モード信号、ON−OFF判別信号
より電動膨張弁30a、30b、30cの弁開度を算出
し、これらの演算結果を膨張弁開度信号として膨張弁駆
動回路(図示せず)に送出する。
The (load constant / predetermined load constant) of each of the indoor units 21a, 21b and 21c is (2.4 / 2.0),
(3.0 / 2.5) and (0 / 3.2), and the initial valve openings are 100, 130 and 180, respectively. Therefore, the valve openings of the electric expansion valves 30a, 30b, 30c are 120, 187, 0 (rounded to one decimal place). This calculation result is sent to an expansion valve drive circuit (not shown) as an expansion valve opening signal. Thereafter, at predetermined intervals, the valve openings of the electric expansion valves 30a, 30b, and 30c are calculated from the temperature difference signal, the operation mode signal, and the ON-OFF determination signal, and the results of these calculations are used as expansion valve opening signals as expansion valve signals. It is sent to a drive circuit (not shown).

【0053】次に、表5の場合について説明する。表4
の場合と同様に、室内機21a、21b、21cの(負
荷定数/所定負荷定数)はそれぞれ(0.8/2.
0)、(1.0/2.5)、(3.8/3.2)であ
り、また弁初期開度はそれぞれ100、130、180
である。したがって、電動膨張弁30a、30b、30
cの弁開度は、40、52、214となる(小数点以下
第1位を四捨五入)。この演算結果を膨張弁開度信号と
して膨張弁駆動回路(図示せず)に送出する。以降、所
定周期毎に、差温信号、運転モード信号、ON−OFF
判別信号より電動膨張弁30a、30b、30cの弁開
度を算出し、これらの演算結果を膨張弁開度信号として
膨張弁駆動回路(図示せず)に送出する。
Next, the case of Table 5 will be described. Table 4
As in the case of (1), (load constant / predetermined load constant) of each of the indoor units 21a, 21b, and 21c is (0.8 / 2.
0), (1.0 / 2.5) and (3.8 / 3.2), and the initial valve opening is 100, 130, and 180, respectively.
It is. Therefore, the electric expansion valves 30a, 30b, 30
The valve opening degree of c is 40, 52, 214 (rounded to one decimal place). This calculation result is sent to an expansion valve drive circuit (not shown) as an expansion valve opening signal. Thereafter, at predetermined intervals, the differential temperature signal, the operation mode signal, the ON-OFF
The valve openings of the electric expansion valves 30a, 30b, 30c are calculated from the discrimination signal, and the results of these calculations are sent to an expansion valve drive circuit (not shown) as expansion valve opening signals.

【0054】上記説明は、主に冷房時について行った
が、暖房時についても同様に制御可能である。
Although the above description has been made mainly for cooling, the same can be applied to heating.

【0055】このように、負荷の少ない室内機に対して
は、その負荷に応じた能力を供給し、空調負荷極大ゾー
ンにある室内機にのみ、室内機の定格容量を上回る能力
を目標に、余裕ある室外能力を供給するよう圧縮機周波
数を制御するため、設定温度に到達するまでの時間を早
くすることができ、快適性の向上および省エネルギーを
図ることができる。
As described above, the capacity corresponding to the load is supplied to the indoor unit having a small load, and only the indoor unit in the maximum air-conditioning load zone is designed to have a capacity exceeding the rated capacity of the indoor unit. Since the compressor frequency is controlled so as to supply a sufficient outdoor capacity, the time required to reach the set temperature can be shortened, so that comfort can be improved and energy can be saved.

【0056】次に、本発明の第2の実施例について、図
面を参照しながら説明する。なお、第2の実施例におけ
る冷凍サイクルも、第1の実施例と同じく、従来例と同
一であるので説明を省略する。図3は本発明の第2の実
施例における圧縮機周波数の制御の流れを示すブロック
図である。同図が第1の実施例と異なる点は、所定周期
毎に圧縮機容量を算出する際に1室でも空調負荷極大ゾ
ーンに相当する差温信号がある場合で、圧縮機容量が運
転許容値に満たない時には、近似式にて空調負荷極大ゾ
ーンにある室内機の負荷定数値を算出する負荷定数算出
手段を圧縮機周波数演算回路に設けたことである。
Next, a second embodiment of the present invention will be described with reference to the drawings. The refrigeration cycle in the second embodiment is the same as the conventional example, as in the first embodiment. FIG. 3 is a block diagram showing a flow of control of the compressor frequency in the second embodiment of the present invention. This figure is different from the first embodiment in that when calculating the compressor capacity for each predetermined cycle, there is a differential temperature signal corresponding to the maximum air conditioning load zone even in one room, and the compressor capacity becomes the allowable operating value. Is less than the above, a load constant calculating means for calculating a load constant value of the indoor unit in the maximum air conditioning load zone by an approximate expression is provided in the compressor frequency calculation circuit.

【0057】まず、室内機21aにおいて、室内温度セ
ンサ36aの出力を室内温度検出回路1より温度信号と
して差温演算回路2に送出し、また設定判別回路3にて
運転設定回路37aで設定された設定温度および運転モ
ードを判別して、差温演算回路2に送出する。ここで、
差温ΔT(=Tr−Ts)を算出し、図2に示す負荷ナ
ンバーLn値に変換してこれを差温信号とする。またO
N−OFF判別回路4にて、運転設定回路37aで設定
された室内機21aの運転(ON)または停止(OF
F)を判別し、さらに定格容量記憶回路5に室内機21
aの定格容量を記憶しておき、これらの定格容量信号、
差温信号、運転モード信号、ON−OFF判別信号を信
号送出回路6より室外機20の信号受信回路7へ送る。
室内機21b、21cからも同様の信号が信号受信回路
7へ送られる。信号受信回路7で受けた信号は、圧縮機
周波数演算回路8へ送出される。
First, in the indoor unit 21a, the output of the indoor temperature sensor 36a is sent from the indoor temperature detecting circuit 1 to the temperature difference calculating circuit 2 as a temperature signal, and is set by the setting setting circuit 3 in the operation setting circuit 37a. The set temperature and the operation mode are determined and sent to the differential temperature calculation circuit 2. here,
The temperature difference ΔT (= Tr−Ts) is calculated, converted into the load number Ln value shown in FIG. 2, and used as a temperature difference signal. Also O
The N-OFF determination circuit 4 operates (ON) or stops (OF) the indoor unit 21a set by the operation setting circuit 37a.
F), and further stores the indoor unit 21 in the rated capacity storage circuit 5.
a is stored, and these rated capacity signals,
The temperature difference signal, the operation mode signal, and the ON-OFF determination signal are sent from the signal sending circuit 6 to the signal receiving circuit 7 of the outdoor unit 20.
Similar signals are sent to the signal receiving circuit 7 from the indoor units 21b and 21c. The signal received by the signal receiving circuit 7 is sent to a compressor frequency calculating circuit 8.

【0058】圧縮機周波数演算回路8にて室内機21
a、21b、21cのそれぞれの定格容量信号、差温信
号、運転モード信号、ON−OFF判別信号より下記表
7に示す負荷定数テーブル10から負荷定数を読み出
し、まずこの負荷定数の総和に定数を乗じて圧縮機22
の周波数を算出する。室内機21a、21b、21cの
負荷が1室でも空調負荷極大ゾーン(Ln=8)にあ
り、算出した周波数が圧縮機22の運転許容値に満たな
い場合、空調負荷極大ゾーン(Ln=8)にある室内機
の負荷定数を近似式にて算出し、再度負荷定数の総和に
定数を乗じて圧縮機22の周波数を算出する。
In the compressor frequency calculation circuit 8, the indoor unit 21
The load constants are read from the load constant table 10 shown in Table 7 below from the rated capacity signals, the differential temperature signals, the operation mode signals, and the ON / OFF discrimination signals of the respective a, 21b, and 21c. Multiplying compressor 22
Is calculated. If even one of the indoor units 21a, 21b, 21c has a load in the maximum air conditioning load zone (Ln = 8) and the calculated frequency is less than the allowable operation value of the compressor 22, the maximum air conditioning load zone (Ln = 8) Is calculated by an approximate expression, and the sum of the load constants is again multiplied by the constant to calculate the frequency of the compressor 22.

【0059】[0059]

【表7】 [Table 7]

【0060】前記実施例と同じく表4の場合で説明す
る。室内機21a、21bの負荷がともにLn=8で空
調負荷極大ゾーンにあるため、まず表7に示す負荷定数
ケーブル10から室内機21a、21b、21cの負荷
定数は、2.0、2.5、0となる。圧縮機22の周波
数Hzは、Aを定数とすると、 Hz=A×(2.0+2.5+0)=A×4.5 となり、圧縮機22の運転許容値(Hz=A×7.7)
に満たない。したがって、空調負荷極大ゾーンにある室
内機21a、21bの負荷定数を近似式にて算出する。
この近似式は例えば各室内機の定格容量、各室内機の負
荷定数を関数として表される。算出した負荷定数とLn
=7以下の室内機で表7に示す負荷定数テーブル10か
ら求めた負荷定数の総和に定数を乗じて圧縮機22の周
波数を算出する。これを周波数信号として圧縮機駆動回
路(図示せず)に送出して圧縮機22の周波数制御を行
う。
The case of Table 4 will be described similarly to the above embodiment. Since the loads of the indoor units 21a and 21b are both in the air-conditioning load maximum zone at Ln = 8, the load constants of the indoor units 21a, 21b, and 21c from the load constant cable 10 shown in Table 7 are 2.0, 2.5 , 0. If A is a constant, the frequency Hz of the compressor 22 is as follows: Hz = A × (2.0 + 2.5 + 0) = A × 4.5, and the allowable operation value of the compressor 22 (Hz = A × 7.7)
Less than. Therefore, the load constants of the indoor units 21a and 21b in the air-conditioning load maximum zone are calculated by an approximate expression.
This approximate expression is expressed as a function of, for example, the rated capacity of each indoor unit and the load constant of each indoor unit. Calculated load constant and Ln
The frequency of the compressor 22 is calculated by multiplying the sum of the load constants obtained from the load constant table 10 shown in Table 7 by a constant in an indoor unit of = 7 or less. This is sent as a frequency signal to a compressor drive circuit (not shown) to control the frequency of the compressor 22.

【0061】このように、空調負荷極大ゾーンにある室
内機の負荷定数を、たとえば各室内機の定格容量および
各室内機の負荷定数を関数として近似式で求めているの
で、よりきめ細かい負荷対応が可能であり、設定温度に
到達するまでの時間を早くすることができ、快適性の向
上および省エネルギーを図ることができる。
As described above, since the load constants of the indoor units in the air-conditioning load maximum zone are obtained by an approximate expression using, for example, the rated capacity of each indoor unit and the load constant of each indoor unit as functions, more detailed load handling can be achieved. It is possible, and the time required to reach the set temperature can be shortened, so that comfort can be improved and energy can be saved.

【0062】なお、上記実施例では、空調負荷極大ゾー
ンの差温信号をLn=8のみとしたが、空調負荷極大ゾ
ーンの温度刻みを細かくとり、差温信号を8以上何段階
にも数値を設定して、各室内機の定格容量、各室内機の
負荷定数、対象室内機の差温信号を関数として近似式を
作成すれば、さらにきめ細かい負荷対応が可能となる。
In the above embodiment, the difference temperature signal of the air-conditioning load maximum zone is only Ln = 8. However, the temperature difference of the air-conditioning load maximum zone is finely divided, and the difference temperature signal is converted into a numerical value in eight or more steps. If an approximate expression is set as a function of the rated capacity of each indoor unit, the load constant of each indoor unit, and the differential temperature signal of the target indoor unit as a function, it is possible to cope with a more detailed load.

【0063】次に、本発明の第3の実施例について、図
面を参照しながら説明する。なお、第3の実施例におけ
る冷凍サイクルも、第1の実施例と同じく、従来例と同
一であるので説明を省略する。また、本発明の第3の実
施例における圧縮機周波数の制御の流れを示すブロック
図は第2の実施例のブロック図(図3)と同一であるの
で省略する。本実施例が上記第2の実施例と異なる点
は、所定周期毎に圧縮機容量を算出する際に、1室でも
空調負荷極大ゾーンに相当する差温信号がある場合で、
圧縮機容量が運転許容値に満たない時には、圧縮機容量
余裕分から負荷極大ゾーンにある室内機の負荷定数を算
出して、圧縮機の周波数制御を行う点である。
Next, a third embodiment of the present invention will be described with reference to the drawings. Note that the refrigeration cycle in the third embodiment is the same as the conventional example, as in the first embodiment, and thus the description thereof is omitted. Further, a block diagram showing a flow of control of the compressor frequency in the third embodiment of the present invention is the same as the block diagram of the second embodiment (FIG. 3), and thus its description is omitted. This embodiment is different from the above-described second embodiment in that when calculating the compressor capacity for each predetermined cycle, even in one room, there is a differential temperature signal corresponding to the air conditioning load maximum zone,
When the compressor capacity is less than the allowable operation value, the load constant of the indoor unit in the load maximum zone is calculated from the compressor capacity margin, and the frequency control of the compressor is performed.

【0064】まず、室内機21aにおいて、室内温度セ
ンサ36aの出力を室内温度検出回路1より温度信号と
して差温演算回路2に送出し、また設定判別回路3にて
運転設定回路37aで設定された設定温度および運転モ
ードを判別して、差温演算回路2に送出する。ここで、
差温ΔT(=Tr−Ts)を算出し、図2に示す負荷ナ
ンバーLn値に変換してこれを差温信号とする。またO
N−OFF判別回路4にて、運転設定回路37aで設定
された室内機21aの運転(ON)または停止(OF
F)を判別し、さらに定格容量記憶回路5に室内機21
aの定格容量を記憶しておき、これらの定格容量信号、
差温信号、運転モード信号、ON−OFF判別信号を信
号送出回路6より室外機20の信号受信回路7へ送る。
室内機21b、21cからも同様の信号が信号受信回路
7へ送られる。信号受信回路7で受けた信号は、圧縮機
周波数演算回路8へ送出される。
First, in the indoor unit 21a, the output of the indoor temperature sensor 36a is sent from the indoor temperature detecting circuit 1 to the temperature difference calculating circuit 2 as a temperature signal, and the setting determining circuit 3 sets the output in the operation setting circuit 37a. The set temperature and the operation mode are determined and sent to the differential temperature calculation circuit 2. here,
The temperature difference ΔT (= Tr−Ts) is calculated, converted into the load number Ln value shown in FIG. 2, and used as a temperature difference signal. Also O
The N-OFF determination circuit 4 operates (ON) or stops (OF) the indoor unit 21a set by the operation setting circuit 37a.
F), and further stores the indoor unit 21 in the rated capacity storage circuit 5.
a is stored, and these rated capacity signals,
The temperature difference signal, the operation mode signal, and the ON-OFF determination signal are sent from the signal sending circuit 6 to the signal receiving circuit 7 of the outdoor unit 20.
Similar signals are sent to the signal receiving circuit 7 from the indoor units 21b and 21c. The signal received by the signal receiving circuit 7 is sent to a compressor frequency calculating circuit 8.

【0065】圧縮機周波数演算回路8にて室内機21
a、21b、21cのそれぞれの定格容量信号、差温信
号、運転モード信号、ON−OFF判別信号より前記表
7に示す負荷定数テーブル10から負荷定数を読み出
し、まずこの負荷定数の総和に定数を乗じて圧縮機22
の周波数を算出する。室内機21a、21b、21cの
負荷が1室でも空調負荷極大ゾーン(Ln=8)にあ
り、算出した周波数が圧縮機22の運転許容値に満たな
い場合、空調負荷極大ゾーン(Ln=8)にある室内機
の負荷定数は各室負荷定数の総和を各室定格容量の総和
で除した圧縮機容量余裕分を乗じて算出し、再度負荷定
数の総和に定数を乗じて圧縮機22の周波数を算出す
る。
In the compressor frequency calculation circuit 8, the indoor unit 21
The load constants are read from the load constant table 10 shown in Table 7 from the rated capacity signals, the differential temperature signals, the operation mode signals, and the ON / OFF discrimination signals of the respective a, 21b, and 21c. Multiplying compressor 22
Is calculated. If even one of the indoor units 21a, 21b, 21c has a load in the maximum air conditioning load zone (Ln = 8) and the calculated frequency is less than the allowable operation value of the compressor 22, the maximum air conditioning load zone (Ln = 8) Is calculated by multiplying the sum of the load constants of the respective rooms by the sum of the rated capacities of the respective rooms by a compressor capacity margin, and multiplying the sum of the load constants again by a constant to calculate the frequency of the compressor 22. Is calculated.

【0066】本発明の第1の実施例における表5の場合
について説明する。室内機21a、21bの負荷がとも
にLn=4で、室内機21cの負荷がLn=8で空調負
荷極大ゾーンにあるため、まず表7に示す負荷定数テー
ブル10から室内機21a、21b、21cの負荷定数
は、0.8、1.0、3.2となる。圧縮機22の周波
数Hzは、Aを定数とすると、 Hz=A×(0.8+1.0+3.2)=A×5.0 となり、圧縮機22の運転許容値(Hz=A×7.7)
に満たない。このときの圧縮機容量余裕分は1−5.0
/7.7=0.35となり、室内機21cの負荷定数は
3.2×(1+0.35)=4.3となり、圧縮機22
の周波数Hzは Hz=A×(0.8+1.0+4.3)=A×6.1 となる。これを周波数信号として圧縮機駆動回路(図示
せず)に送出して圧縮機22の周波数制御を行う。
The case of Table 5 in the first embodiment of the present invention will be described. Since the loads of the indoor units 21a and 21b are both Ln = 4 and the load of the indoor unit 21c is Ln = 8 and is in the air-conditioning load maximum zone, first, the load constant table 10 shown in Table 7 shows the load of the indoor units 21a, 21b and 21c. The load constants are 0.8, 1.0, and 3.2. Assuming that A is a constant, the frequency Hz of the compressor 22 is as follows: Hz = A × (0.8 + 1.0 + 3.2) = A × 5.0, and the allowable operating value of the compressor 22 (Hz = A × 7.7) )
Less than. At this time, the compressor capacity margin is 1-5.0.
/7.7=0.35, the load constant of the indoor unit 21c is 3.2 × (1 + 0.35) = 4.3, and the compressor 22
Is Hz = A × (0.8 + 1.0 + 4.3) = A × 6.1. This is sent as a frequency signal to a compressor drive circuit (not shown) to control the frequency of the compressor 22.

【0067】このように、空調負荷極大ゾーンにある室
内機の負荷定数を、圧縮機容量余裕分を乗じて加算する
ため、圧縮機能力の余裕度を考慮してその余裕能力を有
効利用でき、よりきめ細かい負荷対応が可能であり、設
定温度に到達するまでの時間を早くすることができ、快
適性の向上および省エネルギーを図ることができる。
As described above, since the load constant of the indoor unit in the maximum air-conditioning load zone is added by multiplying the compressor capacity margin, the margin capacity can be effectively used in consideration of the margin of the compression function power. A finer load response can be achieved, the time required to reach the set temperature can be shortened, and comfort can be improved and energy can be saved.

【0068】次に、本発明の第4の実施例について、図
面を参照しながら説明する。図4は第4の実施例におけ
る冷凍サイクル、図5は本発明の第4の実施例における
圧縮機周波数の流れを示すブロック図、図6は室内機運
転台数と凝縮圧力制御目標値との関係図である。図4が
第1〜第3の実施例と異なる点は、室外機20におい
て、圧縮機22出口の凝縮圧力を計測する圧力センサ4
0を設けた点で、図5が第1の実施例および第2の実施
例と異なる点は、凝縮圧力を測定する圧力センサ40の
出力を凝縮圧力検出回路12より凝縮圧力データ信号と
して圧縮機周波数演算回路8に送出し、所定周期毎に圧
縮機容量を算出する際に1室でも空調負荷極大ゾーンに
相当する差温信号がある場合で、圧縮機容量が運転許容
値に満たない時には、室内機の運転台数に応じて冷凍サ
イクルデータの制御目標値に近づけるように圧縮機22
の周波数を増減させる圧縮機周波数演算回路8を設けた
ことである。
Next, a fourth embodiment of the present invention will be described with reference to the drawings. 4 is a refrigeration cycle in the fourth embodiment, FIG. 5 is a block diagram showing a flow of a compressor frequency in the fourth embodiment of the present invention, and FIG. 6 is a relationship between the number of operating indoor units and a target value of condensing pressure control. FIG. FIG. 4 is different from the first to third embodiments in that the pressure sensor 4 for measuring the condensation pressure at the outlet of the compressor 22 in the outdoor unit 20.
5 is different from the first embodiment and the second embodiment in that the output of the pressure sensor 40 for measuring the condensing pressure is output from the condensing pressure detecting circuit 12 as a condensing pressure data signal to the compressor. When the compressor capacity is less than the operation allowable value when there is a temperature difference signal corresponding to the air-conditioning load maximum zone even in one of the rooms when the compressor capacity is calculated for each predetermined cycle and sent to the frequency calculation circuit 8, The compressor 22 is controlled to approach the control target value of the refrigeration cycle data according to the number of operating indoor units.
Is provided with a compressor frequency calculation circuit 8 for increasing and decreasing the frequency of the compressor.

【0069】まず、室内機21aにおいて、室内温度セ
ンサ36aの出力を室内温度検出回路1より温度信号と
して差温演算回路2に送出し、また設定判別回路3にて
運転設定回路37aで設定された設定温度および運転モ
ードを判別して、差温演算回路2に送出する。ここで、
差温ΔT(=Tr−Ts)を算出し、図2に示す負荷ナ
ンバーLn値に変換してこれを差温信号とする。またO
N−OFF判別回路4にて、運転設定回路37aで設定
された室内機21aの運転(ON)または停止(OF
F)を判別し、さらに定格容量記憶回路5に室内機21
aの定格容量を記憶しておき、これらの定格容量信号、
差温信号、運転モード信号、ON−OFF判別信号を信
号送出回路6より室外機20の信号受信回路7へ送る。
室内機21b、21cからも同様の信号が信号受信回路
7へ送られる。信号受信回路7で受けた信号は、圧縮機
周波数演算回路8へ送出される。
First, in the indoor unit 21a, the output of the indoor temperature sensor 36a is sent from the indoor temperature detecting circuit 1 to the differential temperature calculating circuit 2 as a temperature signal, and is set by the operation setting circuit 37a by the setting determining circuit 3. The set temperature and the operation mode are determined and sent to the differential temperature calculation circuit 2. here,
The temperature difference ΔT (= Tr−Ts) is calculated, converted into the load number Ln value shown in FIG. 2, and used as a temperature difference signal. Also O
The N-OFF determination circuit 4 operates (ON) or stops (OF) the indoor unit 21a set by the operation setting circuit 37a.
F), and further stores the indoor unit 21 in the rated capacity storage circuit 5.
a is stored, and these rated capacity signals,
The temperature difference signal, the operation mode signal, and the ON-OFF determination signal are sent from the signal sending circuit 6 to the signal receiving circuit 7 of the outdoor unit 20.
Similar signals are sent to the signal receiving circuit 7 from the indoor units 21b and 21c. The signal received by the signal receiving circuit 7 is sent to a compressor frequency calculating circuit 8.

【0070】室外機20において、冷凍サイクルデータ
としてたとえば凝縮圧力を圧力センサで測定して、その
出力を凝縮圧力検出回路12に送り、さらに凝縮圧力検
出回路12から圧力信号として圧縮機周波数演算回路8
に送出する。
In the outdoor unit 20, for example, the condensing pressure is measured by the pressure sensor as the refrigeration cycle data, and the output is sent to the condensing pressure detecting circuit 12. Further, the compressor frequency calculating circuit 8 outputs the condensing pressure detecting circuit 12 as a pressure signal.
To send to.

【0071】圧縮機周波数演算回路8にて室内機21
a、21b、21cのそれぞれの定格容量信号、差温信
号、運転モード信号、ON−OFF判別信号より前記表
7に示す負荷定数テーブル10から負荷定数を読み出
し、まずこの負荷定数の総和に定数を乗じて圧縮機22
の周波数を算出する。室内機21a、21b、21cの
負荷が1室でも空調負荷極大ゾーン(Ln=8)にあ
り、算出した周波数が圧縮機22の運転許容値に満たな
い場合、図6に示すように室内機の運転台数より凝縮圧
力の制御目標値を決めて、前記凝縮圧力の制御目標値に
近づけるべく圧縮機周波数演算回路8で圧縮機22の周
波数を増加させて、その周波数信号を圧縮機駆動回路
(図示せず)に送出して、圧縮機22の周波数制御を行
う。
In the compressor frequency calculation circuit 8, the indoor unit 21
The load constants are read from the load constant table 10 shown in Table 7 from the rated capacity signals, the differential temperature signals, the operation mode signals, and the ON / OFF discrimination signals of the respective a, 21b, and 21c. Multiplying compressor 22
Is calculated. When the load of one of the indoor units 21a, 21b, and 21c is in the air-conditioning load maximum zone (Ln = 8) and the calculated frequency is less than the allowable operation value of the compressor 22, the indoor unit 21 The control target value of the condensing pressure is determined from the number of operating units, and the frequency of the compressor 22 is increased by the compressor frequency calculation circuit 8 so as to approach the control target value of the condensing pressure. (Not shown) to control the frequency of the compressor 22.

【0072】本発明の第1の実施例における表5の場合
について説明する。室内機21a、21bの負荷がとも
にLn=4で、室内機21cの負荷がLn=8で空調負
荷極大ゾーンにあるため、まず表7に示す負荷定数テー
ブル10から室内機21a、21b、21cの負荷定数
は、0.8、1.0、3.2となる。圧縮機22の周波
数Hzは、Aを定数とすると、 Hz=A×(0.8+1.0+3.2)=A×5.0 となり、圧縮機22の運転許容値凝縮圧力(Hz=A×
7.7)に満たない。したがって、図6より運転台数3
台の場合の凝縮圧力の制御目標値Bを決めて、凝縮圧力
検出回路12から圧力信号をBに近づけるように、圧縮
機周波数演算回路8で圧縮機22の周波数を増加させ
て、その周波数信号を圧縮機駆動回路(図示せず)に送
出して、圧縮機22の周波数制御を行う。
The case of Table 5 in the first embodiment of the present invention will be described. Since the loads of the indoor units 21a and 21b are both Ln = 4 and the load of the indoor unit 21c is Ln = 8 and is in the air-conditioning load maximum zone, first, the load constant table 10 shown in Table 7 shows the load of the indoor units 21a, 21b and 21c. The load constants are 0.8, 1.0, and 3.2. Assuming that A is a constant, the frequency Hz of the compressor 22 is as follows: Hz = A × (0.8 + 1.0 + 3.2) = A × 5.0, and the operation allowable condensing pressure of the compressor 22 (Hz = A ×
Less than 7.7). Therefore, according to FIG.
The control target value B of the condensing pressure in the case of the unit is determined, and the frequency of the compressor 22 is increased by the compressor frequency calculating circuit 8 so that the pressure signal from the condensing pressure detecting circuit 12 approaches B. To a compressor drive circuit (not shown) to control the frequency of the compressor 22.

【0073】このように、空調負荷極大ゾーンに室内機
がある場合、室内機の運転台数に応じて、たとえば凝縮
圧力のような冷凍サイクルデータを制御目標値として、
圧縮機22の周波数を制御するため、圧縮機を過負荷状
態にすることなく、きめ細かい負荷対応が可能であり、
設定温度に到達するまでの時間を早くすることができ、
快適性の向上および省エネルギーを図ることができる。
また、室内機台数が4台以上の多室形空気調和システム
になれば、運転台数の組合せが増加するため、値の決定
が複雑な負荷定数で制御するよりも、冷凍サイクルデー
タを目標として制御するほうが、冷凍サイクルとしての
安定性が確保できるメリットを有する。
As described above, when the indoor unit is located in the maximum air-conditioning load zone, refrigeration cycle data such as condensing pressure is set as a control target value according to the number of operating indoor units.
Because the frequency of the compressor 22 is controlled, it is possible to respond to a fine load without overloading the compressor,
The time to reach the set temperature can be shortened,
It is possible to improve comfort and save energy.
Also, if a multi-room air conditioning system with four or more indoor units is used, the number of operating units will increase, and the determination of the value will be controlled using refrigeration cycle data as a target, rather than controlling with complex load constants. Doing so has an advantage that stability as a refrigeration cycle can be ensured.

【0074】なお、上記実施例では冷凍サイクルデータ
を凝縮圧力とする場合について説明したが、蒸発圧力や
凝縮温度、吐出温度等の物理量や圧縮機の運転電流とし
ても同様の効果を奏する。
In the above embodiment, the case where the refrigeration cycle data is used as the condensing pressure has been described. However, the same effect can be obtained by using the physical quantities such as the evaporating pressure, the condensing temperature, the discharge temperature and the operating current of the compressor.

【0075】次に、本発明の第5の実施例について、図
面を参照しながら説明する。なお、第5の実施例におけ
る冷凍サイクルも、第1の実施例と同じく、従来例と同
一であるので説明を省略する。図7は本発明の第5の実
施例における圧縮機周波数の制御の流れを示すブロック
図である。同図が第1〜第4の実施例と異なる点は、定
格容量毎の負荷定数テーブル10を用いていないことで
ある。すなわち、各室内機の負荷定数は圧縮機周波数演
算回路8にて室内機運転台数とそれぞれの定格容量と各
室差温信号より、近似式にて算出する。
Next, a fifth embodiment of the present invention will be described with reference to the drawings. Note that the refrigeration cycle in the fifth embodiment is the same as the conventional example, as in the first embodiment, and a description thereof will be omitted. FIG. 7 is a block diagram showing the flow of control of the compressor frequency in the fifth embodiment of the present invention. This figure differs from the first to fourth embodiments in that the load constant table 10 for each rated capacity is not used. That is, the load constant of each indoor unit is calculated by the compressor frequency calculation circuit 8 by an approximate expression from the number of operating indoor units, the respective rated capacities, and the respective room temperature difference signals.

【0076】まず、室内機21aにおいて、室内温度セ
ンサ36aの出力を室内温度検出回路1より温度信号と
して差温演算回路2に送出し、また設定判別回路3にて
運転設定回路37aで設定された設定温度および運転モ
ードを判別して、差温演算回路2に送出する。ここで、
差温ΔT(=Tr−Ts)を算出し、図2に示す負荷ナ
ンバーLn値に変換してこれを差温信号とする。またO
N−OFF判別回路4にて、運転設定回路37aで設定
された室内機21aの運転(ON)または停止(OF
F)を判別し、さらに定格容量記憶回路5に室内機21
aの定格容量を記憶しておき、これらの定格容量信号、
差温信号、運転モード信号、ON−OFF判別信号を信
号送出回路6より室外機20の信号受信回路7へ送る。
室内機21b、21cからも同様の信号が信号受信回路
7へ送られる。信号受信回路7で受けた信号は、圧縮機
周波数演算回路8へ送出される。
First, in the indoor unit 21a, the output of the indoor temperature sensor 36a is sent from the indoor temperature detecting circuit 1 to the temperature difference calculating circuit 2 as a temperature signal, and the setting determining circuit 3 sets the output in the operation setting circuit 37a. The set temperature and the operation mode are determined and sent to the differential temperature calculation circuit 2. here,
The temperature difference ΔT (= Tr−Ts) is calculated, converted into the load number Ln value shown in FIG. 2, and used as a temperature difference signal. Also O
The N-OFF determination circuit 4 operates (ON) or stops (OF) the indoor unit 21a set by the operation setting circuit 37a.
F), and further stores the indoor unit 21 in the rated capacity storage circuit 5.
a is stored, and these rated capacity signals,
The temperature difference signal, the operation mode signal, and the ON-OFF determination signal are sent from the signal sending circuit 6 to the signal receiving circuit 7 of the outdoor unit 20.
Similar signals are sent to the signal receiving circuit 7 from the indoor units 21b and 21c. The signal received by the signal receiving circuit 7 is sent to a compressor frequency calculating circuit 8.

【0077】圧縮機周波数演算回路8にて室内機21
a、21b、21cのそれぞれの定格容量信号、差温信
号、運転モード信号、ON−OFF判別信号より近似式
にて負荷定数を算出し、この負荷定数の総和に定数を乗
じて圧縮機22の周波数を算出する。
The indoor unit 21 is operated by the compressor frequency calculating circuit 8.
a, 21b, and 21c, a load constant is calculated by an approximate expression from the rated capacity signal, the differential temperature signal, the operation mode signal, and the ON-OFF determination signal, and the sum of the load constants is multiplied by a constant to calculate the load constant of the compressor 22. Calculate the frequency.

【0078】このように、各室内機の負荷定数を室内機
運転台数とそれぞれの定格容量と各室差温信号より、近
似式にて算出しているので、よりきめ細かい負荷対応が
可能であり、設定温度に到達するまでの時間を早くする
ことができ、快適性の向上および省エネルギーを図るこ
とができる。また、負荷定数テーブルを必要としないの
で、室内機の組合せが増加しても、記憶回路の容量を増
加させる必要がない。また、室内機21a、21b、2
1cの負荷が1室でも空調負荷極大ゾーン(Ln=8)
にある場合、空調負荷極大ゾーン(Ln=8)にある室
内機の負荷定数も近似式にて算出し、負荷定数の総和に
定数を乗じて圧縮機22の周波数を算出できる。このと
き、空調負荷極大ゾーンの温度刻みを細かくとり、差温
信号を8以上何段階にも数値を設定してやれば、さらに
きめ細かい負荷対応が可能となる。
As described above, since the load constant of each indoor unit is calculated from the number of operating indoor units, the respective rated capacities, and the respective room temperature difference signals by an approximate expression, a more detailed load response is possible. The time required to reach the set temperature can be shortened, and comfort can be improved and energy can be saved. Further, since a load constant table is not required, it is not necessary to increase the capacity of the storage circuit even if the number of indoor units increases. The indoor units 21a, 21b, 2
Air conditioning load maximum zone (Ln = 8) even if the load of 1c is one room
, The load constant of the indoor unit in the air-conditioning load maximum zone (Ln = 8) can also be calculated by an approximate expression, and the frequency of the compressor 22 can be calculated by multiplying the sum of the load constants by a constant. At this time, if the temperature increment in the air-conditioning load maximum zone is finely set and the differential temperature signal is set to a numerical value in eight or more stages, a more detailed load response is possible.

【0079】次に、本発明の第6の実施例について、図
面を参照しながら説明する。なお、第6の実施例におけ
る冷凍サイクルも、第1の実施例と同じく、従来例と同
一であるので説明を省略する。図8は本発明の第6の実
施例における圧縮機周波数および電動膨張弁開度の制御
の流れを示すブロック図である。
Next, a sixth embodiment of the present invention will be described with reference to the drawings. Note that the refrigeration cycle in the sixth embodiment is the same as the conventional example, similarly to the first embodiment, and therefore the description is omitted. FIG. 8 is a block diagram showing a control flow of the compressor frequency and the electric expansion valve opening in the sixth embodiment of the present invention.

【0080】本実施例における電動膨張弁開度の制御方
法について説明する。図8において、室内機21a、2
1b、21cのうち1台でも図2の温度ゾーン分割図に
おける空調負荷極大ゾーンにある場合で、圧縮機周波数
演算回路8にて算出した圧縮機容量が圧縮機22の運転
許容値に満たない場合は、所定周期毎に圧縮機容量を算
出する際に、空調負荷極大ゾーンにある室内機の負荷定
数を差温検出回路2、ON−OFF判別回路4、定格容
量記憶回路5より得られるデータを用いて算出し、他の
室内機の負荷定数との総和に定数を乗じて圧縮機22の
周波数を決定するまでは、上記第2〜第4の実施例と同
じである。この演算結果を周波数信号として圧縮機駆動
回路(図示せず)に送出して、圧縮機22の周波数制御
を行うとともに、膨張弁開度演算回路9にも送出する。
前記膨張弁開度演算回路9においては、まず、室内機2
1a、21b、21cそれぞれの定格容量より弁初期開
度テーブル11から弁初期開度を読み出す。さらに、前
に算出した室内機21a、21b、21cの負荷定数を
その負荷定数の所定値で割ったものに、弁初期開度を乗
じて電動膨張弁30a、30b、30cの弁開度を決定
する。
A method of controlling the degree of opening of the electric expansion valve in this embodiment will be described. In FIG. 8, the indoor units 21a, 2a
In the case where at least one of the compressors 1b and 21c is in the maximum air-conditioning load zone in the temperature zone division diagram of FIG. 2, and the compressor capacity calculated by the compressor frequency calculation circuit 8 is less than the operation allowable value of the compressor 22 When calculating the compressor capacity in each predetermined cycle, the load constant of the indoor unit in the maximum air-conditioning load zone is calculated based on the data obtained from the differential temperature detection circuit 2, the ON-OFF determination circuit 4, and the rated capacity storage circuit 5. The process up to calculating the frequency of the compressor 22 and multiplying the sum with the load constants of the other indoor units by a constant to determine the frequency of the compressor 22 is the same as in the second to fourth embodiments. The calculation result is sent to a compressor drive circuit (not shown) as a frequency signal to control the frequency of the compressor 22 and to the expansion valve opening calculation circuit 9.
In the expansion valve opening calculation circuit 9, first, the indoor unit 2
The valve initial opening is read from the valve initial opening table 11 based on the rated capacity of each of the valves 1a, 21b, and 21c. Further, the valve opening of the electric expansion valves 30a, 30b, 30c is determined by multiplying the previously calculated load constant of the indoor units 21a, 21b, 21c by a predetermined value of the load constant and multiplying the result by the initial valve opening. I do.

【0081】このように、室内機の負荷が空調負荷極大
ゾーンにあっても、圧縮機22の容量に余裕がある場合
には、その余裕を活かして空調負荷極大ゾーンにある室
内機にその余裕分の能力を供給するように圧縮機周波数
を制御し、その能力に対応して電動膨張弁の開度を制御
するため、冷凍サイクルの能力分配を最適に制御しなが
ら、設定温度に到達するまでの時間を早くすることがで
き、快適性の向上および省エネルギーを図ることができ
る。
As described above, even if the load of the indoor unit is in the maximum air-conditioning load zone, if there is a margin in the capacity of the compressor 22, the extra room is utilized for the indoor unit in the maximum air-conditioning load zone. In order to control the compressor frequency to supply the minute capacity, and to control the opening of the electric expansion valve in accordance with the capacity, the distribution of the capacity of the refrigeration cycle is controlled optimally until the set temperature is reached. Can be shortened, and comfort can be improved and energy can be saved.

【0082】[0082]

【発明の効果】上記実施例より明らかなように、本発明
の多室形空気調和システムは、室内機のそれぞれに、希
望する室内温度を設定可能な室内温度設定手段と室内温
度を検出する室内温度検出手段とを設け、この室内温度
設定手段と室内温度検出手段とから設定室内温度と室内
温度との差温を算出する差温算出手段を設け、さらに前
記室内機のそれぞれの定格容量を判別する容量判別手段
および前記室内機のそれぞれについて運転中か停止中か
を判別するオンオフ判別手段を設け、前記差温が取り得
る温度範囲を複数個の温度ゾーンに分割し、各温度ゾー
ン毎にかつ室内機の定格容量毎に室内負荷に対応する負
荷定数を定めるとともに、冷房では所定温度ゾーン以
上、暖房では所定温度ゾーン以下の空調負荷極大ゾーン
を設け、室内機の定格容量毎に定格容量以上の負荷定数
を定めて記憶する負荷定数記憶手段を設け、室内機の定
格容量毎に弁初期開度を定めて記憶する弁初期開度記憶
手段を設け、前記差温算出手段、前記容量判別手段、前
記オンオフ判別手段、前記負荷定数記憶手段より得られ
るデータを用いて所定周期毎に圧縮機容量を算出する際
に1室でも空調負荷極大ゾーンに相当する負荷定数があ
る場合で、圧縮機容量が運転許容値に満たない時には、
前記負荷定数記憶手段より得られる空調負荷極大ゾーン
の負荷定数を用いて算出した容量とし、この容量値に基
づいて前記容量(周波数)可変形圧縮機の容量を制御す
る圧縮機容量制御手段を設け、前記データおよび前記弁
初期開度記憶手段より得られるデータを用いて所定周期
毎に運転中の室内機に接続された各電動膨張弁の弁開度
を算出し、この算出結果に基づいて前記電動膨張弁の弁
開度を制御する弁開度制御手段を設けることで、負荷の
少ない室内機に対しては、その負荷に応じた能力を供給
し、最大負荷にある室内機にのみ余裕ある室外能力を供
給するよう圧縮機周波数を制御するため、設定温度に到
達するまでの時間を早くすることができ、快適性の向上
および省エネルギーを図ることができる。
As is apparent from the above embodiment, the multi-room air conditioning system of the present invention has an indoor temperature setting means capable of setting a desired indoor temperature for each of the indoor units and an indoor room for detecting the indoor temperature. Temperature detecting means, and differential temperature calculating means for calculating a differential temperature between the set indoor temperature and the indoor temperature from the indoor temperature setting means and the indoor temperature detecting means, and further determining a rated capacity of each of the indoor units. Capacity determining means and on / off determining means for determining whether the indoor unit is operating or stopped for each of the indoor units, divides a temperature range in which the temperature difference can be taken into a plurality of temperature zones, and for each temperature zone and A load constant corresponding to the indoor load is determined for each rated capacity of the indoor unit, and a maximum air-conditioning load zone that is equal to or higher than a predetermined temperature zone for cooling and equal to or lower than a predetermined temperature zone for heating is provided. A load constant storage means for determining and storing a load constant equal to or greater than a rated capacity for each capacity; a valve initial opening storage means for determining and storing a valve initial opening for each rated capacity of the indoor unit; Means for calculating the compressor capacity at predetermined intervals using data obtained from the means, the capacity determination means, the on / off determination means, and the load constant storage means, there is a load constant corresponding to an air conditioning load maximum zone even in one room. If the compressor capacity is less than the allowable operating value,
Compressor capacity control means for controlling the capacity of the variable capacity (frequency) compressor based on the capacity value calculated using the load constant of the air conditioning load maximum zone obtained from the load constant storage means is provided. Calculating the valve opening of each electric expansion valve connected to the operating indoor unit at predetermined intervals using the data and the data obtained from the valve initial opening storage means, and based on the calculation result, By providing the valve opening control means for controlling the valve opening of the electric expansion valve, the capacity corresponding to the load is supplied to the indoor unit with a small load, and only the indoor unit with the maximum load has a margin. Since the compressor frequency is controlled so as to supply the outdoor capacity, the time required to reach the set temperature can be shortened, so that comfort can be improved and energy can be saved.

【0083】また、室内機のそれぞれに、希望する室内
温度を設定可能な室内温度設定手段と室内温度を検出す
る室内温度検出手段とを設け、この室内温度設定手段と
室内温度検出手段とから設定室内温度と室内温度との差
温を算出する差温算出手段を設け、さらに前記室内機の
それぞれの定格容量を判別する容量判別手段および前記
室内機のそれぞれについて運転中か停止中かを判別する
オンオフ判別手段を設け、前記差温が取り得る温度範囲
を複数個の温度ゾーンに分割し、各温度ゾーン毎にかつ
室内機の定格容量毎に室内負荷に対応する負荷定数を定
めるとともに、冷房では所定温度ゾーン以上、暖房では
所定温度ゾーン以下の空調負荷極大ゾーンを設け、室内
機の定格容量毎に空調負荷極大ゾーンにあることを示す
差温信号を定めて記憶する負荷定数記憶手段を設け、前
記差温算出手段、前記容量判別手段、前記オンオフ判別
手段、前記負荷定数記憶手段より得られるデータを用い
て所定周期毎に圧縮機容量を算出する際に1室でも空調
負荷極大ゾーンに相当する差温信号がある場合で、圧縮
機容量が運転許容値に満たない時には、近似式にて空調
負荷極大ゾーンにある室内機の負荷定数値を算出する負
荷定数算出手段を設け、前記データおよびこの負荷定数
算出手段より得られる負荷定数のデータを用いて圧縮機
容量を算出し、この算出結果に基づいて前記容量(周波
数)可変形圧縮機の容量を制御する圧縮機容量制御手段
を設けることで、空調負荷極大ゾーンにある室内機の負
荷定数値をその室内機の定格容量および差温データを用
いて近似式で求めて圧縮機周波数を制御するため、きめ
細かい負荷対応が可能であり、設定温度に到達するまで
の時間を早くすることができ、快適性の向上および省エ
ネルギーを図ることができる。
Each of the indoor units is provided with an indoor temperature setting means capable of setting a desired indoor temperature and an indoor temperature detecting means detecting the indoor temperature. A differential temperature calculating means for calculating a temperature difference between the indoor temperature and the indoor temperature; a capacity determining means for determining a rated capacity of each of the indoor units; and determining whether each of the indoor units is operating or stopped. On / off determining means is provided, the temperature range in which the temperature difference can be taken is divided into a plurality of temperature zones, and a load constant corresponding to an indoor load is determined for each temperature zone and for each rated capacity of the indoor unit. Provide a maximum air-conditioning load zone equal to or higher than a predetermined temperature zone and a predetermined temperature zone or less for heating, and determine a differential temperature signal indicating that the air conditioner is in the maximum air-conditioning load zone for each rated capacity of the indoor unit. A load constant storing means for storing the temperature difference, the capacity determining means, the on / off determining means, and the load constant storing means. When there is a differential temperature signal corresponding to the maximum air conditioning load zone in the room, and the compressor capacity is less than the allowable operation value, the load constant for calculating the load constant value of the indoor unit in the maximum air conditioning load zone using an approximate expression Calculating means for calculating a compressor capacity using the data and the load constant data obtained by the load constant calculating means, and controlling a capacity of the variable capacity (frequency) compressor based on the calculation result. By providing the compressor capacity control means, the load constant value of the indoor unit in the maximum air conditioning load zone is obtained by an approximate expression using the rated capacity of the indoor unit and the differential temperature data, and the compressor frequency is obtained. Gosuru Therefore, it is possible fine load correspondence, it is possible to quickly the time to reach the set temperature, it is possible to improve and energy saving comfort.

【0084】また、室内機のそれぞれに、希望する室内
温度を設定可能な室内温度設定手段と室内温度を検出す
る室内温度検出手段とを設け、この室内温度設定手段と
室内温度検出手段とから設定室内温度と室内温度との差
温を算出する差温算出手段を設け、さらに前記室内機の
それぞれの定格容量を判別する容量判別手段および前記
室内機のそれぞれについて運転中か停止中かを判別する
オンオフ判別手段を設け、前記差温が取り得る温度範囲
を複数個の温度ゾーンに分割し、各温度ゾーン毎にかつ
室内機の定格容量毎に室内負荷に対応する負荷定数を定
めるとともに、冷房では所定温度ゾーン以上、暖房では
所定温度ゾーン以下の空調負荷極大ゾーンを設け、室内
機の定格容量毎に空調負荷極大ゾーンにあることを示す
差温信号を定めて記憶する負荷定数記憶手段を設け、前
記差温算出手段、前記容量判別手段、前記オンオフ判別
手段、前記負荷定数記憶手段より得られるデータを用い
て所定周期毎に圧縮機容量を算出する際に1室でも空調
負荷極大ゾーンに相当する差温信号がある場合で、圧縮
機容量が運転許容値に満たない時には、圧縮機余裕分か
ら空調負荷極大ゾーンにある室内機の負荷定数値を算出
する負荷定数算出手段を設け、前記データおよびこの負
荷定数算出手段より得られる負荷定数のデータを用いて
圧縮機容量を算出し、この算出結果に基づいて前記容量
(周波数)可変形圧縮機の容量を制御する圧縮機容量制
御手段を設けることで、空調負荷極大ゾーンにある室内
機の負荷定数を、圧縮機容量余裕分を乗じて加算するた
め、圧縮機能力の余裕度を考慮してその余裕能力を有効
利用でき、よりきめ細かい負荷対応が可能であり、設定
温度に到達するまでの時間を早くすることができ、快適
性の向上および省エネルギーを図ることができる。
Further, each of the indoor units is provided with an indoor temperature setting means for setting a desired indoor temperature and an indoor temperature detecting means for detecting the indoor temperature, and the indoor temperature setting means and the indoor temperature detecting means are used for setting. A differential temperature calculating means for calculating a temperature difference between the indoor temperature and the indoor temperature; a capacity determining means for determining a rated capacity of each of the indoor units; and determining whether each of the indoor units is operating or stopped. On / off determining means is provided, the temperature range in which the temperature difference can be taken is divided into a plurality of temperature zones, and a load constant corresponding to an indoor load is determined for each temperature zone and for each rated capacity of the indoor unit. Provide a maximum air-conditioning load zone equal to or higher than a predetermined temperature zone and a predetermined temperature zone or less for heating, and determine a differential temperature signal indicating that the air conditioner is in the maximum air-conditioning load zone for each rated capacity of the indoor unit. A load constant storing means for storing the temperature difference, the capacity determining means, the on / off determining means, and the load constant storing means. When there is a differential temperature signal corresponding to the air conditioning load maximum zone even in the room, and the compressor capacity is less than the allowable operating value, the load constant for calculating the load constant value of the indoor unit in the air conditioning load maximum zone from the compressor margin Calculating means for calculating a compressor capacity using the data and the load constant data obtained by the load constant calculating means, and controlling a capacity of the variable capacity (frequency) compressor based on the calculation result. By providing the compressor capacity control means, the load constant of the indoor unit in the air-conditioning load maximum zone is added by multiplying the compressor capacity margin, so that the margin of the compression function power is considered. Margin capacity can be effectively utilized, it is possible more granular load correspondence, it is possible to quickly the time to reach the set temperature, it is possible to improve and energy saving comfort.

【0085】また、室内機のそれぞれに、希望する室内
温度を設定可能な室内温度設定手段と室内温度を検出す
る室内温度検出手段とを設け、この室内温度設定手段と
室内温度検出手段とから設定室内温度と室内温度との差
温を算出する差温算出手段を設け、さらに前記室内機の
それぞれの定格容量を判別する容量判別手段および前記
室内機のそれぞれについて運転中か停止中かを判別する
オンオフ判別手段を設け、前記差温が取り得る温度範囲
を複数個の温度ゾーンに分割し、各温度ゾーン毎にかつ
室内機の定格容量毎に室内負荷に対応する負荷定数を定
めるとともに、冷房では所定温度ゾーン以上、暖房では
所定温度ゾーン以下の空調負荷極大ゾーンを設け、室内
機の定格容量毎に空調負荷極大ゾーンにあることを示す
差温信号を定めて記憶する負荷定数記憶手段を設け、冷
凍サイクルの状態を検出する冷凍サイクルデータ検出手
段を設け、前記差温算出手段、前記容量判別手段、前記
オンオフ判別手段、前記負荷定数記憶手段より得られる
データを用いて所定周期毎に圧縮機容量を算出する際に
1室でも空調負荷極大ゾーンに相当する差温信号がある
場合で、圧縮機容量が運転許容値に満たない時には、室
内機の運転台数に応じて冷凍サイクルデータの制御目標
値に近づけるように圧縮機容量を算出し、この算出結果
に基づいて前記容量(周波数)可変形圧縮機の容量を制
御する圧縮機容量制御手段を設けることで、空調負荷極
大ゾーンに室内機がある場合、室内機の運転台数に応じ
て、たとえば凝縮圧力のような冷凍サイクルデータを制
御目標値として、圧縮機の周波数を制御するため、圧縮
機を過負荷状態にすることなく、きめ細かい負荷対応が
可能であり、設定温度に到達するまでの時間を早くする
ことができ、快適性の向上および省エネルギーを図るこ
とができる。
Further, each of the indoor units is provided with an indoor temperature setting means for setting a desired indoor temperature and an indoor temperature detecting means for detecting the indoor temperature, and the indoor temperature setting means and the indoor temperature detecting means are used for setting. A differential temperature calculating means for calculating a temperature difference between the indoor temperature and the indoor temperature; a capacity determining means for determining a rated capacity of each of the indoor units; and determining whether each of the indoor units is operating or stopped. On / off determining means is provided, the temperature range in which the temperature difference can be taken is divided into a plurality of temperature zones, and a load constant corresponding to an indoor load is determined for each temperature zone and for each rated capacity of the indoor unit. Provide a maximum air-conditioning load zone equal to or higher than a predetermined temperature zone and a predetermined temperature zone or less for heating, and determine a differential temperature signal indicating that the air conditioner is in the maximum air-conditioning load zone for each rated capacity of the indoor unit. Providing a load constant storage means for storing, and a refrigeration cycle data detection means for detecting a state of the refrigeration cycle, and storing data obtained from the differential temperature calculation means, the capacity determination means, the on / off determination means, and the load constant storage means. When the compressor capacity is calculated for each predetermined cycle using the temperature difference signal corresponding to the maximum air-conditioning load zone even in one room, if the compressor capacity is less than the operation allowable value, the number of indoor units operated is reduced. Accordingly, the compressor capacity is calculated so as to approach the control target value of the refrigeration cycle data, and compressor capacity control means for controlling the capacity of the capacity (frequency) variable compressor based on the calculation result is provided. If there is an indoor unit in the maximum air conditioning load zone, the frequency of the compressor is set according to the number of operating indoor units, using refrigeration cycle data such as condensation pressure as the control target value. Gosuru Therefore, without the compressor overload, it is possible fine load correspondence, it is possible to quickly the time to reach the set temperature, it is possible to improve and energy saving comfort.

【0086】また、室内機のそれぞれに、希望する室内
温度を設定可能な室内温度設定手段と室内温度を検出す
る室内温度検出手段とを設け、この室内温度設定手段と
室内温度検出手段とから設定室内温度と室内温度との差
温を算出する差温算出手段を設け、さらに前記室内機の
それぞれの定格容量を判別する容量判別手段および前記
室内機のそれぞれについて運転中か停止中かを判別する
オンオフ判別手段を設け、前記差温が取り得る温度範囲
を複数個の温度ゾーンに分割し、所定周期毎に前記デー
タを用いて近似式にて各室内機の負荷定数を算出する負
荷定数算出手段を設け、圧縮機容量を算出して、この算
出結果に基づいて前記容量(周波数)可変形圧縮機の容
量を制御する圧縮機容量制御手段を設けることで、各室
内機の負荷定数を室内機運転台数とそれぞれの定格容量
と各室差温信号より、近似式にて算出しているので、よ
りきめ細かい負荷対応が可能であり、設定温度に到達す
るまでの時間を早くすることができ、快適性の向上およ
び省エネルギーを図ることができる。また、負荷定数テ
ーブルを必要としないので、室内機の組合せが増加して
も、記憶回路の容量を増加させる必要がない。
Further, each of the indoor units is provided with an indoor temperature setting means for setting a desired indoor temperature and an indoor temperature detecting means for detecting the indoor temperature, and the indoor temperature setting means and the indoor temperature detecting means are used for setting. A differential temperature calculating means for calculating a temperature difference between the indoor temperature and the indoor temperature; a capacity determining means for determining a rated capacity of each of the indoor units; and determining whether each of the indoor units is operating or stopped. Load constant calculating means for providing an on / off determining means, dividing a temperature range in which the temperature difference can be taken into a plurality of temperature zones, and calculating a load constant of each indoor unit by an approximate expression using the data at predetermined intervals. Is provided, and compressor capacity control means for controlling the capacity of the variable capacity (frequency) compressor based on the calculation result is provided, so that the load constant of each indoor unit is reduced. Calculated by an approximate formula from the number of operating internal units, their respective rated capacities, and each room temperature difference signal, it is possible to respond more finely to the load and shorten the time required to reach the set temperature. Therefore, it is possible to improve comfort and save energy. Further, since a load constant table is not required, it is not necessary to increase the capacity of the storage circuit even if the number of indoor units increases.

【0087】また、運転中および運転を開始した室内機
のそれぞれについて、負荷定数記憶手段より定格容量お
よび現在の差温に対応する負荷定数および負荷定数の所
定値を読み出し、弁初期開度記憶手段より定格容量に対
応する弁初期開度を読み出し、1室でも空調負荷極大ゾ
ーンに相当する負荷定数がある場合で、圧縮機容量が運
転許容値に満たない時には、空調負荷極大ゾーンにある
室内機に接続された電動膨張弁の弁開度を負荷定数の所
定値の逆数と負荷定数算出手段より算出した負荷定数と
弁初期開度の積として、この積の値となるよう制御する
弁開度制御手段を設けることで、このように、室内機の
負荷が空調負荷極大ゾーンにあっても、圧縮機52の容
量に余裕がある場合には、その余裕を活かして空調負荷
極大ゾーンにある室内機にその余裕分の能力を供給する
ように圧縮機周波数を制御し、その能力に対応して電動
膨張弁の開度を制御するため、冷凍サイクルの能力分配
を最適に制御しながら、設定温度に到達するまでの時間
を早くすることができ、快適性の向上および省エネルギ
ーを図ることができる。
Further, for each of the indoor units during and after operation, the load constant corresponding to the rated capacity and the present differential temperature and a predetermined value of the load constant are read from the load constant storage means, and the valve initial opening degree storage means is read. Read the initial valve opening corresponding to the rated capacity and read the indoor unit in the maximum air-conditioning load zone when the compressor capacity is less than the allowable operating value if there is a load constant corresponding to the maximum air-conditioning load zone even in one room. The valve opening for controlling the valve opening of the electric expansion valve connected to the valve as a product of the reciprocal of a predetermined value of the load constant, the load constant calculated by the load constant calculating means and the valve initial opening, and the value of this product. By providing the control means, even if the load of the indoor unit is in the maximum air-conditioning load zone, if there is a margin in the capacity of the compressor 52 as described above, the room is in the maximum air-conditioning load zone by utilizing the margin. The compressor frequency is controlled to supply the extra capacity to the internal unit, and the opening of the electric expansion valve is controlled according to the capacity. The time until the temperature is reached can be shortened, and comfort can be improved and energy can be saved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の多室空気調和システムの第1の実施例
における圧縮機周波数および電動膨張弁開度の制御ブロ
ック図
FIG. 1 is a control block diagram of a compressor frequency and an electric expansion valve opening in a first embodiment of a multi-room air conditioning system of the present invention.

【図2】(a)同実施例における冷房時の差温ΔTの温
度ゾーン分割図 (b)同暖房時の差温ΔTの温度ゾーン分割図
FIG. 2 (a) is a temperature zone division diagram of a temperature difference ΔT during cooling in the embodiment. (B) is a temperature zone division diagram of a temperature difference ΔT during heating.

【図3】本発明の多室空気調和システムの第2の実施例
における圧縮機周波数の制御ブロック図
FIG. 3 is a control block diagram of a compressor frequency in a second embodiment of the multi-room air conditioning system of the present invention.

【図4】本発明の多室空気調和システムの第4の実施例
における冷凍サイクル図
FIG. 4 is a refrigeration cycle diagram in a fourth embodiment of the multi-room air conditioning system of the present invention.

【図5】本発明の多室空気調和システムの第4の実施例
における圧縮機周波数の制御ブロック図
FIG. 5 is a control block diagram of a compressor frequency in a fourth embodiment of the multi-room air conditioning system of the present invention.

【図6】本発明の多室空気調和システムの第4の実施例
における室内機運転台数と凝縮圧力制御目標値との関係
FIG. 6 is a diagram showing a relationship between the number of operating indoor units and a target value of condensing pressure control in a fourth embodiment of the multi-room air conditioning system of the present invention.

【図7】本発明の多室空気調和システムの第5の実施例
における圧縮機周波数の制御ブロック図
FIG. 7 is a control block diagram of a compressor frequency in a fifth embodiment of the multi-room air conditioning system of the present invention.

【図8】本発明の多室空気調和システムの第6の実施例
における圧縮機周波数の制御ブロック図
FIG. 8 is a control block diagram of a compressor frequency in a sixth embodiment of the multi-room air conditioning system of the present invention.

【図9】従来の多室空気調和システムの冷凍サイクル図FIG. 9 is a refrigeration cycle diagram of a conventional multi-room air conditioning system.

【図10】従来の多室空気調和システムの圧縮機周波数
および電動膨張弁開度の制御ブロック図
FIG. 10 is a control block diagram of a compressor frequency and an electric expansion valve opening of a conventional multi-room air conditioning system.

【図11】(a)従来の冷房時の差温ΔTの温度ゾーン
分割図 (b)同暖房時の差温ΔTの温度ゾーン分割図
FIG. 11A is a conventional temperature zone division diagram of the differential temperature ΔT during cooling. FIG. 11B is a conventional temperature zone division diagram of the differential temperature ΔT during heating.

【符号の説明】[Explanation of symbols]

1 室内温度検出回路 2 差温演算回路 3 設定判別回路 4 ON−OFF判別回路 5 定格容量記憶回路 6 信号送出回路 7 信号受信回路 8 圧縮機周波数演算回路 9 膨張弁開度演算回路 10 負荷定数テーブル 11 弁初期開度演算回路 12 凝縮圧力検出回路 20 室外機 21a 室内機 21b 室内機 21c 室内機 22 周波数可変形圧縮機 23 室外熱交換器 24 四方弁 25a 室内熱交換器 25b 室内熱交換器 25c 室内熱交換器 26 液側主管 27a 液側分岐管 27b 液側分岐管 27c 液側分岐管 28 ガス側主管 29a ガス側分岐管 29b ガス側分岐管 29c ガス側分岐管 30a 電動膨張弁 30b 電動膨張弁 30c 電動膨張弁 31 レシーバ 32 補助絞り 33 吸入管 34 バイパス管 35 補助絞り 36a 室内温度センサ 36b 室内温度センサ 36c 室内温度センサ 37a 運転設定回路 37b 運転設定回路 37c 運転設定回路 40 圧力センサ DESCRIPTION OF SYMBOLS 1 Room temperature detection circuit 2 Difference temperature calculation circuit 3 Setting discrimination circuit 4 ON-OFF discrimination circuit 5 Rated capacity storage circuit 6 Signal transmission circuit 7 Signal reception circuit 8 Compressor frequency calculation circuit 9 Expansion valve opening calculation circuit 10 Load constant table Reference Signs List 11 valve initial opening calculation circuit 12 condensation pressure detection circuit 20 outdoor unit 21a indoor unit 21b indoor unit 21c indoor unit 22 variable frequency compressor 23 outdoor heat exchanger 24 four-way valve 25a indoor heat exchanger 25b indoor heat exchanger 25c indoor Heat exchanger 26 Liquid side main pipe 27a Liquid side branch pipe 27b Liquid side branch pipe 27c Liquid side branch pipe 28 Gas side main pipe 29a Gas side branch pipe 29b Gas side branch pipe 29c Gas side branch pipe 30a Electric expansion valve 30b Electric expansion valve 30c Electric expansion valve 31 Receiver 32 Auxiliary throttle 33 Suction pipe 34 Bypass pipe 35 Auxiliary throttle 36a Room temperature Sensor 36b indoor temperature sensor 36c indoor temperature sensor 37a operation setting circuit 37b operation setting circuit 37c operation setting circuit 40 pressure sensor

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平5−322275(JP,A) 特開 平6−123474(JP,A) 特開 平6−257828(JP,A) 特開 平4−363532(JP,A) 特開 平7−35390(JP,A) 特開 平3−79946(JP,A) 特開 平2−57875(JP,A) 特開 平6−257827(JP,A) (58)調査した分野(Int.Cl.7,DB名) F24F 11/02 102 ────────────────────────────────────────────────── ─── Continuation of front page (56) References JP-A-5-322275 (JP, A) JP-A-6-123474 (JP, A) JP-A-6-257828 (JP, A) JP-A-4- 363532 (JP, A) JP-A-7-35390 (JP, A) JP-A-3-79946 (JP, A) JP-A-2-57875 (JP, A) JP-A-6-2557827 (JP, A) (58) Field surveyed (Int. Cl. 7 , DB name) F24F 11/02 102

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 容量(周波数)可変形圧縮機、四方弁、
室外熱交換器を有する1台の室外機と、室内熱交換器を
有する複数台の室内機とを、前記室外機に設けて主に冷
媒液が流れる液側主管を分岐した液側分岐管および前記
室外機に設けて主に冷媒ガスが流れるガス側主管を分岐
したガス側分岐管を介して接続し、前記液側分岐管のそ
れぞれに電気的に弁開度を制御可能とした電動膨張弁を
介装して冷凍サイクルを構成し、前記室内機のそれぞれ
に、希望する室内温度を設定可能な室内温度設定手段と
室内温度を検出する室内温度検出手段とを設け、この室
内温度設定手段と室内温度検出手段とから設定室内温度
と室内温度との差温を算出する差温算出手段を設け、さ
らに前記室内機のそれぞれの定格容量を判別する容量判
別手段および前記室内機のそれぞれについて運転中か停
止中かを判別するオンオフ判別手段を設け、前記差温が
取り得る温度範囲を複数個の温度ゾーンに分割し、各温
度ゾーン毎にかつ室内機の定格容量毎に室内負荷に対応
する負荷定数を定めるとともに、冷房では所定温度ゾー
ン以上、暖房では所定温度ゾーン以下の空調負荷極大ゾ
ーンを設け、前記室内機の定格容量毎に定格容量以上の
負荷定数を定めて記憶する負荷定数記憶手段を設け、前
記室内機の定格容量毎に弁初期開度を定めて記憶する弁
初期開度記憶手段を設け、前記差温算出手段、前記容量
判別手段、前記オンオフ判別手段、前記負荷定数記憶手
段より得られるデータを用いて所定周期毎に圧縮機容量
を算出する際に1室でも前記空調負荷極大ゾーンに相当
する差温信号がある場合で、前記圧縮機容量が運転許容
値に満たない時には、前記負荷定数記憶手段より得られ
る空調負荷極大ゾーンの負荷定数を用いて算出した容量
とし、この容量値に基づいて前記容量(周波数)可変形
圧縮機の容量を制御する圧縮機容量制御手段を設け、前
記データおよび前記弁初期開度記憶手段より得られるデ
ータを用いて所定周期毎に運転中の室内機に接続された
各電動膨張弁の弁開度を算出し、この算出結果に基づい
て前記電動膨張弁の弁開度を制御する弁開度制御手段を
設けた多室形空気調和システム。
1. A capacity (frequency) variable compressor, a four-way valve,
One outdoor unit having an outdoor heat exchanger, and a plurality of indoor units having an indoor heat exchanger, a liquid-side branch pipe provided in the outdoor unit and branching a liquid-side main pipe through which a refrigerant liquid mainly flows, and A motor-operated expansion valve which is provided in the outdoor unit and is connected to a gas-side main pipe through which a gas-side main pipe through which refrigerant gas mainly flows is branched, so that a valve opening can be electrically controlled for each of the liquid-side branch pipes. A refrigeration cycle is configured by interposing a room temperature, and an indoor temperature setting unit that can set a desired indoor temperature and an indoor temperature detection unit that detects an indoor temperature are provided in each of the indoor units. A differential temperature calculating means for calculating a temperature difference between the set indoor temperature and the indoor temperature from the indoor temperature detecting means, and a capacity determining means for determining a rated capacity of each of the indoor units, and an operation of each of the indoor units. Whether it is stopped or stopped And a load constant corresponding to the indoor load for each temperature zone and for each rated capacity of the indoor unit. A maximum air conditioning load zone that is equal to or higher than a predetermined temperature zone and equal to or lower than a predetermined temperature zone for heating is provided, and a load constant storage unit that determines and stores a load constant equal to or higher than the rated capacity for each rated capacity of the indoor unit is provided. Valve initial opening storage means for determining and storing a valve initial opening for each capacity is provided, and a predetermined value is obtained by using data obtained from the temperature difference calculating means, the capacity determining means, the on / off determining means, and the load constant storing means. When calculating the compressor capacity for each cycle, if there is a differential temperature signal corresponding to the air conditioning load maximum zone even in one room, and when the compressor capacity is less than the allowable operation value, the load constant Compressor capacity control means for controlling the capacity of the variable capacity (frequency) compressor based on the capacity value calculated using the load constant of the maximum air conditioning load zone obtained from the storage means; And using the data obtained from the valve initial opening storage means to calculate the valve opening of each electric expansion valve connected to the operating indoor unit at predetermined intervals, and based on the calculation result, the electric expansion valve A multi-chamber air conditioning system provided with a valve opening control means for controlling the valve opening.
【請求項2】 容量(周波数)可変形圧縮機、四方弁、
室外熱交換器を有する1台の室外機と、室内熱交換器を
有する複数台の室内機とを、前記室外機に設けて主に冷
媒液が流れる液側主管を分岐した液側分岐管および前記
室外機に設けて主に冷媒ガスが流れるガス側主管を分岐
したガス側分岐管を介して接続し、前記液側分岐管のそ
れぞれに電気的に弁開度を制御可能とした電動膨張弁を
介装して冷凍サイクルを構成し、前記室内機のそれぞれ
に、希望する室内温度を設定可能な室内温度設定手段と
室内温度を検出する室内温度検出手段とを設け、この室
内温度設定手段と室内温度検出手段とから設定室内温度
と室内温度との差温を算出する差温算出手段を設け、さ
らに前記室内機のそれぞれの定格容量を判別する容量判
別手段および前記室内機のそれぞれについて運転中か停
止中かを判別するオンオフ判別手段を設け、前記差温が
取り得る温度範囲を複数個の温度ゾーンに分割し、各温
度ゾーン毎にかつ室内機の定格容量毎に室内負荷に対応
する負荷定数を定めるとともに、冷房では所定温度ゾー
ン以上、暖房では所定温度ゾーン以下の空調負荷極大ゾ
ーンを設け、前記室内機の定格容量毎に空調負荷極大ゾ
ーンにあることを示す差温信号を定めて記憶する負荷定
数記憶手段を設け、前記差温算出手段、前記容量判別手
段、前記オンオフ判別手段、前記負荷定数記憶手段より
得られるデータを用いて所定周期毎に圧縮機容量を算出
する際に1室でも空調負荷極大ゾーンに相当する差温信
号がある場合で、圧縮機容量が運転許容値に満たない時
には、近似式にて空調負荷極大ゾーンにある室内機の負
荷定数値を算出する負荷定数算出手段を設け、前記デー
タおよびこの負荷定数算出手段より得られる負荷定数の
データを用いて圧縮機容量を算出し、この算出結果に基
づいて前記容量(周波数)可変形圧縮機の容量を制御す
る圧縮機容量制御手段を設けた多室形空気調和システ
ム。
2. A capacity (frequency) variable compressor, a four-way valve,
One outdoor unit having an outdoor heat exchanger, and a plurality of indoor units having an indoor heat exchanger, a liquid-side branch pipe provided in the outdoor unit and branching a liquid-side main pipe through which a refrigerant liquid mainly flows, and A motor-operated expansion valve which is provided in the outdoor unit and is connected to a gas-side main pipe through which a gas-side main pipe through which refrigerant gas mainly flows is branched, so that a valve opening can be electrically controlled for each of the liquid-side branch pipes. A refrigeration cycle is configured by interposing a room temperature, and an indoor temperature setting unit that can set a desired indoor temperature and an indoor temperature detection unit that detects an indoor temperature are provided in each of the indoor units. A differential temperature calculating means for calculating a temperature difference between the set indoor temperature and the indoor temperature from the indoor temperature detecting means, and a capacity determining means for determining a rated capacity of each of the indoor units, and an operation of each of the indoor units. Whether it is stopped or stopped And a load constant corresponding to the indoor load for each temperature zone and for each rated capacity of the indoor unit. A maximum air conditioning load zone equal to or higher than a predetermined temperature zone and equal to or lower than a predetermined temperature zone in heating is provided. When calculating the compressor capacity at predetermined intervals using data obtained from the differential temperature calculation means, the capacity determination means, the on / off determination means, and the load constant storage means, even one room corresponds to the air-conditioning load maximum zone. If the compressor capacity is less than the permissible operating value when there is a differential temperature signal, the load constant calculation method for calculating the load constant of the indoor unit in the maximum air-conditioning load zone by an approximate expression A compressor that calculates a compressor capacity using the data and the load constant data obtained by the load constant calculation means, and controls the capacity of the variable capacity (frequency) compressor based on the calculation result. A multi-room air conditioning system provided with capacity control means.
【請求項3】 容量(周波数)可変形圧縮機、四方弁、
室外熱交換器を有する1台の室外機と、室内熱交換器を
有する複数台の室内機とを、前記室外機に設けて主に冷
媒液が流れる液側主管を分岐した液側分岐管および前記
室外機に設けて主に冷媒ガスが流れるガス側主管を分岐
したガス側分岐管を介して接続し、前記液側分岐管のそ
れぞれに電気的に弁開度を制御可能とした電動膨張弁を
介装して冷凍サイクルを構成し、前記室内機のそれぞれ
に、希望する室内温度を設定可能な室内温度設定手段と
室内温度を検出する室内温度検出手段とを設け、この室
内温度設定手段と室内温度検出手段とから設定室内温度
と室内温度との差温を算出する差温算出手段を設け、さ
らに前記室内機のそれぞれの定格容量を判別する容量判
別手段および前記室内機のそれぞれについて運転中か停
止中かを判別するオンオフ判別手段を設け、前記差温が
取り得る温度範囲を複数個の温度ゾーンに分割し、各温
度ゾーン毎にかつ室内機の定格容量毎に室内負荷に対応
する負荷定数を定めるとともに、冷房では所定温度ゾー
ン以上、暖房では所定温度ゾーン以下の空調負荷極大ゾ
ーンを設け、室内機の定格容量毎に空調負荷極大ゾーン
にあることを示す差温信号を定めて記憶する負荷定数記
憶手段を設け、前記差温算出手段、前記容量判別手段、
前記オンオフ判別手段、前記負荷定数記憶手段より得ら
れるデータを用いて所定周期毎に圧縮機容量を算出する
際に1室でも空調負荷極大ゾーンに相当する差温信号が
ある場合で、圧縮機容量が運転許容値に満たない時に
は、圧縮機余裕分から空調負荷極大ゾーンにある室内機
の負荷定数値を算出する負荷定数算出手段を設け、前記
データおよびこの負荷定数算出手段より得られる負荷定
数のデータを用いて圧縮機容量を算出し、この算出結果
に基づいて前記容量(周波数)可変形圧縮機の容量を制
御する圧縮機容量制御手段を設けた多室形空気調和シス
テム。
3. A variable displacement (frequency) compressor, a four-way valve,
One outdoor unit having an outdoor heat exchanger, and a plurality of indoor units having an indoor heat exchanger, a liquid-side branch pipe provided in the outdoor unit and branching a liquid-side main pipe through which a refrigerant liquid mainly flows, and A motor-operated expansion valve which is provided in the outdoor unit and is connected to a gas-side main pipe through which a gas-side main pipe through which refrigerant gas mainly flows is branched, so that a valve opening can be electrically controlled for each of the liquid-side branch pipes. A refrigeration cycle is configured by interposing a room temperature, and an indoor temperature setting unit that can set a desired indoor temperature and an indoor temperature detection unit that detects an indoor temperature are provided in each of the indoor units. A differential temperature calculating means for calculating a temperature difference between the set indoor temperature and the indoor temperature from the indoor temperature detecting means, and a capacity determining means for determining a rated capacity of each of the indoor units, and an operation of each of the indoor units. Whether it is stopped or stopped And a load constant corresponding to the indoor load for each temperature zone and for each rated capacity of the indoor unit. Above a predetermined temperature zone, heating provides an air conditioning load maximum zone below the predetermined temperature zone, and a load constant storage means for determining and storing a differential temperature signal indicating that the air conditioner is in the air conditioning load maximum zone for each rated capacity of the indoor unit, The temperature difference calculating means, the capacity determining means,
When calculating the compressor capacity at predetermined intervals using the data obtained from the on / off determining means and the load constant storage means, if there is a differential temperature signal corresponding to the air conditioning load maximum zone even in one room, the compressor capacity Is smaller than the allowable operating value, a load constant calculating means for calculating a load constant value of the indoor unit in the air conditioning load maximum zone from the compressor margin is provided, and the data and the load constant data obtained by the load constant calculating means are provided. And a compressor capacity control means for controlling the capacity of the variable capacity (frequency) compressor based on the calculation result.
【請求項4】 容量(周波数)可変形圧縮機、四方弁、
室外熱交換器を有する1台の室外機と、室内熱交換器を
有する複数台の室内機とを、前記室外機に設けて主に冷
媒液が流れる液側主管を分岐した液側分岐管および前記
室外機に設けて主に冷媒ガスが流れるガス側主管を分岐
したガス側分岐管を介して接続し、前記液側分岐管のそ
れぞれに電気的に弁開度を制御可能とした電動膨張弁を
介装して冷凍サイクルを構成し、前記室内機のそれぞれ
に、希望する室内温度を設定可能な室内温度設定手段と
室内温度を検出する室内温度検出手段とを設け、この室
内温度設定手段と室内温度検出手段とから設定室内温度
と室内温度との差温を算出する差温算出手段を設け、さ
らに前記室内機のそれぞれの定格容量を判別する容量判
別手段および前記室内機のそれぞれについて運転中か停
止中かを判別するオンオフ判別手段を設け、前記差温が
取り得る温度範囲を複数個の温度ゾーンに分割し、各温
度ゾーン毎にかつ室内機の定格容量毎に室内負荷に対応
する負荷定数を定めるとともに、冷房では所定温度ゾー
ン以上、暖房では所定温度ゾーン以下の空調負荷極大ゾ
ーンを設け、室内機の定格容量毎に空調負荷極大ゾーン
にあることを示す差温信号を定めて記憶する負荷定数記
憶手段を設け、冷凍サイクルの状態を検出する冷凍サイ
クルデータ検出手段を設け、前記差温算出手段、前記容
量判別手段、前記オンオフ判別手段、前記負荷定数記憶
手段より得られるデータを用いて所定周期毎に圧縮機容
量を算出する際に1室でも空調負荷極大ゾーンに相当す
る差温信号がある場合で、圧縮機容量が運転許容値に満
たない時には、室内機の運転台数に応じて冷凍サイクル
データの制御目標値に近づけるように圧縮機容量を算出
し、この算出結果に基づいて前記容量(周波数)可変形
圧縮機の容量を制御する圧縮機容量制御手段を設けた多
室形空気調和システム。
4. A capacity (frequency) variable compressor, a four-way valve,
One outdoor unit having an outdoor heat exchanger, and a plurality of indoor units having an indoor heat exchanger, a liquid-side branch pipe provided in the outdoor unit and branching a liquid-side main pipe through which a refrigerant liquid mainly flows, and A motor-operated expansion valve which is provided in the outdoor unit and is connected to a gas-side main pipe through which a gas-side main pipe through which refrigerant gas mainly flows is branched, so that a valve opening can be electrically controlled for each of the liquid-side branch pipes. A refrigeration cycle is configured by interposing a room temperature, and an indoor temperature setting unit that can set a desired indoor temperature and an indoor temperature detection unit that detects an indoor temperature are provided in each of the indoor units. A differential temperature calculating means for calculating a temperature difference between the set indoor temperature and the indoor temperature from the indoor temperature detecting means, and a capacity determining means for determining a rated capacity of each of the indoor units, and an operation of each of the indoor units. Whether it is stopped or stopped And a load constant corresponding to the indoor load for each temperature zone and for each rated capacity of the indoor unit. Above a predetermined temperature zone, heating provides an air conditioning load maximum zone below the predetermined temperature zone, and a load constant storage means for determining and storing a differential temperature signal indicating that the air conditioner is in the air conditioning load maximum zone for each rated capacity of the indoor unit, Refrigeration cycle data detection means for detecting the state of the refrigeration cycle is provided, and the compressor capacity is determined at predetermined intervals using data obtained from the temperature difference calculation means, the capacity determination means, the on / off determination means, and the load constant storage means. When there is a differential temperature signal corresponding to the air-conditioning load maximum zone even in one of the rooms when the compressor capacity is less than the allowable operating value, Multi-chamber provided with compressor capacity control means for controlling the capacity of the variable capacity (frequency) compressor based on the calculation result. Type air conditioning system.
【請求項5】 容量(周波数)可変形圧縮機、四方弁、
室外熱交換器を有する1台の室外機と、室内熱交換器を
有する複数台の室内機とを、前記室外機に設けて主に冷
媒液が流れる液側主管を分岐した液側分岐管および前記
室外機に設けて主に冷媒ガスが流れるガス側主管を分岐
したガス側分岐管を介して接続し、前記液側分岐管のそ
れぞれに電気的に弁開度を制御可能とした電動膨張弁を
介装して冷凍サイクルを構成し、前記室内機のそれぞれ
に、希望する室内温度を設定可能な室内温度設定手段と
室内温度を検出する室内温度検出手段とを設け、この室
内温度設定手段と室内温度検出手段とから設定室内温度
と室内温度との差温を算出する差温算出手段を設け、さ
らに前記室内機のそれぞれの定格容量を判別する容量判
別手段および前記室内機のそれぞれについて運転中か停
止中かを判別するオンオフ判別手段を設け、前記差温が
取り得る温度範囲を複数個の温度ゾーンに分割し、所定
周期毎に前記データを用いて近似式にて各室内機の負荷
定数を算出する負荷定数算出手段を設け、圧縮機容量を
算出して、この算出結果に基づいて前記容量(周波数)
可変形圧縮機の容量を制御する圧縮機容量制御手段を設
けた多室形空気調和システム。
5. A variable displacement (frequency) compressor, a four-way valve,
One outdoor unit having an outdoor heat exchanger, and a plurality of indoor units having an indoor heat exchanger, a liquid-side branch pipe provided in the outdoor unit and branching a liquid-side main pipe through which a refrigerant liquid mainly flows, and A motor-operated expansion valve which is provided in the outdoor unit and is connected to a gas-side main pipe through which a gas-side main pipe through which refrigerant gas mainly flows is branched, so that a valve opening can be electrically controlled for each of the liquid-side branch pipes. A refrigeration cycle is configured by interposing a room temperature, and an indoor temperature setting unit that can set a desired indoor temperature and an indoor temperature detection unit that detects an indoor temperature are provided in each of the indoor units. A differential temperature calculating means for calculating a temperature difference between the set indoor temperature and the indoor temperature from the indoor temperature detecting means, and a capacity determining means for determining a rated capacity of each of the indoor units, and an operation of each of the indoor units. Whether it is stopped or stopped Load constant calculating means for dividing the temperature range in which the temperature difference can be taken into a plurality of temperature zones, and calculating the load constant of each indoor unit by an approximate expression using the data at predetermined intervals. And calculate the compressor capacity, and based on the calculation result, the capacity (frequency)
A multi-room air conditioning system provided with compressor capacity control means for controlling the capacity of a variable compressor.
【請求項6】 運転中および運転を開始した室内機のそ
れぞれについて、負荷定数記憶手段より定格容量および
現在の差温に対応する負荷定数および負荷定数の所定値
を読み出し、弁初期開度記憶手段より定格容量に対応す
る弁初期開度を読み出し、1室でも空調負荷極大ゾーン
に相当する負荷定数がある場合で、圧縮機容量が運転許
容値に満たない時には、空調負荷極大ゾーンにある室内
機に接続された電動膨張弁の弁開度を負荷定数の所定値
の逆数と負荷定数算出手段より算出した負荷定数と弁初
期開度の積として、この積の値となるよう制御する弁開
度制御手段を設けた請求項2から4いずれか1項記載の
多室形空気調和システム。
6. A load initial value storage means for reading a rated capacity and a load constant corresponding to a current differential temperature from a load constant storage means for each of the indoor units during and after operation, and a valve initial opening degree storage means. Read the initial valve opening corresponding to the rated capacity and read the indoor unit in the maximum air-conditioning load zone when the compressor capacity is less than the allowable operating value if there is a load constant corresponding to the maximum air-conditioning load zone even in one room. The valve opening for controlling the valve opening of the electric expansion valve connected to the valve as a product of the reciprocal of a predetermined value of the load constant, the load constant calculated by the load constant calculating means and the valve initial opening, and the value of this product. The multi-room air conditioning system according to any one of claims 2 to 4, further comprising control means.
JP30871495A 1995-11-28 1995-11-28 Multi-room air conditioning system Expired - Fee Related JP3275669B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30871495A JP3275669B2 (en) 1995-11-28 1995-11-28 Multi-room air conditioning system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30871495A JP3275669B2 (en) 1995-11-28 1995-11-28 Multi-room air conditioning system

Publications (2)

Publication Number Publication Date
JPH09145130A JPH09145130A (en) 1997-06-06
JP3275669B2 true JP3275669B2 (en) 2002-04-15

Family

ID=17984400

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30871495A Expired - Fee Related JP3275669B2 (en) 1995-11-28 1995-11-28 Multi-room air conditioning system

Country Status (1)

Country Link
JP (1) JP3275669B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11454411B2 (en) 2020-03-23 2022-09-27 Johnson Controls Tyco IP Holdings LLP Zone air flow rate adjustment for an HVAC system

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100556771B1 (en) * 2003-11-04 2006-03-10 엘지전자 주식회사 Room temperature control method for air conditioner equipped with multi compressor
KR101117249B1 (en) * 2004-12-06 2012-03-15 삼성전자주식회사 A multi air conditioner system and electronic expansion valve opening degree control method of the multi air conditioner system
JP4920432B2 (en) * 2007-01-23 2012-04-18 三菱電機株式会社 Air conditioning system
JP6020162B2 (en) * 2011-12-28 2016-11-02 ダイキン工業株式会社 Air conditioner
JP6624219B2 (en) * 2018-02-23 2019-12-25 ダイキン工業株式会社 Air conditioner

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0762569B2 (en) * 1988-08-19 1995-07-05 ダイキン工業株式会社 Operation control device for air conditioner
JPH0833224B2 (en) * 1989-08-21 1996-03-29 三菱電機株式会社 Multi-room air conditioner
JPH04363532A (en) * 1991-03-15 1992-12-16 Toshiba Corp Air-conditioner
JP2730398B2 (en) * 1992-05-15 1998-03-25 松下電器産業株式会社 Multi-room air conditioning system
JP3097350B2 (en) * 1992-10-12 2000-10-10 松下電器産業株式会社 Multi-room air conditioner
JPH06257827A (en) * 1993-03-02 1994-09-16 Matsushita Electric Ind Co Ltd Multi chamber type air conditioning system
JPH06257828A (en) * 1993-03-02 1994-09-16 Matsushita Electric Ind Co Ltd Multi-chamber type air conditioning system
JPH0735390A (en) * 1993-07-26 1995-02-07 Sanyo Electric Co Ltd Air conditioning apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11454411B2 (en) 2020-03-23 2022-09-27 Johnson Controls Tyco IP Holdings LLP Zone air flow rate adjustment for an HVAC system

Also Published As

Publication number Publication date
JPH09145130A (en) 1997-06-06

Similar Documents

Publication Publication Date Title
US5245837A (en) Air-conditioning apparatus wherein a plurality of indoor units are connected to outdoor unit
JP3290306B2 (en) Air conditioner
US6044652A (en) Multi-room type air-conditioner
US6612121B2 (en) Air conditioner control system and control method thereof
US7578137B2 (en) Air-conditioning system with multiple indoor and outdoor units and control system therefor
US6843066B2 (en) Air conditioning system and method for controlling the same
US5074120A (en) Multi-type air-conditioning system with fast hot starting for heating operation
KR102122592B1 (en) Control method of air-conditioning system
JPH0762569B2 (en) Operation control device for air conditioner
JPH0626723A (en) Multiple air conditioner
JPH06201176A (en) Air-conditioner
JP3275669B2 (en) Multi-room air conditioning system
US4926653A (en) Multi-room type air-conditioning equipment
EP1956306B1 (en) Multi-system air-conditioner and method for controlling the same
KR20050075096A (en) Each room load calculate method of a multi-type air conditioner and control method of linear expansion valve
KR101064412B1 (en) Method and apparatus for sensing refrigerants leakage of multi type air conditioner
JP3223918B2 (en) Multi-room air conditioning system
JP7058773B2 (en) Air conditioner
JP4151219B2 (en) Multi-chamber air conditioner
JPH08189690A (en) Heating and dehumidifying operation controller for multi-room split type air conditioner
JP2003247742A (en) Multi-chamber type air conditioner and control method thereof
JP2730398B2 (en) Multi-room air conditioning system
JP2893844B2 (en) Air conditioner
JP3326999B2 (en) Multi-room air conditioner
JP3097350B2 (en) Multi-room air conditioner

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080208

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090208

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100208

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100208

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110208

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120208

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130208

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130208

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140208

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees