JPH05622B2 - - Google Patents
Info
- Publication number
- JPH05622B2 JPH05622B2 JP59233894A JP23389484A JPH05622B2 JP H05622 B2 JPH05622 B2 JP H05622B2 JP 59233894 A JP59233894 A JP 59233894A JP 23389484 A JP23389484 A JP 23389484A JP H05622 B2 JPH05622 B2 JP H05622B2
- Authority
- JP
- Japan
- Prior art keywords
- signal
- valve
- capacity
- compression mechanism
- low pressure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000001816 cooling Methods 0.000 claims description 41
- 238000010438 heat treatment Methods 0.000 claims description 28
- 230000006835 compression Effects 0.000 claims description 22
- 238000007906 compression Methods 0.000 claims description 22
- 239000003507 refrigerant Substances 0.000 claims description 13
- 238000011084 recovery Methods 0.000 claims description 12
- 238000004378 air conditioning Methods 0.000 claims description 6
- 239000003638 chemical reducing agent Substances 0.000 claims description 6
- 238000001514 detection method Methods 0.000 description 26
- 230000007423 decrease Effects 0.000 description 11
- 238000001704 evaporation Methods 0.000 description 7
- 230000008020 evaporation Effects 0.000 description 7
- 238000010586 diagram Methods 0.000 description 6
- 239000007788 liquid Substances 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 4
- 238000005057 refrigeration Methods 0.000 description 4
- 238000010521 absorption reaction Methods 0.000 description 2
- 230000005494 condensation Effects 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
Landscapes
- Air Conditioning Control Device (AREA)
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は複数基の室内ユニツトを1基の室外ユ
ニツトに対し個々に冷房あるいは暖房の運転選択
が可能に接続せしめて、室外ユニツトで総合負荷
に対応した的確な能力制御が行なえる熱回収形空
気調和機に関する。Detailed Description of the Invention (Field of Industrial Application) The present invention connects a plurality of indoor units to one outdoor unit so that cooling or heating operation can be selected individually, so that the outdoor unit can reduce the overall load. This invention relates to a heat recovery type air conditioner that can perform accurate capacity control corresponding to.
(従来の技術)
1基の室外側ユニツトに対して複数基の室内ユ
ニツトを並列的に接続し、少なくとも1基の室内
ユニツトを冷房運転しているときに残りの少なく
とも1台の室内ユニツトを暖房運転可能となし、
しかもこの運転に際して冷房のための放熱を暖房
用熱源にそのまま利用し得る所謂熱回収が可能な
空気調和機は特開昭55−12372号公報によつて公
知である。(Prior art) A plurality of indoor units are connected in parallel to one outdoor unit, and when at least one indoor unit is operating for cooling, at least one remaining indoor unit is operated for heating. Drivable and not,
Furthermore, during this operation, an air conditioner capable of so-called heat recovery, in which the heat radiated for cooling can be directly used as a heat source for heating, is known from Japanese Patent Laid-Open No. 12372/1983.
この公知例は、第7図に略示する如く、室外ユ
ニツトAには、圧縮機1、熱源側コイル2、吐出
ガス用開閉弁3D、吸入ガス用開閉弁3S、液側
主管5、高圧ガス側主管6、低圧ガス側主管7、
暖房用膨張弁34を備え、一方、各室内ユニツト
IA,IB,ICには、冷房用膨張弁8、利用側コイル
9、開閉弁13A〜13Cが夫々介設された高圧
ガス側分枝管11、開閉弁14A〜14Cが夫々
介設された低圧ガス側分枝管12を夫々備えた回
路構成である。 In this known example, as schematically shown in FIG. 7, the outdoor unit A includes a compressor 1, a heat source side coil 2, a discharge gas on-off valve 3D, an intake gas on-off valve 3S, a liquid side main pipe 5, a high-pressure gas side main pipe 6, low pressure gas side main pipe 7,
A heating expansion valve 34 is provided, while each indoor unit
A cooling expansion valve 8, a utilization side coil 9, a high-pressure gas side branch pipe 11 with on-off valves 13A to 13C interposed therein, and on-off valves 14A to 14C are interposed in I A , I B , and I C, respectively. This circuit configuration includes low-pressure gas side branch pipes 12, respectively.
上記空気調和機において、冷房を行なおうとす
る室内ユニツトIA,IBでは開閉弁14A,14B
を開放させ、一方、暖房を行なおうとする室内ユ
ニツトICでは開閉弁13Cを開放させればよい
が、これに対して室外ユニツトAでは冷房負荷と
暖房負荷とのいずれが大であるかの運転状態によ
つて冷房負荷が大きい場合は熱源側コイル2を凝
縮器として作用させねばならないので、開閉弁3
Dを開放させ、逆に暖房負荷が大きい場合は熱源
側コイルを蒸発器として作用させねばならないの
で開閉弁3Sを開放させる操作が必要である。 In the above air conditioner, the indoor units I A and I B that are to be cooled have on-off valves 14A and 14B.
On the other hand, in the indoor unit I C that wants to perform heating, it is sufficient to open the on-off valve 13C, but in the outdoor unit A, it is necessary to open the on-off valve 13C. If the cooling load is large depending on the operating state, the heat source side coil 2 must act as a condenser, so the on-off valve 3
On the other hand, when the heating load is large, the heat source side coil must act as an evaporator, so it is necessary to open the on-off valve 3S.
(発明が解決しようとする問題点)
かかる構造の空気調和機は、一部を冷房運転、
残部を暖房運転に操作して熱回収運転を行なう場
合に、暖房負荷と冷房負荷とが均衡している状態
と、暖房負荷の方が大きい状態と、冷房負荷が大
きい状態とがあるが、特に冬期などの暖房負荷の
方が大きいときには、当然熱源側コイル2が蒸発
器として作用することになるが、その場合、外気
温度が低いために熱源側コイル2の蒸発温度を低
くする必要があり、その影響によつて冷房運転を
行なつている室内ユニツトの利用側コイル9での
着霜が急成長する結果、再三にわたつて除霜しな
ければならなくて頗る不便であるし、冷房運転の
発停頻度が高くなつて室温の高低変動が甚だしく
なるとともに成績係数も悪い不都合があつた。(Problems to be Solved by the Invention) The air conditioner with this structure operates partly in cooling operation,
When performing heat recovery operation by operating the remainder of the unit into heating operation, there are states in which the heating load and cooling load are balanced, states in which the heating load is greater, and states in which the cooling load is greater. When the heating load is larger, such as in winter, the heat source side coil 2 naturally acts as an evaporator, but in that case, the evaporation temperature of the heat source side coil 2 needs to be lowered because the outside air temperature is low. As a result of this, frost grows rapidly on the user-side coil 9 of the indoor unit that is running the cooling operation, resulting in a great inconvenience of having to defrost it over and over again. There were disadvantages in that the frequency of starting and stopping increased, the fluctuations in the temperature of the room temperature were severe, and the coefficient of performance was also poor.
このように従来の熱回収形空気調和機が冷房運
転に支障となる着霜が頻繁に発生する不都合があ
る点に鑑みて本発明は成されたものであつて、室
外ユニツトにおける圧縮機構を熱源側コイルが吸
熱運転を行なつている場合に限つて、低温蒸発用
の前記熱源側コイルと高温蒸発用の利用側コイル
とに区別して2系統で運転可能となすことによ
り、着霜を解消し、かつ成績係数も向上させ、も
つて円滑なしかも温度が安定した冷房運転を伴う
熱回収運転を可能ならしめて、需要側の要求に十
分適応させようとする点を目的とする。 The present invention has been made in view of the disadvantage that conventional heat recovery type air conditioners frequently generate frost that hinders cooling operation. Frost formation can be eliminated by distinguishing between the heat source side coil for low-temperature evaporation and the user-side coil for high-temperature evaporation and allowing operation in two systems only when the side coil is performing heat absorption operation. The purpose is to improve the coefficient of performance and enable heat recovery operation accompanied by cooling operation that is smooth and at a stable temperature, and is fully adapted to the demands of the demand side.
(問題点を解決するための手段)
そこで本発明は、圧縮機構1、凝縮器あるいは
蒸発器に切換えて作用し得る熱源側コイル2及び
冷媒流量制御装置4を有する室外ユニツトAと、
冷房用減圧器8及び利用側コイル9を有して、
個々に冷房運転あるいは暖房運転に切換え可能に
前記室外ユニツトAに並列的に接続してなる複数
基の室内ユニツトIA,IBとからなる熱回収式空気
調和機において、前記圧縮機構1を2系統に区分
された複数基の圧縮機1A,1Bにより構成する
一方、各室内ユニツトIA,IBの一部が冷房運転
を、残部が暖房運転を行ない、かつ前記熱源側コ
イル2が蒸発器として作用する空調運転のときに
は、前記圧縮機構1における一方の系統の吸入側
を室外ユニツトAのガス側管に、他方の系統の吸
入側を冷房運転中の室内ユニツトに夫々分離して
接続せしめ、その他の空調運転のときには、両系
統の吸入側を室外ユニツトAの吸入ラインあるい
は冷房運転中の室内ユニツトに共通して接続せし
める切換装置16を前記圧縮機構1に付設せしめ
た構成としたものである。(Means for Solving the Problems) Therefore, the present invention provides an outdoor unit A having a compression mechanism 1, a heat source side coil 2 that can be switched to act as a condenser or an evaporator, and a refrigerant flow rate control device 4;
It has a cooling pressure reducer 8 and a usage side coil 9,
In a heat recovery air conditioner comprising a plurality of indoor units I A and I B connected in parallel to the outdoor unit A so as to be individually switchable to cooling operation or heating operation, the compression mechanism 1 is It is composed of a plurality of compressors 1A and 1B divided into systems, while a part of each indoor unit I A and I B performs cooling operation, the remainder performs heating operation, and the heat source side coil 2 is used as an evaporator. During air conditioning operation, the suction side of one system in the compression mechanism 1 is connected to the gas side pipe of the outdoor unit A, and the suction side of the other system is separately connected to the indoor unit in cooling operation, During other air conditioning operations, the compression mechanism 1 is provided with a switching device 16 that commonly connects the suction sides of both systems to the suction line of the outdoor unit A or to the indoor unit in cooling operation. .
また、本発明は前記圧縮機構1が、一方の系統
の吸入側を、熱源側コイル2の一端に切換ポート
が、前記圧縮機構1の各圧縮機1A,1Bにおけ
る吐出側に共通して高圧側ポートが夫々接続され
てなる第1切換弁装置13の低圧側ポートに接続
せしめ、また、他方の系統の吸入側を、各室内ユ
ニツトIA,IBが分岐接続された低圧ガス側主管7
に接続せしめていて、さらに前記切換装置16が
前記圧縮機構1における両系統の吸入側相互を接
続する配管の途中に開閉可能に介設した開閉弁1
6から構成してなることをまた好ましい実施態様
とするものである。 Further, the present invention provides that the compression mechanism 1 has a switching port on the suction side of one system, a switching port on one end of the heat source side coil 2, and a switching port on the high pressure side common to the discharge side of each compressor 1A, 1B of the compression mechanism 1. The ports are connected to the low pressure side ports of the first switching valve device 13, and the suction side of the other system is connected to the low pressure gas side main pipe 7 to which the indoor units I A and I B are branch-connected.
The switching device 16 is connected to an on-off valve 1 which is openable and closable in the middle of a pipe connecting the suction sides of both systems in the compression mechanism 1.
6 is also a preferred embodiment.
(作 用)
しかして本発明は冷房負荷が冷房負荷より大き
く熱源側コイル2が蒸発器となり、吸熱運転を行
なう際に、圧縮機構1を、前記熱源側コイル2に
接続して低温蒸発用に対応し運転せしめる圧縮機
1Aと、蒸発器として作用する利用側コイル9に
接続して高温蒸発用に対応し運転せしめる圧縮機
1Bとに区分して運転することにより、夫々の条
件に適応した圧縮運転が可能で所要動力が少くて
総合成績係数の向上が望まれると共に、室内側で
の利用側コイル9への着霜を可及的に抑えること
が可能である。(Function) Therefore, in the present invention, when the cooling load is larger than the cooling load and the heat source side coil 2 serves as an evaporator, and when performing heat absorption operation, the compression mechanism 1 is connected to the heat source side coil 2 for low-temperature evaporation. Compressor 1A is connected to the user-side coil 9, which acts as an evaporator, and compressor 1B is operated for high-temperature evaporation. By operating the compressor 1A separately, the compressor 1B is connected to the user-side coil 9, which acts as an evaporator, and is operated for high-temperature evaporation. It is desirable that the system is operable, requires less power, and improves the overall coefficient of performance, and it is also possible to suppress frost formation on the user-side coil 9 indoors as much as possible.
(実施例) 以下実施例を添付図面にもとづいて詳述する。(Example) Embodiments will be described in detail below based on the accompanying drawings.
第1図においてAは室外ユニツトIA,IB,ICは
室内ユニツトで、これ等室内ユニツトIA,IB,IC
は室外ユニツトAに液側主管5、高圧ガス側主管
6及び低圧ガス側主管7を介して接続させてい
る。 In Fig. 1, A is an outdoor unit , I A , I B , and I C are indoor units ;
is connected to the outdoor unit A via a liquid side main pipe 5, a high pressure gas side main pipe 6 and a low pressure gas side main pipe 7.
室外ユニツトAは容量制御が可能な圧縮機構例
えば周波数変換器などの容量制御装置19A,1
9B(第2図参照)により駆動される電動機を軸
直結してなる2基の圧縮機1A,1Bと、熱源側
コイル2と、冷媒流量制御装置4例えば電動形冷
媒流量制御弁4と、第1弁切換装置3と、切換装
置16例えば開閉弁16と、受液器29とを冷媒
回路に備えると共に、室外側フアン28を付設し
て有する。 The outdoor unit A has a compression mechanism capable of controlling the capacity, for example, a capacity control device 19A, 1 such as a frequency converter.
9B (see FIG. 2), two compressors 1A and 1B each having an electric motor directly connected to the shaft, a heat source side coil 2, a refrigerant flow control device 4, for example, an electric refrigerant flow control valve 4, and a A refrigerant circuit is provided with a one-valve switching device 3, a switching device 16 such as an on-off valve 16, and a liquid receiver 29, and an outdoor fan 28 is attached thereto.
前記冷媒流量制御弁4(以下制御弁4と略称す
る)は、液側主管5中に介設していて、パルスモ
ータ、電磁プランジヤーなどの電気機器を駆動要
素に有して入力電気量に対応した弁開度の調節が
可能な膨張弁で電気制御により弁開度の調節が容
易に行なえる。 The refrigerant flow control valve 4 (hereinafter abbreviated as control valve 4) is installed in the liquid side main pipe 5, and has an electric device such as a pulse motor or an electromagnetic plunger as a driving element to correspond to the input electricity amount. The expansion valve is capable of adjusting the valve opening degree, and the valve opening degree can be easily adjusted by electrical control.
第1切換弁装置3は2個の開閉弁3D,3Sを
要素となしていて、高圧側ポート、低圧側ポート
及びそれ等両ポートに切換えて連通せしめる切換
ポートを有し、圧縮機構1の吐出側を開閉弁3S
の開放により熱源側コイル2に夫々交互に切換え
て連通し得るよう形成している。 The first switching valve device 3 includes two on-off valves 3D and 3S as elements, has a high pressure side port, a low pressure side port, and a switching port that connects and communicates with both ports, Side open/close valve 3S
The coils are formed so that they can be alternately switched and communicated with the heat source side coil 2 by opening of the coils.
圧縮機構1は2系統に区分された複数基例えば
2基の圧縮機1A,1Bを並列的に有していて、
吐出側相互を一括して前記開閉弁3Dの高圧側ポ
ート及び高圧ガス側主管6に接続する一方、一方
の圧縮機1Aの吸入側を前記開閉弁3Sの吸入側
ポートに、他方の圧縮機1Bの吸入側を低圧ガス
側主管7に夫々接続している。 The compression mechanism 1 has a plurality of compressors 1A and 1B divided into two systems in parallel, for example, two compressors 1A and 1B.
The discharge sides are connected together to the high pressure side port of the on-off valve 3D and the high pressure gas side main pipe 6, while the suction side of one compressor 1A is connected to the suction side port of the on-off valve 3S, and the other compressor 1B is connected to the suction side port of the on-off valve 3S. The suction side of each is connected to the low pressure gas side main pipe 7, respectively.
そして圧縮機1A,1Bの吸入側相互を配管で
接続してこの配管の途中に切換装置16、具体的
には開閉弁16を介設せしめている。 The suction sides of the compressors 1A and 1B are connected to each other by piping, and a switching device 16, specifically an on-off valve 16, is interposed in the middle of the piping.
次に室内側ユニツトIA〜ICは、いずれも冷房用
減圧器8と利用側コイル9とを直列接続して有
し、また前記減圧器8に逆止弁27を並列接続し
た回路構成であつて、冷房用減圧器8の流入側を
前記液側主管5に夫々接続すると共に、利用側コ
イル9の冷房運転時に出口となる一端部を、開閉
弁13A〜13Cが各々介設された高圧ガス側分
枝管11によつて高圧ガス側主管6に接続し、ま
た、開閉弁14A〜14Cが各々介設された低圧
ガス側分伏枝管12によつて低圧ガス側主管7に
接続しており、2種の開閉弁13A〜13C及び
開閉弁14A〜14Cの組合わせにより第2切換
弁装置10A〜10Cを形成している。 Next, each of the indoor units I A to I C has a circuit configuration in which a cooling pressure reducer 8 and a user-side coil 9 are connected in series, and a check valve 27 is connected in parallel to the pressure reducer 8. At the same time, the inflow sides of the cooling pressure reducer 8 are connected to the liquid side main pipe 5, and one end of the utilization side coil 9, which becomes the outlet during cooling operation, is connected to a high-pressure valve with on-off valves 13A to 13C interposed therein. It is connected to the high pressure gas side main pipe 6 by a gas side branch pipe 11, and is connected to the low pressure gas side main pipe 7 by a low pressure gas side branch pipe 12 in which on-off valves 14A to 14C are respectively interposed. The second switching valve devices 10A to 10C are formed by a combination of the two types of on-off valves 13A to 13C and the on-off valves 14A to 14C.
なお、15は利用側コイル9用のフアンであ
る。 Note that 15 is a fan for the coil 9 on the user side.
叙上の回路構成になる空気調和機は、室内ユニ
ツトIA〜ICで冷房運転を行ないたい場合は、開閉
弁14A〜14Cを開放し、開閉弁13A〜13
Cを開放し、開閉弁14A〜14Cを閉止するも
のである。 In the air conditioner with the circuit configuration described above, when you want to perform cooling operation with the indoor units I A to I C , open the on-off valves 14A to 14C, and open the on-off valves 13A to 13.
C is opened and the on-off valves 14A to 14C are closed.
一方、室外ユニツトAは室内側の総合負荷が冷
房負荷であるか又は暖房負荷であるかによつて熱
源側コイル2を凝縮器か又は蒸発器として作用せ
しめる必要があり、前者の場合は開閉弁3Dを開
放、開閉弁3Sを閉止すればよく、また後者の場
合は逆に開閉弁3Sを開放、開閉弁3Dを閉止す
ればよい。 On the other hand, in outdoor unit A, depending on whether the total load on the indoor side is a cooling load or a heating load, the heat source side coil 2 needs to act as a condenser or an evaporator. It is sufficient to open the on-off valve 3D and close the on-off valve 3S. In the latter case, it is sufficient to open the on-off valve 3S and close the on-off valve 3D.
また、圧縮機1の容量制御は前記各容量制御装
置19A,19Bによつて行ない、一方、熱源側
コイル2に流れる冷媒量の制御は前記制御弁4を
作動せしめる弁開度制御装置20によつて行なう
ものであつて、これら装置19A,19B,20
と前記第1切換弁装置3の弁切換えを行わせる切
換制御器21と、さらに、開閉弁16を開閉操作
する開閉制御器26とで制御装置17に形成して
いる。 The capacity of the compressor 1 is controlled by the capacity control devices 19A and 19B, while the amount of refrigerant flowing into the heat source coil 2 is controlled by the valve opening control device 20 that operates the control valve 4. These devices 19A, 19B, 20
The control device 17 includes a switching controller 21 that switches the valves of the first switching valve device 3, and an opening/closing controller 26 that opens and closes the opening/closing valve 16.
前述したように、室内ユニツトIA〜ICでは任意
に冷房あるいは暖房に運転切換えが可能であつ
て、冷房、暖房の同時運転を行なう場合は、冷房
負荷と暖房負荷との差に見合つた凝縮能力又は蒸
発能力を室外側の熱源側コイル2に担持させるこ
とによつて排熱を効率良く利用した熱回収運転が
可能となる。 As mentioned above, indoor units I A to I C can be switched to cooling or heating at will, and when cooling and heating are operated at the same time, the condensation is adjusted to match the difference between the cooling load and the heating load. By having the heat source side coil 2 on the outdoor side carry the capacity or evaporation capacity, heat recovery operation that efficiently utilizes exhaust heat becomes possible.
この場合の熱源側コイル2の運転モードを冷房
負荷と暖房負荷との関係及び圧縮機構1の容量な
らびに制御弁4の開度、開閉弁3D,3S,16
の開閉状態との関係とによつて示したのが第3図
であつて、該第3図中、E方向、C方向とは蒸発
器として作用する方向、凝縮器として作用する方
向を意味している。 In this case, the operation mode of the heat source side coil 2 is determined by the relationship between the cooling load and the heating load, the capacity of the compression mechanism 1, the opening degree of the control valve 4, and the on-off valves 3D, 3S, 16.
Fig. 3 shows the relationship between the opening and closing states of the evaporator and the opening/closing state. ing.
第3図から明らかなように、熱源側コイル2を
凝縮器として作用させ、かつ能力制御したい場合
は開閉弁3Dを開放、開閉弁3Sを閉止させて制
御弁4の開度を調節すればよく、逆に蒸発器とし
て作用させ、かつ能力制御したい場合は開閉弁3
Sを開放、開閉弁3Dを閉止させて制御弁4の開
度を調節すればよい。 As is clear from FIG. 3, if you want to make the heat source side coil 2 act as a condenser and control its capacity, you can open the on-off valve 3D, close the on-off valve 3S, and adjust the opening degree of the control valve 4. , conversely, if you want to function as an evaporator and control the capacity, use the on-off valve 3.
The opening degree of the control valve 4 may be adjusted by opening S and closing the on-off valve 3D.
また、熱源側コイル2を凝縮器として作用させ
たい場合は、開閉弁16を開いて圧縮機1A,1
Bを並列接続運転させ、逆に蒸発器として作用さ
せたい場合は開閉弁16を閉じて、圧縮機1Aが
熱源側コイル2からの冷媒吸引を、圧縮機1Bが
利用側コイル9からの冷媒吸引を夫々分担して行
なわせるようにするものである。 In addition, if you want the heat source side coil 2 to act as a condenser, open the on-off valve 16 and compressor 1A, 1
If you wish to operate B in parallel and operate them conversely as an evaporator, close the on-off valve 16 so that the compressor 1A sucks refrigerant from the heat source coil 2, and the compressor 1B sucks refrigerant from the user coil 9. The purpose is to have each person share in the tasks.
さらに、圧縮機1A,1Bの容量制御を併用す
ることによつて空気調和負荷に見合つた過不足の
無い冷凍運転が可能である。 Further, by jointly controlling the capacity of the compressors 1A and 1B, it is possible to perform a refrigeration operation with no excess or deficiency commensurate with the air conditioning load.
なお、第3図には表わしていないが室内側ユニ
ツトIA〜IBが全て冷房又は暖房に揃つて運転して
いる場合は開閉弁16は開かせておくものであ
る。 Although not shown in FIG. 3, when all of the indoor units I A to I B are operating for cooling or heating, the on-off valve 16 is kept open.
以上述べた冷凍運転の趣旨に叶つた制御指令を
前記制御装置17に与えるための制御指令手段1
8を図面にもとづいて以下説明する。 Control command means 1 for giving control commands to the control device 17 that meet the purpose of the refrigeration operation described above.
8 will be explained below based on the drawings.
上記制御指令手段18は高圧々力検出回路2
2、低圧々力検出回路23、過熱度検出回路2
5、第2次能力判定回路30、切換弁制御回路3
1、第1切換弁制御回路32及び開閉弁制御回路
33の8つの回路により構成されており、各回路
についての機能を説明すると下記の通りである。 The control command means 18 is a high pressure and force detection circuit 2.
2. Low pressure and force detection circuit 23, superheat degree detection circuit 2
5. Secondary ability determination circuit 30, switching valve control circuit 3
1. It is composed of eight circuits: a first switching valve control circuit 32 and an on-off valve control circuit 33, and the functions of each circuit are explained below.
◎高圧々力検出回路22,
高圧ガス側主管6の圧力を検出する圧力センサ
S1を検出端として有し、該センサS1によつて検出
した高圧々力が設定した条件の範囲内にあり、す
なわち圧力帯域内であれば高圧適正信号を発し、
圧力帯域よりも低いと高圧不足信号を、逆に高い
と高圧過大信号を夫々発する。◎High-pressure force detection circuit 22, pressure sensor that detects the pressure of the high-pressure gas side main pipe 6
S 1 as a detection end, and if the high pressure force detected by the sensor S 1 is within the range of set conditions, that is, within the pressure band, a high pressure appropriate signal is issued;
If the pressure is lower than the pressure band, a high pressure shortage signal is generated, and if it is higher than the pressure band, a high pressure excess signal is generated.
なお、圧力センサS1に替えて吐出側飽和温度を
検出し圧力換算し得る温度センサを用いてもよ
い。 Note that a temperature sensor that can detect the discharge side saturation temperature and convert it into pressure may be used instead of the pressure sensor S1 .
◎低圧々力検出回路23,
低圧ガス側主管7の圧力を検出する圧力センサ
S2を検出端として有し、該センサS2によつて検出
した低圧々力が設定した条件の範囲内すなわち圧
縮力帯域内であれば低圧適正信号、低ければ低圧
不足信号、高ければ低圧過大信号を夫々発する
が、この圧力センサS2は前記圧力センサS1同様温
度センサに置換してもよい。◎Low pressure force detection circuit 23, pressure sensor that detects the pressure of the low pressure gas side main pipe 7
If the low pressure force detected by the sensor S2 is within the range of the set conditions, that is, within the compressive force band , it is a low pressure appropriate signal, if it is low, it is a low pressure insufficient signal, and if it is high, it is a low pressure excessive signal. The pressure sensor S 2 may be replaced with a temperature sensor, similar to the pressure sensor S 1, although the pressure sensor S 2 generates a signal, respectively.
◎過熱度検出回路24,
前記熱源側コイル2が蒸発器として作用する場
合に熱源側コイル2の入口、出口の冷媒温度を検
出するためのセンサーS3,S4を有し、この2つの
センサーS3,S4の温度差が過熱度となる。◎Superheat degree detection circuit 24 has sensors S 3 and S 4 for detecting the refrigerant temperature at the inlet and outlet of the heat source side coil 2 when the heat source side coil 2 acts as an evaporator, and these two sensors The temperature difference between S 3 and S 4 is the degree of superheat.
なお、センサーS3は圧力を検知しこれを電気的
に温度信号に変換してもよい。 Note that the sensor S 3 may detect pressure and electrically convert it into a temperature signal.
◎第1次能力判定回路25,
高圧々力検出回路22と低圧々力検出回路23
の両出力信号を受けて、その組合わせにより得ら
れる9通りの信号を判別して5種の出力信号に変
換する論理回路であり、高圧不足信号と低圧過大
信号とのANDで圧縮機1Bすなわち吸入側を低
圧ガス側主管7に接続してなる圧縮機の容量を増
加させる容量増加信号を前記容量制御装置19B
に発し、高圧過大信号と低圧不足信号とのAND
で前記圧縮機1Bの容量を減少させる容量減少信
号を前記装置19Bに発する。◎Primary capacity determination circuit 25, high pressure and force detection circuit 22, and low pressure and force detection circuit 23
This is a logic circuit that receives both output signals, distinguishes nine types of signals obtained by the combination, and converts them into five types of output signals. The capacity control device 19B sends a capacity increase signal to increase the capacity of the compressor whose suction side is connected to the low pressure gas side main pipe 7.
AND of the high voltage over-voltage signal and the low-voltage under-voltage signal
A capacity reduction signal is issued to the device 19B to reduce the capacity of the compressor 1B.
また、高圧不足信号と低圧適正信号、高圧不足
信号と低圧不足信号及び高圧適正信号と低圧不足
信号の各ANDのORをとつて冷<暖モード信号を
発し、高圧適正信号と低圧過大信号、高圧過大信
号と低圧過大信号及び高圧過大信号と低圧適正信
号の各ANDのORをとつて冷>暖モード信号を発
する。 In addition, a cool < warm mode signal is generated by ORing the high voltage shortage signal and low pressure appropriate signal, the high voltage shortage signal and low pressure shortage signal, and the high voltage appropriate signal and low pressure shortage signal, and generates a cool < warm mode signal. A cool>warm mode signal is generated by ORing the excessive signal, the low pressure excessive signal, and the high pressure excessive signal and the low pressure appropriate signal.
さらに高圧適正信号と低圧適正信号のANDで
ホールド信号を発する。 Furthermore, a hold signal is generated by ANDing the high voltage appropriate signal and the low voltage appropriate signal.
◎第2次能力判定回路30,
高圧々力検出回路22、低圧々力検出回路23
及び前記第1次能力判定回路25の各出力信号を
受けて次の各信号を出力する。◎Second capacity judgment circuit 30, high pressure and force detection circuit 22, low pressure and force detection circuit 23
In response to each output signal from the primary ability determination circuit 25, the following signals are output.
(イ) 第1次能力判定回路25が冷<暖モード信号
を発した条件での出力群、
高圧々力検出回路22が高圧不足信号を発し
ているときには圧縮機1Aすなわち開閉弁3S
の低圧側ポートに吸入側を接続してなる圧縮機
の容量を増加させる容量増加信号を前記容量制
御装置19Aに発し、高圧々力検出回路22が
高圧過大信号を発しているときには圧縮機1A
の容量を減少させる容量減少信号を前記装置1
9Aに発する。(b) Output group under the condition that the primary capacity determination circuit 25 issues a cold < warm mode signal, and when the high pressure/strength detection circuit 22 issues a high pressure shortage signal, the compressor 1A, that is, the on-off valve 3S
A capacity increase signal is sent to the capacity control device 19A to increase the capacity of the compressor whose suction side is connected to the low pressure side port of the compressor 1A.
The device 1 sends a capacitance reduction signal to reduce the capacitance of the device 1.
Emit at 9A.
また、低圧々力検出回路23かつ低圧過大信
号を発しているときには圧縮機1Bの容量を増
加させる容量増加信号を容量制御装置19Bに
発し、逆に低圧不足信号を発しているときには
圧縮機1Bの容量を減少させる容量減少信号を
前記装置19Bに発する。 Further, when the low pressure and force detection circuit 23 is emitting a low pressure excessive signal, a capacity increase signal for increasing the capacity of the compressor 1B is sent to the capacity control device 19B, and conversely, when the low pressure insufficient signal is emitted, the capacity increase signal for increasing the capacity of the compressor 1B is sent to the capacity control device 19B. A capacity reduction signal is issued to the device 19B to decrease the capacity.
さらに、前記両圧力検出回路22,23の高
圧適正信号と低圧適正信号のANDでホールド
信号を発する。 Further, a hold signal is generated by ANDing the high pressure appropriate signal and the low pressure appropriate signal of both pressure detection circuits 22 and 23.
(ロ) 第1次能力判定回路25が冷>暖モード信号
を発した条件での出力群、
高圧々力検出回路22の高圧不足信号と低
圧々力検出回路23の低圧適正信号あるいは低
圧過大信号とのAND、高圧適正信号と低圧過
大信号とのANDによつて圧縮機1A,1Bの
各容量を増加させる容量増加信号を容量制御装
置19A,19Bに発し、また、高圧過大信号
と低圧信号あるいは低圧不足信号とのAND、
高圧適正信号と低圧不足信号とのANDによつ
て圧縮機1A,1Bの各容量を減少させる容量
減少信号を前記両装置19A,19Bに発す
る。(b) Output group under the condition that the primary capacity determination circuit 25 issues a cold>warm mode signal, the high pressure insufficient signal of the high pressure and force detection circuit 22 and the low pressure appropriate signal or low pressure excessive signal of the low pressure and force detection circuit 23 A capacity increase signal for increasing each capacity of the compressors 1A and 1B is sent to the capacity control devices 19A and 19B by ANDing the appropriate high pressure signal and the low pressure excessive signal, and also by ANDing the high pressure appropriate signal and the low pressure excessive signal. AND with the low pressure shortage signal,
A capacity reduction signal for reducing the capacity of each of the compressors 1A and 1B is issued to both the devices 19A and 19B by ANDing the high voltage appropriate signal and the low pressure insufficient signal.
一方、低圧過大信号と高圧適正信号あるいは
高圧過大信号とのAND、低圧適正信号と高圧
過大信号とのANDによつて制御弁4の開度を
増加させる弁開度増加信号を制御弁制御回路3
1に発し、また、低圧不足信号と高圧不足信号
あるいは高圧適正信号とのAND、低圧適正信
号と高圧不足信号とのANDによつて制御弁4
の開度を減少させる弁開度信号を前記回路31
に発する。 On the other hand, the control valve control circuit 3 generates a valve opening increase signal that increases the opening of the control valve 4 by ANDing the low pressure excessive signal and the high pressure proper signal or the high pressure excessive signal, and by ANDing the low pressure proper signal and the high pressure excessive signal.
1, and also by AND of the low pressure shortage signal and the high pressure shortage signal or the high pressure appropriate signal, and the AND of the low pressure appropriate signal and the high pressure shortage signal.
The circuit 31 transmits a valve opening signal that decreases the opening of the circuit 31.
emanates from.
また、高圧適正信号と低圧適正信号との
ANDによつてホールド信号を発する。 Also, the difference between the high voltage appropriate signal and the low voltage appropriate signal
A hold signal is generated by AND.
◎制御弁制御回路31,
前記第1次能力判定回路25が冷<暖モード信
号を発することによつて前記過熱度検出回路24
の信号が低圧適正信号になるように、所定の過熱
度より小さい信号により制御弁4の弁開度を減少
させ、また逆に大きい信号により逆に弁開度を増
加させる弁開度制御信号を前記弁開度制御装置2
0に発するものであつて、これは制御弁4に対す
る無段階制御であつて蒸発器として作用する熱源
側コイル2を過熱度一定に保持する制御に相当す
る。◎When the control valve control circuit 31 and the primary capacity determination circuit 25 issue a cold < warm mode signal, the superheat degree detection circuit 24
The valve opening control signal is such that a signal smaller than a predetermined superheat degree reduces the valve opening of the control valve 4, and a larger signal conversely increases the valve opening so that the signal becomes a low pressure appropriate signal. The valve opening control device 2
This is a stepless control over the control valve 4, and corresponds to control to maintain the heat source side coil 2, which acts as an evaporator, at a constant degree of superheat.
一方、前述する如く第1次能力判定回路25が
冷>暖モード信号を発しているときの弁開度増加
信号あるいは弁開度減少信号を受けてこれを弁開
度制御装置20に発するものであつて、これは制
御弁4に対する単位小開度のステツプ制御であつ
て凝縮器として作用する熱源側コイル2の放熱能
力を冷房負荷と暖房負荷との差に見合わせようと
する能力制御に相当する。 On the other hand, as described above, when the primary capacity determination circuit 25 is issuing a cold>warm mode signal, it receives a valve opening increase signal or a valve opening decrease signal and issues this to the valve opening control device 20. This is step control of the control valve 4 with a small unit opening, and corresponds to capacity control that attempts to adjust the heat dissipation capacity of the heat source side coil 2, which acts as a condenser, to the difference between the cooling load and the heating load. .
◎第1切換制御回路32,
前記第1次能力判定回路25が冷<暖モード信
号を発することによつて開閉弁3Sを開かせ、か
つ開閉弁3Dを閉じさせる信号を切換制御器21
に発し、一方、冷>暖モード信号を発することに
よつて開閉弁3Dを開かせ、かつ開閉弁3Sを閉
じさせる信号を切換制御器21に発する。◎The first switching control circuit 32 and the first capacity determination circuit 25 issue a cold < warm mode signal to open the on-off valve 3S, and send a signal to the switching controller 21 to close the on-off valve 3D.
On the other hand, by issuing a cold>warm mode signal, a signal is issued to the switching controller 21 to open the on-off valve 3D and close the on-off valve 3S.
◎開閉弁制御回路33,
前記第1次能力判定回路25が冷<暖モード信
号を発することによつて、開閉弁16を閉じさせ
る信号を前記開閉弁制御器26に発し、一方、冷
>暖モード信号を発することによつて開閉弁16
を開かせる信号を開閉弁制御器26に発する。◎The on-off valve control circuit 33 and the primary capacity determination circuit 25 issue a signal to close the on-off valve 16 by issuing a cold<warm mode signal to the on-off valve controller 26; Open/close valve 16 by issuing a mode signal.
A signal is issued to the on-off valve controller 26 to open it.
制御指令手段18の内容は以上説明した通りで
あるが、次に第1図々示空気調和機の運転態様の
概要をさらに第2図乃至第6図を併せ参照して説
明する。 Although the contents of the control command means 18 have been described above, the outline of the operation mode of the air conditioner shown in FIG. 1 will now be explained with further reference to FIGS. 2 to 6.
開閉弁3Sを開き、開閉弁3D及び開閉弁16
を閉じて暖房サイクルを基本とし、しかも暖房負
荷と冷房負荷とが均衡しているとの想定を行つて
これを初期条件に設定ロして運転開始する。 Open the on-off valve 3S, open the on-off valve 3D and the on-off valve 16
It is assumed that the heating cycle is closed and the heating load and the cooling load are balanced, and this is set as the initial condition and operation is started.
なお、この初期条件では圧縮機1Aは停止、圧
縮機1Bは初期運転の中容量で駆動せしめると共
に、制御弁4は全閉(開き指令待ち)にしてお
く。 Note that under this initial condition, the compressor 1A is stopped, the compressor 1B is driven at the medium capacity of the initial operation, and the control valve 4 is kept fully closed (waiting for an opening command).
運転開始後、1分間隔等所定の時間この状態を
保持せしめて○ハ、ここで出されるチエツク信号に
よつて、第1次能力判定回路25による能力判定
を行なわせる。 After the start of operation, this state is maintained for a predetermined period of time, such as at one-minute intervals, and then the primary ability determination circuit 25 performs the ability determination based on the check signal issued here.
すなわち、高圧々力検出回路22の圧力検出○ニ
及び低圧々力検出回路23の圧力検出○ホによつ
て、その組合わせにより得られる9通りの信号を
判別して、圧縮機1Bの容量を増加させる容量増
加信号E1、容量減少信号E2、ホールド信号E3、
暖房負荷の方が大きくて圧縮機構1の容量増加を
希望するための冷<暖モード信号E4、冷房負荷
の方が大きくて圧縮機構1の容量制御と熱源側コ
イル2の能力制御を希望するための冷>暖モード
信号E5を選択的に夫々発せしめる。 That is, the capacity of the compressor 1B is determined by determining nine types of signals obtained by combinations of pressure detection ○D of the high pressure and force detection circuit 22 and pressure detection ○D of the low pressure and force detection circuit 23. A capacitance increase signal E 1 , a capacitance decrease signal E 2 , a hold signal E 3 ,
Cool < warm mode signal E 4 for requesting an increase in the capacity of the compression mechanism 1 because the heating load is larger, and request for capacity control of the compression mechanism 1 and capacity control of the heat source side coil 2 because the cooling load is larger. A cold>warm mode signal E5 is selectively emitted for each operation.
ホールド信号E3が発せられているときは、現
状の運転を続行させて○チ、1分経過後に再び能力
判定を行わせる。 When the hold signal E3 is being issued, the current operation is continued and the capacity judgment is made again after 1 minute has elapsed.
一方、容量増加信号E1が発せられているとき
は、容量制御装置19Bによつて圧縮機1Bを1
ステツプ分容量増加させて○ヘ、1分経過後に再び
能力判定を行わせる。 On the other hand, when the capacity increase signal E1 is being issued, the capacity control device 19B controls the compressor 1B to 1.
The capacity is increased by the amount of steps, and the ability is judged again after 1 minute has passed.
逆に容量減少信号E2が発せられているときは、
容量制御装置19Bによつて圧縮機1Bを1ステ
ツプ分容量減少させて○ト、1分経過後に再度能力
判定を行わせる。 Conversely, when the capacitance reduction signal E 2 is being issued,
The capacity of the compressor 1B is reduced by one step by the capacity control device 19B, and the capacity is determined again after one minute has elapsed.
また、冷<暖モード信号E4が発せられている
ときは、制御弁制御回路31に対する過熱度一定
制御側への切換えと、第2次能力判定回路30に
よる能力判定とを行わせ○リ、冷>暖モード信号
E5が発せられているときは、制御弁制御回路3
1に対する開度ステツプ制御側への切換えと、第
1切換弁制御回路32に対する切換指令、すなわ
ち開閉弁3Dを開かせ、開閉弁3Sを閉じさせる
指令と、開閉弁制御回路33に対する開閉弁16
開放指令と、第2次能力判定回路30による能力
判定とを行わせる○ヌ。 In addition, when the cool<warm mode signal E4 is being issued, the control valve control circuit 31 is switched to the constant superheat degree control side, and the secondary capacity judgment circuit 30 performs the capacity judgment. Cool > Warm mode signal
When E 5 is issued, control valve control circuit 3
1 to the opening step control side, a switching command to the first switching valve control circuit 32, that is, a command to open the on-off valve 3D and close the on-off valve 3S, and a command to the on-off valve control circuit 33 to open the on-off valve 16.
○nu to cause an open command and a capability determination by the secondary capability determination circuit 30 to be performed.
そこで前者の冷<暖モード信号E4に基づく作
動○リの場合には、高圧々力検出回路22の圧力検
出○ニ及び低圧々力検出回路23の圧力検出○ホによ
つて、その組合わせにより得られる9種の信号、
すなわち、圧縮機1Aを容量増加し、かつ圧縮機
1Bを容量減少させる信号e1、圧縮機1Aのみ容
量増加させる信号e2、両圧縮機1A,1Bを容量
増加させる信号e3、圧縮機1Bのみ容量減少させ
る信号e4、両圧縮機1A,1Bを現容量に保持
(ホールド)させる信号e5、圧縮機1Bのみ容量
増加させる信号e6、両圧縮機1A,1Bを容量減
少させる信号e7、圧縮機1Aのみ容量減少させる
信号e8、圧縮機1Aを容量減少し、かつ圧縮機1
Bを容量増加させる信号e9を選択して発せしめ、
それ等各信号に対応した圧縮機1A,1Bの容量
制御を行わせる○ル〜○ツ。 Therefore, in the case of the former operation based on the cold < warm mode signal E 4 , the combination is determined by the pressure detection ○D of the high pressure and force detection circuit 22 and the pressure detection ○E of the low pressure and force detection circuit 23. Nine types of signals obtained by
That is, a signal e 1 increases the capacity of the compressor 1A and decreases the capacity of the compressor 1B, a signal e 2 increases the capacity of only the compressor 1A, a signal e 3 increases the capacity of both compressors 1A and 1B, and a signal e 3 increases the capacity of the compressor 1B. A signal e 4 that causes the capacity of only the compressors 1A and 1B to be decreased, a signal e 5 that causes the capacity of both compressors 1A and 1B to be held at the current capacity, a signal e 6 that causes the capacity of only the compressor 1B to increase, a signal e that causes the capacity of both compressors 1A and 1B to decrease. 7 , Signal e to reduce the capacity of compressor 1A only 8 , Decrease the capacity of compressor 1A, and reduce the capacity of compressor 1A
Select and emit a signal e9 that increases the capacitance of B,
The capacity of the compressors 1A and 1B is controlled in accordance with each of these signals.
そして圧縮機1Aの容量が零すなわち冷房負荷
と暖房負荷が均衡して圧縮機1Aが停止するかど
うかをチエツク○ネして、停止に至るまで1分経過
毎に○ハ再び圧力検出○ニ○ホを行わせて、停止すると
制御弁4を全閉させ○ナ、元の第1次能力判定回路
25による能力判定を繰り返させる。 Then, check whether the compressor 1A stops when the capacity of the compressor 1A becomes zero, that is, the cooling load and the heating load are balanced, and the pressure is detected again every minute until the compressor 1A stops. When the control valve 4 is stopped, the control valve 4 is fully closed, and the ability determination by the primary ability determination circuit 25 is repeated.
一方、後者の冷>暖モード信号E5に基づく作
動○ヌの場合には、高圧々力検出回路22の圧力検
出○ニ及び低圧々力検出回路23の圧力検出○ホによ
つて、その組合わせにより得られる9種の信号、
すなわち、制御弁4の開度を単位開度だけ段階的
に減少させる信号e′1、同様に制御弁4を段階的
に開度減少させ、かつ両圧縮機1A,1Bの容量
を増加させる信号e′2、両圧縮機1A,1Bの容
量を増加させる信号e′3、両圧縮機1A,1Bの
容量を減少させ、かつ、制御弁4の弁開度を段階
的に減少させる信号e′4、制御弁4の開度及び両
圧縮機1A,1Bの容量を現状に保持(ホール
ド)させる信号e′5、両圧縮機1A,1Bを容量
増加させ、かつ制御弁4の弁開度を段階的に増加
させる信号e′6、両圧縮機1A,1Bの容量を減
少させる信号e′7、両圧縮機1A,1Bの容量を
減少させ、かつ、制御弁4の弁開度を段階的に増
加させる信号e′8、制御弁4の弁開度を段階的に
増加させる信号e′9を選択して発せしめ、それ等
各信号に対応した圧縮機1A,1Bの容量制御と
制御弁4の弁開度制御とを行わせるム〜マ。 On the other hand, in the case of the latter operation based on the cold>warm mode signal E5 , the combination Nine types of signals obtained by combining
That is, a signal e' 1 that gradually decreases the opening of the control valve 4 by a unit opening, and a signal that similarly decreases the opening of the control valve 4 in stages and increases the capacity of both compressors 1A and 1B. e′ 2 , signal e′ 3 that increases the capacity of both compressors 1A, 1B, signal e′ that reduces the capacity of both compressors 1A, 1B, and decreases the valve opening degree of control valve 4 in stages. 4 , a signal e' to maintain (hold) the opening degree of the control valve 4 and the capacity of both compressors 1A, 1B at the current state, 5 , increase the capacity of both compressors 1A, 1B, and increase the valve opening degree of the control valve 4; A signal e' 6 to increase the capacity in stages; a signal e' 7 to decrease the capacity of both compressors 1A, 1B; A signal e' 8 to increase the valve opening of the control valve 4 and a signal e' 9 to increase the valve opening of the control valve 4 in stages are selected and emitted, and the capacity control of the compressors 1A and 1B and the control valve corresponding to these signals are performed. 4. The valve opening control is performed.
そして制御弁4の開度が全閉かどうかをチエツ
ク○ケして、冷房負荷と暖房負荷とが均衡するまで
1分経過毎に○ハ再び圧力検出○ニ○ホを行わせて、全
閉に至ると圧縮機1Aを停止させ○フ、元の第1次
能力判定回路25による能力判定を繰り返させ
る。 Then, check whether the opening degree of the control valve 4 is fully closed, and perform pressure detection again every minute until the cooling load and heating load are balanced. When this is reached, the compressor 1A is stopped, ○f is reached, and the original capacity judgment by the primary capacity judgment circuit 25 is repeated.
なお、フロー線図中、「Pc」は高圧々力、「Pe」
は低圧々力を示し、高不、高適、高過は夫々高圧
不足信号、高圧適正信号、高圧過大信号を示す。
また低不、低適、低過は夫々低圧不足信号、低圧
適正信号、低圧過大信号を夫々示している。 In addition, in the flow diagram, "Pc" indicates high pressure and force, "Pe"
indicates a low pressure, and HIGH, HIGH, and HIGH indicate a high-pressure insufficient signal, a high-pressure appropriate signal, and a high-pressure excessive signal, respectively.
Moreover, low-incorrect, low-proper, and low-over indicate a low-pressure insufficient signal, a low-pressure appropriate signal, and a low-pressure excessive signal, respectively.
以上の説明によつて明らかなように、冷房負荷
と暖房負荷との違いによつて圧縮機1の容量制
御、制御弁4の開度制御、第1弁切換装置3の切
換制御、開閉弁16の開閉制御を自動的に行わ
せ、効率の良い熱回収運転が可能である。 As is clear from the above explanation, depending on the difference between the cooling load and the heating load, the capacity of the compressor 1 is controlled, the opening of the control valve 4 is controlled, the switching of the first valve switching device 3 is controlled, and the on-off valve 16 is controlled. Opening/closing control is performed automatically, enabling efficient heat recovery operation.
特に利用側コイル9の少くとも一部と熱源側コ
イル2とを同時に蒸発器として使用する場合には
開閉弁16を閉じて圧縮機1Aを吸入圧力例えば
−5℃相当圧力で、圧縮機1Bを吸入圧力例えば
5℃相当圧力で、別系統として用いることにより
室内側の圧縮機1Bを有利な条件で使用すること
ができ、利用側コイル9の着霜を防止し、さらに
圧縮機1B容量の減少と成績係数の向上が期待で
きる。 In particular, when at least a part of the utilization side coil 9 and the heat source side coil 2 are used as an evaporator at the same time, the on-off valve 16 is closed and the compressor 1A is operated at a suction pressure of, for example, a pressure equivalent to -5°C. By using the suction pressure at a pressure equivalent to 5°C, for example, and using it as a separate system, the compressor 1B on the indoor side can be used under advantageous conditions, preventing frost formation on the user side coil 9, and further reducing the capacity of the compressor 1B. It is expected that the coefficient of performance will improve.
(発明の効果)
本発明は熱回収形空気調和機における圧縮機構
1を2系統に区分して、室内ユニツトIA,IBの一
部が冷房運転を、残部が暖房運転を行なつてい
て、熱源側コイル2が蒸発器として作用する空調
運転のときは圧縮機構1の一方の系統を熱源側コ
イル2からの冷媒吸入用に、他方の系統を利用側
コイル9からの冷媒吸入用に夫々区別して使用す
るようにしているので、特に利用側コイル9に関
連する圧縮機を有利な条件で運転でき、コイルへ
の着霜を確実に防止できると共に、圧縮機容量の
減少と成績係数の向上とを期すことができる。(Effects of the Invention) The present invention divides the compression mechanism 1 in a heat recovery air conditioner into two systems, so that part of the indoor units I A and I B performs cooling operation, and the remaining part performs heating operation. During air conditioning operation in which the heat source side coil 2 acts as an evaporator, one system of the compression mechanism 1 is used for sucking refrigerant from the heat source side coil 2, and the other system is used for sucking refrigerant from the user side coil 9. Since they are used separately, the compressor associated with the utilization side coil 9 can be operated under advantageous conditions, and frost formation on the coil can be reliably prevented, reducing the compressor capacity and improving the coefficient of performance. You can expect that.
第1図は本発明の1実施例に係る冷凍回路図、
第2図は同じく電気回路ブロツク図、第3図は第
1図々示装置の運転状態説明図、第4図乃至第6
図は第1図々示装置の運転制御態様を示すフロー
線図、第7図は従来の空気調和機の冷凍回路図で
ある。
1…圧縮機構、1A,1B…圧縮機、2…熱源
側コイル、3…第1切換弁装置、4…冷媒流量制
御装置、7…低圧ガス側主管、8…冷房用減圧
器、9…利用側コイル、16…切換装置、A…室
外ユニツト、IA,IB…室内ユニツト。
FIG. 1 is a refrigeration circuit diagram according to an embodiment of the present invention,
FIG. 2 is an electric circuit block diagram, FIG. 3 is an explanatory diagram of the operating state of the device shown in FIG. 1, and FIGS.
FIG. 1 is a flow diagram showing the operation control mode of the apparatus shown in FIG. 1, and FIG. 7 is a refrigeration circuit diagram of a conventional air conditioner. 1... Compression mechanism, 1A, 1B... Compressor, 2... Heat source side coil, 3... First switching valve device, 4... Refrigerant flow rate control device, 7... Low pressure gas side main pipe, 8... Cooling pressure reducer, 9... Utilization Side coil, 16... switching device, A... outdoor unit, I A , I B ... indoor unit.
Claims (1)
て作用し得る熱源側コイル2及び冷媒流量制御装
置4を有する室外ユニツトAと、冷房用減圧器8
及び利用側コイル9を有し、個々に冷房運転ある
いは暖房運転に切換え可能に前記室外ユニツトA
に並列的に接続した複数基の室内ユニツトIA,IB
とからなる熱回収式空気調和機において、前記圧
縮機構1を2系統に区分された複数基の圧縮機1
A,1Bにより構成する一方、各室内側ユニツト
IA,IBの一部が冷房運転を、残部が暖房運転を行
ない、かつ前記熱源側コイル2が蒸発器として作
用する空調運転のときには、前記圧縮機構1にお
ける一方の系統の吸入側を室外ユニツトAのガス
側管に、他方の系統の吸入側を冷房運転中の室内
ユニツトに夫々分離して接続せしめ、その他の空
調運転のときには、両系統の吸入側を室外ユニツ
トAの吸入ラインあるいは冷房運転中の室内ユニ
ツトに共通して接続せしめる切換装置16を前記
圧縮機構1に付設したことを特徴とする熱回収形
空気調和機。 2 2系統に区分された複数基の圧縮機1A,1
Bよりなる圧縮機構1が、熱源側コイル2の一端
に切換ポートを、複数基の前記圧縮機1A,1B
の各吐出側に共通して高圧側ポートを夫々接続さ
せてなる第1切換弁装置3の低圧側ポートに対し
て、一方の系統の吸入側を接続せしめ、また、他
方の系統の吸入側を、各室内ユニツトIA,IBが分
岐接続された低圧ガス側主管7に接続せしめて、
さらに切換装置16が、前記圧縮機構1における
両系統の吸入側相互を接続する配管の途中に開閉
可能に介設した開閉弁16から形成される特許請
求の範囲第1項記載の熱回収形空気調和機。[Scope of Claims] 1. An outdoor unit A having a compression mechanism 1, a heat source side coil 2 that can function as a condenser or an evaporator, and a refrigerant flow rate control device 4, and a cooling pressure reducer 8.
and a utilization side coil 9, and the outdoor unit A can be individually switched to cooling operation or heating operation.
Multiple indoor units I A , I B connected in parallel to
In a heat recovery air conditioner comprising: a plurality of compressors 1 in which the compression mechanism 1 is divided into two systems;
A and 1B, while each indoor unit
When a part of I A and I B performs cooling operation, and the remaining part performs heating operation, and the heat source side coil 2 acts as an evaporator during air conditioning operation, the suction side of one system in the compression mechanism 1 is placed outdoors. The suction side of the other system is separately connected to the gas side pipe of unit A and the indoor unit in cooling operation, and during other air conditioning operations, the suction side of both systems is connected to the suction line of outdoor unit A or cooling. A heat recovery air conditioner characterized in that the compression mechanism 1 is provided with a switching device 16 that is commonly connected to indoor units in operation. 2 Multiple compressors 1A, 1 divided into 2 systems
A compression mechanism 1 consisting of a plurality of compressors 1A and 1B has a switching port at one end of the heat source side coil 2.
The suction side of one system is connected to the low pressure side port of the first switching valve device 3, which has a high pressure side port commonly connected to each discharge side of the system, and the suction side of the other system is connected to the low pressure side port of the first switching valve device 3. , each indoor unit I A , I B is connected to the branch-connected low pressure gas side main pipe 7,
Furthermore, the heat recovery type air according to claim 1, wherein the switching device 16 is formed of an on-off valve 16 that is openable and closable in the middle of the piping that connects the suction sides of both systems in the compression mechanism 1. harmonizer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59233894A JPS61110833A (en) | 1984-11-05 | 1984-11-05 | Heat recovery type air conditioner |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59233894A JPS61110833A (en) | 1984-11-05 | 1984-11-05 | Heat recovery type air conditioner |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS61110833A JPS61110833A (en) | 1986-05-29 |
JPH05622B2 true JPH05622B2 (en) | 1993-01-06 |
Family
ID=16962232
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59233894A Granted JPS61110833A (en) | 1984-11-05 | 1984-11-05 | Heat recovery type air conditioner |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61110833A (en) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01247967A (en) * | 1988-03-29 | 1989-10-03 | Sanyo Electric Co Ltd | Multi-room type air-conditioner |
JPH0285656A (en) * | 1988-09-20 | 1990-03-27 | Sanyo Electric Co Ltd | Airconditioner |
JPH01296062A (en) * | 1988-05-20 | 1989-11-29 | Sanyo Electric Co Ltd | Multiple-room type cooler-heater |
JPH0252964A (en) * | 1988-08-15 | 1990-02-22 | Mitsubishi Electric Corp | Multiroom type refrigerating circuit |
JP2698117B2 (en) * | 1988-09-30 | 1998-01-19 | 三洋電機株式会社 | Air conditioner |
JPH02126035A (en) * | 1988-11-02 | 1990-05-15 | Mitsubishi Electric Corp | Multiroom type air conditioning device |
JPH0320573A (en) * | 1989-06-19 | 1991-01-29 | Sanyo Electric Co Ltd | Air-conditioning apparatus |
JP2682157B2 (en) * | 1989-07-31 | 1997-11-26 | ダイキン工業株式会社 | Air conditioner |
JP2625556B2 (en) * | 1989-11-02 | 1997-07-02 | ダイキン工業株式会社 | Operation control device for air conditioner |
JP2716559B2 (en) * | 1990-03-02 | 1998-02-18 | 三菱電機株式会社 | Cooling / heating mixed type multi-room air conditioner |
JP5984914B2 (en) * | 2012-03-27 | 2016-09-06 | 三菱電機株式会社 | Air conditioner |
-
1984
- 1984-11-05 JP JP59233894A patent/JPS61110833A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS61110833A (en) | 1986-05-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR950011376B1 (en) | Control of space heating and water heating using variable speed heat pump | |
JPH0522145B2 (en) | ||
EP1598606A2 (en) | Air conditioner and method for controlling operation thereof | |
US6931871B2 (en) | Boosted air source heat pump | |
JPS62184916A (en) | Cooling device including variable displacement compressor | |
JPH0762569B2 (en) | Operation control device for air conditioner | |
JPH05622B2 (en) | ||
JPH06257828A (en) | Multi-chamber type air conditioning system | |
US20040011064A1 (en) | Heat pump air conditioning system comprising additional heater and method for operating the same | |
JP2730398B2 (en) | Multi-room air conditioning system | |
JPH09145130A (en) | Multi-room type air conditioner system | |
JPH06257827A (en) | Multi chamber type air conditioning system | |
JP3097350B2 (en) | Multi-room air conditioner | |
CN113551305B (en) | Air conditioner with double heat exchangers and control method thereof | |
JP3098793B2 (en) | Control device for air conditioner | |
JPH0285647A (en) | Air conditioner | |
JPH11264625A (en) | Cold water making device and refrigeration capacity control method thereof | |
JPH06341719A (en) | Operation controller for air conditioner | |
JPH02223756A (en) | Air conditioner | |
JPS61272547A (en) | Air conditioner | |
JPH0484061A (en) | Electrically-driven expansion valve controller for multi-chamber type air conditioner | |
KR101064372B1 (en) | Apparatus for controlling a refrigerant of multi air conditioner | |
JP2503701B2 (en) | Air conditioner | |
JPH0120604Y2 (en) | ||
JPH07305880A (en) | Air conditioner |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |