JPH06257827A - Multi chamber type air conditioning system - Google Patents

Multi chamber type air conditioning system

Info

Publication number
JPH06257827A
JPH06257827A JP5040881A JP4088193A JPH06257827A JP H06257827 A JPH06257827 A JP H06257827A JP 5040881 A JP5040881 A JP 5040881A JP 4088193 A JP4088193 A JP 4088193A JP H06257827 A JPH06257827 A JP H06257827A
Authority
JP
Japan
Prior art keywords
valve
temperature
capacity
indoor
valve opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5040881A
Other languages
Japanese (ja)
Inventor
Shinji Watanabe
伸二 渡辺
Akira Fujitaka
章 藤高
Kanji Haneda
完爾 羽根田
Koji Murozono
宏治 室園
Masaaki Okabe
正明 岡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP5040881A priority Critical patent/JPH06257827A/en
Publication of JPH06257827A publication Critical patent/JPH06257827A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

PURPOSE:To provide a multi-chamber type air conditioning system for improving a comfortable feeling and making an energy saving by a method wherein its capability is realized in response to a requested capability of each of a plurality of chambers. CONSTITUTION:There are provided a temperature difference calculation circuit 22, a rated capacity memory circuit 25, an ON-OFF discriminating circuit 24, and a compressor capacity control means for calculating a compressor capacity for every period and controlling a capacity of a capacity variable (frequency) type compressor in response to a result of calculation by applying data got from a load constant table 30. During operation of a plurality of indoor devices 2a, 2b and 2c, a degree of opening of each of various electrical expansion valves connected to an indoor device being operated for every predetermined period by applying data and other data got by a valve initial opening degree table 31 for every rated capacity is calculated. There is provided a valve opening degree control means for controlling a valve opening degree of each of electrical expansion valves in response to the result of calculation.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、1台の室外機に複数台
の室内機を接続し、電動膨張弁にて冷媒流量を制御する
多室形空気調和システムに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a multi-chamber type air conditioning system in which a plurality of indoor units are connected to one outdoor unit and the flow rate of refrigerant is controlled by an electric expansion valve.

【0002】[0002]

【従来の技術】近年、1台の室外機に複数台の室内機を
接続した多室形空気調和システムが、室外の省スペース
性や美観上の点で一般家庭の消費者にも受け入れられつ
つある。
2. Description of the Related Art In recent years, a multi-room air conditioning system in which a plurality of indoor units are connected to one outdoor unit has been accepted by ordinary household consumers in terms of space saving and aesthetics. is there.

【0003】従来、この多室形空気調和システムにおい
て、容量(周波数)可変形圧縮機を用い、冷凍サイクル
の液側冷媒配管に、各室内機への冷媒循環量を制御する
冷媒循環量制御装置を設け、室外機の容量と各室内機の
容量との比較より圧縮機容量、各室内機への冷媒循環量
を制御するものが提案されている(たとえば特開昭63
−294462号公報)。
Conventionally, in this multi-room type air conditioning system, a variable capacity (frequency) type compressor is used, and a refrigerant circulation amount control device for controlling the refrigerant circulation amount to each indoor unit in a liquid side refrigerant pipe of a refrigeration cycle. It has been proposed to control the compressor capacity and the refrigerant circulation amount to each indoor unit by comparing the capacity of the outdoor unit with the capacity of each indoor unit.
-294462).

【0004】以下、図面を参照しながら上記従来の多室
形空気調和システムについて説明する。図15は、従来
の多室形空気調和システムの冷凍サイクル図である。
The conventional multi-room air conditioning system will be described below with reference to the drawings. FIG. 15 is a refrigeration cycle diagram of a conventional multi-room air conditioning system.

【0005】この多室形空気調和システムは、1台の室
外ユニット50に分岐ユニット51を介して複数台、本
従来例では2台の室内ユニット52a,52bを接続し
て構成される。室外ユニット50にはインバータ53に
より容量制御運転が行なわれる圧縮機54が搭載されて
いる。冷凍サイクルは、室外ユニット50内に組み込ま
れた圧縮機54、四方弁55、室外熱交換器56、暖房
用膨張機構57、レシーバ58を順次経て分岐ユニット
51内に延び、この分岐ユニット51内で液側冷媒配管
59を室内ユニット52a,52bの数に応じて分岐さ
せている。分岐された液側冷媒配管60a,60bには
冷媒循環量制御装置61および冷房用膨張機構62がそ
れぞれ設けられ、各冷媒配管60a,60bは室内ユニ
ット52a,52bの室内熱交換器63a,63bに接
続される。この室内熱交換器63a,63bからのガス
側冷媒配管64a,64bには分岐ユニット51内で開
閉弁としての電磁弁65a,65bが設けられ、その後
冷媒配管66へと合流する。この冷媒配管66は四方弁
55を経て圧縮機54に接続される。暖房用および冷房
用膨張機構57,62は膨張弁67,68からなり、こ
の膨張弁67,68をそれぞれバイパスするよう膨張弁
バイパス回路が設けられ、このバイパス回路に逆止弁6
9,70が備えられている。一方、分岐ユニット51内
に設けられる冷媒循環量制御装置61は、液側冷媒分岐
配管60a,60bに設けられた電動流量調整弁71
a,71bであり、この電動流量調整弁71a,71b
の弁開度は対応する室内ユニット52a,52bの容量
と室外ユニット50の容量との比率に応じて図16に示
すように設定され、これにより各室内ユニット52a,
52bを流れる冷媒流量を制御するようにしている。
This multi-room air conditioning system is constructed by connecting a plurality of outdoor units 50 via a branch unit 51, and two indoor units 52a and 52b in this conventional example. The outdoor unit 50 is equipped with a compressor 54 whose capacity is controlled by an inverter 53. The refrigeration cycle extends into the branch unit 51 through the compressor 54, the four-way valve 55, the outdoor heat exchanger 56, the heating expansion mechanism 57, and the receiver 58, which are incorporated in the outdoor unit 50, in the branch unit 51. The liquid-side refrigerant pipe 59 is branched according to the number of indoor units 52a and 52b. The branched liquid side refrigerant pipes 60a and 60b are provided with a refrigerant circulation amount control device 61 and a cooling expansion mechanism 62, respectively, and the refrigerant pipes 60a and 60b are connected to the indoor heat exchangers 63a and 63b of the indoor units 52a and 52b. Connected. The gas side refrigerant pipes 64a, 64b from the indoor heat exchangers 63a, 63b are provided with solenoid valves 65a, 65b as opening / closing valves in the branch unit 51, and then join the refrigerant pipes 66. The refrigerant pipe 66 is connected to the compressor 54 via the four-way valve 55. The heating and cooling expansion mechanisms 57 and 62 are composed of expansion valves 67 and 68, and an expansion valve bypass circuit is provided so as to bypass the expansion valves 67 and 68, respectively, and the check valve 6 is provided in this bypass circuit.
9, 70 are provided. On the other hand, the refrigerant circulation amount control device 61 provided in the branch unit 51 has an electric flow rate adjusting valve 71 provided in the liquid side refrigerant branch pipes 60a and 60b.
a, 71b, and these electric flow rate adjusting valves 71a, 71b
The valve opening of each indoor unit 52a, 52b is set according to the ratio between the capacity of the corresponding indoor unit 52a, 52b and the capacity of the outdoor unit 50, whereby each indoor unit 52a,
The flow rate of the refrigerant flowing through 52b is controlled.

【0006】この多室形空気調和システムにおいて、冷
房運転時には、四方弁55を冷房側にセットし、圧縮機
54から吐出された冷媒は、四方弁55を経て室外熱交
換器56へと流れ、ここで凝縮された後に電動流量調整
弁71a,71bを経て膨張弁68にて断熱膨張し、室
内熱交換器63a,63bへと流れてここで室内を冷房
して蒸発し、四方弁55を経て圧縮機16に吸入され
る。
In this multi-room air conditioning system, during cooling operation, the four-way valve 55 is set to the cooling side, and the refrigerant discharged from the compressor 54 flows to the outdoor heat exchanger 56 via the four-way valve 55, After being condensed here, it is adiabatically expanded by the expansion valve 68 via the electric flow rate control valves 71a and 71b, flows to the indoor heat exchangers 63a and 63b, cools and evaporates the room there, and passes through the four-way valve 55. It is sucked into the compressor 16.

【0007】一方暖房運転時には、四方弁55を暖房側
にセットし、圧縮機54から吐出された冷媒は、四方弁
55を経て室内熱交換器63a,63bへと流れ、ここ
で暖房に利用されて凝縮された後に逆止弁70、電動流
量調整弁71a,71bを経て膨張弁67にて断熱膨張
し、室外熱交換器56へと流れてここで蒸発し、四方弁
55を経て圧縮機54に吸入される。
On the other hand, during the heating operation, the four-way valve 55 is set to the heating side, and the refrigerant discharged from the compressor 54 flows through the four-way valve 55 to the indoor heat exchangers 63a and 63b where it is used for heating. After being condensed, it is adiabatically expanded by the expansion valve 67 via the check valve 70, the electric flow rate adjusting valves 71a and 71b, flows to the outdoor heat exchanger 56 and evaporates there, and then passes through the four-way valve 55 and the compressor 54. Inhaled into.

【0008】ここで、容量が5HP(馬力)の室外ユニ
ット50に容量が2HPの室内ユニット52aと容量が
3HPの室内ユニット52bを接続し、圧縮機54を駆
動するインバータ53の最高出力周波数を90Hzの場
合の冷房運転時を考える。室内ユニット52a,52b
の2台から圧縮機ON信号が出力されている場合は要求
インバータ出力周波数Pf は下記数式で表わされる。
Here, an outdoor unit 50 having a capacity of 5 HP (horsepower) is connected to an indoor unit 52a having a capacity of 2 HP and an indoor unit 52b having a capacity of 3 HP, and the maximum output frequency of an inverter 53 for driving a compressor 54 is 90 Hz. Consider the case of cooling operation in case of. Indoor units 52a, 52b
When the compressor ON signal is output from the two units, the required inverter output frequency P f is expressed by the following mathematical formula.

【0009】[0009]

【数1】 [Equation 1]

【0010】このとき、電動流量調整弁71a,71b
の弁開度は図15よりそれぞれ50%、72%にセット
される。また、室内ユニット52aのみから圧縮機ON
信号が出力されている場合は要求インバータ出力周波数
f は下記数式で表わされる。
At this time, the electric flow rate adjusting valves 71a, 71b
15, the valve opening degrees are set to 50% and 72%, respectively. The compressor is turned on only from the indoor unit 52a.
When the signal is output, the required inverter output frequency P f is represented by the following mathematical formula.

【0011】[0011]

【数2】 [Equation 2]

【0012】このとき、電動流量調整弁71a,71b
の弁開度はそれぞれ50%、0%にセットされる。この
ように、この多室形空気調和システムは室内ユニットの
容量に見合った圧縮機容量、電動流量調整弁の弁開度を
定めて制御するため、室内ユニットの容量を変更しても
冷媒流量を最適に保つことができる。
At this time, the electric flow rate adjusting valves 71a, 71b
The valve opening of is set to 50% and 0%, respectively. In this way, in this multi-room air conditioning system, the compressor capacity corresponding to the capacity of the indoor unit and the valve opening degree of the electric flow rate adjusting valve are set and controlled, so that the refrigerant flow rate is changed even if the capacity of the indoor unit is changed. You can keep it optimal.

【0013】[0013]

【発明が解決しようとする課題】しかしながら、上記従
来の多室形空気調和システムには以下のような課題があ
った。
However, the above-mentioned conventional multi-room air conditioning system has the following problems.

【0014】すなわち、たとえば暖房運転の場合、室内
ユニットが設置されている各部屋では、暖房開始時には
大きな能力で素早く室温を高め、室温が設定値に近づく
につれて次第に能力を絞り室温を設定値付近に保つ必要
があるが、一例として2馬力と3馬力の2台の室内ユニ
ットを設置した場合、それぞれの部屋に必要な能力が変
化しても2馬力と3馬力のほぼ一定能力しか得ることが
できず、室温が設定値を越えて上昇するとサーモオフと
なって、その室内ユニットに接続された電動流量調整弁
を全閉とし、その後室温が設定値以下となるとサーモオ
ンとなって、電動流量調整弁を所定開度とするというよ
うなサーモオン、サーモオフを繰り返し、室温変動によ
る快適性の低下とともに、消費電力の増加を招いてい
た。また、この解決策として圧縮機容量を各部屋の必要
能力の総和に応じて変化させるようにしても、それぞれ
の能力は2:3の比率でしか得ることができないので、
たとえば要求能力が3:2である場合には1室は能力不
足となって室温が設定値まで到達せず、もう1室は能力
過大となって室温は設定値を越えてサーモオフとなり、
その後サーモオン、サーモオフを繰り返すため、やはり
快適性の低下と消費電力の増加を招いていた。
That is, in the heating operation, for example, in each room in which the indoor unit is installed, the room temperature is quickly raised with a large capacity at the start of heating, and the capacity is gradually reduced as the room temperature approaches the set value, and the room temperature is set near the set value. It is necessary to keep it, but as an example, if two indoor units of 2 horsepower and 3 horsepower are installed, even if the required capacity of each room changes, only a constant capacity of 2 horsepower and 3 horsepower can be obtained. If the room temperature rises above the set value, the thermostat turns off and the electric flow control valve connected to the indoor unit is fully closed.When the room temperature drops below the set value, the thermostat turns on and the electric flow control valve is turned on. Repeated thermo-on and thermo-off such that the opening degree is set to a predetermined degree, the comfort level is reduced due to room temperature fluctuation, and the power consumption is increased. In addition, even if the compressor capacity is changed according to the total required capacity of each room as a solution to this problem, each capacity can be obtained only at a ratio of 2: 3.
For example, if the required capacity is 3: 2, one room has insufficient capacity and the room temperature does not reach the set value, and the other room has excessive capacity and the room temperature exceeds the set value and the thermostat is turned off.
After that, the thermo-on and the thermo-off were repeated, resulting in a decrease in comfort and an increase in power consumption.

【0015】本発明の多室形空気調和システムは上記課
題に鑑み、冷凍サイクルの構成を複雑にすることなく、
複数室のそれぞれの要求能力に応じた能力を発揮するこ
とで、快適性の向上および省エネルギーを図ることを目
的としている。
In view of the above problems, the multi-room air conditioning system of the present invention does not complicate the structure of the refrigeration cycle,
It aims to improve comfort and save energy by exerting the ability according to the required capacity of each of the multiple rooms.

【0016】また、本発明の他の多室形空気調和システ
ムは、冷凍サイクルを最適に保ちつつ、複数室のそれぞ
れの要求能力に応じた能力を発揮することで、快適性の
向上および省エネルギーを図ることを目的としている。
Further, another multi-room type air conditioning system of the present invention exerts the ability corresponding to the required capacity of each of the plurality of rooms while keeping the refrigeration cycle optimal, thereby improving comfort and saving energy. The purpose is to plan.

【0017】[0017]

【課題を解決するための手段】上記課題を解決するため
に本発明の多室形空気調和システムは、容量(周波数)
可変形圧縮機、四方弁、室外熱交換器を有する1台の室
外機と、室内熱交換器を有する複数台の室内機とを、前
記室外機に設けて主に冷媒液が流れる液側主管を分岐し
た液側分岐管および前記室外機に設けて主に冷媒ガスが
流れるガス側主管を分岐したガス側分岐管を介して接続
し、前記液側分岐管のそれぞれに電気的に弁開度を制御
可能とした電動膨張弁を介装して冷凍サイクルを構成
し、前記室内機のそれぞれに、希望する室内温度を設定
可能な室内温度設定手段と室内温度を検出する室内温度
検出手段とを設け、この室内温度設定手段と室内温度検
出手段とから設定室内温度と室内温度との差温を算出す
る差温算出手段を設け、さらに前記室内機のそれぞれの
定格容量を判別する容量判別手段および前記室内機のそ
れぞれについて運転中か停止中かを判別するオンオフ判
別手段を設け、前記差温が取り得る温度範囲を複数個の
温度ゾーンに分割し、各温度ゾーン毎に、かつ室内機の
定格容量毎に室内負荷に対応する負荷定数を定めて記憶
する負荷定数記憶手段を設け、室内機の定格容量毎に弁
初期開度を定めて記憶する弁初期開度記憶手段を設け、
前記差温算出手段、前記容量判別手段、前記オンオフ判
別手段、前記負荷定数記憶手段より得られるデータを用
いて所定周期毎に圧縮機容量を算出し、この算出結果に
基づいて前記容量(周波数)可変形圧縮機の容量を制御
する圧縮機容量制御手段を設け、前記室内機の複数台が
運転中の場合には、前記データおよび前記弁初期開度記
憶手段より得られるデータを用いて所定周期毎に運転中
の室内機に接続された各電動膨張弁の弁開度を算出し、
この算出結果に基づいて前記電動膨張弁の弁開度を制御
する弁開度制御手段を設けてなるものである。
In order to solve the above problems, the multi-room air conditioning system of the present invention has a capacity (frequency).
A liquid-side main pipe in which one outdoor unit having a variable compressor, a four-way valve, an outdoor heat exchanger, and a plurality of indoor units having an indoor heat exchanger are provided in the outdoor unit, and a refrigerant liquid mainly flows. A liquid side branch pipe that is branched and a gas side main pipe in which a refrigerant gas mainly flows provided in the outdoor unit is connected via a branched gas side branch pipe, and the valve opening is electrically connected to each of the liquid side branch pipes. A refrigeration cycle is configured by interposing an electric expansion valve capable of controlling the room temperature, and each of the indoor units is provided with an indoor temperature setting means capable of setting a desired indoor temperature and an indoor temperature detecting means for detecting the indoor temperature. A temperature difference calculating means for calculating a temperature difference between the set room temperature and the room temperature from the room temperature setting means and the room temperature detecting means; and a capacity determining means for determining a rated capacity of each of the indoor units, Operate for each of the indoor units An on / off determination means for determining whether the temperature is stopped or not is provided, the temperature range that the differential temperature can take is divided into a plurality of temperature zones, and the indoor load is handled for each temperature zone and for each rated capacity of the indoor unit. A load constant storage means for defining and storing a load constant is provided, and a valve initial opening storage means for defining and storing a valve initial opening for each rated capacity of the indoor unit is provided,
The compressor capacity is calculated for each predetermined cycle using the data obtained from the differential temperature calculation means, the capacity determination means, the on / off determination means, and the load constant storage means, and the capacity (frequency) is calculated based on the calculation result. A compressor capacity control means for controlling the capacity of the variable compressor is provided, and when a plurality of the indoor units are in operation, a predetermined cycle is obtained using the data and the data obtained from the valve initial opening degree storage means. Calculate the valve opening of each electric expansion valve connected to the operating indoor unit for each
Valve opening control means for controlling the valve opening of the electric expansion valve based on the calculation result is provided.

【0018】また、本発明の他の多室形空気調和システ
ムは、容量(周波数)可変形圧縮機、四方弁、室外熱交
換器を有する1台の室外機と、室内熱交換器を有する複
数台の室内機とを、前記室外機に設けて主に冷媒液が流
れる液側主管を分岐した液側分岐管および前記室外機に
設けて主に冷媒ガスが流れるガス側主管を分岐したガス
側分岐管を介して接続し、前記液側分岐管のそれぞれに
電気的に弁開度を制御可能とした電動膨張弁を介装して
冷凍サイクルを構成し、前記室内機のそれぞれに、希望
する室内温度を設定可能な室内温度設定手段と室内温度
を検出する室内温度検出手段とを設け、この室内温度設
定手段と室内温度検出手段とから設定室内温度と室内温
度との差温を算出する差温算出手段を設け、さらに前記
室内機のそれぞれの定格容量を判別する容量判別手段お
よび前記室内機のそれぞれについて運転中か停止中かを
判別するオンオフ判別手段を設け、前記差温が取り得る
温度範囲を複数個の温度ゾーンに分割し、各温度ゾーン
毎にかつ室内機の定格容量毎に室内負荷に対応する負荷
定数を定めて記憶する負荷定数記憶手段を設け、前記差
温算出手段、前記容量判別手段、前記オンオフ判別手
段、前記負荷定数記憶手段より得られるデータを用いて
所定周期毎に圧縮機容量を算出し、この算出結果に基づ
いて前記容量(周波数)可変形圧縮機の容量を制御する
圧縮機容量制御手段を設け、運転中の室内機台数および
定格容量の組合せ毎に各室内機に接続された電動膨張弁
毎の弁初期開度を定めて記憶する弁初期開度記憶手段を
設け、前記室内機の複数台が運転中の場合には、前記デ
ータおよびこの弁初期開度記憶手段より得られる弁初期
開度のデータを用いて所定周期毎に運転中の室内機に接
続された各電動膨張弁の弁開度を算出し、この算出結果
に基づいて前記電動膨張弁の弁開度を制御する弁開度制
御手段を設けてなるものである。
Another multi-chamber air conditioning system of the present invention is one outdoor unit having a variable capacity (frequency) compressor, a four-way valve, an outdoor heat exchanger, and a plurality of indoor heat exchangers. The indoor unit of the table, the liquid side branch pipe provided in the outdoor unit to branch the liquid side main pipe mainly flowing the refrigerant liquid, and the gas side provided in the outdoor unit to branch the gas side main pipe mainly flowing the refrigerant gas A refrigeration cycle is configured by connecting an electric expansion valve whose valve opening is electrically controllable to each of the liquid side branch pipes by connecting via a branch pipe, and forming a refrigeration cycle in each of the indoor units as desired. An indoor temperature setting means capable of setting the indoor temperature and an indoor temperature detecting means for detecting the indoor temperature are provided, and a difference for calculating a temperature difference between the set indoor temperature and the indoor temperature from the indoor temperature setting means and the indoor temperature detecting means. A temperature calculating means is provided, and each of the indoor units is further A capacity discriminating means for discriminating the rated capacity and an on / off discriminating means for discriminating whether each of the indoor units is in operation or not are provided, and the temperature range in which the differential temperature can be divided is divided into a plurality of temperature zones. A load constant storage means for determining and storing a load constant corresponding to an indoor load for each zone and for each rated capacity of the indoor unit is provided, and the differential temperature calculation means, the capacity determination means, the on / off determination means, the load constant storage Compressor capacity is calculated for each predetermined cycle using the data obtained from the means, and compressor capacity control means for controlling the capacity of the capacity (frequency) variable type compressor is provided on the basis of this calculation result. A valve initial opening degree storage means for determining and storing a valve initial opening degree for each electric expansion valve connected to each indoor unit for each combination of the number of indoor units and rated capacity is provided, and a plurality of the indoor units are in operation. In this case, the valve opening degree of each electric expansion valve connected to the operating indoor unit is calculated for each predetermined cycle using the above data and the data of the valve initial opening degree obtained from the valve initial opening degree storage means. A valve opening control means for controlling the valve opening of the electric expansion valve based on the calculation result is provided.

【0019】また、本発明の他の多室形空気調和システ
ムは、容量(周波数)可変形圧縮機、四方弁、室外熱交
換器を有する1台の室外機と、室内熱交換器を有する複
数台の室内機とを、前記室外機に設けて主に冷媒液が流
れる液側主管を分岐した液側分岐管および前記室外機に
設けて主に冷媒ガスが流れるガス側主管を分岐したガス
側分岐管を介して接続し、前記液側分岐管のそれぞれに
電気的に弁開度を制御可能とした電動膨張弁を介装して
冷凍サイクルを構成し、前記室内機のそれぞれに、希望
する室内温度を設定可能な室内温度設定手段と室内温度
を検出する室内温度検出手段とを設け、この室内温度設
定手段と室内温度検出手段とから設定室内温度と室内温
度との差温を算出する差温算出手段を設け、さらに前記
室内機のそれぞれの定格容量を判別する容量判別手段お
よび前記室内機のそれぞれについて運転中か停止中かを
判別するオンオフ判別手段を設け、前記差温が取り得る
温度範囲を複数個の温度ゾーンに分割し、各温度ゾーン
毎にかつ室内機の定格容量毎に室内負荷に対応する負荷
定数を定めて記憶する負荷定数記憶手段を設け、前記差
温算出手段、前記容量判別手段、前記オンオフ判別手
段、前記負荷定数記憶手段より得られるデータを用いて
所定周期毎に圧縮機容量を算出し、この算出結果に基づ
いて前記容量(周波数)可変形圧縮機の容量を制御する
圧縮機容量制御手段を設け、前記データを用いて近似式
にて各室内機に接続された電動膨張弁毎の弁初期開度を
算出する弁初期開度算出手段を設け、前記室内機の複数
台が運転中の場合には、前記データおよびこの弁初期開
度算出手段より得られる弁初期開度のデータを用いて所
定周期毎に運転中の室内機に接続された各電動膨張弁の
弁開度を算出し、この算出結果に基づいて前記電動膨張
弁の弁開度を制御する弁開度制御手段を設けてなるもの
である。
Further, another multi-room type air conditioning system of the present invention is one outdoor unit having a variable capacity (frequency) compressor, a four-way valve, an outdoor heat exchanger, and a plurality of indoor heat exchangers. The indoor unit of the table, the liquid side branch pipe provided in the outdoor unit to branch the liquid side main pipe mainly flowing the refrigerant liquid, and the gas side provided in the outdoor unit to branch the gas side main pipe mainly flowing the refrigerant gas A refrigeration cycle is configured by connecting an electric expansion valve whose valve opening is electrically controllable to each of the liquid side branch pipes by connecting via a branch pipe, and forming a refrigeration cycle in each of the indoor units as desired. An indoor temperature setting means capable of setting the indoor temperature and an indoor temperature detecting means for detecting the indoor temperature are provided, and a difference for calculating a temperature difference between the set indoor temperature and the indoor temperature from the indoor temperature setting means and the indoor temperature detecting means. A temperature calculating means is provided, and each of the indoor units is further A capacity discriminating means for discriminating the rated capacity and an on / off discriminating means for discriminating whether each of the indoor units is in operation or not are provided, and the temperature range in which the differential temperature can be divided is divided into a plurality of temperature zones. A load constant storage means for determining and storing a load constant corresponding to an indoor load for each zone and for each rated capacity of the indoor unit is provided, and the differential temperature calculation means, the capacity determination means, the on / off determination means, the load constant storage Compressor capacity is calculated for each predetermined period using the data obtained from the means, and compressor capacity control means for controlling the capacity of the capacity (frequency) variable type compressor is provided based on the calculation result. Provided with a valve initial opening degree calculating means for calculating the valve initial opening degree of each electric expansion valve connected to each indoor unit by an approximate expression using the above-mentioned data when a plurality of the indoor units are in operation. Oh And the valve opening degree of each electric expansion valve connected to the operating indoor unit is calculated for each predetermined cycle using the data of the valve opening degree obtained from the valve opening degree calculation means, and based on this calculation result Valve opening control means for controlling the valve opening of the electric expansion valve.

【0020】また、本発明の他の多室形空気調和システ
ムは、容量(周波数)可変形圧縮機に吸入される冷媒の
過熱度を所定周期毎に検出する過熱度検出手段を設け、
運転中の室内機に接続された電動膨張弁の弁開度の変更
量をこの過熱度検出手段により検出された過熱度のデー
タに対応して決定する弁開度変更量決定手段を設け、弁
開度制御手段にてこの弁開度を制御するようにしたもの
である。
Further, another multi-chamber type air conditioning system of the present invention is provided with superheat detecting means for detecting the superheat of the refrigerant sucked into the variable displacement (frequency) compressor at predetermined intervals.
A valve opening change amount determining means for determining the change amount of the valve opening degree of the electric expansion valve connected to the operating indoor unit in correspondence with the superheat degree data detected by the superheat degree detecting means is provided. The opening control means controls the valve opening.

【0021】また、本発明の他の多室形空気調和システ
ムは、容量(周波数)可変形圧縮機に吸入される冷媒の
過熱度を所定周期毎に検出する過熱度検出手段を設け、
運転中の室内機に接続された電動膨張弁の弁開度の変更
量の総和をこの過熱度検出手段により検出された過熱度
のデータに対応して決定する弁開度変更量総和決定手段
を設け、弁開度制御手段にてこの弁開度をするようにし
たものである。
Further, another multi-chamber type air conditioning system of the present invention is provided with superheat detecting means for detecting the superheat of the refrigerant sucked into the variable displacement (frequency) compressor at predetermined intervals.
A valve opening change amount sum total determination means for determining the sum of the change amounts of the valve opening degree of the electric expansion valve connected to the indoor unit in operation corresponding to the superheat degree data detected by the superheat degree detecting means. The valve opening control means is provided to control the valve opening.

【0022】また、本発明の他の多室形空気調和システ
ムは、運転中の室内機に接続された電動膨張弁の弁開度
の総和を圧縮機容量制御手段により算出された圧縮機容
量に対応して決定する弁開度総和決定手段を設け、弁開
度制御手段にて各弁開度を制御するようにしたものであ
る。
Further, in another multi-room type air conditioning system of the present invention, the sum of the valve opening degrees of the electric expansion valves connected to the operating indoor unit is set to the compressor capacity calculated by the compressor capacity control means. A valve opening total sum determining means for correspondingly determining is provided, and each valve opening degree is controlled by the valve opening control means.

【0023】また、本発明の他の多室形空気調和システ
ムは、容量(周波数)可変形圧縮機から吐出される冷媒
の温度を所定周期毎に検出する吐出温度検出手段と、吐
出温度を圧縮機容量制御手段により算出された圧縮機容
量に対応して決定する圧縮機吐出温度決定手段を設け、
運転中の室内機に接続された電動膨張弁の弁開度の変更
量を、吐出温度検出手段により検出された吐出温度のデ
ータに対応して決定する弁開度変更量決定手段を設け、
弁開度制御手段にてこの弁開度を制御するものである。
In another multi-chamber air conditioning system of the present invention, discharge temperature detecting means for detecting the temperature of the refrigerant discharged from the variable displacement (frequency) compressor at predetermined intervals, and the discharge temperature are compressed. Providing a compressor discharge temperature determining means for determining corresponding to the compressor capacity calculated by the machine capacity control means,
Provided is a valve opening change amount determination means for determining the amount of change in the valve opening degree of the electric expansion valve connected to the operating indoor unit, corresponding to the data of the discharge temperature detected by the discharge temperature detection means,
The valve opening control means controls the valve opening.

【0024】[0024]

【作用】本発明は、上記手段により次のような作用をす
る。すなわち、室内機のそれぞれに、希望する室内温度
を設定可能な室内温度設定手段と室内温度を検出する室
内温度検出手段とを設け、この室内温度設定手段と室内
温度検出手段とから設定室内温度と室内温度との差温を
算出する差温算出手段を設け、さらに前記室内機のそれ
ぞれの定格容量を判別する容量判別手段および前記室内
機のそれぞれについて運転中か停止中かを判別するオン
オフ判別手段を設け、前記差温が取り得る温度範囲を複
数個の温度ゾーンに分割し、各温度ゾーン毎にかつ室内
機の定格容量毎に室内負荷に対応する負荷定数を定めて
記憶する負荷定数記憶手段を設け、室内機の定格容量毎
に弁初期開度を定めて記憶する弁初期開度記憶手段を設
け、前記差温度算出手段、前記容量判別手段、前記オン
オフ判別手段、前記負荷定数記憶手段より得られるデー
タを用いて所定周期毎に圧縮機容量を算出し、この算出
結果に基づいて前記容量(周波数)可変形圧縮機の容量
を制御する圧縮機容量制御手段を設け、前記室内機の複
数台が運転中の場合には、前記データおよび前記弁初期
開度記憶手段より得られるデータを用いて所定周期毎に
運転中の室内機に接続された各電動膨張弁の弁開度を算
出し、この算出結果に基づいて前記電動膨張弁の弁開度
を制御する弁開度制御手段を設けることで、各部屋の要
求能力の総和に応じて圧縮機周波数を制御し、かつ各部
屋毎の負荷に応じて各電動膨張弁の開度を決定するた
め、必要な能力を必要な部屋に配分することができ、快
適性の向上および省エネルギーを図ることができる。
The present invention operates as follows by the above means. That is, each of the indoor units is provided with an indoor temperature setting means capable of setting a desired indoor temperature and an indoor temperature detecting means for detecting the indoor temperature. A temperature difference calculating means for calculating a temperature difference from the indoor temperature is provided, and a capacity determining means for determining a rated capacity of each indoor unit and an on / off determining means for determining whether each indoor unit is in operation or stopped. And a load constant storage means for dividing the temperature range of the differential temperature into a plurality of temperature zones, determining and storing a load constant corresponding to an indoor load for each temperature zone and for each rated capacity of the indoor unit. And a valve initial opening degree storage means for determining and storing a valve initial opening degree for each rated capacity of the indoor unit, the difference temperature calculation means, the capacity determination means, the on / off determination means, the negative Compressor capacity is calculated for each predetermined cycle using data obtained from the constant storage means, and compressor capacity control means for controlling the capacity of the variable capacity (frequency) compressor based on the calculation result is provided. When a plurality of indoor units are operating, the valve opening of each electric expansion valve connected to the operating indoor unit is performed at predetermined intervals using the data and the data obtained from the valve initial opening degree storage means. The valve opening control means for controlling the valve opening of the electric expansion valve based on the calculation result, thereby controlling the compressor frequency according to the total required capacity of each room, and Since the opening degree of each electric expansion valve is determined according to the load of each room, it is possible to distribute the necessary capacity to the necessary room, improve comfort and save energy.

【0025】また、室内機にそれぞれに、希望する室内
温度を設定可能な室内温度設定手段と室内温度を検出す
る室内温度検出手段とを設け、この室内温度設定手段と
室内温度検出手段とから設定室内温度と室内温度との差
温を算出する差温算出手段を設け、さらに前記室内機の
それぞれの定格容量を判別する容量判別手段および前記
室内機のそれぞれについて運転中か停止中かを判別する
オンオフ判別手段を設け、前記差温が取り得る温度範囲
を複数個の温度ゾーンに分割し、各温度ゾーン毎にかつ
室内機の定格容量毎に室内負荷に対応する負荷定数を定
めて記憶する負荷定数記憶手段を設け、前記差温算出手
段、前記容量判別手段、前記オンオフ判別手段、前記負
荷定数記憶手段より得られるデータを用いて所定周期毎
に圧縮機容量を算出し、この算出結果に基づいて前記容
量(周波数)可変形圧縮機の容量を制御する圧縮機容量
制御手段を設け、運転中の室内機台数および定格容量の
組合せ毎に各室内機に接続された電動膨張弁毎の弁初期
開度を定めて記憶する弁初期開度記憶手段を設け、前記
室内機の複数台が運転中の場合には、前記データおよび
この弁初期開度記憶手段より得られる弁初期開度のデー
タを用いて所定周期毎に運転中の室内機に接続された各
電動膨張弁の弁開度を算出し、この算出結果に基づいて
前記電動膨張弁の弁開度を制御する弁開度制御手段を設
けることで、各部屋の要求能力の総和に応じて圧縮機周
波数を制御し、かつ各部屋毎の負荷に応じて各電動膨張
弁の開度を決定するため、必要な能力を必要な部屋に配
分することができ、さらに弁初期開度を室内機の運転台
数およびその定格容量の組合せ毎に定めているので、よ
りきめ細かく高い精度の能力制御が可能であり、快適性
の向上および省エネルギーを図ることができる。
Further, each indoor unit is provided with an indoor temperature setting means capable of setting a desired indoor temperature and an indoor temperature detecting means for detecting the indoor temperature, and the indoor temperature setting means and the indoor temperature detecting means are used for setting. A temperature difference calculating means for calculating the temperature difference between the indoor temperature and the indoor temperature is provided, and further capacity determining means for determining the rated capacity of each of the indoor units and determining whether each of the indoor units is operating or stopped. A load that is provided with an on / off determination means, divides the temperature range that the differential temperature can take into a plurality of temperature zones, and determines and stores a load constant corresponding to the indoor load for each temperature zone and for each rated capacity of the indoor unit. A constant capacity storage means is provided, and the compressor capacity is calculated every predetermined cycle using data obtained from the differential temperature calculation means, the capacity determination means, the on / off determination means, and the load constant storage means. Then, compressor capacity control means for controlling the capacity of the capacity (frequency) variable compressor based on the calculation result is provided, and the compressor is connected to each indoor unit for each combination of the number of operating indoor units and the rated capacity. A valve initial opening degree storage means for determining and storing a valve initial opening degree for each electric expansion valve is provided, and when a plurality of indoor units are in operation, the data and the valve initial opening degree storage means are obtained. The valve opening degree of each electric expansion valve connected to the operating indoor unit is calculated every predetermined period using the data of the valve initial opening degree, and the valve opening degree of the electric expansion valve is controlled based on the calculation result. By providing a valve opening control means for controlling the compressor frequency according to the total required capacity of each room and determining the opening of each electric expansion valve according to the load of each room, it is necessary. Capacity can be distributed to the required room, and the valve can be opened initially. The Since determined for each combination of the number of operating units and its rated capacity of the indoor unit, it is capable of capacity control more finely accuracy can be improved and energy saving comfort.

【0026】また、室内機のそれぞれに、希望する室内
温度を設定可能な室内温度設定手段と室内温度を検出す
る室内温度検出手段とを設け、この室内温度設定手段と
室内温度検出手段とから設定室内温度と室内温度との差
温を算出する差温算出手段を設け、さらに前記室内機の
それぞれの定格容量を判別する容量判別手段および前記
室内機のそれぞれについて運転中か停止中かを判別する
オンオフ判別手段を設け、前記差温が取り得る温度範囲
を複数個の温度ゾーンに分割し、各温度ゾーン毎にかつ
室内機の定格容量毎に室内負荷に対応する負荷定数を定
めて記憶する負荷定数記憶手段を設け、前記差温算出手
段、前記容量判別手段、前記オンオフ判別手段、前記負
荷定数記憶手段より得られるデータを用いて所定周期毎
に圧縮機容量を算出し、この算出結果に基づいて前記容
量(周波数)可変形圧縮機の容量を制御する圧縮機容量
制御手段を設け、前記データを用いて近似式にて各室内
機に接続された電動膨張弁毎の弁初期開度を算出する弁
初期開度算出手段を設け、前記室内機の複数台が運転中
の場合には、前記データおよびこの弁初期開度算出手段
より得られる弁初期開度のデータを用いて所定周期毎に
運転中の室内機に接続された各電動膨張弁の弁開度を算
出し、この算出結果に基づいて前記電動膨張弁の弁開度
を制御する弁開度制御手段を設けることで、弁初期開度
を室内機の運転台数およびその定格容量の組合せ毎に近
似式で求めているので、よりきめ細かく高い精度の能力
制御が可能であり、快適性の向上および省エネルギーを
図ることができる。また、弁初期開度のテーブルを必要
としないので、さらに室内機の組合せが増加しても、記
憶回路の容量を増加させる必要がない。
Further, each of the indoor units is provided with an indoor temperature setting means capable of setting a desired indoor temperature and an indoor temperature detecting means for detecting the indoor temperature, and the indoor temperature setting means and the indoor temperature detecting means set the indoor temperature. A temperature difference calculating means for calculating the temperature difference between the indoor temperature and the indoor temperature is provided, and further capacity determining means for determining the rated capacity of each of the indoor units and determining whether each of the indoor units is operating or stopped. A load that is provided with an on / off determination means, divides the temperature range that the differential temperature can take into a plurality of temperature zones, and determines and stores a load constant corresponding to the indoor load for each temperature zone and for each rated capacity of the indoor unit. A constant capacity storage means is provided, and the compressor capacity is calculated every predetermined cycle using data obtained from the differential temperature calculation means, the capacity determination means, the on / off determination means, and the load constant storage means Then, compressor capacity control means for controlling the capacity of the capacity (frequency) variable compressor based on the calculation result is provided, and each electric expansion valve connected to each indoor unit by an approximate expression using the data. Is provided with a valve initial opening calculation means for calculating the valve initial opening, and when a plurality of the indoor units are in operation, the data and the data of the valve initial opening obtained from the valve initial opening calculation means. Valve opening control means for calculating the valve opening of each electric expansion valve connected to the operating indoor unit for each predetermined cycle, and controlling the valve opening of the electric expansion valve based on the calculation result. Since the valve initial opening is calculated by an approximate expression for each combination of the number of operating indoor units and their rated capacities, it is possible to perform finer and more precise capacity control, improve comfort and save energy. Can be planned. Further, since the table of the valve initial opening is not required, it is not necessary to increase the capacity of the memory circuit even if the number of combinations of indoor units increases.

【0027】また、容量(周波数)可変形圧縮機に吸入
される冷媒の過熱度を所定周期毎に検出する過熱度検出
手段を設け、運転中の室内機に接続された電動膨張弁の
弁開度の変更量をこの過熱度検出手段により検出された
過熱度のデータに対応して決定する弁開度変更量決定手
段を設け、弁開度制御手段にてこの弁開度を制御するこ
とで、圧縮機吸入冷媒の過熱度を所定値に保つように制
御を行なうため、冷凍サイクルをよりきめ細かく最適に
制御しながら、快適性の向上および省エネルギーを図る
ことができる。
Further, a superheat degree detecting means for detecting the superheat degree of the refrigerant sucked into the variable capacity (frequency) type compressor at predetermined intervals is provided, and the electric expansion valve connected to the operating indoor unit is opened. By providing a valve opening change amount determining means for determining the change amount of the degree of heat in correspondence with the superheat data detected by the superheat detecting means, and controlling the valve opening by the valve opening control means. Since the control is performed so as to maintain the superheat degree of the refrigerant sucked into the compressor at a predetermined value, it is possible to improve comfort and save energy while controlling the refrigeration cycle more finely and optimally.

【0028】また、容量(周波数)可変形圧縮機に吸入
される冷媒の過熱度を所定周期毎に検出する過熱度検出
手段を設け、運転中の室内機に接続された電動膨張弁の
弁開度の変更量の総和をこの過熱度検出手段により検出
された過熱度のデータに対応して決定する弁開度変更量
総和決定手段を設け、弁開度制御手段にてこの弁開度を
制御することで、圧縮機吸入冷媒の過熱度を所定値に保
つように制御を行なうため、冷凍サイクルをよりきめ細
かく最適に制御しながら、快適性の向上および省エネル
ギーを図ることができる。
Further, a superheat degree detecting means for detecting the superheat degree of the refrigerant sucked into the variable capacity (frequency) type compressor at predetermined intervals is provided, and the electric expansion valve connected to the operating indoor unit is opened. Degree of valve opening change amount determining means for determining the total sum of the degree of change of temperature corresponding to the data of the degree of superheat detected by the degree of superheat detection means, and the valve opening degree control means controls the valve opening degree. By doing so, control is performed so as to maintain the superheat degree of the refrigerant sucked into the compressor at a predetermined value, so that it is possible to improve comfort and save energy while controlling the refrigeration cycle more finely and optimally.

【0029】また、運転中の室内機に接続された電動膨
張弁の弁開度総和を圧縮機容量制御手段により算出され
た圧縮機容量に対応して決定する弁開度総和決定手段を
設け、弁開度制御手段にてこの弁開度を制御すること
で、圧縮機周波数に対応して電動膨張弁の弁開度を決定
するため、構成を複雑にすることなく、冷凍サイクルを
最適に保ちながら快適性の向上および省エネルギーを図
ることができる。
Further, there is provided a total valve opening degree determining means for determining the total valve opening degree of the electric expansion valve connected to the operating indoor unit in accordance with the compressor capacity calculated by the compressor capacity control means. By controlling this valve opening with the valve opening control means, the valve opening of the electric expansion valve is determined according to the compressor frequency, so that the refrigeration cycle is kept optimal without complicating the configuration. However, it is possible to improve comfort and save energy.

【0030】また、容量(周波数)可変形圧縮機から吐
出される冷媒の温度を所定周期毎に検出する吐出温度検
出手段と、吐出温度を圧縮機容量制御手段により算出さ
れた圧縮機容量に対応して決定する圧縮機吐出温度決定
手段を設け、運転中の室内機に接続された電動膨張弁の
弁開度変更量を、吐出温度検出手段により検出された吐
出温度のデータに対応して決定する弁開度変更量決定手
段を設け、弁開度制御手段にてこの弁開度を制御するこ
とで、圧縮機吐出温度を所定値に保つように制御を行な
うため、構成を複雑にすることなく、冷凍サイクルをよ
りきめ細かく最適に制御しながら、快適性の向上および
省エネルギーを図ることができる。
Further, the discharge temperature detecting means for detecting the temperature of the refrigerant discharged from the variable capacity (frequency) compressor at predetermined intervals and the discharge temperature corresponding to the compressor capacity calculated by the compressor capacity control means. A compressor discharge temperature determining means is provided to determine the valve opening change amount of the electric expansion valve connected to the operating indoor unit in accordance with the discharge temperature data detected by the discharge temperature detecting means. A valve opening change amount determining means is provided, and the valve opening control means controls the valve opening to control the compressor discharge temperature to a predetermined value, thus complicating the configuration. It is possible to improve comfort and save energy while controlling the refrigeration cycle more finely and optimally.

【0031】[0031]

【実施例】以下、本発明の実施例について、図面を参考
に説明する。図1は、本発明の多室形空気調和システム
の第1の実施例における冷凍サイクル図である。なお、
本実施例においては1台の室外機1に3台の室内機2
a,2b,2cを接続した場合について説明する。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a refrigeration cycle diagram in the first embodiment of the multi-room air conditioning system of the present invention. In addition,
In this embodiment, one outdoor unit 1 and three indoor units 2
The case where a, 2b, and 2c are connected will be described.

【0032】同図において、室外機1内にはインバータ
駆動の周波数可変形圧縮機3(以下単に圧縮機と称
す)、室外熱交換器4、冷暖房切換用の四方弁5が設け
られ、また室内機2a,2b,2c内にそれぞれ室内熱
交換器6a,6b,6cが設けられている。そして、こ
の室外機1と室内機2a,2b,2cとは、室外機1内
に設けた液側主管7より分岐した液側分岐管8a,8
b,8cおよび室外機1内に設けたガス側主管9より分
岐したガス側分岐管10a,10b,10cとで接続さ
れている。液側分岐管8a,8b,8cにはそれぞれス
テッピングモータを用いて弁開度をパルス制御可能とし
た電動膨張弁11a,11b,11cを介装し、また液
側主管7上には冷媒液を貯溜可能なレシーバ12を設
け、このレシーバ12を冷暖房共中間圧に保つために補
助絞り13が設けられている。また、レシーバ12と圧
縮機3への吸入管14とを結ぶバイパス回路15が設け
られ、このバイパス回路15には補助絞り16が設けら
れている。また、各室内機2a,2b,2cには各室内
機が設置されている部屋の室温を検出する室内温度セン
サ17a,17b,17cおよび居住者が希望する運転
モード(冷房または暖房)と室温と運転、停止を設定で
きる運転設定回路18a,18b,18cが設けられて
いる。また吸入管14には、ここを流れる冷媒の温度を
検出する吸入温度センサ19が設けられ、バイパス回路
15には吸入管14を流れる冷媒の飽和温度を検出する
飽和温度センサ20が設けられている。
In the figure, an outdoor unit 1 is provided with an inverter-driven variable frequency compressor 3 (hereinafter simply referred to as a compressor), an outdoor heat exchanger 4, and a four-way valve 5 for switching between heating and cooling, and indoors. Indoor heat exchangers 6a, 6b, 6c are provided in the machines 2a, 2b, 2c, respectively. The outdoor unit 1 and the indoor units 2a, 2b, 2c are divided into liquid side branch pipes 8a, 8 branched from a liquid side main pipe 7 provided in the outdoor unit 1.
b, 8c and gas side branch pipes 10a, 10b, 10c branched from the gas side main pipe 9 provided in the outdoor unit 1. The liquid side branch pipes 8a, 8b, 8c are respectively provided with electric expansion valves 11a, 11b, 11c whose pulse opening is controllable by using a stepping motor, and the liquid side main pipe 7 is provided with a refrigerant liquid. A receiver 12 capable of storing water is provided, and an auxiliary throttle 13 is provided to maintain the receiver 12 at an intermediate pressure for both cooling and heating. Further, a bypass circuit 15 that connects the receiver 12 and the suction pipe 14 to the compressor 3 is provided, and the bypass circuit 15 is provided with an auxiliary throttle 16. In addition, each indoor unit 2a, 2b, 2c has an indoor temperature sensor 17a, 17b, 17c for detecting the room temperature of the room in which the indoor unit is installed, and an operation mode (cooling or heating) desired by the occupant and the room temperature. Operation setting circuits 18a, 18b, 18c capable of setting operation and stop are provided. Further, the suction pipe 14 is provided with a suction temperature sensor 19 for detecting the temperature of the refrigerant flowing through it, and the bypass circuit 15 is provided with a saturation temperature sensor 20 for detecting the saturation temperature of the refrigerant flowing through the suction pipe 14. .

【0033】この冷凍サイクルにおいて、冷房時は圧縮
機3から吐出された冷媒は、四方弁5より室外熱交換器
4へと流れてここで室外空気と熱交換して凝縮液化し、
補助絞り13で減圧されて中間圧となる。そして、レシ
ーバ12に一部の液冷媒を貯溜溜し、残りは液側分岐管
8a,8b,8cへと分岐する。電動膨張弁11a,1
1b,11cの弁開度は、後述する制御方法でそれぞれ
の部屋の負荷に見合った開度になるように制御されるた
め、冷媒もそれぞれの負荷に応じた流量で低圧となって
室内熱交換器6a,6b,6cへと流れて蒸発した後、
ガス側分岐管10a,10b,10cよりガス側主管
9、四方弁5を通過して再び圧縮機3に吸入される。ま
た、レシーバ12からごくわずかの液冷媒がバイパス回
路15へと流れ、補助絞り16で減圧されて吸入管14
へと流れる。このとき、補助絞り16を通過した冷媒は
気液2相流で、かつ圧力は吸入管14を流れる冷媒とほ
ぼ等しいので、飽和温度センサ20にてその飽和温度を
検出できる。また、圧縮機周波数は、総負荷に応じて後
述する制御方法で決定される。
In this refrigeration cycle, during cooling, the refrigerant discharged from the compressor 3 flows from the four-way valve 5 to the outdoor heat exchanger 4 where it exchanges heat with outdoor air to be condensed and liquefied.
The pressure is reduced by the auxiliary throttle 13 to an intermediate pressure. Then, a part of the liquid refrigerant is stored in the receiver 12, and the rest is branched to the liquid side branch pipes 8a, 8b, 8c. Electric expansion valve 11a, 1
Since the valve openings of 1b and 11c are controlled by the control method described later so as to be the openings corresponding to the load of each room, the refrigerant also becomes a low pressure at a flow rate corresponding to each load, and indoor heat exchange is performed. After flowing to the vessels 6a, 6b, 6c and evaporating,
The gas side branch pipes 10a, 10b and 10c pass through the gas side main pipe 9 and the four-way valve 5 and are again sucked into the compressor 3. Further, a very small amount of liquid refrigerant flows from the receiver 12 to the bypass circuit 15 and is decompressed by the auxiliary throttle 16 to be sucked into the suction pipe 14.
Flows to. At this time, the refrigerant that has passed through the auxiliary throttle 16 is a gas-liquid two-phase flow, and the pressure is almost the same as that of the refrigerant that flows through the suction pipe 14. Therefore, the saturation temperature can be detected by the saturation temperature sensor 20. Further, the compressor frequency is determined by a control method described later according to the total load.

【0034】暖房時は圧縮機3から吐出された冷媒は、
四方弁5を切換えてガス側主管9よりガス側分岐管10
a,10b,10cへと分岐し、室内熱交換器6a,6
b,6cへと流れて凝縮液化し、液側分岐管8a,8
b,8c上の電動膨張弁11a,11b,11cで減圧
されて中間圧となる。電動膨張弁11は、11b,11
cの弁開度は、冷房時と同様に後述する制御方法でそれ
ぞれの部屋の負荷に見合った開度になるように制御され
るため、冷媒もそれぞれの負荷に応じた流量で室内熱交
換器6a,6b,6cを流れる。中間圧となった冷媒
は、レシーバー12に一部の液冷媒が貯溜され、残りは
補助絞り13で減圧されて低圧となって室外熱交換器4
を流れて蒸発した後、四方弁5を通過して再び圧縮機3
に吸入される。また、レシーバ12からごくわずかの液
冷媒バイパス回路15へと流れ、補助絞り16で減圧さ
れて吸入管14へと流れる。冷房時と同様に、補助絞り
16を通過した冷媒は気液2相流で、かつ圧力は吸入管
14を流れる冷媒とほぼ等しいので、飽和温度センサ2
0にてその飽和温度を検出できる。また、圧縮機周波数
は、冷房時と同様に総負荷に応じて後述する制御方法で
決定される。 次に、圧縮機周波数および電動膨張弁開
度の制御方法について説明する。
The refrigerant discharged from the compressor 3 during heating is
Gas side branch pipe 10 from gas side main pipe 9 by switching four-way valve 5
a, 10b, 10c branch to indoor heat exchangers 6a, 6
b and 6c, condensed and liquefied, and liquid side branch pipes 8a and 8
The pressure is reduced by the electric expansion valves 11a, 11b, and 11c on b and 8c to an intermediate pressure. The electric expansion valve 11 includes 11b, 11
Since the valve opening degree of c is controlled to be an opening degree corresponding to the load of each room by the control method described later similarly to the case of cooling, the refrigerant also has a flow rate corresponding to each load in the indoor heat exchanger. It flows through 6a, 6b and 6c. As for the refrigerant having the intermediate pressure, a part of the liquid refrigerant is stored in the receiver 12, and the remaining refrigerant is decompressed by the auxiliary throttle 13 to become a low pressure and thus the outdoor heat exchanger 4
Flow through the four-way valve 5 to evaporate, and then pass through the four-way valve 5 again
Inhaled into. Further, it flows from the receiver 12 to a very small amount of the liquid refrigerant bypass circuit 15, is decompressed by the auxiliary throttle 16, and then flows into the suction pipe 14. As in the case of cooling, the refrigerant passing through the auxiliary throttle 16 is a gas-liquid two-phase flow, and the pressure is almost equal to that of the refrigerant flowing in the suction pipe 14, so the saturation temperature sensor 2
The saturation temperature can be detected at 0. Further, the compressor frequency is determined by a control method described later according to the total load, as in the case of cooling. Next, a method of controlling the compressor frequency and the electric expansion valve opening will be described.

【0035】図2は圧縮機周波数および電動膨張弁開度
の制御の流れ示すブロック図、図3は室内温度Tr と設
定温度Ts との差温ΔTの温度ゾーン分割図、図4は過
熱度SHと電動膨張弁の開度変更量との関係図である。
FIG. 2 is a block diagram showing the flow of control of the compressor frequency and the electric expansion valve opening, FIG. 3 is a temperature zone division diagram of the temperature difference ΔT between the room temperature T r and the set temperature T s, and FIG. 4 is overheating. It is a relationship diagram between the degree SH and the opening change amount of the electric expansion valve.

【0036】まず、室内機2aにおいて、室内温度セン
サ17aの出力を室内温度検出回路21より温度信号と
して差温演算回路22に送出し、また設定判別回路23
にて運転設定回路18aで設定された設定温度および運
転モードを判別して差温演算回路22に送出してここで
差温ΔT(=Tr −Ts )を算出し、図3に示す負荷ナ
ンバーLn値に変換してこれを差温信号とする。たとえ
ば冷房運転時でTr =27.3℃、Ts =26℃とする
と、差温ΔT=1.3℃でLn=6となる。またON−
OFF判別回路24にて、運転設定回路18aで設定さ
れた室内機2aの運転(ON)または停止(OFF)を
判別し、さらに定格容量記憶回路25に室内機2aの定
格容量を記憶しておき、これらの定格容量信号、差温信
号、運転モード信号、ON−OFF判別信号を信号送出
回路26より室外機1の信号受信回路27へ送る。室内
機2b,2cからも同様の信号が信号受信回路27へ送
られる。信号受信回路27で受けた信号は圧縮機周波数
演算回路28と膨張弁開度演算回路29へ送出される。
ただし、異なった運転モード信号が存在する場合、最初
に運転を開始した室内機の運転モードが優先され、異な
った運転モードの室内機は停止しているとみなしてON
−OFF判別信号は常にOFFを送出する。
First, in the indoor unit 2a, the output of the indoor temperature sensor 17a is sent from the indoor temperature detecting circuit 21 to the differential temperature calculating circuit 22 as a temperature signal, and the setting determining circuit 23 is also provided.
The set temperature and the operation mode set by the operation setting circuit 18a are discriminated and sent to the temperature difference calculating circuit 22 to calculate the temperature difference ΔT (= T r −T s ), and the load shown in FIG. The number Ln value is converted and used as a temperature difference signal. For example, if T r = 27.3 ° C. and T s = 26 ° C. during cooling operation, Ln = 6 at a temperature difference ΔT = 1.3 ° C. Also ON-
The OFF discrimination circuit 24 discriminates the operation (ON) or stop (OFF) of the indoor unit 2a set by the operation setting circuit 18a, and further stores the rated capacity of the indoor unit 2a in the rated capacity storage circuit 25. The rated capacity signal, the differential temperature signal, the operation mode signal, and the ON-OFF determination signal are sent from the signal sending circuit 26 to the signal receiving circuit 27 of the outdoor unit 1. Similar signals are sent to the signal receiving circuit 27 from the indoor units 2b and 2c. The signal received by the signal receiving circuit 27 is sent to the compressor frequency calculating circuit 28 and the expansion valve opening calculating circuit 29.
However, if different operation mode signals exist, the operation mode of the indoor unit that started operation first is given priority, and the indoor units in different operation modes are considered to be stopped and turned on.
The OFF determination signal always outputs OFF.

【0037】圧縮機周波数演算回路28にて室内機2
a,2b,2cのそれぞれの定格容量信号、差温信号、
運転モード信号、ON−OFF判別信号より下記表1に
示す負荷定数テーブル30から負荷定数を読みだし、こ
の負荷定数の総和に定数を乗じて圧縮機3の周波数を決
定する。
The compressor frequency calculation circuit 28 is used for the indoor unit 2
a, 2b, 2c rated capacity signal, differential temperature signal,
The load constant is read from the load constant table 30 shown in Table 1 below from the operation mode signal and the ON-OFF discrimination signal, and the sum of the load constants is multiplied by the constant to determine the frequency of the compressor 3.

【0038】[0038]

【表1】 [Table 1]

【0039】一例として、室内機2a,2b,2cから
の信号が下記表2の場合について説明する。
As an example, the case where the signals from the indoor units 2a, 2b and 2c are shown in Table 2 below will be described.

【0040】[0040]

【表2】 [Table 2]

【0041】表1と表2より、室内機2a,2b,2c
の負荷定数はそれぞれ1.5,1.0,1.9となり、
したがって圧縮機3の周波数Hzは、Aを定数とすると Hz=A×(1.5+1.0+1.9)=A×4.4 となり、この演算結果を周波数信号として圧縮機駆動回
路(図示せず)に送出して圧縮機3の周波数の制御を行
なう。以降、所定周期毎に室内機2a,2b,2cのそ
れぞれの定格容量信号、差温信号、運転モード信号、O
N−OFF判別信号より演算を行ない、演算結果を周波
数信号として圧縮機駆動回路(図示せず)に送出して圧
縮機3の周波数の制御を行なう。
From Tables 1 and 2, the indoor units 2a, 2b, 2c
Load constants of 1.5, 1.0 and 1.9 respectively,
Therefore, the frequency Hz of the compressor 3 becomes Hz = A × (1.5 + 1.0 + 1.9) = A × 4.4 when A is a constant, and the calculation result is used as a frequency signal in a compressor drive circuit (not shown). ) To control the frequency of the compressor 3. Thereafter, the rated capacity signal of each of the indoor units 2a, 2b, 2c, the temperature difference signal, the operation mode signal, O
Calculation is performed from the N-OFF discrimination signal, and the calculation result is sent to a compressor drive circuit (not shown) as a frequency signal to control the frequency of the compressor 3.

【0042】膨張弁開度演算回路29においても同様
に、室内機2a,2b,2cのそれぞれ定格容量信号、
差温信号、運転モード信号、ON−OFF判別信号より
表1に示す負荷定数テーブル30から負荷定数を選び、
さらに室内機2a,2b,2cのそれぞれの定格容量よ
り下記表3に示す定格容量毎の弁初期開度テーブル31
から読みだす。なお、弁初期開度は、異なって定格容量
の室内機の組合せでも、各室内機が所定の能力制御がで
きるように決定する。
Similarly, in the expansion valve opening calculation circuit 29, the rated capacity signals of the indoor units 2a, 2b, 2c,
Select a load constant from the load constant table 30 shown in Table 1 from the differential temperature signal, the operation mode signal, and the ON-OFF discrimination signal,
Furthermore, from the rated capacity of each of the indoor units 2a, 2b, 2c, a valve initial opening table 31 for each rated capacity shown in Table 3 below.
Read from. The initial valve opening is determined so that each indoor unit can perform a predetermined capacity control even when different indoor units having different rated capacities are combined.

【0043】[0043]

【表3】 [Table 3]

【0044】電動膨張弁11a,11b,11cの弁開
度はそれぞれの負荷定数をその負荷定数の所定値で割っ
たものに弁初期開度を乗じたものである。圧縮機周波数
算出例の場合と同様に、室内機2a,2b,2cからの
信号が表2の場合について説明する。
The valve opening degrees of the electric expansion valves 11a, 11b, 11c are obtained by dividing each load constant by a predetermined value of the load constant and multiplying the valve initial opening degree. Similar to the case of the compressor frequency calculation example, the case where the signals from the indoor units 2a, 2b and 2c are shown in Table 2 will be described.

【0045】室内機2a,2b,2cの(負荷定数/所
定負荷定数)はそれぞれ(1.5/2.0)、(1.0
/2.5)、(1.9/3.2)であり、また弁初期開
度はそれぞれ100,130,180である。したがっ
て、電動膨張弁11a,11b,11cの弁開度は、7
5,52,107となる(小数点以下第1位を四捨五
入)。この演算結果を膨張弁開度信号として膨張弁駆動
回路(図示せず)に送出する。したがって、電動膨張弁
11a,11b,11cの弁開度はそれぞれ75パル
ス、52パルス、107パルスとなり、以降、所定周期
毎に、差温信号、運転モード信号、ON−OFF判別信
号より電動膨張弁11a,11b,11cの弁開度を算
出し、これらの演算結果を膨張弁開度信号として膨張弁
駆動回路(図示せず)に送出する。また、吸入温度セン
サ19の出力を吸入温度検出回路32より温度信号とし
て過熱度演算回路33に送出し、飽和温度センサ20の
出力を飽和温度検出回路34より温度信号として過熱度
演算回路33に送出し、ここで過熱度SH(=吸入温度
−飽和温度)を算出して膨張弁開度演算回路29に送出
する。膨張弁開度演算回路29では、送られてきた過熱
度SHに応じて、図4に示すように弁開度変更パルス数
を算出し、電動膨張弁11a,11b,11cの駆動回
路(図示せず)に送出し制御する。
The (load constant / predetermined load constant) of the indoor units 2a, 2b, 2c is (1.5 / 2.0) and (1.0), respectively.
/2.5), (1.9 / 3.2), and the valve initial opening degrees are 100, 130, and 180, respectively. Therefore, the valve opening degree of the electric expansion valves 11a, 11b, 11c is 7
5,52,107 (rounded to one decimal place). The result of this calculation is sent to an expansion valve drive circuit (not shown) as an expansion valve opening signal. Therefore, the valve opening degrees of the electric expansion valves 11a, 11b, and 11c are 75 pulses, 52 pulses, and 107 pulses, respectively, and thereafter, the electric expansion valve is calculated from the differential temperature signal, the operation mode signal, and the ON-OFF determination signal at predetermined intervals. The valve opening degrees of 11a, 11b, and 11c are calculated, and the results of these calculations are sent to an expansion valve drive circuit (not shown) as an expansion valve opening signal. Further, the output of the intake temperature sensor 19 is sent from the intake temperature detecting circuit 32 to the superheat degree calculating circuit 33 as a temperature signal, and the output of the saturation temperature sensor 20 is sent from the saturation temperature detecting circuit 34 to the superheat degree calculating circuit 33 as a temperature signal. Then, the superheat degree SH (= intake temperature−saturation temperature) is calculated here and sent to the expansion valve opening degree calculation circuit 29. The expansion valve opening calculation circuit 29 calculates the valve opening change pulse number as shown in FIG. 4 according to the sent superheat degree SH, and drives the electric expansion valves 11a, 11b, 11c (not shown). Control).

【0046】上記説明は、主に冷房時について行なった
が、暖房時についても同様に制御可能である。このよう
に、各部屋の要求能力の総和に応じて圧縮機周波数を制
御し、かつ各部屋毎の負荷に応じて各電動膨張弁の開度
を決定するため、必要な能力を必要な部屋に配分するこ
とができ、また同時に圧縮機吸入冷媒の過熱度を所定値
に保つように制御を行なっている。したがって、冷凍サ
イクルをきめ細かく最適に制御しながら、快適性の向上
および省エネルギーを図ることができる。
Although the above description was mainly made for cooling, the same control can be made for heating. In this way, the compressor frequency is controlled according to the total required capacity of each room, and the opening degree of each electric expansion valve is determined according to the load of each room. At the same time, the control is performed so that the superheat degree of the refrigerant sucked into the compressor is maintained at a predetermined value. Therefore, it is possible to improve comfort and save energy while finely and optimally controlling the refrigeration cycle.

【0047】次に、本発明の第2の実施例について、図
面を参照しながら説明する。なお、第2の実施例におけ
る冷凍サイクルは、図1に示す第1の実施例の場合と同
一であるので説明を省略する。図5は本発明の第2の実
施例における圧縮機周波数および電動膨張弁開度の制御
の流れを示すブロック図である。同図が第1の実施例の
ブロック図である図2と異なる点は、室内機の定格容量
に対応して定めた弁初期開度テーブル31のかわりに室
内機の運転台数およびその定格容量の組合せ毎に定めた
弁初期開度テーブル35を用いていることである。この
弁初期開度テーブル35は下記表4のようにあらわされ
る。
Next, a second embodiment of the present invention will be described with reference to the drawings. The refrigeration cycle in the second embodiment is the same as that in the first embodiment shown in FIG. FIG. 5 is a block diagram showing the flow of control of the compressor frequency and the electric expansion valve opening degree in the second embodiment of the present invention. The drawing is different from FIG. 2 which is a block diagram of the first embodiment in that the number of operating indoor units and their rated capacities are replaced by the valve initial opening table 31 determined corresponding to the rated capacity of the indoor units. That is, the valve initial opening degree table 35 determined for each combination is used. This valve initial opening degree table 35 is represented as shown in Table 4 below.

【0048】[0048]

【表4】 [Table 4]

【0049】そして、電動膨張弁11a,11b,11
cの弁開度はそれぞれの負荷定数をその負荷定数の所定
値で割ったものに弁初期開度を乗じたものである。この
ように、弁初期開度を室内機の運転台数およびその定格
容量の組合せ毎に定めているので、よりきめ細かく高い
精度の能力制御が可能であり、快適性の向上および省エ
ネルギーを図ることができる。
The electric expansion valves 11a, 11b, 11
The valve opening degree of c is obtained by dividing each load constant by a predetermined value of the load constant and multiplying the valve initial opening degree. In this way, since the initial valve opening is determined for each combination of the number of operating indoor units and their rated capacities, it is possible to perform finer and more precise capacity control, improve comfort and save energy. .

【0050】次に、本発明の第3の実施例について、図
面を参照しながら説明する。なお、第3の実施例におけ
る冷凍サイクルは、図1に示す第1の実施例の場合と同
一であるので説明を省略する。図6は本発明の第3の実
施例における圧縮機周波数および電動膨張弁開度の制御
の流れを示すブロック図である。同図が第1の実施例お
よび第2の実施例と異なる点は、定格容量毎の弁初期開
度テーブル31や弁初期開度テーブル35を用いていな
いことである。すなわち、弁初期開度は膨張弁開度演算
回路29にて室内機の運転台数とそれぞれの定格容量よ
り、近似式にて算出する。
Next, a third embodiment of the present invention will be described with reference to the drawings. The refrigeration cycle in the third embodiment is the same as that in the first embodiment shown in FIG. FIG. 6 is a block diagram showing the flow of control of the compressor frequency and the electric expansion valve opening degree in the third embodiment of the present invention. The drawing is different from the first and second embodiments in that the valve initial opening table 31 and the valve initial opening table 35 for each rated capacity are not used. That is, the initial valve opening degree is calculated by the expansion valve opening degree calculation circuit 29 from the operating number of indoor units and their rated capacities by an approximate expression.

【0051】たとえば室内機2aの弁初期開度はf(室
内機2aの定格容量、運転台数、他に運転中の室内機の
定格容量)であらわされる(fは関数を示す)。室内機
2b,2cについても同様にあらわすことができる。そ
して、電動膨張弁11a,11b,11cの弁開度はそ
れぞれの負荷定数をその負荷定数の所定値で割ったもの
に弁初期開度を乗じたものである。
For example, the initial valve opening degree of the indoor unit 2a is represented by f (rated capacity of the indoor unit 2a, number of operating units, and rated capacity of other operating indoor units) (f indicates a function). The same applies to the indoor units 2b and 2c. The valve opening degree of each of the electric expansion valves 11a, 11b, 11c is obtained by dividing each load constant by a predetermined value of the load constant and multiplying the valve initial opening degree.

【0052】このように、弁初期開度を室内機の運転台
数およびその定格容量の組合せ毎に近似式で求めている
ので、よりきめ細かく高い精度の能力制御が可能であ
り、快適性の向上および省エネルギーを図ることができ
る。また、弁初期開度のテーブルを必要としないので、
さらに室内機の組合せが増加しても、記憶回路の容量を
増加させる必要がない。なお、上記実施例において、室
内機2aの弁初期開度はf(室内機2aの定格容量、運
転台数、他に運転中の室内機の定格容量)であらわされ
るとしたが、f(室内機2aの定格容量、室内機2aの
負荷定数、運転台数、他に運転中の室内機の定格容量)
として近似式を作成することでさらに精度を高めること
ができる(室内機2b,2cについても同様)。
As described above, since the valve initial opening is calculated by an approximate expression for each combination of the number of operating indoor units and their rated capacities, it is possible to perform finer and more precise performance control, and to improve comfort. It is possible to save energy. Also, since a table of valve initial opening is not required,
Further, even if the number of combinations of indoor units increases, it is not necessary to increase the capacity of the memory circuit. In the above embodiment, the initial valve opening degree of the indoor unit 2a is represented by f (rated capacity of the indoor unit 2a, number of operating units, and other rated capacity of the operating indoor unit). 2a rated capacity, indoor unit 2a load constant, number of operating units, and other rated indoor unit capacity)
The accuracy can be further improved by creating the approximate expression as (the same applies to the indoor units 2b and 2c).

【0053】次に、本発明の第4の実施例について、図
面を参照しながら説明する。なお、第4の実施例におけ
る冷凍サイクルは、図1に示す第1の実施例の場合と同
一であり、第4の実施例における圧縮機周波数および電
動膨張弁開度の制御の流れを示すブロック図は図5と同
一であるため省略する。図7は過熱度SHと電動膨張弁
の弁開度変更量の総和との関係図である。
Next, a fourth embodiment of the present invention will be described with reference to the drawings. The refrigeration cycle in the fourth embodiment is the same as that in the first embodiment shown in FIG. 1, and is a block showing the flow of control of the compressor frequency and the electric expansion valve opening degree in the fourth embodiment. The figure is the same as FIG. FIG. 7 is a relationship diagram between the degree of superheat SH and the sum of the valve opening change amounts of the electric expansion valve.

【0054】本実施例が上記第1〜第3の実施例と異な
る点は、吸入温度センサ19の出力を吸入温度検出回路
32より温度信号として過熱度演算回路33に送出し、
飽和温度センサ20の出力を飽和温度検出回路34より
温度信号として過熱度演算回路33に送出し、ここで過
熱度SH(=吸入温度−飽和温度)を算出して膨張弁開
度演算回路29に送出し、送られてきた過熱度SHに応
じて、図7に示すように弁開度変更パルス数の総和を算
出し、電動膨張弁11a,11b,11cの弁開度の比
によって各膨張弁開度を算出し、駆動回路(図示せず)
に送出し制御する点である。
The present embodiment differs from the first to third embodiments in that the output of the intake temperature sensor 19 is sent from the intake temperature detection circuit 32 to the superheat degree calculation circuit 33 as a temperature signal,
The output of the saturation temperature sensor 20 is sent from the saturation temperature detection circuit 34 as a temperature signal to the superheat degree calculation circuit 33, where the superheat degree SH (= intake temperature-saturation temperature) is calculated and is sent to the expansion valve opening degree calculation circuit 29. The total number of valve opening change pulses is calculated as shown in FIG. 7 according to the sent superheat degree SH, and each expansion valve is calculated according to the valve opening ratio of the electric expansion valves 11a, 11b, 11c. Calculate the opening and drive circuit (not shown)
It is a point to send out to and control.

【0055】本実施例における圧縮機周波数および電動
膨張弁開度の制御方法について説明すると、図5におい
て、圧縮機周波数演算回路28にて室内機2a,2b,
2cのそれぞれの定格容量信号、差温信号、運転モード
信号、ON−OFF判別信号より表1に示す負荷定数テ
ーブル30から負荷定数を読みだし、この負荷定数の総
和に定数を乗じて圧縮機3の周波数を決定する点まで
は、上記第1〜第4の実施例と同じである。この演算結
果を周波数信号として圧縮機駆動回路(図示せず)に送
出して圧縮機3の周波数の制御を行なうとともに、膨張
弁開度演算回路29にも送出する。以降、所定周期毎に
室内機2a,2b,2cのそれぞれの定格容量信号、差
温信号、運転モード信号、ON−OFF判別信号より演
算を行ない、演算結果を周波数信号として圧縮機駆動回
路(図示せず)に送出して圧縮機3の周波数の制御を行
なうとともに、膨張弁開度演算回路29にも送出する。
膨張弁開度演算回路29においても同様に、室内機2
a,2b,2cのそれぞれの定格容量信号、差温信号、
運転モード信号、ON−OFF判別信号より表1に示す
負荷定数テーブル30から負荷定数を選び、さらに室内
機2a,2b,2cのそれぞれの定格容量より表3に示
す定格容量毎の弁初期開度テーブル31から弁初期開度
を読み出す。電動膨張弁11a,11b,11cの弁開
度はそれぞれの負荷定数をその負荷定数の所定値で割っ
たものに弁初期開度を乗じたものである。
A method of controlling the compressor frequency and the electric expansion valve opening degree in the present embodiment will be described. In FIG. 5, the compressor frequency calculation circuit 28 in the indoor units 2a, 2b ,.
The load constant is read from the load constant table 30 shown in Table 1 from the rated capacity signal, the differential temperature signal, the operation mode signal, and the ON-OFF determination signal of 2c, and the compressor 3 is obtained by multiplying the total of the load constants by the constant. Up to the point of determining the frequency, the same as in the first to fourth embodiments. The calculation result is sent as a frequency signal to a compressor drive circuit (not shown) to control the frequency of the compressor 3 and also sent to the expansion valve opening calculation circuit 29. After that, the calculation is performed from the rated capacity signal, the temperature difference signal, the operation mode signal, and the ON-OFF determination signal of each of the indoor units 2a, 2b, 2c at predetermined intervals, and the calculation result is used as a frequency signal in the compressor drive circuit (see (Not shown) to control the frequency of the compressor 3 and also to the expansion valve opening calculation circuit 29.
Similarly, in the expansion valve opening calculation circuit 29, the indoor unit 2
a, 2b, 2c rated capacity signal, differential temperature signal,
A load constant is selected from the load constant table 30 shown in Table 1 from the operation mode signal and the ON-OFF discrimination signal, and the valve initial opening for each rated capacity shown in Table 3 from the rated capacity of each indoor unit 2a, 2b, 2c. The valve initial opening is read from the table 31. The valve opening degrees of the electric expansion valves 11a, 11b, 11c are obtained by dividing each load constant by a predetermined value of the load constant and multiplying the valve initial opening degree.

【0056】ここで、第1の実施例の場合と同様に、室
内機2a,2b,2cからの信号が表2の場合について
具体的に説明する。室内機2a,2b,2cの(負荷定
数/所定負荷定数)はそれぞれ(1.5/2.0)、
(1.0/2.5)、(1.9/3.2)であり、また
弁初期開度はそれぞれ100,130,180である。
したがって、電動膨張弁11a,11b,11cの弁開
度は、75,52,107となる(小数点以下第1位を
四捨五入)。また、吸入温度センサ19の出力を吸入温
度検出回路32より温度信号として過熱度演算回路33
に送出し、飽和温度センサ20の出力を飽和温度検出回
路34より温度信号として過熱度演算回路33に送出
し、ここで過熱度SH(=吸入温度−飽和温度)を算出
して膨張弁開度演算回路29に送出し、送られてきた過
熱度SHに応じて、図7に示すように弁開度変更パルス
数の総和を算出し、電動膨張弁11a,11b,11c
の弁開度の比によって各膨張弁開度を算出し、駆動回路
(図示せず)に送出しする。
Here, as in the case of the first embodiment, the case where the signals from the indoor units 2a, 2b, 2c are shown in Table 2 will be specifically described. The (load constant / predetermined load constant) of the indoor units 2a, 2b, 2c is (1.5 / 2.0),
(1.0 / 2.5) and (1.9 / 3.2), and the valve initial openings are 100, 130 and 180, respectively.
Therefore, the valve opening degrees of the electric expansion valves 11a, 11b, 11c are 75, 52, 107 (rounded to the first decimal place). In addition, the superheat calculation circuit 33 outputs the output of the intake temperature sensor 19 as a temperature signal from the intake temperature detection circuit 32.
And outputs the output of the saturation temperature sensor 20 from the saturation temperature detection circuit 34 to the superheat degree calculation circuit 33 as a temperature signal, where the superheat degree SH (= intake temperature-saturation temperature) is calculated and the expansion valve opening degree is calculated. According to the superheat degree SH sent to the arithmetic circuit 29, the total number of valve opening change pulses is calculated as shown in FIG. 7, and the electric expansion valves 11a, 11b, 11c are calculated.
Each expansion valve opening is calculated based on the ratio of the valve opening of the above, and is sent to a drive circuit (not shown).

【0057】このように、各部屋の要求能力の総和に応
じて圧縮機周波数を制御し、かつ各部屋毎の負荷に応じ
て各電動膨張弁の開度を決定するため、必要な能力を必
要な部屋に配分することができ、また同時に圧縮機吸入
冷媒の過熱度を所定値に保つように制御を行なってい
る。したがって、冷凍サイクルをきめ細かく最適に制御
しながら、快適性の向上および省エネルギーを図ること
ができる。
In this way, the required frequency is required because the compressor frequency is controlled according to the total required capacity of each room and the opening degree of each electric expansion valve is determined according to the load of each room. It can be distributed to various rooms, and at the same time, control is performed so that the superheat degree of the refrigerant sucked into the compressor is maintained at a predetermined value. Therefore, it is possible to improve comfort and save energy while finely and optimally controlling the refrigeration cycle.

【0058】次に第5の実施例について説明する。図8
は、本発明の多室形空気調和システムの第5の実施例に
おける冷凍サイクル図である。この冷凍サイクルが上記
第1〜第4の実施例の場合と異なる点は、吸入管14を
流れる冷媒の過熱度を検出する回路やセンサがないこと
である。すなわち、図8の冷凍サイクルでは図1の冷凍
サイクルのバイパス回路15、飽和温度センサ20、吸
入温度センサ19がない。また、図9は本実施例の圧縮
機周波数および電動膨張弁開度の制御の流れを示すブロ
ック図、図10は圧縮機周波数と電動膨張弁の総弁開度
との関係図を示す。
Next, a fifth embodiment will be described. Figure 8
[Fig. 8] is a refrigeration cycle diagram in a fifth embodiment of the multi-room air conditioning system of the present invention. This refrigeration cycle is different from the first to fourth embodiments in that there is no circuit or sensor for detecting the degree of superheat of the refrigerant flowing through the suction pipe 14. That is, the refrigeration cycle of FIG. 8 does not include the bypass circuit 15, the saturation temperature sensor 20, and the suction temperature sensor 19 of the refrigeration cycle of FIG. Further, FIG. 9 is a block diagram showing a flow of control of the compressor frequency and the electric expansion valve opening degree of the present embodiment, and FIG. 10 is a relationship diagram between the compressor frequency and the total valve opening degree of the electric expansion valve.

【0059】本実施例における圧縮機周波数および電動
膨張弁開度の制御方法について説明すると、図9におい
て、圧縮機周波数演算回路28にて室内機2a,2b,
2cのそれぞれの定格容量信号、差温信号、運転モード
信号、ON−OFF判別信号より表1に示す負荷定数テ
ーブル30から負荷定数を読みだし、この負荷定数の総
和に定数を乗じて圧縮機3の周波数を決定する点まで
は、上記第1〜第4の実施例と同じである。この演算結
果を周波数信号として圧縮機駆動回路(図示せず)に送
出して圧縮機3の周波数の制御を行なうとともに、膨張
弁開度演算回路29にも送出する。以降、所定周期毎に
室内機2a,2b,2cのそれぞれの定格容量信号、差
温信号、運転モード信号、ON−OFF判別信号より演
算を行ない、演算結果を周波数信号として圧縮機駆動回
路(図示せず)に送出して圧縮機3の周波数の制御を行
なうとともに、膨張弁開度演算回路29にも送出する。
膨張弁開度演算回路29においても同様に、室内機2
a,2b,2cのそれぞれの定格容量信号、差温信号、
運転モード信号、ON−OFF判別信号より表1に示す
負荷定数テーブル30から負荷定数を選び、さらに室内
機2a,2b,2cのそれぞれの定格容量より表3に示
す定格容量毎の弁初期開度テーブル31から弁初期開度
を読み出す。電動膨張弁11a,11b,11cの弁開
度はそれぞれの負荷定数をその負荷定数の所定値で割っ
たものに弁初期開度を乗じたものである。
A method of controlling the compressor frequency and the electric expansion valve opening degree in the present embodiment will be described. In FIG. 9, the compressor frequency calculation circuit 28 is used to control the indoor units 2a, 2b ,.
The load constant is read from the load constant table 30 shown in Table 1 from the rated capacity signal, the differential temperature signal, the operation mode signal, and the ON-OFF determination signal of 2c, and the compressor 3 is obtained by multiplying the total of the load constants by the constant. Up to the point of determining the frequency, the same as in the first to fourth embodiments. The calculation result is sent as a frequency signal to a compressor drive circuit (not shown) to control the frequency of the compressor 3 and also sent to the expansion valve opening calculation circuit 29. After that, the calculation is performed from the rated capacity signal, the temperature difference signal, the operation mode signal, and the ON-OFF determination signal of each of the indoor units 2a, 2b, 2c at predetermined intervals, and the calculation result is used as a frequency signal in the compressor drive circuit (Fig. (Not shown) to control the frequency of the compressor 3 and also to the expansion valve opening calculation circuit 29.
Similarly, in the expansion valve opening calculation circuit 29, the indoor unit 2
a, 2b, 2c rated capacity signal, differential temperature signal,
A load constant is selected from the load constant table 30 shown in Table 1 from the operation mode signal and the ON-OFF discrimination signal, and the valve initial opening for each rated capacity shown in Table 3 from the rated capacity of each indoor unit 2a, 2b, 2c. The valve initial opening is read from the table 31. The valve opening degrees of the electric expansion valves 11a, 11b, 11c are obtained by dividing each load constant by a predetermined value of the load constant and multiplying the valve initial opening degree.

【0060】ここで、第1の実施例の場合と同様に、室
内機2a,2b,2cからの信号が表2の場合について
具体的に説明する。室内機2a,2b,2cの(負荷定
数/所定負荷定数)はそれぞれ(1.5/2.0)、
(1.0/2.5)、(1.9/3.2)であり、また
弁初期開度はそれぞれ100,130,180である。
したがって、電動膨張弁11a,11b,11cの弁開
度は、75,52,107となる(小数点以下第1位を
四捨五入)。また、圧縮機周波数演算回路28より送出
された周波数より、図10に示す関係を用いて電動膨張
弁11a,11b,11cの総弁開度を算出する。
Here, as in the case of the first embodiment, the case where the signals from the indoor units 2a, 2b, 2c are shown in Table 2 will be specifically described. The (load constant / predetermined load constant) of the indoor units 2a, 2b, 2c is (1.5 / 2.0),
(1.0 / 2.5) and (1.9 / 3.2), and the valve initial openings are 100, 130 and 180, respectively.
Therefore, the valve opening degrees of the electric expansion valves 11a, 11b, 11c are 75, 52, 107 (rounded to the first decimal place). Further, the total valve opening of the electric expansion valves 11a, 11b, 11c is calculated from the frequency sent from the compressor frequency calculation circuit 28 using the relationship shown in FIG.

【0061】圧縮機周波数演算回路28より送出された
周波数が75Hzの場合を考えると図10より、電動膨
張弁11a,11b,11cの総弁開度は700パルス
となる。すると、前述の弁開度比によりそれぞれの弁開
度は、電動膨張弁11aが224パルス、11bが15
6パルス、11cが320パルスとなり、この演算結果
を膨張弁開度信号として膨張弁駆動回路(図示せず)に
送出する。以降、所定周期毎に圧縮機周波数演算回路2
8より送出された周波数信号に応じて、総弁開度を変更
し、また室内機2a,2b,2cのそれぞれの定格容量
信号、差温信号、運転モード信号、ON−OFF判別信
号より電動膨張弁11a,11b,11cの弁開度を算
出し、演算結果を膨張弁開度信号として膨張弁駆動回路
(図示せず)に送出する。
Considering the case where the frequency sent from the compressor frequency arithmetic circuit 28 is 75 Hz, the total valve opening of the electric expansion valves 11a, 11b, 11c is 700 pulses from FIG. Then, according to the above-mentioned valve opening ratio, each valve opening is 224 pulses for the electric expansion valve 11a and 15 for 11b.
Six pulses and 11c become 320 pulses, and the calculation result is sent to an expansion valve drive circuit (not shown) as an expansion valve opening signal. After that, the compressor frequency calculation circuit 2 is executed every predetermined period.
The total valve opening is changed in accordance with the frequency signal sent from 8 and the electric expansion is performed from the rated capacity signal of each indoor unit 2a, 2b, 2c, the temperature difference signal, the operation mode signal, and the ON-OFF discrimination signal. The valve opening degrees of the valves 11a, 11b, 11c are calculated, and the calculation result is sent to an expansion valve drive circuit (not shown) as an expansion valve opening signal.

【0062】このように、各部屋の要求能力の総和に応
じて圧縮機周波数を制御し、かつ各部屋毎の負荷に応じ
て各電動膨張弁の開度を決定するため、必要な能力を必
要な部屋に配分することができ、また同時に圧縮機周波
数に対応して電動膨張弁の弁開度を決定するため、構成
を複雑にすることなく、冷凍サイクルを最適に保ちなが
ら快適性の向上および省エネルギーを図ることができ
る。
In this way, the required frequency is required in order to control the compressor frequency according to the total required capacity of each room and to determine the opening degree of each electric expansion valve according to the load of each room. It can be distributed to different rooms, and at the same time, the valve opening of the electric expansion valve is determined according to the compressor frequency. It is possible to save energy.

【0063】次に第6の実施例について説明する。図1
1は、本発明の多室形空気調和システムの第6の実施例
における冷凍サイクル図である。この冷凍サイクルが上
記第1〜5の実施例の場合と異なる点は、吐出管36に
ここを流れる冷媒の温度を検出する吐出温度センサ37
が設けられている点である。また、図12は本実施例の
圧縮機周波数および電動膨張弁開度の制御の流れを示す
ブロック図、図13は圧縮機周波数と主電動膨張弁の弁
開度との関係図を示す。
Next, a sixth embodiment will be described. Figure 1
FIG. 1 is a refrigeration cycle diagram in a sixth embodiment of the multi-room air conditioning system of the present invention. The difference between this refrigeration cycle and the first to fifth embodiments is that a discharge temperature sensor 37 for detecting the temperature of the refrigerant flowing through the discharge pipe 36.
Is provided. Further, FIG. 12 is a block diagram showing the flow of control of the compressor frequency and the electric expansion valve opening degree of the present embodiment, and FIG. 13 is a relationship diagram between the compressor frequency and the valve opening degree of the main electric expansion valve.

【0064】本実施例における圧縮機周波数および電動
膨張弁開度の制御方法について説明すると、図11にお
いて、圧縮機周波数演算回路28にて室内機2a,2
b,2cのそれぞれの定格容量信号、差温信号、運転モ
ード信号、ON−OFF判別信号より表1に示す負荷定
数テーブル30から負荷定数を読みだし、この負荷定数
の総和に定数を乗じて圧縮機3の周波数を決定する点ま
では、上記第1〜第5の実施例と同じである。この演算
結果を周波数信号として圧縮機駆動回路(図示せず)に
送出して圧縮機3の周波数の制御を行なうとともに、吐
出温度演算回路38にも送出する。以降、所定周期毎に
室内機2a,2b,2cのそれぞれの定格容量信号、差
温信号、運転モード信号、ON−OFF判別信号より演
算を行ない、演算結果を周波数信号として圧縮機駆動回
路(図示せず)に送出して圧縮機3の周波数の制御を行
なうとともに、吐出温度演算回路38にも送出する。
A method of controlling the compressor frequency and the electric expansion valve opening degree in this embodiment will be described. In FIG. 11, the compressor frequency calculation circuit 28 is used to control the indoor units 2a and 2a.
The load constant is read from the load constant table 30 shown in Table 1 from the rated capacity signal, the differential temperature signal, the operation mode signal, and the ON-OFF discrimination signal of each of b and 2c, and the sum of the load constants is multiplied by the constant to be compressed. Up to the point of determining the frequency of the machine 3, it is the same as in the first to fifth embodiments. The calculation result is sent as a frequency signal to a compressor drive circuit (not shown) to control the frequency of the compressor 3 and also sent to the discharge temperature calculation circuit 38. After that, the calculation is performed from the rated capacity signal, the temperature difference signal, the operation mode signal, and the ON-OFF determination signal of each of the indoor units 2a, 2b, 2c at predetermined intervals, and the calculation result is used as a frequency signal in the compressor drive circuit (Fig. (Not shown) to control the frequency of the compressor 3 and also to the discharge temperature calculation circuit 38.

【0065】膨張弁開度演算回路29においても同様
に、室内機2a,2b,2cのそれぞれの定格容量信
号、差温信号、運転モード信号、ON−OFF判別信号
より表1に示す負荷定数テーブル30から負荷定数を選
び、さらに室内機2a,2b,2cのそれぞれの定格容
量より表3に示す定格容量毎の弁初期開度テーブル31
から弁初期開度を読みだす。電動膨張弁11a,11
b,11cの弁開度はそれぞれの負荷定数をその負荷定
数の所定値で割ったものに弁初期開度を乗じたものであ
る。また、吐出温度演算回路38では、圧縮機周波数演
算回路28から送出された周波数信号に対応する目標吐
出温度を算出し温度信号として吐出温度差演算回路40
に送出し、また、吐出温度センサ37の出力を吐出温度
検出回路39より温度信号として吐出温度差演算回路4
0に送出し、ここで吐出温度差(=吐出温度−目標吐出
温度温度)ΔTdisを算出して膨張弁開度演算回路2
9に送出する。膨張弁開度演算回路29では、送られて
きた吐出温度差ΔTdisに応じて、図14に示すよう
に弁開度変更パルス数を算出し、電動膨張弁11a,1
1b,11cの駆動回路(図示せず)に送出し制御す
る。
Similarly, in the expansion valve opening calculation circuit 29, the load constant table shown in Table 1 is obtained from the rated capacity signal, the differential temperature signal, the operation mode signal, and the ON-OFF discrimination signal of each indoor unit 2a, 2b, 2c. A load constant is selected from 30, and a valve initial opening table 31 for each rated capacity shown in Table 3 based on the rated capacity of each indoor unit 2a, 2b, 2c.
Read the valve initial opening from. Electric expansion valve 11a, 11
The valve opening degrees of b and 11c are obtained by dividing each load constant by a predetermined value of the load constant and multiplying the valve initial opening degree. Further, the discharge temperature calculation circuit 38 calculates a target discharge temperature corresponding to the frequency signal sent from the compressor frequency calculation circuit 28, and the discharge temperature difference calculation circuit 40 as a temperature signal.
And the output of the discharge temperature sensor 37 as a temperature signal from the discharge temperature detection circuit 39.
0, the discharge temperature difference (= discharge temperature-target discharge temperature temperature) ΔTdis is calculated here, and the expansion valve opening degree calculation circuit 2
9 is sent. The expansion valve opening calculation circuit 29 calculates the valve opening change pulse number as shown in FIG. 14 according to the delivered discharge temperature difference ΔTdis, and the electric expansion valves 11 a, 1
It is sent to a drive circuit (not shown) of 1b and 11c and controlled.

【0066】このように、各部屋の要求能力の総和に応
じて圧縮機周波数を制御し、かつ各部屋毎の負荷に応じ
て各電動膨張弁の開度を決定するため、必要な能力を必
要な部屋に配分することができ、また同時に圧縮機吐出
温度を所定値に保つように制御するため、構成を複雑に
することなく、冷凍サイクルをより最適に保ちながら快
適性の向上および省エネルギーを図ることができる。
As described above, the required frequency is required because the compressor frequency is controlled according to the total required capacity of each room and the opening degree of each electric expansion valve is determined according to the load of each room. It can be distributed to different rooms, and at the same time, the compressor discharge temperature is controlled so as to keep it at a predetermined value, so that the refrigeration cycle is kept more optimal and comfort is improved and energy is saved without complicating the configuration. be able to.

【0067】[0067]

【発明の効果】上記実施例より明かなように本発明の多
室形空気調和システムは、室内機のそれぞれに、希望す
る室内温度と設定可能な室内温度設定手段と室内温度を
検出する室内温度検出手段とを設け、この室内温度設定
手段と室内温度検出手段とから設定室内温度と室内温度
との差温を算出する差温算出手段を設け、さらに前記室
内機のそれぞれの定格容量を判定する容量判別手段およ
び前記室内機のそれぞれについて運転中か停止中かを判
別するオンオフ判別手段を設け、前記差温が取り得る温
度範囲を複数個の温度ゾーンに分割し、各温度ゾーン毎
にかつ室内機の定格容量毎に室内負荷に対応する負荷定
数を定めて記憶する負荷定数記憶手段を設け、室内機の
定格容量毎に弁初期開度を定めて記憶する弁初期開度記
憶手段を設け、前記差温算出手段、前記容量判別手段、
前記オンオフ判別手段、前記負荷定数記憶手段より得ら
れるデータを用いて所定初期毎に圧縮機容量を算出し、
この算出結果に基づいて前記容量(周波数)可変形圧縮
機の容量を制御する圧縮機容量制御手段を設け、前記室
内機の複数台が運転中の場合には、前記データおよび前
記弁初期開度記憶手段より得られるデータを用いて所定
周期毎に運転中の室内機に接続された各電動膨張弁の弁
開度を算出し、この算出結果に基づいて前記電動膨張弁
の弁開度を制御する弁開度制御手段を設けることで、各
部屋の要求能力の総和に応じて圧縮機周波数を制御し、
かつ各部屋毎の負荷に応じて各電動膨張弁の開度を決定
するため、必要な能力を必要な部屋に配分することがで
き、快適性の向上および省エネルギーを図ることができ
る。
As is apparent from the above embodiment, the multi-room air conditioning system of the present invention has a room temperature setting means capable of setting a desired room temperature and a room temperature detecting the room temperature for each indoor unit. A detection means is provided, and a temperature difference calculation means for calculating a temperature difference between the set room temperature and the room temperature is provided from the room temperature setting means and the room temperature detection means, and the rated capacity of each of the indoor units is determined. A capacity determining means and an on / off determining means for determining whether each of the indoor units is in operation or stopped are provided, and the temperature range in which the differential temperature can be taken is divided into a plurality of temperature zones, and each temperature zone and an indoor unit A load constant storage means for determining and storing a load constant corresponding to the indoor load for each rated capacity of the indoor unit is provided, and a valve initial opening degree storage means for determining and storing the valve initial opening degree for each rated capacity of the indoor unit is provided, Previous Differential temperature calculating means, the capacitance determining means,
Using the data obtained from the on / off discriminating means and the load constant storing means, the compressor capacity is calculated for each predetermined initial period,
Compressor capacity control means for controlling the capacity of the variable capacity (frequency) compressor based on the calculation result is provided, and when the plurality of indoor units are in operation, the data and the valve initial opening degree are set. The valve opening of each electric expansion valve connected to the operating indoor unit is calculated every predetermined period using the data obtained from the storage means, and the valve opening of the electric expansion valve is controlled based on the calculation result. By providing a valve opening control means for controlling the compressor frequency according to the total required capacity of each room,
Moreover, since the opening degree of each electric expansion valve is determined according to the load of each room, the required capacity can be distributed to the required room, and the comfort can be improved and the energy can be saved.

【0068】また、室内機のそれぞれに、希望する室内
温度と設定可能な室内温度設定手段と室内温度を検出す
る室内温度検出手段とを設け、この室内温度設定手段と
室内温度検出手段とから設定室内温度と室内温度との差
温を算出する差温算出手段を設け、さらに前記室内機の
それぞれの定格容量を判定する容量判別手段および前記
室内機のそれぞれについて運転中か停止中かを判別する
オンオフ判別手段を設け、前記差温が取り得る温度範囲
を複数個の温度ゾーンに分割し、各温度ゾーン毎にかつ
室内機の定格容量毎に室内負荷に対応する負荷定数を定
めて記憶する負荷定数記憶手段を設け、前記差温算出手
段、前記容量判別手段、前記オンオフ判別手段、前記負
荷定数記憶手段より得られるデータを用いて所定周期毎
に圧縮機容量を算出し、この算出結果に基づいて前記容
量(周波数)可変形圧縮機の容量を制御する圧縮機容量
制御手段を設け、運転中の室内機台数および定格容量の
組合せ毎に各室内機に接続された電動膨張弁毎の弁初期
開度を定めて記憶する弁初期開度記憶手段を設け、前記
室内機の複数台が運転中の場合には、前記データおよび
この弁初期開度記憶手段より得られる弁初期開度のデー
タを用いて所定周期毎に運転中の室内機に接続された各
電動膨張弁の弁開度を算出し、この算出結果に基づいて
前記電動膨張弁の弁開度を制御する弁開度制御手段を設
けることで、各部屋の要求能力の総和に応じて圧縮機周
波数を制御し、かつ各部屋毎の負荷に応じて各電動膨張
弁の開度を決定するため、必要な能力を必要な部屋に配
分することができ、さらに弁初期開度を室内機の運転台
数およびその定格容量の組合せ毎に定めているので、よ
りきめ細かく高い精度の能力制御が可能であり、快適性
の向上および省エネルギーを図ることができる。
Further, each indoor unit is provided with an indoor temperature setting means capable of setting a desired indoor temperature and an indoor temperature detecting means for detecting the indoor temperature, and the indoor temperature setting means and the indoor temperature detecting means set the indoor temperature. A temperature difference calculating means for calculating the temperature difference between the indoor temperature and the indoor temperature is provided, and further capacity determining means for determining the rated capacity of each of the indoor units and determining whether each of the indoor units is operating or stopped. A load that is provided with an on / off determination means, divides the temperature range that the differential temperature can take into a plurality of temperature zones, and determines and stores a load constant corresponding to the indoor load for each temperature zone and for each rated capacity of the indoor unit. A constant capacity storage means is provided, and the compressor capacity is calculated every predetermined cycle using data obtained from the differential temperature calculation means, the capacity determination means, the on / off determination means, and the load constant storage means. Then, compressor capacity control means for controlling the capacity of the capacity (frequency) variable compressor based on the calculation result is provided, and the compressor is connected to each indoor unit for each combination of the number of operating indoor units and the rated capacity. A valve initial opening degree storage means for determining and storing a valve initial opening degree for each electric expansion valve is provided, and when a plurality of indoor units are in operation, the data and the valve initial opening degree storage means are obtained. The valve opening degree of each electric expansion valve connected to the operating indoor unit is calculated every predetermined period using the data of the valve initial opening degree, and the valve opening degree of the electric expansion valve is controlled based on the calculation result. By providing a valve opening control means for controlling the compressor frequency according to the total required capacity of each room and determining the opening of each electric expansion valve according to the load of each room, it is necessary. Capacity can be distributed to the required room, and the valve can be opened initially. The Since determined for each combination of the number of operating units and its rated capacity of the indoor unit, it is capable of capacity control more finely accuracy can be improved and energy saving comfort.

【0069】また、室内機のそれぞれに、希望する室内
温度と設定可能な室内温度設定手段と室内温度を検出す
る室内温度検出手段とを設け、この室内温度設定手段と
室内温度検出手段とから設定室内温度と室内温度との差
温を算出する差温算出手段を設け、さらに前記室内機の
それぞれの定格容量を判定する容量判別手段および前記
室内機のそれぞれについて運転中か停止中かを判別する
オンオフ判別手段を設け、前記差温が取り得る温度範囲
を複数個の温度ゾーンに分割し、各温度ゾーン毎にかつ
室内機の定格容量毎に室内負荷に対応する負荷定数を定
めて記憶する負荷定数記憶手段を設け、前記差温算出手
段、前記容量判別手段、前記オンオフ判別手段、前記負
荷定数記憶手段より得られるデータを用いて所定周期毎
に圧縮機容量を算出し、この算出結果に基づいて前記容
量(周波数)可変形圧縮機の容量を制御する圧縮機容量
制御手段を設け、前記データを用いて近似式にて各室内
機に接続された電動膨張弁毎の弁初期開度を算出する弁
初期開度算出手段を設け、前記室内機の複数台が運転中
の場合には、前記データおよびこの弁初期開度算出手段
より得られる弁初期開度のデータを用いて所定周期毎に
運転中の室内機に接続された各電動膨張弁の弁開度を算
出し、この算出結果に基づいて前記電動膨張弁の弁開度
を制御する弁開度制御手段を設けることで、弁初期開度
を室内機の運転台数およびその定格容量の組合せ毎に近
似式で求めているので、よりきめ細かく高い精度の能力
制御が可能であり、快適性の向上および省エネルギーを
図ることができる。また、弁初期開度のテーブルを必要
としないので、さらに室内機の組合せが増加しても、記
憶回路の容量を増加させる必要がない。
Further, each indoor unit is provided with an indoor temperature setting means capable of setting a desired indoor temperature and an indoor temperature detecting means for detecting the indoor temperature, and the indoor temperature setting means and the indoor temperature detecting means set the indoor temperature. A temperature difference calculating means for calculating the temperature difference between the indoor temperature and the indoor temperature is provided, and further capacity determining means for determining the rated capacity of each of the indoor units and determining whether each of the indoor units is operating or stopped. A load that is provided with an on / off determination means, divides the temperature range that the differential temperature can take into a plurality of temperature zones, and determines and stores a load constant corresponding to the indoor load for each temperature zone and for each rated capacity of the indoor unit. A constant capacity storage means is provided, and the compressor capacity is calculated every predetermined cycle using data obtained from the differential temperature calculation means, the capacity determination means, the on / off determination means, and the load constant storage means Then, compressor capacity control means for controlling the capacity of the capacity (frequency) variable compressor based on the calculation result is provided, and each electric expansion valve connected to each indoor unit by an approximate expression using the data. Is provided with a valve initial opening calculation means for calculating the valve initial opening, and when a plurality of the indoor units are in operation, the data and the data of the valve initial opening obtained from the valve initial opening calculation means. Valve opening control means for calculating the valve opening of each electric expansion valve connected to the operating indoor unit for each predetermined cycle, and controlling the valve opening of the electric expansion valve based on the calculation result. Since the valve initial opening is calculated by an approximate expression for each combination of the number of operating indoor units and their rated capacities, it is possible to perform finer and more precise capacity control, improve comfort and save energy. Can be planned. Further, since the table of the valve initial opening is not required, it is not necessary to increase the capacity of the memory circuit even if the number of combinations of indoor units increases.

【0070】また、容量(周波数)可変形圧縮機に吸入
される冷媒の過熱度を所定周期毎に検出する過熱度検出
手段を設け、運転中の室内機に接続された電動膨張弁の
弁開度の変更量をこの過熱度検出手段により検出された
過熱度のデータに対応して決定する弁開度決定手段を設
け、弁開度制御手段にてこの弁開度を制御することで、
圧縮機吸入冷媒の過熱度を所定値に保つように制御を行
なうため、冷凍サイクルをよりきめ細かく最適に制御し
ながら、快適性の向上および省エネルギーを図ることが
できる。
Further, a superheat degree detecting means for detecting the superheat degree of the refrigerant sucked into the variable displacement (frequency) type compressor at predetermined intervals is provided, and the electric expansion valve connected to the operating indoor unit is opened. By providing a valve opening degree determining means for determining the degree of change in degree corresponding to the superheat degree data detected by the superheat degree detecting means, and controlling the valve opening degree by the valve opening degree control means,
Since the control is performed so as to maintain the superheat degree of the refrigerant sucked into the compressor at a predetermined value, it is possible to improve comfort and save energy while controlling the refrigeration cycle more finely and optimally.

【0071】また、容量(周波数)可変形圧縮機に吸入
される冷媒の過熱度を所定周期毎に検出する過熱度検出
手段を設け、運転中の室内機に接続された電動膨張弁の
弁開度変更量の総和をこの過熱度検出手段により検出さ
れた過熱度のデータに対応して決定する弁開度決定手段
を設け、弁開度制御手段にてこの弁開度を制御すること
で、圧縮機吸入冷媒の過熱度を所定値に保つように制御
を行なうため、冷凍サイクルをよりきめ細かく最適に制
御しながら、快適性の向上および省エネルギーを図るこ
とができる。
Further, a superheat degree detecting means for detecting the superheat degree of the refrigerant sucked into the variable displacement (frequency) type compressor at predetermined intervals is provided, and the electric expansion valve connected to the operating indoor unit is opened. By providing a valve opening degree determining means for determining the sum of the degree change amounts corresponding to the superheat degree data detected by the superheat degree detecting means, and controlling the valve opening degree by the valve opening degree control means, Since the control is performed so as to maintain the superheat degree of the refrigerant sucked into the compressor at a predetermined value, it is possible to improve comfort and save energy while controlling the refrigeration cycle more finely and optimally.

【0072】また、運転中の室内機に接続された電動膨
張弁の弁開度の総和を圧縮機容量制御手段により算出さ
れた圧縮機容量に対応して決定する弁開度決定手段を設
け、弁開度制御手段にてこの弁開度を制御することで、
圧縮機周波数に対応して主電動膨張弁の弁開度を決定す
るため、構成を複雑にすることなく、冷凍サイクルを最
適に保ちながら快適性の向上および省エネルギーを図る
ことができる。
Further, there is provided a valve opening degree determining means for determining the total valve opening degree of the electric expansion valve connected to the operating indoor unit in accordance with the compressor capacity calculated by the compressor capacity controlling means, By controlling the valve opening with the valve opening control means,
Since the valve opening degree of the main electric expansion valve is determined according to the compressor frequency, it is possible to improve comfort and save energy while keeping the refrigeration cycle optimal without complicating the configuration.

【0073】また、容量(周波数)可変形圧縮機から吐
出される冷媒の温度を所定周期毎に検出する吐出温度検
出手段と、吐出温度を圧縮機容量制御手段により算出さ
れた圧縮機容量に対応して決定する圧縮機吐出温度決定
手段を設け、運転中の室内機に接続された電動膨張弁の
弁開度の変更量を、吐出温度検出手段により検出された
吐出温度データに対応して決定する弁開度決定手段を設
け、弁開度制御手段にてこの弁開度を制御することで、
圧縮機吐出温度を所定値に保つように制御を行なうた
め、構成を複雑にすることなく、冷凍サイクルをよりき
め細かく最適に制御しながら、快適性の向上および省エ
ネルギーを図ることができる。
Further, the discharge temperature detecting means for detecting the temperature of the refrigerant discharged from the variable capacity (frequency) type compressor at every predetermined cycle, and the discharge temperature corresponding to the compressor capacity calculated by the compressor capacity control means. The compressor discharge temperature determining means is provided to determine the amount of change in the valve opening degree of the electric expansion valve connected to the operating indoor unit in accordance with the discharge temperature data detected by the discharge temperature detecting means. By providing a valve opening degree determining means for controlling the valve opening degree by the valve opening degree controlling means,
Since the control is performed so that the compressor discharge temperature is maintained at a predetermined value, it is possible to improve comfort and save energy while controlling the refrigeration cycle more finely and optimally without complicating the configuration.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の多室空気調和システムの第1の実施例
における冷凍サイクル図
FIG. 1 is a refrigeration cycle diagram in a first embodiment of a multi-room air conditioning system of the present invention.

【図2】同実施例における圧縮機周波数および電動膨張
弁開度の制御ブロック図
FIG. 2 is a control block diagram of a compressor frequency and an electric expansion valve opening degree in the embodiment.

【図3】差温ΔTの温度ゾーン分割図FIG. 3 is a temperature zone division diagram of the differential temperature ΔT.

【図4】過熱度SHと電動膨張弁の開度変更量との関係
FIG. 4 is a relationship diagram between a superheat degree SH and an opening change amount of an electric expansion valve.

【図5】本発明の多室空気調和システムの第2の実施例
における圧縮機周波数および電動膨張弁開度の制御ブロ
ック図
FIG. 5 is a control block diagram of a compressor frequency and an electric expansion valve opening degree in a second embodiment of the multi-room air conditioning system of the present invention.

【図6】本発明の多室空気調和システムの第3の実施例
における圧縮機周波数および電動膨張弁開度の制御ブロ
ック図
FIG. 6 is a control block diagram of a compressor frequency and an electric expansion valve opening degree in a third embodiment of the multi-room air conditioning system of the present invention.

【図7】本発明の多室空気調和システムの第5の実施例
における過熱度SHと電動膨張弁変更量の総和との関係
FIG. 7 is a diagram showing the relationship between the superheat degree SH and the sum of the electric expansion valve change amounts in the fifth embodiment of the multi-room air conditioning system of the present invention.

【図8】本発明の多室空気調和システムの第4の実施例
における冷凍サイクル図
FIG. 8 is a refrigeration cycle diagram in a fourth embodiment of the multi-room air conditioning system of the present invention.

【図9】同実施例における圧縮機周波数および電動膨張
弁開度の制御ブロック図
FIG. 9 is a control block diagram of a compressor frequency and an electric expansion valve opening degree in the embodiment.

【図10】同実施例における圧縮機周波数と電動膨張弁の
総弁開度との関係図
FIG. 10 is a relationship diagram between the compressor frequency and the total opening degree of the electric expansion valve in the embodiment.

【図11】本発明の多室空気調和システムの第6の実施例
における冷凍サイクル図
FIG. 11 is a refrigeration cycle diagram in a sixth embodiment of the multi-room air conditioning system of the present invention.

【図12】同実施例における圧縮機周波数および電動膨張
弁開度の制御ブロック図
FIG. 12 is a control block diagram of a compressor frequency and an electric expansion valve opening degree in the embodiment.

【図13】圧縮機周波数と目標吐出温度との関係図FIG. 13 is a relationship diagram between a compressor frequency and a target discharge temperature.

【図14】吐出温度の差ΔTdisと電動膨張弁の開度変
更量との関係図
FIG. 14 is a relationship diagram between a discharge temperature difference ΔTdis and an opening change amount of an electric expansion valve.

【図15】従来の多室空気調和システムの冷凍サイクル図FIG. 15: Refrigeration cycle diagram of conventional multi-room air conditioning system

【図16】同システムの室内外ユニットの容量比率と電動
流量調整弁の弁開度との関係図
FIG. 16 is a diagram showing the relationship between the capacity ratio of the indoor / outdoor unit and the valve opening degree of the electric flow rate control valve in the same system.

【符号の説明】[Explanation of symbols]

1 室外機 2a 室内機 2b 室内機 2c 室内機 3 容量(周波数)可変形圧縮機 4 室外熱交換器 5 四方弁 6a 室内熱交換器 6b 室内熱交換器 6c 室内熱交換器 7 液側主管 8a 液側分岐管 8b 液側分岐管 8c 液側分岐管 9 ガス側主管 10a ガス側分岐管 10b ガス側分岐管 10c ガス側分岐管 11a 電動膨張弁 11b 電動膨張弁 11c 電動膨張弁 12 レシーバ 13 補助絞り 14 吸入管 15 バイパス回路 16 補助絞り 17a 室内温度センサ 17b 室内温度センサ 17c 室内温度センサ 18a 運転設定回路 18b 運転設定回路 18c 運転設定回路 19 吸入温度センサ 20 飽和温度センサ 21 室内温度検出回路 22 差温演算回路 23 設定判別回路 24 ON−OFF判別回路 25 定格容量記憶回路 26 信号送出回路 27 信号受信回路 28 圧縮機周波数演算回路 29 膨張弁開度演算回路 30 負荷定数テーブル 31 弁初期開度テーブル 32 吸入温度検出回路 33 過熱度演算回路 34 飽和温度検出回路 35 弁初期開度テーブル 36 吐出管 37 吐出温度センサ 38 吐出温度演算回路 39 吐出温度検出回路 40 吐出温度差演算回路 1 outdoor unit 2a indoor unit 2b indoor unit 2c indoor unit 3 variable capacity (frequency) compressor 4 outdoor heat exchanger 5 four-way valve 6a indoor heat exchanger 6b indoor heat exchanger 6c indoor heat exchanger 7 liquid side main pipe 8a liquid Side branch pipe 8b Liquid side branch pipe 8c Liquid side branch pipe 9 Gas side main pipe 10a Gas side branch pipe 10b Gas side branch pipe 10c Gas side branch pipe 11a Electric expansion valve 11b Electric expansion valve 11c Electric expansion valve 12 Receiver 13 Auxiliary throttle 14 Suction pipe 15 Bypass circuit 16 Auxiliary throttle 17a Indoor temperature sensor 17b Indoor temperature sensor 17c Indoor temperature sensor 18a Operation setting circuit 18b Operation setting circuit 18c Operation setting circuit 19 Suction temperature sensor 20 Saturation temperature sensor 21 Indoor temperature detection circuit 22 Differential temperature calculation circuit 23 Setting Discrimination Circuit 24 ON-OFF Discrimination Circuit 25 Rated Capacity Storage Circuit 26 Signal sending circuit 27 Signal receiving circuit 28 Compressor frequency calculation circuit 29 Expansion valve opening calculation circuit 30 Load constant table 31 Valve initial opening table 32 Suction temperature detection circuit 33 Superheat calculation circuit 34 Saturation temperature detection circuit 35 Valve initial opening Table 36 Discharge pipe 37 Discharge temperature sensor 38 Discharge temperature calculation circuit 39 Discharge temperature detection circuit 40 Discharge temperature difference calculation circuit

───────────────────────────────────────────────────── フロントページの続き (72)発明者 室園 宏治 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 岡部 正明 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Koji Murozono 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (72) Masaaki Okabe, 1006 Kadoma, Kadoma City, Osaka Matsushita Electric Industrial Co., Ltd.

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 容量(周波数)可変形圧縮機、四方弁、
室外熱交換器を有する1台の室外機と、室内熱交換器を
有する複数台の室内機とを、前記室外機に設けて主に冷
媒液が流れる液側主管を分岐した液側分岐管および前記
室外機に設けて主に冷媒ガスが流れるガス側主管を分岐
したガス側分岐管を介して接続し、前記液側分岐管のそ
れぞれに電気的に弁開度を制御可能とした電動膨張弁を
介装して冷凍サイクルを構成し、前記室内機のそれぞれ
に、希望する室内温度を設定可能な室内温度設定手段と
室内温度を検出する室内温度検出手段とを設け、この室
内温度設定手段と室内温度検出手段とから設定室内温度
と室内温度との差温を算出する差温算出手段を設け、さ
らに前記室内機のそれぞれの定格容量を判別する容量判
別手段および前記室内機のそれぞれについて運転中か停
止中かを判別するオンオフ判別手段を設け、前記差温が
取り得る温度範囲を複数個の温度ゾーンに分割し、各温
度ゾーン毎にかつ室内機の定格容量毎に室内負荷に対応
する負荷定数を定めて記憶する負荷定数記憶手段を設
け、室内機の定格容量毎に弁初期開度を定めて記憶する
弁初期開度記憶手段を設け、前記差温算出手段、前記容
量判別手段、前記オンオフ判別手段、前記負荷定数記憶
手段より得られるデータを用いて所定周期毎に圧縮機容
量を算出し、この算出結果に基づいて前記容量(周波
数)可変形圧縮機の容量を制御する圧縮機容量制御手段
を設け、前記室内機の複数台が運転中の場合には、前記
データおよび前記弁初期開度記憶手段より得られるデー
タを用いて所定周期毎に運転中の室内機に接続された各
電動膨張弁の弁開度を算出し、この算出結果に基づいて
前記電動膨張弁の弁開度を制御する弁開度制御手段を設
けた多室形空気調和システム。
1. A variable capacity (frequency) compressor, a four-way valve,
A liquid-side branch pipe that is provided with one outdoor unit having an outdoor heat exchanger and a plurality of indoor units having an indoor heat exchanger and branches a liquid-side main pipe through which a refrigerant liquid mainly flows, An electric expansion valve which is provided in the outdoor unit and is connected via a gas side branch pipe that branches a gas side main pipe through which a refrigerant gas mainly flows and which can electrically control the valve opening degree of each of the liquid side branch pipes. A refrigerating cycle is formed by interposing, and each of the indoor units is provided with an indoor temperature setting means capable of setting a desired indoor temperature and an indoor temperature detecting means for detecting the indoor temperature. A temperature difference calculating means for calculating the temperature difference between the set room temperature and the room temperature is provided from the room temperature detecting means, and further, the capacity determining means for determining each rated capacity of the indoor unit and the indoor unit are in operation. Determine if it is stopped or stopped A load that is provided with an on / off determination means, divides the temperature range that the differential temperature can take into a plurality of temperature zones, and determines and stores a load constant corresponding to the indoor load for each temperature zone and for each rated capacity of the indoor unit. A constant value storage means is provided, and a valve initial opening degree storage means for determining and storing a valve initial opening degree for each rated capacity of the indoor unit is provided. The differential temperature calculation means, the capacity determination means, the on / off determination means, the load constant Compressor capacity control means for controlling the capacity of the variable capacity (frequency) compressor based on the calculation result is calculated by using the data obtained from the storage means for each predetermined cycle. When a plurality of units are in operation, the valve opening degree of each electric expansion valve connected to the operating indoor unit is used for each predetermined cycle using the data and the data obtained from the valve initial opening degree storage means. And calculate this Multi-room air conditioning system provided with a valve opening control means for controlling the valve opening degree of the electric expansion valve on the basis of the results.
【請求項2】 運転中の室内機のそれぞれについて、負
荷定数記憶手段より定格容量および現在の差温に対応す
る負荷定数および負荷定数の所定値を読み出し、弁初期
開度記憶手段より定格容量に対応する弁初期開度を読み
出し、各室内機毎に負荷定数の所定値の逆数と負荷定数
と弁初期開度の積を算出し、各室内機に接続された電動
膨張弁の弁開度を、この積となるよう制御する請求項1
記載の多室形空気調和システム。
2. For each of the operating indoor units, the load capacity and the load constant corresponding to the current differential temperature and the predetermined value of the load constant are read from the load constant storage means, and the rated capacity is read from the valve initial opening storage means. The corresponding valve initial opening is read, and the product of the reciprocal of the predetermined value of the load constant and the load constant and the valve initial opening is calculated for each indoor unit, and the valve opening of the electric expansion valve connected to each indoor unit is calculated. , The control is performed so as to obtain this product.
The multi-room air conditioning system described.
【請求項3】 容量(周波数)可変形圧縮機、四方弁、
室外熱交換器を有する1台の室外機と、室内熱交換器を
有する複数台の室内機とを、前記室外機に設けて主に冷
媒液が流れる液側主管を分岐した液側分岐管および前記
室外機に設けて主に冷媒ガスが流れるガス側主管を分岐
したガス側分岐管を介して接続し、前記液側分岐管のそ
れぞれに電気的に弁開度を制御可能とした電動膨張弁を
介装して冷凍サイクルを構成し、前記室内機のそれぞれ
に、希望する室内温度を設定可能な室内温度設定手段と
室内温度を検出する室内温度検出手段とを設け、この室
内温度設定手段と室内温度検出手段とから設定室内温度
と室内温度との差温を算出する差温算出手段を設け、さ
らに前記室内機のそれぞれの定格容量を判別する容量判
別手段および前記室内機のそれぞれについて運転中か停
止中かを判別するオンオフ判別手段を設け、前記差温が
取り得る温度範囲を複数個の温度ゾーンに分割し、各温
度ゾーン毎にかつ室内機の定格容量毎に室内負荷に対応
する負荷定数を定めて記憶する負荷定数記憶手段を設
け、前記差温算出手段、前記容量判別手段、前記オンオ
フ判別手段、前記負荷定数記憶手段より得られるデータ
を用いて所定周期毎に圧縮機容量を算出し、この算出結
果に基づいて前記容量(周波数)可変形圧縮機の容量を
制御する圧縮機容量制御手段を設け、運転中の室内機台
数および定格容量の組合せ毎に各室内機に接続された電
動膨張弁毎の弁初期開度を定めて記憶する弁初期開度記
憶手段を設け、前記室内機の複数台が運転中の場合に
は、前記データおよびこの弁初期開度記憶手段より得ら
れる弁初期開度のデータを用いて所定周期毎に運転中の
室内機に接続された各電動膨張弁の弁開度を算出し、こ
の算出結果に基づいて前記電動膨張弁の弁開度を制御す
る弁開度制御手段を設けた多室形空気調和システム。
3. A variable capacity (frequency) compressor, a four-way valve,
A liquid-side branch pipe that is provided with one outdoor unit having an outdoor heat exchanger and a plurality of indoor units having an indoor heat exchanger and branches a liquid-side main pipe through which a refrigerant liquid mainly flows, An electric expansion valve which is provided in the outdoor unit and is connected via a gas side branch pipe that branches a gas side main pipe through which a refrigerant gas mainly flows and which can electrically control the valve opening degree of each of the liquid side branch pipes. A refrigerating cycle is formed by interposing, and each of the indoor units is provided with an indoor temperature setting means capable of setting a desired indoor temperature and an indoor temperature detecting means for detecting the indoor temperature. A temperature difference calculating means for calculating the temperature difference between the set room temperature and the room temperature is provided from the room temperature detecting means, and further, the capacity determining means for determining each rated capacity of the indoor unit and the indoor unit are in operation. Determine if it is stopped or stopped A load that is provided with an on / off determination means, divides the temperature range that the differential temperature can take into a plurality of temperature zones, and determines and stores a load constant corresponding to the indoor load for each temperature zone and for each rated capacity of the indoor unit. A constant capacity storage means is provided, and the compressor capacity is calculated for each predetermined cycle using data obtained from the differential temperature calculation means, the capacity determination means, the on / off determination means, and the load constant storage means, and based on the calculation result A compressor capacity control means for controlling the capacity of the variable capacity (frequency) type compressor is provided, and a valve initial for each electric expansion valve connected to each indoor unit for each combination of the number of operating indoor units and rated capacity When a plurality of indoor units are in operation, a valve initial opening storage means for determining and storing the opening is provided, and when the plurality of indoor units are in operation, the data and the valve initial opening data obtained from the valve initial opening storage means are stored. Using a predetermined lap A multi-chamber provided with a valve opening control means for calculating the valve opening of each electric expansion valve connected to the operating indoor unit for each and controlling the valve opening of the electric expansion valve based on the calculation result. Shaped air conditioning system.
【請求項4】 運転中の室内機にそれぞれについて、負
荷定数記憶手段より定格容量および現在の差温に対応す
る負荷定数および負荷定数の所定値を読み出し、弁初期
開度記憶手段より運転中の室内機台数および定格容量の
組合せに対応する弁初期開度を読み出し、各室内機毎に
負荷定数の所定値の逆数と負荷定数と弁初期開度の積を
算出し、各室内機に接続された電動膨張弁の弁開度を、
この積となるよう制御する請求項3記載の多室形空気調
和システム。
4. For each of the operating indoor units, a load constant corresponding to the rated capacity and the current differential temperature and a predetermined value of the load constant are read out from the load constant storing means, and the operation is performed from the valve initial opening degree storing means. The valve initial opening corresponding to the combination of the number of indoor units and rated capacity is read out, the product of the reciprocal of the predetermined value of the load constant and the load constant and the valve initial opening is calculated for each indoor unit, and connected to each indoor unit. The valve opening of the electric expansion valve
The multi-room air conditioning system according to claim 3, which is controlled so as to obtain this product.
【請求項5】 容量(周波数)可変形圧縮機、四方弁、
室外熱交換器、電気的に弁制御可能とした主電動膨張弁
を有する1台の室外機と、室内熱交換器を有する複数台
の室内機とを、前記室外機に設けて主に冷媒液が流れる
液側主管を分岐した液側分岐管および前記室外機に設け
て主に冷媒ガスが流れるガス側主管を分岐したガス側分
岐管を介して接続し、前記液側分岐管のそれぞれに電気
的に弁開度を制御可能とした電動膨張弁を介装して冷凍
サイクルを構成し、前記室内機のそれぞれに、希望する
室内温度を設定可能な室内温度設定手段と室内温度を検
出する室内温度検出手段とを設け、この室内温度設定手
段と室内温度検出手段とから設定室内温度と室内温度と
の差温を算出する差温算出手段を設け、さらに前記室内
機のそれぞれの定格容量を判別する容量判別手段および
前記室内機のそれぞれについて運転中か停止中かを判別
するオンオフ判別手段を設け、前記差温が取り得る温度
範囲を複数個の温度ゾーンに分割し、各温度ゾーン毎に
かつ室内機の定格容量毎に室内負荷に対応する負荷定数
を定めて記憶する負荷定数記憶手段を設け、前記差温算
出手段、前記容量判別手段、前記オンオフ判別手段、前
記負荷定数記憶手段より得られるデータを用いて所定周
期毎に圧縮機容量を算出し、この算出結果に基づいて前
記容量(周波数)可変形圧縮機の容量を制御する圧縮機
容量制御手段を設け、前記データを用いて近似式にて各
室内機に接続された電動膨張弁毎の弁初期開度を算出す
る弁初期開度算出手段を設け、前記室内機の複数台が運
転中の場合には、前記データおよびこの弁初期開度算出
手段より得られる弁初期開度のデータを用いて所定周期
毎に運転中の室内機に接続された各電動膨張弁の弁開度
を算出し、この算出結果に基づいて前記電動膨張弁の弁
開度を制御する弁開度制御手段を設けた多室形空気調和
システム。
5. A variable capacity (frequency) type compressor, a four-way valve,
An outdoor heat exchanger, a single outdoor unit having an electrically valve-controllable main electric expansion valve, and a plurality of indoor units having an indoor heat exchanger are provided in the outdoor unit to mainly provide a refrigerant liquid. Is provided in the outdoor unit and a liquid-side branch pipe that branches the liquid-side main pipe, and the gas-side main pipe in which the refrigerant gas mainly flows is connected via the branched gas-side branch pipe, and each of the liquid-side branch pipes is electrically connected. A room for setting a desired indoor temperature in each of the indoor units and an indoor temperature detecting means for detecting the indoor temperature by forming a refrigeration cycle by interposing an electric expansion valve whose valve opening can be controlled A temperature detecting means is provided, and a temperature difference calculating means for calculating the temperature difference between the set room temperature and the room temperature is provided from the room temperature setting means and the room temperature detecting means, and the rated capacity of each indoor unit is determined. Capacity determining means and that of the indoor unit An on / off discriminating means for discriminating whether the vehicle is operating or stopped is provided, the temperature range in which the differential temperature can be taken is divided into a plurality of temperature zones, and an indoor load is set for each temperature zone and for each rated capacity of the indoor unit. A load constant storage means for determining and storing a load constant corresponding to is provided, and compression is performed at predetermined intervals using data obtained from the differential temperature calculation means, the capacity determination means, the on / off determination means, and the load constant storage means. A compressor capacity control means for calculating the machine capacity and controlling the capacity of the variable capacity (frequency) type compressor based on the calculation result is provided, and is connected to each indoor unit by an approximate expression using the data. A valve initial opening degree calculating means for calculating the valve initial opening degree for each electric expansion valve is provided, and when a plurality of the indoor units are in operation, the data and the valve initial opening degree obtained from the valve initial opening degree calculating means are provided. Opening day Valve opening control means for calculating the valve opening of each electric expansion valve connected to the operating indoor unit for each predetermined cycle, and controlling the valve opening of the electric expansion valve based on the calculation result. A multi-room air conditioning system equipped with.
【請求項6】 運転中の室内機のそれぞれについて、負
荷定数記憶手段より定格容量および現在の差温に対応す
る負荷定数および負荷定数の所定値を読み出し、弁初期
開度算出手段により運転中の室内機台数および定格容量
のデータを用いて弁初期開度を算出し、各室内機毎に負
荷定数の所定値の逆数と負荷定数と弁初期開度の積を算
出し、各室内機に接続された電動膨張弁の弁開度を、こ
の積となるよう制御する請求項5記載の多室形空気調和
システム。
6. For each of the operating indoor units, the load constant corresponding to the rated capacity and the current differential temperature and a predetermined value of the load constant are read from the load constant storing means, and the valve initial opening degree calculating means operates The initial valve opening is calculated using the data of the number of indoor units and rated capacity, and the product of the reciprocal of the specified load constant, the load constant, and the initial valve opening is calculated for each indoor unit, and connected to each indoor unit. The multi-room air conditioning system according to claim 5, wherein the valve opening of the electric expansion valve is controlled so as to be the product.
【請求項7】 運転中の室内機のそれぞれについて、負
荷定数記憶手段より定格容量および現在の差温に対応す
る負荷定数および負荷定数の所定値を読み出し、弁初期
開度算出手段により負荷定数および運転中の室内機台数
および定格容量のデータを用いて弁初期開度を算出し、
各室内機毎に負荷定数の所定値の逆数と負荷定数と弁初
期開度の積を算出し、各室内機に接続された電動膨張弁
の弁開度を、この積となるよう制御する請求項5記載の
多室形空気調和システム。
7. For each of the operating indoor units, a load constant corresponding to the rated capacity and the current differential temperature and a predetermined value of the load constant are read from the load constant storage means, and the valve initial opening calculation means reads the load constant and the load constant. Calculate the initial valve opening using the number of indoor units in operation and rated capacity data,
A product of a reciprocal of a predetermined value of a load constant, a load constant, and a valve initial opening is calculated for each indoor unit, and the valve opening of the electric expansion valve connected to each indoor unit is controlled to be this product. Item 5. The multi-room air conditioning system according to item 5.
【請求項8】 容量(周波数)可変形圧縮機に吸入され
る冷媒の過熱度を所定周期毎に検出する過熱度検出手段
を設け、この過熱度検出手段により検出された過熱度の
データに対応して運転中の室内機に接続された電動膨張
弁の弁開度変更量を決定する弁開度決定手段を設け、弁
開度制御手段にてこの弁開度を所定開度変更するように
制御する請求項1〜請求項7のいずれかに記載の多室形
空気調和システム。
8. A superheat degree detecting means for detecting the superheat degree of the refrigerant sucked into the variable displacement (frequency) type compressor at predetermined intervals is provided, and the superheat degree data detected by the superheat degree detecting means is handled. A valve opening degree determining means for determining the valve opening degree changing amount of the electric expansion valve connected to the operating indoor unit is provided, and the valve opening degree controlling means changes the valve opening degree by a predetermined opening degree. The multi-room air conditioning system according to any one of claims 1 to 7, which is controlled.
【請求項9】 容量(周波数)可変形圧縮機に吸入され
る冷媒の過熱度を所定周期毎に検出する過熱度検出手段
を設け、この過熱度検出手段により検出された過熱度の
データに対応して運転中の室内機に接続された電動膨張
弁の弁開度変更量の総和を決定する弁開度決定手段を設
け、弁開度制御手段にてこの弁開度変更量の総和と各弁
開度の比によりを各膨張弁を制御する請求項1〜請求項
7のいずれかに記載の多室形空気調和システム。
9. A superheat detecting means for detecting the superheat of the refrigerant sucked into the variable capacity (frequency) compressor every predetermined cycle is provided, and the superheat detecting means responds to the superheat data detected by the superheat detecting means. A valve opening determining means for determining the sum of the valve opening changing amounts of the electric expansion valve connected to the operating indoor unit is provided, and the valve opening controlling means controls the sum of the valve opening changing amounts and The multi-chamber air conditioning system according to any one of claims 1 to 7, wherein each expansion valve is controlled according to a ratio of valve opening degrees.
【請求項10】 運転中の室内機に接続された電動膨張弁
の弁開の総和を圧縮機容量制御手段により算出された圧
縮機容量に対応して決定する弁開度総和決定手段を設
け、弁開度制御手段にてこの弁開度の総和と各弁開度の
比より各弁開度を決定し制御する請求項1〜請求項7の
いずれかに記載の多室形空気調和システム。
10. A valve opening total sum determination means for determining a total sum of valve openings of an electric expansion valve connected to an operating indoor unit in correspondence with a compressor capacity calculated by a compressor capacity control means, 8. The multi-chamber air conditioning system according to claim 1, wherein the valve opening control means determines and controls each valve opening based on the ratio of the sum of the valve openings and each valve opening.
【請求項11】 容量(周波数)可変形圧縮機から吐出さ
れる冷媒の温度を所定周期毎に検出する吐出温度検出手
段と、吐出温度を圧縮機容量制御手段により算出された
圧縮機容量に対応して決定する圧縮機吐出温度決定手段
を設け、運転中の室内機に接続された電動膨張弁の弁開
度変更量を、吐出温度検出手段により検出された吐出温
度のデータに対応して決定する弁開度変更量決定手段を
設け、弁開度制御手段にてこの弁開度を制御する請求項
1〜請求項7のいずれかに記載の多室形空気調和システ
ム。
11. A discharge temperature detecting means for detecting the temperature of the refrigerant discharged from the variable capacity (frequency) compressor at every predetermined cycle, and a discharge temperature corresponding to the compressor capacity calculated by the compressor capacity control means. A compressor discharge temperature determining means is provided to determine the valve opening change amount of the electric expansion valve connected to the operating indoor unit in accordance with the discharge temperature data detected by the discharge temperature detecting means. A multi-chamber air conditioning system according to any one of claims 1 to 7, further comprising valve opening change amount determining means for controlling the valve opening degree.
JP5040881A 1993-03-02 1993-03-02 Multi chamber type air conditioning system Pending JPH06257827A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5040881A JPH06257827A (en) 1993-03-02 1993-03-02 Multi chamber type air conditioning system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5040881A JPH06257827A (en) 1993-03-02 1993-03-02 Multi chamber type air conditioning system

Publications (1)

Publication Number Publication Date
JPH06257827A true JPH06257827A (en) 1994-09-16

Family

ID=12592858

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5040881A Pending JPH06257827A (en) 1993-03-02 1993-03-02 Multi chamber type air conditioning system

Country Status (1)

Country Link
JP (1) JPH06257827A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09145130A (en) * 1995-11-28 1997-06-06 Matsushita Electric Ind Co Ltd Multi-room type air conditioner system
JPH10220846A (en) * 1997-02-07 1998-08-21 Matsushita Electric Ind Co Ltd Multi-chamber type air conditioning apparatus
JPH11108422A (en) * 1997-09-30 1999-04-23 Matsushita Electric Ind Co Ltd Method of controlling multi-room air conditioner during change in number of operating room units
JP2011127805A (en) * 2009-12-16 2011-06-30 Mitsubishi Electric Corp Air conditioning device
CN104930772A (en) * 2015-05-14 2015-09-23 珠海格力电器股份有限公司 Control method and device for initial opening degree of electronic expansion valve and air conditioning system
CN105571067A (en) * 2016-01-04 2016-05-11 青岛海尔空调电子有限公司 Multiple online control method and system
CN108105964A (en) * 2017-12-11 2018-06-01 珠海格力电器股份有限公司 Starting method and system of frequency conversion unit, scheduler and air conditioner

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09145130A (en) * 1995-11-28 1997-06-06 Matsushita Electric Ind Co Ltd Multi-room type air conditioner system
JPH10220846A (en) * 1997-02-07 1998-08-21 Matsushita Electric Ind Co Ltd Multi-chamber type air conditioning apparatus
JPH11108422A (en) * 1997-09-30 1999-04-23 Matsushita Electric Ind Co Ltd Method of controlling multi-room air conditioner during change in number of operating room units
JP2011127805A (en) * 2009-12-16 2011-06-30 Mitsubishi Electric Corp Air conditioning device
CN104930772A (en) * 2015-05-14 2015-09-23 珠海格力电器股份有限公司 Control method and device for initial opening degree of electronic expansion valve and air conditioning system
CN105571067A (en) * 2016-01-04 2016-05-11 青岛海尔空调电子有限公司 Multiple online control method and system
CN108105964A (en) * 2017-12-11 2018-06-01 珠海格力电器股份有限公司 Starting method and system of frequency conversion unit, scheduler and air conditioner

Similar Documents

Publication Publication Date Title
US6044652A (en) Multi-room type air-conditioner
JP2003194384A (en) Heat pump type air conditioner
JPH0257875A (en) Operation controller for air conditioner
JPH0522145B2 (en)
KR20030097179A (en) Heat-Pump Air Conditioner's Operating Method
JPH06257828A (en) Multi-chamber type air conditioning system
JPH0599525A (en) Multi-chamber type air conditioner
JP2001248937A (en) Heat pump hot water supply air conditioner
JPH06257827A (en) Multi chamber type air conditioning system
JP2730398B2 (en) Multi-room air conditioning system
JPH05622B2 (en)
JPH11248282A (en) Multi-room air conditioner
JP3223918B2 (en) Multi-room air conditioning system
JP4151219B2 (en) Multi-chamber air conditioner
JP3291362B2 (en) Air conditioner
JP2730381B2 (en) Multi-room air conditioner
JPH07103542A (en) Temperature pulsating air-conditioner
JPH08189690A (en) Heating and dehumidifying operation controller for multi-room split type air conditioner
JPH09145130A (en) Multi-room type air conditioner system
KR20140112681A (en) Method of controlling an air conditioner
JP3286817B2 (en) Multi-room air conditioner
JP3097350B2 (en) Multi-room air conditioner
JP2003247742A (en) Multi-chamber type air conditioner and control method thereof
JPH06123512A (en) Multi-room air conditioner
JP2503659B2 (en) Heat storage type air conditioner