JPH11264625A - Cold water making device and refrigeration capacity control method thereof - Google Patents

Cold water making device and refrigeration capacity control method thereof

Info

Publication number
JPH11264625A
JPH11264625A JP882799A JP882799A JPH11264625A JP H11264625 A JPH11264625 A JP H11264625A JP 882799 A JP882799 A JP 882799A JP 882799 A JP882799 A JP 882799A JP H11264625 A JPH11264625 A JP H11264625A
Authority
JP
Japan
Prior art keywords
temperature
refrigerator
compression
absorption
chilled water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
JP882799A
Other languages
Japanese (ja)
Inventor
Ryohei Minowa
良平 箕輪
Kenichi Kuwabara
健一 桑原
Shuichiro Uchida
修一郎 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP882799A priority Critical patent/JPH11264625A/en
Publication of JPH11264625A publication Critical patent/JPH11264625A/en
Abandoned legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a cold water making device and a refrigeration capacity control method thereof for energy saving and low cost operations by combining a compression type refrigerator and an absorption type refrigerator. SOLUTION: A cold water making device is provided with a compression type refrigerator comprising a refrigerating cycle by connecting a compressor 2, a condenser 4, and an evaporator 1 by means of a refrigerant piping, and an absorption type refrigerator comprising a refrigerating cycle by connecting an evaporator 8, an absorber 9, a condenser 10, and a regenerator 11 by means of a piping and a passage. These refrigerators are connected in series by a cold water piping to flow cold water in the order of an evaporator 1 of the compression type refrigerator, and an evaporator 8 of the absorption type refrigerator. The temperature of the cold water flowing to the evaporator of the compression type refrigerator is detected by a cold water inlet temperature sensor 26, and a temperature controller 19 sets a set temperature of the cold water of the absorption type refrigerator inlet according to the detected temperature. And, the cold water temperature is detected by a temperature detection means 26 to control a refrigeration capacity of both refrigerators so that the temperature of the cold water detected by the temperature detection means 26 becomes the set temperature.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は冷水製造装置及びそ
の冷凍容量制御方法に係り、特に圧縮式冷凍機と吸収式
冷凍機を組合せて冷水を製造する装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for producing chilled water and a method for controlling the refrigerating capacity thereof, and more particularly to an apparatus for producing chilled water by combining a compression type refrigerator and an absorption type refrigerator.

【0002】[0002]

【従来の技術】従来の圧縮式冷凍機と吸収式冷凍機を細
合せて冷水を製造する装置においては、冷水を2つの冷
凍機に直列に流す場合、吸収式冷凍機、圧縮式冷凍機の
順に流し、圧縮式冷凍機の冷水出口温度を一定にする制
御方式がとられていた。例えば、持開平4‐20377
1号公報が挙げられる。従来の他の方式として、冷水を
圧縮式冷凍機、吸収式冷凍機の順に直列に流す方式があ
る。例えば特開平1−131859号公報が挙げられ
る。
2. Description of the Related Art In a conventional apparatus for producing chilled water by finely combining a compression chiller and an absorption chiller, when the chilled water flows in series to two chillers, the absorption chiller and the compression chiller must be used. A control method has been adopted in which the chilled water outlet temperature of the compression refrigerator is kept constant by flowing the water in order. For example, 4-20377
No. 1 publication. As another conventional system, there is a system in which cold water flows in series in the order of a compression refrigerator and an absorption refrigerator. For example, JP-A-1-131859 is mentioned.

【0003】[0003]

【発明が解決しようとする課題】上記従来の方式の前者
のものでは、圧縮式冷凍機の冷却水と冷水の温度差が圧
縮式冷凍機を単独で使用する場合と変らず、吸収式冷凍
機と圧縮式冷凍機を直列に流す運転方式にしても、圧縮
式冷凍機の単位冷却能力当りの消費動力は減らない。な
お、吸収式冷凍機は、冷水温度の高い側に配置されるた
め、単位冷却能力当りの加熱量が減少するが、図4に示
す通り、圧縮式冷凍機に比し、減少割合が小さく、か
つ、ピーク負荷に対応する運転であり、運転時間も短い
ので、省エネルギー効果が小さい。
In the former type of the conventional system, the temperature difference between the cooling water and the cooling water of the compression type refrigerator is not different from the case where the compression type refrigerator is used alone, and the absorption type refrigerator is used. Even if an operation system in which the compressor and the compressor are flowed in series, the power consumption per unit cooling capacity of the compressor is not reduced. In addition, since the absorption type refrigerator is arranged on the side where the cold water temperature is high, the heating amount per unit cooling capacity is reduced. However, as shown in FIG. 4, the reduction rate is smaller than the compression type refrigerator, In addition, since the operation corresponds to the peak load and the operation time is short, the energy saving effect is small.

【0004】一方上記従来の方式の後者のものでは、冷
水製造装置の冷水出口温度を一定にする場合、吸収式冷
凍機がベースロード対応、長時間高負荷運転となり、圧
縮式冷凍機がピーク負荷対応、短時間運転となる。この
場合、固定費の割合が高い電力を動力源とする圧縮式冷
凍機が短時間運転となり、全体のエネルギ費が高くな
る。
[0004] On the other hand, in the latter conventional method, when the chilled water outlet temperature of the chilled water producing apparatus is kept constant, the absorption chiller supports a base load and operates for a long time under a high load. Correspondence, short-time operation. In this case, the compression type refrigerator powered by electric power having a high fixed cost ratio operates for a short time, and the overall energy cost increases.

【0005】また、圧縮式冷凍機にターボ冷凍機を使用
する場合、冷却水と冷水の温度差が設計点より、一定以
上多くなると、サージングが発生し、運転できなくなる
ため、ターボ冷凍機の冷水出口温度を一定にしなけれぱ
ならない。このため、冷水製造装置の冷水出口温度を一
定に保つためには、吸収式冷凍機をベースロードとして
使わなくてはならない。すなわち、圧縮式冷凍機と吸収
式冷凍機の2つの冷凍機に冷水を直列に流して冷水を製
造する従来の装置においては、各々の冷凍機の特性が活
かされず、省エネルギーになっていない。
When a centrifugal chiller is used as a compression chiller, if the temperature difference between the cooling water and the chilled water exceeds a design point by a certain amount or more, surging occurs and operation becomes impossible. Outlet temperature must be constant. For this reason, in order to keep the chilled water outlet temperature of the chilled water producing apparatus constant, an absorption chiller must be used as a base load. That is, in a conventional apparatus for producing chilled water by flowing chilled water in series to two chillers, a compression chiller and an absorption chiller, the characteristics of each chiller are not utilized and energy is not saved.

【0006】本発明は上記従来技術の不具合に鑑みなさ
れたものであり、その目的は、圧縮式冷凍機と吸収式冷
凍機を組合せ、省エネルギー、低運転コストの冷水製造
装置及びその冷凍容量制御方法を実現することにある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned disadvantages of the related art, and has as its object to combine a compression type refrigerator and an absorption type refrigerator to save energy and reduce the operating cost of a chilled water producing apparatus and its refrigeration capacity control method. It is to realize.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
に、本発明の第1の特徴は、圧縮機、凝縮器、蒸発器を
冷嫌配管により接続して冷凍サイクルが構成されている
圧縮式冷凍機と、蒸発器、吸収器、凝縮器、再生器を配
管、流路により接続して冷凍サイクルが構成されている
吸収式冷凍機とを有し、前記両冷凍機を冷水配管により
直列に接続し冷水が圧縮式冷凍機、吸収式冷凍機の順に
流れる構成とした冷水製造装置において、吸収式冷凍機
入口の冷水の温度を検出する手段と、吸収式冷凍機の負
荷よりも圧縮式冷凍機の負荷を大きくするような前記冷
水の温度を設定すると共に、前記手段により検出された
冷水の温度が前記設定温度になるように前記両冷凍機の
冷凍容量を制御する制御手段とを有することにある。
In order to achieve the above-mentioned object, a first feature of the present invention is that a compressor, a condenser, and an evaporator are connected by a cooling pipe to form a refrigeration cycle. And an absorption refrigerator in which a refrigerating cycle is configured by connecting an evaporator, an absorber, a condenser, and a regenerator by piping and a flow path, and the refrigerators are connected in series by cold water piping. In the chilled water production apparatus, which is connected to the chiller and the chiller flows in the order of the compression chiller and the absorption chiller, a means for detecting the temperature of the chilled water at the inlet of the absorption chiller, and the compression chiller than the absorption chiller load. Control means for setting the temperature of the cold water so as to increase the load on the refrigerator and controlling the refrigerating capacities of the two refrigerators so that the temperature of the cold water detected by the means becomes the set temperature. It is in.

【0008】また、本発明の第2の特徴は、圧縮機、凝
縮器、蒸発器を冷媒配管により接続して冷凍サイクルが
構成されている圧縮式冷凍機と、蒸発器、吸収器、凝縮
器、再生器を配管、流路により接続して冷凍サイクルが
構成されている吸収式冷凍機とを有し、前記両冷凍機を
冷水配管により直列に接続し冷水が圧縮式冷凍機、吸収
式冷凍機の順に流れる構成とした冷水製造装置におい
て、前記圧縮式冷凍機は、圧縮式冷凍機の冷水出口温度
を検出する手段と、この手段により検出された冷水出口
温度が吸収式冷凍機の負荷よりも圧縮式冷凍機の負荷を
大きくするような設定温度になるように圧縮式冷凍機の
冷凍容量を制御する制御手段とを備え、前記吸収式冷凍
機は、吸収式冷凍機の冷水入口温度を検出する手段と、
この手段により検出された冷水入口温度が吸収式冷凍機
の負荷よりも圧縮式冷凍機の負荷を大きくするような設
定温度になるように吸収式冷凍機の冷凍容量を制御する
制御手段とを備えることにある。
A second feature of the present invention is that a compressor, a condenser, and an evaporator are connected by a refrigerant pipe to form a refrigerating cycle, and an evaporator, an absorber, and a condenser. An absorption refrigerator in which a refrigerating machine is connected by pipes and flow paths to form a refrigeration cycle. In the chilled water production device configured to flow in the order of the chiller, the compression chiller has a means for detecting a chilled water outlet temperature of the compression chiller, and the chilled water outlet temperature detected by this means is based on a load of the absorption chiller. Control means for controlling the refrigeration capacity of the compression chiller so as to reach a set temperature that increases the load of the compression chiller, wherein the absorption chiller adjusts the chilled water inlet temperature of the absorption chiller. Means for detecting,
Control means for controlling the refrigeration capacity of the absorption chiller so that the chilled water inlet temperature detected by the means is set to a temperature at which the load on the compression chiller is greater than the load on the absorption chiller. It is in.

【0009】また、本発明の第3の特徴は、圧縮機、凝
縮器、蒸発器を冷媒配管により接続して冷凍サイクルが
構成されている圧縮式冷凍機と、蒸発器、吸収器、凝縮
器、再生器を配管、流路により接続して冷凍サイクルが
構成されている吸収式冷凍機とを有し、前記両冷凍機を
冷水配管により直列に接続し冷水が圧縮式冷凍機、吸収
式冷凍機の順に流れる構成とした冷水製造装置におい
て、前記圧縮式冷凍機は、圧縮式冷凍機の冷水出口温度
を検出する手段と、この手段により検出された冷水出口
温度が吸収式冷凍機の負荷よりも圧縮式冷凍機の負荷を
大きくするような設定温度になるように圧縮式冷凍機の
冷凍容量を制御する制御手段とを備えるものである。そ
して、前記吸収式冷凍機は、吸収式冷凍機の冷水入口温
度を検出する手段と、この手段により検出された冷水入
口温度が吸収式冷凍機の負荷よりも圧縮式冷凍機の負荷
を大きくするような設定温度になるように吸収式冷凍機
の冷凍容量を制御する制御手段とを備える。さらに、圧
縮式冷凍機の入口、または出口の冷却水温度を検出する
手段と、この手段により検出された冷却水温度が上昇す
るにしたがって、圧縮式冷凍機の冷水出口の設定温度と
吸収式冷凍機の冷水入口の設定温度を上げ、前記検出さ
れた冷却水温度が低下するにしたがって、前記圧縮式冷
凍機の冷水出口の設定温度と前記吸収式冷凍機の冷水入
口の設定温度を下げるよう制御する制御手段とを有す
る。
A third feature of the present invention is that a compressor, a condenser, and an evaporator are connected by a refrigerant pipe to form a refrigerating cycle, and an evaporator, an absorber, and a condenser. A refrigerating machine connected by pipes and channels to form a refrigerating cycle, wherein the refrigerating machines are connected in series by a cold water pipe, and the cold water is compressed by the refrigerating machine and the absorption refrigerating machine. In the chilled water production device configured to flow in the order of the chiller, the compression chiller has a means for detecting a chilled water outlet temperature of the compression chiller, and the chilled water outlet temperature detected by this means is based on a load of the absorption chiller. Also has control means for controlling the refrigeration capacity of the compression chiller so as to reach a set temperature that increases the load on the compression chiller. The absorption refrigerator has means for detecting a chilled water inlet temperature of the absorption chiller, and the chilled water inlet temperature detected by the means makes the load of the compression chiller larger than the load of the absorption chiller. Control means for controlling the refrigerating capacity of the absorption refrigerator so as to attain such a set temperature. Further, means for detecting the cooling water temperature at the inlet or outlet of the compression refrigerator, and as the cooling water temperature detected by this means increases, the set temperature of the cooling water outlet of the compression refrigerator and the absorption refrigeration The set temperature of the chilled water inlet of the compressor is increased, and the set temperature of the chilled water outlet of the compression chiller and the set temperature of the chilled water inlet of the absorption chiller are reduced as the detected cooling water temperature decreases. Control means for performing the operation.

【0010】本発明の第4の特徴は、圧縮機、凝縮器、
蒸発器を冷媒配管により接続して冷凍サイクルが構成さ
れている圧縮式冷凍機と、蒸発器、吸収器、凝縮器、再
生器を配管、流路により接続して冷凍サイクルが構成さ
れている吸収式冷凍機とを有し、前記両冷凍機を冷水配
管により直列に接続し冷水が圧縮式冷凍機、吸収式冷凍
機の順に流れる構成とした冷水製造装置の冷凍容量制御
方法において、吸収式冷凍機入口の冷水の温度が、吸収
式冷凍機の負荷よりも圧縮式冷凍機の負荷を大きくする
ような設定温度になるようにそれぞれの冷凍機の冷凍容
量を制御することにある。
A fourth feature of the present invention is that a compressor, a condenser,
A compression-type refrigerator in which an evaporator is connected by a refrigerant pipe to form a refrigeration cycle, and an absorption in which an evaporator, an absorber, a condenser, and a regenerator are connected by pipes and flow paths to form a refrigeration cycle. A refrigeration capacity control method for a chilled water producing apparatus having a configuration in which the two chillers are connected in series by a chilled water pipe and chilled water flows in the order of a compression chiller and an absorption chiller. The refrigeration capacity of each refrigerator is controlled such that the temperature of the chilled water at the inlet of the refrigerator becomes a set temperature at which the load of the compression refrigerator becomes larger than the load of the absorption refrigerator.

【0011】上述した第1,2及び4の特徴を有する本
発明によれば、冷房に使用するための冷水が圧縮式冷凍
機、吸収式冷凍機の順に流れさらに空調負荷に流れる構
成とし、圧縮式冷凍機出口冷水(吸収式冷凍機入口冷
水)の温度を検知し、この検知された温度が設定温度に
なるように両冷凍機を制御するようにし、さらにこの設
定温度は圧縮式冷凍機の負荷が吸収式冷凍機の負荷より
も常に大きくなるような温度としている。
According to the present invention having the above-described first, second, and fourth features, the structure is such that the chilled water used for cooling flows in the order of the compression chiller and the absorption chiller and further flows to the air conditioning load. The temperature of the chilled water at the outlet of the chiller (the chilled water at the inlet of the absorption chiller) is detected, and both chillers are controlled so that the detected temperature becomes the set temperature. The temperature is set so that the load is always higher than the load of the absorption refrigerator.

【0012】一般に、圧縮式冷凍機は電気を利用してい
るが、電力料金は使用量が増えると急激に低下する傾向
がある。本発明では圧縮式冷凍機を吸収式冷凍機より優
先的に使用するようにしているので、両冷凍機を合わせ
た全体の運転コストを低減できる。
[0012] Generally, a compression refrigerator uses electricity, but the electricity fee tends to sharply decrease as the usage amount increases. In the present invention, the compression type refrigerator is used preferentially over the absorption type refrigerator, so that the total operation cost of both the refrigerators can be reduced.

【0013】また、空調負荷は概略大気温度に比例して
変り、一般に冷凍機からの廃熱を受け取った冷却水は冷
却塔(クーリングタワー)で冷却されているため、冷凍
機の冷却水入口温度も大気温度に応じて上下する。した
がって、冷凍機の冷却水入口温度は空調負荷に応じて上
下するという特性がある。
Further, the air-conditioning load varies substantially in proportion to the atmospheric temperature, and the cooling water that receives waste heat from the refrigerator is generally cooled by a cooling tower (cooling tower). Raises and lowers according to atmospheric temperature. Therefore, there is a characteristic that the cooling water inlet temperature of the refrigerator rises and falls according to the air conditioning load.

【0014】上述した第3の特徴を有する本発明によれ
ば、空調負荷が減少した場合、圧縮式冷凍機の冷却水入
口または出口温度に応じて圧縮式冷凍機と吸収式冷凍機
の中間の冷水温度を下げるように制御するので、圧縮式
冷凍機を全負荷長期運転に、吸収式冷凍機を短時間ピー
ク負荷用として使用することができる。冷凍機のエネル
ギー源である電気とガスの冷房用エネルギー単価を比較
すると、電気の冷房用エネルギー単価は長期間運転した
場合、ガスのそれを下回る。圧縮式冷凍機は電気で、吸
収式冷凍機はガスで運転することが一般的であるので、
このような圧縮式冷凍機の全負荷長期運転を行い、圧縮
式冷凍機を優先的に使用することにより、運転コストを
低く抑えることができる。
According to the third aspect of the present invention, when the air-conditioning load is reduced, an intermediate position between the compression type refrigerator and the absorption type refrigerator is set according to the cooling water inlet or outlet temperature of the compression type refrigerator. Since the control is performed so as to lower the chilled water temperature, the compression chiller can be used for full load long-term operation, and the absorption chiller can be used for short-time peak load. Comparing the energy unit prices of electricity and gas, which are the energy sources of the refrigerator, for cooling air, the energy unit price of electricity for cooling is lower than that of gas when operated for a long time. Since it is common to operate a compression refrigerator with electricity and an absorption refrigerator with gas,
By performing such a full-load long-term operation of the compression refrigerator and using the compression refrigerator preferentially, the operation cost can be reduced.

【0015】[0015]

【発明の実施の形態】圧縮式冷凍機と吸収式冷凍機を組
合せ、冷水を圧縮式冷凍機、吸収式冷凍機の順に直列に
流し、圧縮式冷凍機と吸収式冷凍機の中間の冷水温度を
検出し、その温度が一定になるようにそれぞれの冷凍機
を制御すると、圧縮式冷凍機は冷水出口温度を一定に制
御する、一般の冷凍機の制御と同一となり、冷却水温度
が設計仕様以下であれば圧縮式冷凍機の圧縮機の圧縮比
は過大になることはない。また、外気温が夏ほど高くな
く、中間期などで冷却水温暖が低くなる時は、仕様の冷
却水温度との温度差に応じて、圧縮式冷凍機を制御する
調節計の設定温度を下げても、圧縮機の圧縮比を設計値
以下にできるので、安全で安定した運転ができる。
BEST MODE FOR CARRYING OUT THE INVENTION A compression refrigerator and an absorption refrigerator are combined, and chilled water is flowed in series in the order of the compression refrigerator and the absorption refrigerator, and a cold water temperature intermediate between the compression refrigerator and the absorption refrigerator. And control each refrigerator so that its temperature becomes constant, the compression type refrigerator controls the chilled water outlet temperature to be constant. If it is below, the compression ratio of the compressor of the compression refrigerator will not be excessive. Also, when the outside temperature is not as high as in summer and the cooling water temperature is low in the middle period, etc., lower the set temperature of the controller that controls the compression refrigerator according to the temperature difference from the specified cooling water temperature. However, since the compression ratio of the compressor can be reduced to the design value or less, safe and stable operation can be performed.

【0016】各冷凍機を制御する制御装置の温度検出器
を二つの冷凍機の間の冷水配管に取付け、吸収式冷凍機
の調節計の設定温度を、圧縮式冷凍機の調節計の設定温
度より常に高く設定することにより、先ず圧縮式冷凍機
に負荷がかかり、圧縮式冷凍機で冷却しきれなく、圧縮
式冷凍機の冷水出口温度が制御装置の設定温度以上にな
ると、吸収式冷凍機の制御装置が作動し、吸収式冷凍機
に負荷がかかることになる。
A temperature detector of a control device for controlling each refrigerator is attached to a chilled water pipe between the two refrigerators, and the set temperature of the controller of the absorption refrigerator is set to the set temperature of the controller of the compression refrigerator. By setting the constant higher, the load is applied to the compression refrigerator first, the compressor cannot completely cool the compressor, and when the chilled water outlet temperature of the compression refrigerator becomes higher than the set temperature of the control device, the absorption refrigerator becomes Is activated, and a load is applied to the absorption refrigerator.

【0017】負荷が少ない時は圧縮式冷凍機のみ運転
し、負荷が増加し、圧縮式冷凍機の出力が100%にな
った時に吸収式冷凍機を起動し、圧縮式冷凍機の出力を
100%に固定すると、圧縮式冷凍機が全負荷で運転さ
れ、不足分を吸収式冷凍機で補うことになる。
When the load is small, only the compression refrigerator is operated. When the load increases and the output of the compression refrigerator reaches 100%, the absorption refrigerator is started and the output of the compression refrigerator is reduced to 100%. When it is fixed to%, the compression type refrigerator is operated at full load, and the shortage is compensated for by the absorption type refrigerator.

【0018】なお、実際には吸収式冷凍機も連続運転で
きる最小冷凍容量があり、吸収式冷凍機の燃料制御系の
開度、または制御装置の出力が最小容量以下の場合、圧
縮式冷凍機の制御装置を作動させ、二つの冷凍機の能力
が負荷に見合うように調節し、負荷が増加し、圧縮式冷
凍機の出力が100%になり、吸収式冷凍機の出力が最
小容量以上になった時、圧縮式冷凍機の出力を100%
に固定し、吸収式冷凍機の制御装置を負荷に見合った出
力に作動させることで、圧縮式冷凍機に負荷を優先的に
かけられる。
[0018] Actually, the absorption chiller has a minimum refrigeration capacity for continuous operation. If the opening of the fuel control system of the absorption chiller or the output of the control device is less than the minimum capacity, the compression chiller is not used. Activate the control device, adjust the capacity of the two refrigerators to match the load, increase the load, the output of the compression refrigerator becomes 100%, the output of the absorption refrigerator exceeds the minimum capacity When it becomes, the output of the compression refrigerator becomes 100%
, And by operating the control device of the absorption chiller to an output corresponding to the load, the load can be preferentially applied to the compression chiller.

【0019】以下、本発明の一実施例を図1により説明
する。図1において、1は圧縮式冷凍機の蒸発器、2は
圧縮機、3は電動機、4は圧縮式冷凍機の凝縮器、5は
圧縮機流入冷媒ガス制御バーナ、6は制御バーナ駆動装
置、7は圧縮式冷凍機の冷媒膨張弁、8は吸収式冷凍機
の蒸発器、9は吸収式冷凍機の吸収器、10は吸収式冷
凍機の凝縮器、11は吸収式冷凍機の再生器、12は燃
料制御弁、13は燃料制御弁駆動装置、14は燃料配
管、15は圧縮式冷凍機の冷却水、16は冷却装置入口
冷水、17は中間温度冷水、18は冷却装置出口冷水、
19は圧縮式冷凍機用温度調節計、20は吸収式冷凍機
入口温度調節計、21は吸収式冷凍機出口温度調節計、
22は圧縮式冷凍機冷却水温度調節計、23は選択演算
器、24は圧縮式冷凍機冷水出口温度センサ、25は吸
収式冷凍機冷水入口温度センサ、26は圧縮式冷凍機冷
却水入口温度センサ、27は吸収式冷凍機冷水出口温度
センサである。
An embodiment of the present invention will be described below with reference to FIG. In FIG. 1, reference numeral 1 denotes an evaporator of a compression refrigerator, 2 denotes a compressor, 3 denotes an electric motor, 4 denotes a condenser of the compression refrigerator, 5 denotes a compressor inflow refrigerant gas control burner, 6 denotes a control burner driving device, 7 is a refrigerant expansion valve of a compression refrigerator, 8 is an evaporator of an absorption refrigerator, 9 is an absorber of an absorption refrigerator, 10 is a condenser of an absorption refrigerator, and 11 is a regenerator of an absorption refrigerator. , 12 is a fuel control valve, 13 is a fuel control valve driving device, 14 is a fuel pipe, 15 is cooling water for a compression refrigerator, 16 is chilled water at a cooling device inlet, 17 is chilled water at an intermediate temperature, 18 is chilled water at a cooling device outlet,
19 is a temperature controller for a compression refrigerator, 20 is an absorption refrigerator inlet temperature controller, 21 is an absorption refrigerator outlet temperature controller,
22 is a compression chiller cooling water temperature controller, 23 is a selection calculator, 24 is a compression chiller cooling water outlet temperature sensor, 25 is an absorption chiller cooling water inlet temperature sensor, and 26 is a compression chiller cooling water inlet temperature. A sensor 27 is an absorption type refrigerator cold water outlet temperature sensor.

【0020】冷却装置入口冷水16は先ず、圧縮式冷凍
機の蒸発器1に入り、冷却されて中間温度冷水17とな
り、吸収式冷凍機の蒸発器8に入り、さらに冷却されて
冷却装置出口冷水18となって流出する。
The chilled water 16 at the inlet of the cooling device first enters the evaporator 1 of the compression refrigerator, is cooled to become intermediate-temperature chilled water 17, enters the evaporator 8 of the absorption refrigerator, is further cooled, and is cooled at the outlet of the cooling device. It flows out as 18.

【0021】 温度落差=冷却水入口温度−冷水出口温度……(1) このような構成にすると、圧縮式冷凍機における上式
(1)に示す温度落差が小さくなり、図4に示す通り、
圧縮式冷凍機はほぼ温度落差の減少に比例して入力(所
要動力)が減るが、吸収式冷凍機は圧縮式冷凍機に比較
すれば駆動入力の減少が小さいという特性があるため、
圧縮式冷凍機と吸収式冷凍機合計の駆動入力を非常に少
なくできる。
Temperature drop = Cooling water inlet temperature−Cooling water outlet temperature (1) With such a configuration, the temperature drop of the compression type refrigerator represented by the above equation (1) becomes small, and as shown in FIG.
The input power (required power) of a compression chiller decreases almost in proportion to the decrease in temperature drop, but the absorption chiller has the characteristic that the drive input decreases less than that of a compression chiller.
The drive input of the compression refrigerator and the absorption refrigerator can be extremely reduced.

【0022】圧縮式冷凍機の冷水出口温度となる中間温
度冷水17を設定温度になるように制御する圧縮式冷凍
機用温度調節計19の設定値を、圧縮式冷凍機の冷却水
15の入口温度が変った割合に応じて変えることによ
り、圧縮式冷凍機の温度落差を一定にすることができ、
圧縮式冷凍機を効率よく運転することができる。
The set value of the temperature controller 19 for the compression chiller which controls the intermediate temperature chilled water 17 which is the chilled water outlet temperature of the compression chiller to the set temperature is changed to the inlet of the cooling water 15 of the compression chiller. By changing according to the rate at which the temperature has changed, the temperature drop of the compression refrigerator can be kept constant,
The compression refrigerator can be operated efficiently.

【0023】圧縮機にターボ圧縮機を使用する場合、冷
却水入口温度が高い時に冷水出口温度を低くすると、圧
縮比が高くなり、図5に示すように作動点が設計点Aよ
り高いB点に移り、サージング点に近くなって運転でき
なくなる特性があるので、圧縮比を一定以下にすること
が特に重要となる。
When a turbo compressor is used as the compressor, if the cooling water outlet temperature is lowered when the cooling water inlet temperature is high, the compression ratio becomes higher, and the operating point is higher than the design point A as shown in FIG. , And there is a characteristic that the operation becomes impossible near the surging point, so that it is particularly important to keep the compression ratio below a certain value.

【0024】また、圧縮機にターボ圧縮機を使用し、タ
ーボ圧縮機の最大圧縮比を、冷却装置出口冷水18の温
度まで冷却できる圧縮比に設計すれば、中間温度冷水1
7の温度を冷却水温度に関係なく、変更できるが、図6
のC点とD点の間で運転することになり、全負荷時は効
率の悪いD点で運転することになるため、大きな駆動力
が必要となる。
If a turbo compressor is used as the compressor and the maximum compression ratio of the turbo compressor is designed to be a compression ratio capable of cooling down to the temperature of the chilled water 18 at the cooling device outlet, the intermediate temperature chilled water 1
7 can be changed regardless of the cooling water temperature.
The operation is performed between the points C and D, and the operation is performed at the inefficient point D at full load, so that a large driving force is required.

【0025】ターボ圧縮機を、圧縮式冷凍機と吸収式冷
凍機が、全負荷で運転する時の中間温度冷水17の温度
まで冷却する圧縮比に対応するように設計すると、ター
ボ圧縮機の特性が図6の点線のようになり、全負荷時の
作動点Dの効率はdからd’に大巾に上昇し、温度落差
にほぼ比例して動力が減少する。ターボ圧縮機の作動点
の圧縮比を図6のD点以上にならないようにするため、
圧縮式冷凍機の冷却水15の入口温度が設計値より低下
した値に応じて、圧縮式冷凍機用温度調節計19の設定
温度を下げればよいことになる。
If the turbo compressor is designed so as to correspond to a compression ratio at which the compression refrigerator and the absorption refrigerator cool to the temperature of the intermediate-temperature chilled water 17 when operating at full load, the characteristics of the turbo compressor are as follows. 6, the efficiency at the operating point D at full load greatly increases from d to d ′, and the power decreases substantially in proportion to the temperature drop. In order to prevent the compression ratio of the operating point of the turbo compressor from being higher than the point D in FIG. 6,
The set temperature of the temperature controller 19 for the compression refrigerator may be lowered according to the value at which the inlet temperature of the cooling water 15 of the compression refrigerator becomes lower than the design value.

【0026】空調負荷は概略大気温度に比例して変り、
一般に冷却水は図示しない冷却塔で冷却しているため、
冷却水温度も大気温度につれて上下する。したがって、
空調負荷が減少し、空調負荷側から戻って来る冷却装置
入口冷水16の温度が下つて来た場合、冷却水温度も下
っているので、圧縮式冷凍機の冷却水15の入口温度の
低下に応じて圧縮式冷凍機用温度調節計19の中間温度
冷水17の設定温度を下げることにより、圧縮式冷凍機
が常にほぼ全負荷で運転されることになる。
The air conditioning load changes approximately in proportion to the atmospheric temperature.
Generally, cooling water is cooled by a cooling tower (not shown).
Cooling water temperature also rises and falls with atmospheric temperature. Therefore,
When the air-conditioning load decreases and the temperature of the cooling device inlet chilled water 16 returning from the air-conditioning load side decreases, the cooling water temperature also decreases, so that the cooling water 15 inlet temperature of the compression chiller decreases. Accordingly, by lowering the set temperature of the intermediate temperature chilled water 17 of the temperature controller 19 for the compression type refrigerator, the compression type refrigerator always operates at almost the full load.

【0027】吸収式冷凍機は、中間温度冷水17の温度
を吸収式冷凍機冷水入口温度センサ25で検出し、この
温度が一定となるよう、吸収式冷凍機冷水入口温度調節
計20により制御される。したがって、負荷が減ると冷
却装置出口冷水18の温度は上昇し、中間温度冷水17
の温度に近づく。このような制御にすると、吸収式冷凍
機も、冷水と冷却水の温度落差が小さくなるので駆動力
が減少し、省エネルギーとなる。
The absorption chiller detects the temperature of the intermediate temperature chilled water 17 with an absorption chiller chilled water inlet temperature sensor 25, and is controlled by an absorption chiller chilled water inlet temperature controller 20 so that the temperature becomes constant. You. Therefore, when the load decreases, the temperature of the chilled water 18 at the cooling device outlet rises, and
Approaching temperature. With this control, the absorption chiller also reduces the temperature difference between the chilled water and the chilled water, so that the driving force is reduced and energy is saved.

【0028】吸収式冷凍機冷水入口温度調節計20も、
圧縮式冷凍機用温度調節計19と同様に、圧縮式冷凍機
の冷却水15の温度によって設定値が変えられるが、常
に圧縮式冷凍機用温度調節計19の設定値より、吸収式
冷凍機冷水入口温度調節計20がわずか高い温度に設定
されるようにする。このようにすると、先ず圧縮式冷凍
機が全負荷になり、圧縮式冷凍機の能力より負荷が多
く、中間温度冷水17の温度が圧縮式冷凍機用温度調節
計19の設定値以上になってから、吸収式冷凍機冷水入
口温度調節計20が作動し、吸収式冷凍機の燃料配管1
4を流れる燃料を増加させ、負荷に対して圧縮式冷凍機
の能力不足分を補うように運転されることになる。
The absorption chiller cold water inlet temperature controller 20 is also
As in the case of the compression refrigerator temperature controller 19, the set value can be changed depending on the temperature of the cooling water 15 of the compression refrigerator. The cold water inlet temperature controller 20 is set to a slightly higher temperature. By doing so, the compression refrigerator becomes full load first, the load is larger than the capacity of the compression refrigerator, and the temperature of the intermediate temperature chilled water 17 becomes higher than the set value of the temperature controller 19 for the compression refrigerator. , The absorption chiller chilled water inlet temperature controller 20 is activated, and the fuel pipe 1 of the absorption chiller is operated.
4 is operated so as to increase the fuel flowing through the compressor 4 and compensate for the capacity shortage of the compression refrigerator with respect to the load.

【0029】吸収式冷凍機の冷水出口温度調節計21
は、冷却装置出口冷水18の温度を、吸収式冷凍機冷水
出口温度センサ27で検出し、設定値以下になったら、
燃料制御弁12を閉じる方向の制御信号を出力する。選
択演算器23は吸収式冷凍機冷水入口温度調節計20の
出力信号と、吸収式冷凍機冷水出口温度調節計21の出
力信号を比較し、燃料制御弁12を閉じる方向の信号を
選択して燃料制御弁駆動装置13に信号を出力する。従
って、冷却装置冷水出口18の温度が設定値より下るこ
と、つまり過冷却を防止できる。
Cold water outlet temperature controller 21 of absorption refrigerator
Detects the temperature of the cooling device outlet chilled water 18 with the absorption chiller chilled water outlet temperature sensor 27, and when the temperature falls below the set value,
A control signal for closing the fuel control valve 12 is output. The selection calculator 23 compares the output signal of the absorption chiller chilled water inlet temperature controller 20 with the output signal of the absorption chiller chilled water outlet temperature controller 21 and selects a signal in the direction to close the fuel control valve 12. A signal is output to the fuel control valve driving device 13. Therefore, it is possible to prevent the temperature of the cooling device chilled water outlet 18 from falling below the set value, that is, to prevent overcooling.

【0030】以上説明したことを図に示すと図7のよう
になる。負荷が100%の場合は、冷水を空調負荷に7
℃で送り(R点)、空調負荷から14℃で戻ってくる
(P点)。負荷が0%の場合は、冷水を空調負荷に8℃
で送り、空調負荷から同じ温度の8℃で戻ってくる(Z
点)。
FIG. 7 shows what has been described above. If the load is 100%, cool water is
Sending at 14 ° C. (point R), returning from the air conditioning load at 14 ° C. (point P). If the load is 0%, use cold water at 8 ° C for the air conditioning load.
And return from the air conditioning load at the same temperature of 8 ° C (Z
point).

【0031】負荷が100%の場合は、空調負荷より1
4℃で戻ってきた冷水(P点)を、圧縮式冷凍機がその
最大能力で3.5℃下げて10.5℃とし(Q点)、さ
らに吸収式冷凍機がその最大能力で10.5℃から3.
5℃下げて7℃とし空調負荷に送る(R点)。
When the load is 100%, the load is 1
The cold water returned at 4 ° C. (point P) is reduced by 3.5 ° C. at its maximum capacity to 10.5 ° C. at its maximum capacity (point Q), and the absorption chiller is further cooled to 10.5 ° C. at its maximum capacity. 2. From 5 ° C.
The temperature is lowered by 5 ° C to 7 ° C and sent to the air conditioning load (point R).

【0032】負荷が下がってくると、空調負荷より戻っ
てきた冷水の温度は負荷100%時に比べると低くなる
(例えばS点)。そして負荷100%時と同様に圧縮式
冷凍機の最大能力で約3.5℃下げてT点とし、さらに
吸収式冷凍機を容量制御してU点まで冷却し、空調負荷
に送る。したがって本発明では圧縮式冷凍機に優先的に
負荷がかかるようになっている。
When the load decreases, the temperature of the chilled water returned from the air conditioning load becomes lower than when the load is 100% (for example, point S). Then, as in the case of 100% load, the maximum capacity of the compression refrigerator is lowered by about 3.5 ° C. to the point T, and the absorption refrigerator is cooled down to the point U by controlling the capacity, and sent to the air conditioning load. Therefore, in the present invention, a load is preferentially applied to the compression refrigerator.

【0033】負荷が46%前後になると吸収式冷凍機を
停止して圧縮式冷凍機の最大能力だけで対応できるよう
になる(V点からW点)。さらに負荷が低下すると、圧
縮式冷凍機だけを容量制御して対応する(例えばX点か
らY点)。
When the load becomes about 46%, the absorption type refrigerator is stopped and the maximum capacity of the compression type refrigerator can be met (point V to point W). When the load further decreases, only the compression refrigerator is controlled in capacity (for example, from point X to point Y).

【0034】図7に示すように、全運転領域において圧
縮式冷凍機に負荷が優先的にかかり、圧縮式冷凍機は長
時間高負荷運転となる。吸収式冷凍機は、ピーク負荷時
のみ運転することになり、短時間運転となる。日本のよ
うに中緯度に位置する場所では、年平均の夏期の冷房負
荷は、ピーク負荷の約40%となっている。したがっ
て、圧縮式冷凍機の容量を、圧縮式冷凍機と吸収式冷凍
機の合計容量の40%〜50%に選定すると、圧縮式冷
凍機が年間運転時間の約半分を全負荷で運転することに
なり、全体の効率が高くなる。
As shown in FIG. 7, the load is preferentially applied to the compression refrigerator in the entire operation range, and the compression refrigerator operates for a long time under a high load. The absorption chiller is operated only at the time of peak load, and is operated for a short time. In locations located at mid-latitudes such as Japan, the annual average cooling load in summer is about 40% of the peak load. Therefore, if the capacity of the compression chiller is selected to be 40% to 50% of the total capacity of the compression chiller and the absorption chiller, the compression chiller operates at about half of the annual operating time at full load. And the overall efficiency is increased.

【0035】図2は本発明の他の実施例を示す図であ
る。圧縮式冷凍機の冷却水15の出口温度を圧縮式冷凍
機冷却水出口温度センサ28で検出し、図1の実施例と
同様に制御するもので、圧縮式冷凍機用温度調節計1
9、吸収式冷凍機冷水入口温度調節計20の設定値を、
冷却水15の出口温度によって変えることにより、図1
の実施例と同等の効果20が得られる。
FIG. 2 is a diagram showing another embodiment of the present invention. The outlet temperature of the cooling water 15 of the compression refrigerator is detected by a compression refrigerator cooling water outlet temperature sensor 28 and controlled in the same manner as in the embodiment of FIG.
9. The set value of the absorption chiller cold water inlet temperature controller 20 is
By changing according to the outlet temperature of the cooling water 15, FIG.
An effect 20 equivalent to that of the embodiment is obtained.

【0036】図3は本発明のさらに他の実施例を示す図
である。吸収式冷凍機に、蒸気を駆動源とするものを使
用し、蒸気配管31を通って流入する蒸気を蒸気制御弁
29、及び蒸気制御弁駆動装置30によって制御するも
ので、図1の実施例と同機な効果が得られる。本発明に
よれば、圧縮式冷凍機と吸収式冷凍機を冷水を圧縮式冷
凍機、吸収式冷凍機の順に冷却するように細合せること
により、圧縮式冷凍機の温度落差(冷却水入口温度−冷
水出口温度)が小さくなり、駆動動力を大幅に小さくで
きる。
FIG. 3 is a diagram showing still another embodiment of the present invention. 1 uses an absorption refrigerator that uses steam as a driving source, and controls steam flowing through a steam pipe 31 by a steam control valve 29 and a steam control valve driving device 30. The same effect can be obtained. According to the present invention, the compression type chiller and the absorption type chiller are finely combined so as to cool the cold water in the order of the compression type chiller and the absorption type chiller, whereby the temperature difference of the compression type chiller (the cooling water inlet temperature) is reduced. -Cold water outlet temperature), and the driving power can be greatly reduced.

【0037】一般に圧縮式冷凍機は電動機で駆動される
ため、駆動動力の低減は固定費となる電力の基本料金が
安くなるので、ランニングコストを大幅に低減する。ま
た、負荷が減少した場合、圧縮式冷凍機と吸収式冷凍機
の中間温度冷水の温度を冷却水温度に応じて下げること
により、圧縮式冷凍機を全負荷長期運転に、吸収式冷凍
機を短時間ピーク負荷用として使用することができる。
このような運転を行うと、特に圧縮式冷凍機を電動機で
駆動する場合、図8に示す通り、固定費負担分の多い電
力を長時間使用することになり割安となるので、ランニ
ングコストを大幅に低減できる。なお、図8は300R
Tの冷凍機において電力は1.0kW/RT、ガスは
0.65Nm3/RTで仮定して試算したものである。
In general, since a compression refrigerator is driven by an electric motor, a reduction in drive power reduces the basic charge of electric power, which is a fixed cost, so that the running cost is greatly reduced. In addition, when the load decreases, the compression chiller is operated at full load for a long period of time by lowering the temperature of the chilled water at the intermediate temperature between the compression chiller and the absorption chiller in accordance with the cooling water temperature. Can be used for short-time peak load.
When such a driving is performed, particularly when the compression type refrigerator is driven by an electric motor, as shown in FIG. Can be reduced to In addition, FIG.
In the refrigerator of T, the electric power was assumed to be 1.0 kW / RT and the gas was assumed to be 0.65 Nm3 / RT.

【0038】一般に圧縮式冷凍機は電気を利用している
が、電力料金は使用量が増えると急激に低下する傾向が
あるので圧縮式冷凍機を吸収式冷凍機より優先的に使用
して負荷をかけることにより、両冷凍機をあわせた全体
の運転コストを低減できる。
In general, a compression chiller uses electricity. However, as an electricity charge tends to decrease sharply as the amount of use increases, the compression chiller is used preferentially over an absorption chiller, and the load is reduced. , It is possible to reduce the overall operating cost of both refrigerators.

【0039】[0039]

【発明の効果】以上述べたように本発明によれば、空調
負荷と冷却水温度の変化は連動しているという特徴を利
用して、空調負荷が減少した場合、圧縮式冷凍機の冷却
水温度に応じて圧縮式冷凍機と吸収式冷凍機の中間の冷
水温度を下げるように制御するので、圧縮式冷凍機を全
負荷長期運転に、吸収式冷凍機を短時間ピーク負荷用と
して使用することができる。
As described above, according to the present invention, when the air-conditioning load is reduced, the cooling water of the compression-type refrigerator is reduced by utilizing the characteristic that the change of the air-conditioning load and the temperature of the cooling water are linked. Controls to lower the chilled water temperature between the compression chiller and the absorption chiller according to the temperature, so use the compression chiller for long-term full load operation and use the absorption chiller for short-term peak load. be able to.

【0040】また、冷凍機のエネルギー源である電気と
ガスの冷房用エネルギー単価を比較すると、電気の冷房
用エネルギー単価は長期間運転した場合、ガスのそれを
下回る。圧縮式冷凍機は電気で、吸収式冷凍機はガスで
運転することが一般的であるので、このような圧縮式冷
凍機の全負荷長期運転を行い、圧縮式冷凍機を優先的に
使用することにより、運転コストを低く抑えることがで
きる。
Further, when comparing the energy unit costs for cooling of electricity and gas, which are the energy sources of the refrigerator, the energy unit price for cooling electricity is lower than that of gas when operated for a long period of time. Since compression chillers are generally operated by electricity and absorption chillers are generally operated by gas, such compression chillers are operated at full load for a long period of time, and the compression chillers are used preferentially. As a result, the operating cost can be kept low.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例による冷水製造装置の系統図
である。
FIG. 1 is a system diagram of a cold water production device according to one embodiment of the present invention.

【図2】本発明の他の実施例による冷水製造装置の系統
図である。
FIG. 2 is a system diagram of a cold water production device according to another embodiment of the present invention.

【図3】本発明のさらに他の実施例による冷水製造装置
の系統図である。
FIG. 3 is a system diagram of a cold water production device according to still another embodiment of the present invention.

【図4】温度落差と冷凍機への入力との関係を示すグラ
フである。
FIG. 4 is a graph showing a relationship between a temperature drop and an input to a refrigerator.

【図5】ターボ圧縮機の作動点とサージング点の関係を
示すグラフである。
FIG. 5 is a graph showing a relationship between an operating point and a surging point of the turbo compressor.

【図6】ターボ圧縮機の動作点と効率の関係を示すグラ
フである。
FIG. 6 is a graph showing a relationship between an operating point and efficiency of the turbo compressor.

【図7】圧縮式冷凍機と吸収式冷凍機の負荷分担と冷水
温度の関係を示すグラフである。
FIG. 7 is a graph showing a relationship between load sharing between a compression refrigerator and an absorption refrigerator and chilled water temperature.

【図8】冷房用エネルギー単価と運転時間と関係を示す
グラフである。
FIG. 8 is a graph showing a relationship between a cooling energy unit price and an operation time.

【符号の説明】[Explanation of symbols]

1…圧縮式冷凍機の蒸発器、2…圧縮機、3…電動機、
4…圧縮式冷凍機の凝縮器、5…冷媒ガス制御ベーン、
6…制御ベーン駆動装置、8…吸収式冷凍機の蒸発器、
9…吸収器、10…吸収式冷凍機の凝縮器、11…再生
器、12…燃料制御弁、13…燃料制御弁駆動装置、1
5…圧縮式冷凍機の冷却水、16…冷却装置入口冷水、
17…中間温度冷水、18…冷却装置出口冷水、19…
圧縮式冷凍機用温度調節計、20…吸収式冷凍機入口温
度調節計、21…吸収式冷凍機出口温度調節計、22…
圧縮式冷凍機冷却水温度調節計、23…選択演算器、24
圧縮式冷凍機冷水出口温度センサ、25…吸収式冷凍機
冷水入口温度センサ、26…圧縮式冷凍機冷却水入口温
度センサ、27…吸収式冷凍機冷水出口温度センサ。
1 ... Evaporator of compression refrigerator, 2 ... Compressor, 3 ... Electric motor,
4: a condenser of a compression refrigerator, 5: a refrigerant gas control vane,
6 ... Control vane driving device, 8 ... Evaporator of absorption refrigerator
9: absorber, 10: condenser of absorption refrigerator, 11: regenerator, 12: fuel control valve, 13: fuel control valve driving device, 1
5: cooling water of a compression refrigerator, 16: cold water at the inlet of a cooling device,
17 ... Intermediate temperature cold water, 18 ... Cooling device outlet cold water, 19 ...
Temperature controller for compression refrigerator, 20: temperature controller for absorption refrigerator, 21 ... temperature controller for absorption refrigerator, 22 ...
Compression chiller cooling water temperature controller, 23 ... Selector, 24
Compression refrigerator cold water outlet temperature sensor, 25 ... absorption refrigerator cold water inlet temperature sensor, 26 ... compression refrigerator cold water inlet temperature sensor, 27 ... absorption refrigerator cold water outlet temperature sensor.

Claims (15)

【特許請求の範囲】[Claims] 【請求項1】圧縮機、凝縮器、蒸発器を冷媒配管により
接続して冷凍サイクルが構成されている圧縮式冷凍機
と、蒸発器、吸収器、凝縮器、再生器を配管、流路によ
り接続して冷凍サイクルが構成されている吸収式冷凍機
とを有し、前記両冷凍機を冷水配管により直列に接続し
冷水が圧縮式冷凍機、吸収式冷凍機の順に流れる構成と
した冷水製造装置において、吸収式冷凍機入口の冷水の
温度を検出する温度検出手段と、吸収式冷凍機の負荷よ
りも圧縮式冷凍機の負荷を大きくするように前記冷水の
温度を設定するとともに、前記温度検出手段により検出
された冷水の温度が前記設定温度になるように前記両冷
凍機の冷凍容量を制御する制御手段とを有することを特
徴とする冷水製造装置。
A compressor, a condenser, and an evaporator are connected by a refrigerant pipe to form a refrigerating cycle, and a compressor, an evaporator, an absorber, a condenser, and a regenerator are connected by piping and a flow path. An absorption refrigerator connected to form a refrigeration cycle, wherein the refrigerators are connected in series by a chilled water pipe, and chilled water flows in the order of a compression refrigerator and an absorption refrigerator. In the apparatus, temperature detecting means for detecting the temperature of the chilled water at the inlet of the absorption chiller, and setting the temperature of the chilled water so that the load of the compression chiller is larger than the load of the absorption chiller; Control means for controlling the refrigerating capacities of the two refrigerators so that the temperature of the chilled water detected by the detecting means becomes the set temperature.
【請求項2】それぞれの冷凍機の冷凍容量を制御する制
御手段は、吸収式冷凍機の再生器の入熱量を制御する制
御手段と、圧縮式冷凍機の圧縮機の吸込側流路断面積を
制御する制御手段または圧縮機の回転数を制御する制御
手段とを有することを特徴とする請求項1に記載の冷水
製造装置。
2. The control means for controlling the refrigerating capacity of each refrigerator includes a control means for controlling a heat input amount of a regenerator of an absorption refrigerator, and a suction-side channel cross-sectional area of a compressor of a compression refrigerator. 2. The chilled water production apparatus according to claim 1, further comprising control means for controlling the rotation speed of the compressor or control means for controlling the rotation speed of the compressor.
【請求項3】圧縮式冷凍機の入口、または出口の冷却水
温度を検出する温度検出手段と、前記検出した冷却水温
度が上昇するにしたがって、吸収式冷凍機入口の冷水の
設定された温度を下げ、前記検出した冷却水温度が低下
するにしたがって、吸収式冷凍機入口の冷水の設定され
た温度を下げるよう制御する制御手段とを有することを
特徴とする請求項1に記載の冷水製造装置。
3. A temperature detecting means for detecting a cooling water temperature at an inlet or an outlet of a compression refrigerator, and a set temperature of the cold water at the inlet of the absorption refrigerator as the detected cooling water temperature rises. Control means for controlling the set temperature of the chilled water at the inlet of the absorption chiller to be lowered as the detected chilled water temperature decreases. apparatus.
【請求項4】検出した冷却水温度が上昇するにしたがっ
て、吸収式冷凍機入口の冷水の設定された温度を上げ、
前記検出した冷却水温度が低下するにしたがって、吸収
式冷凍機入口の冷水の設定された温度を下げるよう制御
する制御手段は、圧縮式冷凍機の入口または出口の冷却
水温度の信号を受信して、それぞれの冷凍機の冷凍容量
を制御する制御手段へ制御信号を発信する温度調節計か
らなることを特徴とする請求項1に記載の冷水製造装
置。
4. As the detected cooling water temperature increases, the set temperature of the cooling water at the inlet of the absorption refrigerator is increased,
As the detected cooling water temperature decreases, the control means for controlling to lower the set temperature of the cooling water at the inlet of the absorption refrigerator receives a signal of the cooling water temperature at the inlet or outlet of the compression refrigerator. 2. The chilled water production apparatus according to claim 1, further comprising a temperature controller for transmitting a control signal to control means for controlling the refrigerating capacity of each refrigerator.
【請求項5】圧縮機、凝縮器、蒸発器を冷媒配管により
接続して冷凍サイクルが構成されている圧縮式冷凍機
と、蒸発器、吸収器、凝縮器、再生器を配管、流路によ
り接続して冷凍サイクルが構成されている吸収式冷凍機
とを有し、前記両冷凍機を冷水配管により直列に接続し
冷水が圧縮式冷凍機、吸収式冷凍機の順に流れる構成と
した冷水製造装置において、前記圧縮式冷凍機は、圧縮
式冷凍機の冷水出口温度を検出する温度検出手段と、こ
の温度検出手段により検出された冷水出口温度が吸収式
冷凍機の負荷よりも圧縮式冷凍機の負荷を大きくするよ
うな設定温度になるように圧縮式冷凍機の冷凍容量制御
する制御手段とを備え、前記吸収式冷凍機は、吸収式冷
凍機の冷水出口温度を検出する冷水出口温度検出手段
と、この冷水出口温度検出手段により検出された冷水入
口温度が吸収式冷凍機の負荷よりも圧縮式冷凍機の負荷
を大きくするような設定温度になるように吸収式冷凍機
の冷凍容量を制御する制御手段とを備えることを特徴と
する冷水製造装置。
5. A compression refrigerator in which a compressor, a condenser, and an evaporator are connected by a refrigerant pipe to form a refrigerating cycle, and an evaporator, an absorber, a condenser, and a regenerator are connected by piping and a flow path. An absorption refrigerator connected to form a refrigeration cycle, wherein the refrigerators are connected in series by a chilled water pipe, and chilled water flows in the order of a compression refrigerator and an absorption refrigerator. In the apparatus, the compression chiller includes a temperature detection unit that detects a chilled water outlet temperature of the compression chiller, and a chilled water outlet temperature detected by the temperature detection unit is higher than a load of the absorption chiller. Control means for controlling the refrigeration capacity of the compression chiller so that the set temperature increases the load of the chiller, wherein the absorption chiller detects a chilled water outlet temperature of the absorption chiller. Means and this cold water outlet temperature Control means for controlling the refrigeration capacity of the absorption chiller such that the chilled water inlet temperature detected by the discharge means is set to a temperature at which the load of the compression chiller is greater than the load of the absorption chiller. An apparatus for producing cold water, characterized in that:
【請求項6】圧縮式冷凍機の冷凍容量を制御する制御手
段は、圧縮式冷凍機の圧縮機の吸い込み側流路断面積を
制御する制御手段または圧縮機の回転数を制御する制御
手段を有し、吸収式冷凍機の冷凍容量を制御する制御手
段は、吸収式冷凍機の再生器の入熱量を制御する制御手
段を有することを特徴とする請求項5に記載の冷水製造
装置。
6. The control means for controlling the refrigerating capacity of the compression type refrigerator includes a control means for controlling a suction-side flow path cross-sectional area of the compressor of the compression type refrigerator or a control means for controlling a rotation speed of the compressor. 6. The chilled water production apparatus according to claim 5, wherein the control means for controlling the refrigeration capacity of the absorption refrigerator includes a control means for controlling the heat input of the regenerator of the absorption refrigerator.
【請求項7】圧縮式冷凍機の入口、または出口の冷却水
温度を検出する手段と、前記検出した冷却水温度が上昇
するにしたがって、圧縮式冷凍機の冷水出口の設定され
た温度と吸収式冷凍機の冷水入口の設定された温度を上
げ、前記検出した冷却水温度が低下するにしたがって、
前記圧縮式冷凍機の冷水出口の設定された温度と前記吸
収式冷凍機冷水入口の設定された温度を下げるよう制御
する制御手段とを有することを特徴とする請求項5に記
載の冷水製造装置。
7. A means for detecting a cooling water temperature at an inlet or an outlet of a compression chiller, and as the detected cooling water temperature rises, a set temperature and an absorption of a chilled water outlet of the compression chiller are set. Raise the set temperature of the chilled water inlet of the type refrigerator, as the detected cooling water temperature decreases,
The chilled water production apparatus according to claim 5, further comprising control means for controlling a set temperature of a chilled water outlet of the compression chiller and a set temperature of the absorption chiller chilled water inlet. .
【請求項8】検出した冷却水温度が上昇するにしたがっ
て、圧縮式冷凍機の冷水出口の設定された温度と吸収式
冷凍機の冷水入口の設定された温度を下げるよう制御す
る制御手段は、圧縮式冷凍機の入口、または出口の冷却
水温度の信号を受信して、それぞれの冷凍機の冷凍容量
を制御する制御手段へ制御信号を発信する温度調節計を
有することを特徴とする請求項7に記載の冷水製造装
置。
8. A control means for controlling so as to decrease the set temperature of the chilled water outlet of the compression chiller and the set temperature of the chilled water inlet of the absorption chiller as the detected cooling water temperature increases. It has a temperature controller which receives the signal of the cooling water temperature of the entrance of a compression type refrigerator, or an exit, and transmits a control signal to control means which controls the refrigerating capacity of each refrigerator. 7. The cold water production device according to 7.
【請求項9】吸収式冷凍機の負荷が吸収式冷凍機の容量
制御の下限より大きい場合に、圧縮式冷凍機を全負荷で
運転するよう制御する制御手段を有することを特徴とす
る請求項1ないし5のいずれか1項に記載の冷水製造装
置。
9. A control means for controlling the compression refrigerator to operate at full load when the load of the absorption refrigerator is larger than the lower limit of the capacity control of the absorption refrigerator. 6. The cold water production device according to any one of 1 to 5.
【請求項10】吸収式冷凍機冷水入口温度を検知して信
号を出力する手段と、吸収式冷凍機冷水出口温度を検知
して信号を出力する手段と、これら2種類の信号を受信
して比較し低い温度の方の信号を選択して信号を出力す
る比較演算手段と、この比較演算手段からの信号を受信
し吸収式冷凍機冷水出口温度が異常に低下しないよう吸
収式冷凍機の冷凍容量を制御する制御手段とを有するこ
とを特徴とする請求項1ないし5のいずれか1項に記載の
冷水製造装置。
10. A means for detecting a cooling water inlet temperature of an absorption refrigerator and outputting a signal, a means for detecting a cooling water outlet temperature of an absorption refrigerator and outputting a signal, and receiving these two types of signals. A comparison operation means for comparing and selecting a signal having a lower temperature and outputting a signal; and a refrigeration unit for the absorption chiller which receives the signal from the comparison operation means and prevents the chilled water outlet temperature of the absorption chiller from abnormally lowering. 6. The chilled water production apparatus according to claim 1, further comprising control means for controlling a capacity.
【請求項11】圧縮式冷凍機の最大冷凍能力を、圧縮式
冷凍機の最大冷凍能力と吸収式冷凍機の最大冷凍能力を
合わせた冷凍能力の40%から50%とすることを特徴とする
請求項1ないし5のいずれか1項に記載の冷水製造装置。
11. The maximum refrigeration capacity of a compression refrigerator is 40% to 50% of the total refrigeration capacity of the maximum refrigeration capacity of a compression chiller and the maximum refrigeration capacity of an absorption refrigerator. 6. The chilled water production device according to claim 1, wherein:
【請求項12】圧縮機、凝縮器、蒸発器を冷媒配管によ
り接続して冷凍サイクルが構成されている圧縮式冷凍機
と、蒸発器、吸収器、凝縮器、再生器を配管、流路によ
り接続して冷凍サイクルが構成されている吸収式冷凍機
とを有し、前記両冷凍機を冷水配管により直列に接続し
冷水が圧縮式冷凍機、吸収式冷凍機の順に流れる構成と
した冷水製造装置において、前記圧縮式冷凍機は、圧縮
式冷凍機の冷水出口温度を検出する手段と、この手段に
より検出された冷水出口温度が吸収式冷凍機の負荷より
も圧縮式冷凍機の負荷を大きくするような設定温度にな
るように圧縮式冷凍機の冷凍容量を制御する制御手段と
を備えるものであって、前記吸収式冷凍機は、吸収式冷
凍機の冷水入口温度を検出する手段と、この手段により
検出された冷水入口温度が吸収式冷凍機の負荷よりも圧
縮式冷凍機の負荷を大きくするような設定温度になるよ
うに吸収式冷凍機の冷凍容量を制御する制御手段とを備
えるものであって、圧縮式冷凍機の入口、または出口の
冷却水温度を検出する手段と、この手段により検出され
た冷却水温度が上昇するにしたがって、圧縮式冷凍機の
冷水出口の設定温度と吸収式冷凍機の冷水入口の設定温
度を上げ、前記検出された冷却水温度が低下するにした
がって、前記圧縮式冷凍機の冷水出口の設定温度と前記
吸収式冷凍機の冷水入口の設定温度を下げるよう制御す
る制御手段とを有することを特徴とする冷水製造装置。
12. A compressor having a refrigeration cycle in which a compressor, a condenser, and an evaporator are connected by refrigerant piping, and an evaporator, an absorber, a condenser, and a regenerator connected by piping and a flow path. An absorption refrigerator connected to form a refrigeration cycle, wherein the refrigerators are connected in series by a chilled water pipe, and chilled water flows in the order of a compression refrigerator and an absorption refrigerator. In the apparatus, the compression refrigerator has means for detecting a chilled water outlet temperature of the compression chiller, and the chilled water outlet temperature detected by this means increases the load of the compression chiller more than the load of the absorption chiller. Control means for controlling the refrigeration capacity of the compression chiller so as to reach the set temperature, wherein the absorption chiller detects a chilled water inlet temperature of the absorption chiller, Cold water detected by this means Control means for controlling the refrigeration capacity of the absorption chiller so that the temperature becomes a set temperature such that the load on the compression chiller is greater than the load on the absorption chiller. Means for detecting the cooling water temperature at the inlet or outlet of the machine, and as the cooling water temperature detected by this means increases, the set temperature of the chilled water outlet of the compression chiller and the chilled water inlet of the absorption chiller Control means for increasing the set temperature and controlling the set temperature of the chilled water outlet of the compression chiller and the set temperature of the chilled water inlet of the absorption chiller as the detected cooling water temperature decreases. An apparatus for producing cold water, comprising:
【請求項13】圧縮機、凝縮器、蒸発器を冷媒配管によ
り接続して冷凍サイクルが構成されている圧縮式冷凍機
と、蒸発器、吸収器、凝縮器、再生器を配管、流路によ
り接続して冷凍サイクルが構成されている吸収式冷凍機
とを有し、前記両冷凍機を冷水配管により直列に接続し
冷水が圧縮式冷凍機、吸収式冷凍機の順に流れる構成と
した冷水製造装置の冷凍容量制御方法において、吸収式
冷凍機入口の冷水の温度が、吸収式冷凍機の負荷よりも
圧縮式冷凍機の負荷を大きくするような設定温度になる
ようにそれぞれの冷凍機の冷凍容量を制御することを特
徴とする冷水製造装置の冷凍容量制御方法。
13. A compression refrigerator in which a refrigerating cycle is constituted by connecting a compressor, a condenser and an evaporator by a refrigerant pipe, and an evaporator, an absorber, a condenser and a regenerator by piping and a flow path. An absorption refrigerator connected to form a refrigeration cycle, wherein the refrigerators are connected in series by a chilled water pipe, and chilled water flows in the order of a compression refrigerator and an absorption refrigerator. In the method for controlling the refrigerating capacity of the apparatus, the refrigeration of each refrigerator is set so that the temperature of the chilled water at the inlet of the absorption refrigerator becomes a set temperature that makes the load of the compression refrigerator greater than the load of the absorption refrigerator. A method for controlling a refrigeration capacity of a chilled water producing apparatus, comprising controlling a capacity.
【請求項14】それぞれの冷凍機の冷凍容量を制御する
制御方法は、吸収式冷凍機の再生器の入熱量を制御する
制御手段と、圧縮式冷凍機の圧縮機の吸込み口断面積を
制御する制御手段または圧縮機の回転数を制御する制御
手段とによって行うことを特徴とする請求項13に記載
の冷水製造装置の冷凍容量制御方法。
14. A control method for controlling the refrigerating capacity of each refrigerator includes a control means for controlling a heat input amount of a regenerator of an absorption refrigerator, and a control of a cross-sectional area of a suction port of a compressor of the compression refrigerator. The refrigeration capacity control method for a chilled water production apparatus according to claim 13, wherein the control is performed by control means for controlling the rotation speed of the compressor.
【請求項15】圧縮式冷凍機の入口、または出口の冷却
水温度が上昇するにしたがって、吸収式冷凍機入口の冷
水の設定された温度を上げ、前記冷却水温度が低下する
にしたがって、前記の設定された温度を下げるように制
御することを特徴とする請求項13に記載の冷水製造装
置の冷凍容量制御方法。
15. As the cooling water temperature at the inlet or outlet of the compression refrigerator increases, the set temperature of the cooling water at the inlet of the absorption refrigerator increases, and as the cooling water temperature decreases, the cooling water temperature decreases. The refrigeration capacity control method for a chilled water production apparatus according to claim 13, wherein the temperature is set so as to decrease.
JP882799A 1999-01-18 1999-01-18 Cold water making device and refrigeration capacity control method thereof Abandoned JPH11264625A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP882799A JPH11264625A (en) 1999-01-18 1999-01-18 Cold water making device and refrigeration capacity control method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP882799A JPH11264625A (en) 1999-01-18 1999-01-18 Cold water making device and refrigeration capacity control method thereof

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP08527435A Division JP3125796B2 (en) 1995-03-10 1995-03-10 Cold water production equipment

Publications (1)

Publication Number Publication Date
JPH11264625A true JPH11264625A (en) 1999-09-28

Family

ID=11703639

Family Applications (1)

Application Number Title Priority Date Filing Date
JP882799A Abandoned JPH11264625A (en) 1999-01-18 1999-01-18 Cold water making device and refrigeration capacity control method thereof

Country Status (1)

Country Link
JP (1) JPH11264625A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007101092A (en) * 2005-10-06 2007-04-19 Hitachi Ltd Cold water producing device
JP2009030818A (en) * 2007-07-24 2009-02-12 Yamatake Corp Heat source control device and its method
WO2010054537A1 (en) * 2008-11-17 2010-05-20 Su Qingquan Heat pump cycle system and combined supplying method of cold and heat
JP2012141098A (en) * 2010-12-28 2012-07-26 Mitsubishi Heavy Ind Ltd Heat source system and its control method
CN103712365A (en) * 2014-01-20 2014-04-09 陈穗 Absorption and compression embedded and overlapped type refrigeration cycle system

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007101092A (en) * 2005-10-06 2007-04-19 Hitachi Ltd Cold water producing device
JP4693110B2 (en) * 2005-10-06 2011-06-01 日立アプライアンス株式会社 Cold water production equipment
JP2009030818A (en) * 2007-07-24 2009-02-12 Yamatake Corp Heat source control device and its method
WO2010054537A1 (en) * 2008-11-17 2010-05-20 Su Qingquan Heat pump cycle system and combined supplying method of cold and heat
JP2012141098A (en) * 2010-12-28 2012-07-26 Mitsubishi Heavy Ind Ltd Heat source system and its control method
EP2660537A1 (en) * 2010-12-28 2013-11-06 Mitsubishi Heavy Industries, Ltd. Heat source system and control method therefor
US9341401B2 (en) 2010-12-28 2016-05-17 Mitsubishi Heavy Industries, Ltd. Heat source system and control method therefor
EP2660537A4 (en) * 2010-12-28 2017-04-05 Mitsubishi Heavy Industries, Ltd. Heat source system and control method therefor
CN103712365A (en) * 2014-01-20 2014-04-09 陈穗 Absorption and compression embedded and overlapped type refrigeration cycle system

Similar Documents

Publication Publication Date Title
US4471630A (en) Cooling system having combination of compression and absorption type units
CN100462649C (en) Air conditioner
CN102472519B (en) Heat source system
CN100494817C (en) Refrigeration apparatus
JP3574447B2 (en) Startup control system for air conditioner and control method thereof
JPS62184916A (en) Cooling device including variable displacement compressor
CN109682106B (en) Refrigerant circulation system for slowing down surge of compressor, control method thereof and air conditioner
CN113891635A (en) Cold station unit, integrated cold station system, control method of integrated cold station system and related equipment
JPH11264625A (en) Cold water making device and refrigeration capacity control method thereof
KR20050075061A (en) (a) multi type air conditioner and method of controlling the same
CN112594918A (en) Air conditioner heat exchange system and control method thereof
JPH05622B2 (en)
CN108240715B (en) High-efficient air supplementing type heat pump air conditioning system
JP2006284057A (en) Air conditioner and its operating method
JP3125796B2 (en) Cold water production equipment
JP4707562B2 (en) Connected chiller / heater and its operation method
CN114322220A (en) Air conditioning device and control method thereof
JP7080801B2 (en) Centrifugal chiller
JP3583792B2 (en) Hot water supply / air conditioning system
CN216924598U (en) Adjustable evaporative cooler structure and air conditioning unit
JPS60243460A (en) Air heat-source heat pump type air conditioner
JP2002081793A (en) Temperature regulator
JP3874262B2 (en) Refrigeration system combining absorption and compression
JPH01312345A (en) Air conditioner
JPH11211195A (en) Air conditioning equipment

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040203

A762 Written abandonment of application

Free format text: JAPANESE INTERMEDIATE CODE: A762

Effective date: 20040326