JPS61110833A - Heat recovery type air conditioner - Google Patents

Heat recovery type air conditioner

Info

Publication number
JPS61110833A
JPS61110833A JP59233894A JP23389484A JPS61110833A JP S61110833 A JPS61110833 A JP S61110833A JP 59233894 A JP59233894 A JP 59233894A JP 23389484 A JP23389484 A JP 23389484A JP S61110833 A JPS61110833 A JP S61110833A
Authority
JP
Japan
Prior art keywords
signal
valve
compressor
capacity
heat source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59233894A
Other languages
Japanese (ja)
Other versions
JPH05622B2 (en
Inventor
Kazuo Yonemoto
和生 米本
Seijiro Kondo
近藤 誠二郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP59233894A priority Critical patent/JPS61110833A/en
Publication of JPS61110833A publication Critical patent/JPS61110833A/en
Publication of JPH05622B2 publication Critical patent/JPH05622B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To contrive to operate the compressor related to the utilizing coil side under efficient condition by a method wherein a compressor mechanism is divided into two systems, the intaking side of one side system is connected to a gas pipe side and the intaking side of the other side system is connected to an indoor unit. CONSTITUTION:A compressor mechanism 1 is provided in parallel with two compressors 1A, 1B of which each discharging side is connected collectively to the high pressure side port of an open/close valve 3D, and the intaking side of the one side compressor 1A is connected to the intake side port of an open/ close valve 3S. An open/close valve 16 is interposed at intermediate position between the compressor 1A and 1B. In above structure, a heat source side soil 2 is acted as an evaporator, further, the open/close valve 3S is opened and the open/close valve 3D is closed according to the requirement for an operational control. In case that the heat source side coil 2 is acted as the evaporator, the open/close valve 16 is closed, then the coolant sucking from the heat source side coil 2 and the coolant sucking from the utilizing side coil 9 are respectively performed partially by the compressor 1A and the compressor 1B.

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野〕 本発明は複数基の室内ユニットを1基の室外ユニットに
対し個々に冷房あるいは暖房の運転選択が可能に接続せ
しめて、室外ユニットで総合負荷に対応した的確な能力
制御が行なえる熱回収形空気調和機に関する。 (従来の技#I) 1基の室外側ユニットに対して複数基の室内ユニットを
並列的に接続し、少なくとも1基の室内ユニットを冷房
運転しているときに残りの少なくとも1台の室内ユニッ
トを暖房運転可能となし、しかもこの運転に際して冷房
のための放熱を暖房用熱源にそのまま利用し得る所謂熱
回収が可能な空気調和機は特開昭55−12372号公
報によって公知である。 この公知例は、第7図に略示する如く、室外ユニッ)(
Alには、圧縮機11.1 、熱源側コイル(21、吐
出ガス用開閉弁(3D)、吸入ガス用開閉弁(3s)、
岐器主管(51、高圧ガス側主管(61、低圧ガス側主
管(7)、暖房用膨張弁(財)を備え、一方、各、室内
ユニット(IA)、 (1A)、(1B)、 (工C)
には、冷房用膨張弁(8)、利用側コイル(9)、開閉
弁(13A)〜(13o)が夫々介設された高圧ガス側
分校管(111、開閉弁(14A) 〜(140) カ
夫々介設された低圧ガス側分校管α2を夫々備えた回路
構成である。 上記空気調和機において、冷房を行なおうとする室内ユ
ニツト(IA)、(IB)では開閉弁(14A)、 (
14B)を開放させ、一方、暖房を行なおうとする室内
ユニット(工0)では開閉弁(130)を開放させれば
よいが、これに対して室外ユニット(AIでは冷房負荷
と暖房負荷とのいずれが大であるがの運転状態によって
冷房負荷が大きい場合は熱源側コイル(21を凝縮器と
して作用させねばならないので、開閉弁(3D〕を開放
させ、逆に暖房負荷が大きい場合は熱源側コイルを蒸発
器として作用させねばならないので開閉弁(3S)を開
放させる操作が必要である。 (発明が解決しようとする問題点〕 かかる構造の空気調和機は、一部企冷房運転、残部を暖
房運転に操作して熱回収運転を行なう場合に、暖房負荷
と冷房負荷とが均衡している状態と、暖房負荷の方が大
きい状態と、冷房負荷が大きい状態とがあるが、特に冬
期などの暖房負荷の方が大きいときには、当然熱源側コ
イル(2)が蒸発器として作用することになるが、その
場合、外気温度が低いために熱源側コイル(21の蒸発
温度を低くする必要があり、その影響によって冷房運転
を行なっている室内ユニット・の利用側コイル(9]で
の着霜が急成長する結果、再三にわたって除霜しなけれ
ばならなくて頗る不便であるし、冷房運転の発停頻度が
高くなって室温の高低変動が甚だしくなるとともに成績
係数も悪い不都合があった。 このように従来の熱回収形空気調和機が冷房運転に支障
となる着霜が頻繁に発生する不都合がある点に鑑みて本
発明は成されたものであって、室外ユニットにおける圧
縮機構を熱源側コイルが吸熱運転を行なっている場合に
限って、低温蒸発用の前記熱源側コイルと高温蒸発用の
利用側フィルとに区別して2系統で運転可能となすこと
により、着霜を解消し、かつ成績係数も向上させ、もっ
て円滑なしかも温度が安定こた冷房運転を伴う熱回収運
転2可能ならしめて、需要側の要求に十分適応させよう
とする点企目的とする。 (問題点企解決するための手段) そこで本発明は、圧縮機構+1+、凝縮器あるいは蒸発
器に切換えて作用し得る熱源側フィル(21及び冷媒流
量制御装置(4)を有する室外ユニツ) (AJと、冷
房用減圧器(81及び利用側コイル(91を有して、個
々に冷房運転あるいは暖房運転に切換え可能に前記室外
ユニット国に並列的に接続してなる複数基の室内ユニツ
ト(IA〕、(IB)とからなる熱回収式空気調和機に
おいて、前記圧縮機構(1)を2系統に区分された複数
基の圧縮機(LA)、 (1A)、(1B)により構成
する一方、各室内ユニツト(IA〕、〔より〕の一部が
冷房運転を、残部が暖房運転2行ない、かつ前記熱源側
コイル(21が蒸発器として作用する空調運転のときに
は、前記圧縮機構fllにおける一方の系統の吸入側を
室外ユニツ) (AJのガス側管に、他方の系統の吸入
側を冷房運転中の室内ユニットに夫々分離して接続せし
め、その他の空調運転のときには、両系統の吸入側を室
外ユニツ) (AIの吸入ラインあるいは冷房運転中の
室内ユニットに共通して接続せしめる切換装置α6jを
前記圧縮機構tl+に付設せしめた構成としたものであ
る。 また、本発明は前記圧縮機構(1)が、一方の系統の吸
入側2、熱源側コイル+21の一端に切換ポートが、前
記圧縮機構(1)の各圧縮機(1A)、 (1A)、(
1B)における吐出側に共通して高圧側ポートが夫々接
続されてなる第1切換弁装誼131の低圧側ポートに接
続せしめ、また、他方の系統の吸入側を、各室内ユニツ
) (IA)、 (1A)、(1B)が分岐接続された
低圧ガス側主管(71に接続せしめていて、さらに前′
妃切換装置α印が前記圧縮機構(1)における両系統の
吸入側相互を接続する配管の途中に開閉可能に介設した
開閉弁αGから構成してなることをまた好ましい実施態
様とするものである。 (作用〕 しかして本発明は暖房負荷が冷房負荷より大きく熱源側
コイル(21が蒸発器となり、吸熱運転を行なう際に、
圧縮機構(口を、前記熱源側コイル(21に接続して低
温蒸発用に対応し運転せしめる圧縮機(IA〕と、蒸発
器として作用する利用側コイル(91に接続して高温蒸
発用に対応し運転せしめる圧縮機(IB〕とに区分して
運転することにより、夫々の条件に適応した圧縮運転が
可能で所要動力が少くて総合成績係数の向上が望まれる
と共に、室内側での利用側コイル(91への着霜を可及
的に抑えることが可能である。 (実施例) 以下実施例を添付図面にもとづいて詳述する。 第1図において(AJは室外ユニツ)(IA)、(IB
)。 (IC)は室内ユニットで、これ等室内ユニツト(IA
〕、(IB)、(工C〕は室外ユニット(AJに岐器主
管(5)、高圧ガス側主管(61及び低圧ガス側主管(
7)を介して接続させている。 室外ユニツト(A)は容量制御が可能な圧縮機構例えば
周波数変換器などの容量制御装置(19A)、 (19
B〕(第2図参照〕によt3I!X動される電動機を軸
直結してなる2基の圧縮機(1A)、 (1A)、(1
B)と、熱源側コイル
(Industrial Application Field) The present invention connects a plurality of indoor units to one outdoor unit so that cooling or heating operation can be selected individually, so that the outdoor unit can accurately control the capacity corresponding to the total load. (Conventional technique #I) A plurality of indoor units are connected in parallel to one outdoor unit, and at least one indoor unit is operated for cooling. An air conditioner capable of so-called heat recovery, in which at least one remaining indoor unit can be operated for heating when the room is in use, and the heat radiated for cooling can be directly used as a heat source for heating during this operation, is disclosed in Japanese Patent Application Laid-Open No. 55. This is known from Japanese Patent No. 12372. This known example is an outdoor unit (outdoor unit) (as shown schematically in FIG. 7).
Al includes a compressor 11.1, a heat source side coil (21, a discharge gas on-off valve (3D), an intake gas on-off valve (3s),
Equipped with branch main pipe (51), high pressure gas side main pipe (61), low pressure gas side main pipe (7), and heating expansion valve (goods), each indoor unit (IA), (1A), (1B), ( Engineering C)
The high-pressure gas side branch pipes (111, on-off valves (14A) to (140) each have a cooling expansion valve (8), a usage-side coil (9), and on-off valves (13A) to (13o), respectively. In the above air conditioner, the indoor units (IA) and (IB) that are to be cooled have on-off valves (14A), (
14B) and, on the other hand, open the on-off valve (130) in the indoor unit (work 0) that attempts to perform heating, but on the other hand, in the outdoor unit (AI) Depending on the operating condition, if the cooling load is large, the heat source side coil (21) must act as a condenser, so open the on-off valve (3D); conversely, if the heating load is large, the heat source side Since the coil has to act as an evaporator, it is necessary to open the on-off valve (3S). (Problem to be solved by the invention) An air conditioner with such a structure has a part in the cooling operation and the rest in the cooling operation. When performing heat recovery operation by operating heating operation, there are states in which the heating load and cooling load are balanced, states in which the heating load is greater, and states in which the cooling load is greater, especially in winter. When the heating load is larger, the heat source side coil (2) naturally acts as an evaporator, but in that case, since the outside air temperature is low, it is necessary to lower the evaporation temperature of the heat source side coil (21). As a result, frost rapidly grows on the user-side coil (9) of the indoor unit running the cooling operation, which is a great inconvenience as it has to be defrosted repeatedly. This had the disadvantage of increasing the frequency of shutdowns, resulting in severe fluctuations in the temperature of the room temperature, and a poor coefficient of performance.In this way, conventional heat recovery type air conditioners had the disadvantage of frequent formation of frost that interfered with cooling operation. The present invention has been made in view of a certain point, and only when the heat source side coil is performing heat absorption operation in the compression mechanism in the outdoor unit, the heat source side coil for low temperature evaporation and the heat source side coil for high temperature evaporation are connected. By making it possible to operate in two systems, separated from the user-side filter, frost formation is eliminated, the coefficient of performance is improved, and the temperature is stable and smooth, making it possible to perform two heat recovery operations with cooling operation. The purpose of the present invention is to fully adapt to the demands of the demand side. (Means for solving the problem) Therefore, the present invention provides a heat source side that can be switched to a compression mechanism +1+, a condenser or an evaporator. The outdoor unit has an AJ, a cooling pressure reducer (81, and a user-side coil (91), and can be individually switched to cooling operation or heating operation. In a heat recovery air conditioner consisting of a plurality of indoor units (IA) and (IB) connected in parallel to each other, the compression mechanism (1) is divided into two systems. A part of each indoor unit (IA) performs cooling operation, and the remaining part performs two heating operations, and the heat source side coil (21) performs two heating operations. During air conditioning operation that functions as an evaporator, the suction side of one system in the compression mechanism Fll is separated into the outdoor unit (AJ gas side pipe), and the suction side of the other system is separated into the indoor unit during cooling operation. (In other air conditioning operations, the suction sides of both systems are connected to the outdoor unit.) (A switching device α6j that is commonly connected to the AI suction line or to the indoor unit during cooling operation is attached to the compression mechanism tl+. It is structured as follows. Further, the present invention provides that the compression mechanism (1) has a switching port at one end of the suction side 2 of one system and the heat source side coil +21, each compressor (1A) of the compression mechanism (1), (1A), (
1B), the high pressure side port is commonly connected to the low pressure side port of the first switching valve system 131, and the suction side of the other system is connected to the low pressure side port of each indoor unit (IA). , (1A) and (1B) are connected to the branch-connected low-pressure gas side main pipe (71), and
It is also a preferred embodiment that the switching device α mark is constituted by an on-off valve αG that is openable and closable in the middle of the piping that connects the suction sides of both systems in the compression mechanism (1). be. (Function) Therefore, in the present invention, when the heating load is larger than the cooling load and the heat source side coil (21 serves as an evaporator and performs endothermic operation),
The compression mechanism (the compressor (IA) whose mouth is connected to the heat source side coil (21) to operate for low-temperature evaporation, and the user-side coil (91) that acts as an evaporator to operate for high-temperature evaporation By operating the compressor (IB) separately from the compressor (IB), it is possible to perform compression operation adapted to the respective conditions, reducing the required power and improving the overall coefficient of performance. It is possible to suppress frost formation on the coil (91) as much as possible. (Example) An example will be described in detail below based on the attached drawings. In Fig. 1 (AJ is an outdoor unit) (IA), (IB
). (IC) is an indoor unit, and these indoor units (IA
], (IB), (Eng.
7). The outdoor unit (A) is a compression mechanism capable of capacity control, such as a capacity control device (19A) such as a frequency converter, (19
Two compressors (1A), (1A), (1
B) and the heat source side coil

【2】と、冷媒流量制御装置(4
)例えば電動形冷媒流量制御弁(41と、第1弁切換装
置(31と、切換装置αa例えば開閉弁αeと、受液器
四とを冷媒回路に備えると共に、室外側ファン(281
を付設して有Tる。 前記冷媒流量制御弁(41(以下制御弁+41と略称す
る)は、岐器主管(51中に介設していて、パルスモー
タ、電磁プランジャーなどの電気機器を駆動要素に有し
て入力電気量に対応した弁開度の調節が可能な膨張弁で
電気制御により弁開度の調節が容易に行なえる。 第1切換弁装置[31は2個の開閉弁(3]:L)、 
(3S)を要素となしていて、高圧側ポート、低圧側ポ
ート及びそれ等両ポートに切換えて連通せしめる切換ホ
”−トを有し、圧縮機構(1)の吐出側を開閉弁(3S
)の開放により熱源側コイル(21に夫々交互に切換え
て連通し得るよう形成している。 圧縮機構Filは2系統に区分された複数基例えば2基
の圧縮機(1A)、 (1A)、(1B)を並列的に有
していて、吐出側相互を一括して前記開閉弁(3D〕の
高圧側ポート及び高圧ガス側主管(61に接続する一方
、一方の圧縮機(IA)の吸入側を前記開閉弁(3S)
の吸入側ホ゛−トに、他方の圧縮機(IB〕の吸入側を
低圧ガス側主管(7目こ夫々接続している。 そして圧縮機(LA)、 (1A)、(1B)の吸入側
相互を配管で接続してこの配管の途中に切換装置α印、
具体的には開閉弁α0を介設せしめている。 次に室内側ユニツト(IA〕〜(工C)は、いずれも冷
房用減圧器+81と利用側コイル(9)とを直列接続し
て有し、また前記減圧器18ノに逆止弁−を並列接読し
た回路構成であって、冷房用減圧器(81の流入側を前
記岐器主管(5)に夫々接続すると共に、利用側フィル
(9)の冷房運転時に出口となる一端部を、開閉弁(1
3A)(130)が各々介設された高圧ガス側分校管[
+11によって高圧ガス側主管(6)に接続し、また、
開閉弁(14A)〜(14りが各々介設されたt圧ガス
側分枝!F(+21によって低圧ガス側主管(7)に接
続しており、2種の開閉弁(13A)〜(13(1り及
び開閉弁((14A)〜(140)の組合わせにより第
2切換弁装置(IOA)〜(100)を形成している。 なお、Q51は利用側コイル(91用のファンである。 叙上の回路構成になる空気調和機は、室内ユニツト(I
A)〜(工0)で冷房運転を行ないたい場合は、開閉弁
(14A)〜(140)を開放し、開閉弁(13A)〜
(130)を開放し、開閉弁(14A) 〜(140)
を閉止するものである。 一方、室外ユニツト(A)は室内側の総合負荷が冷房負
荷であるか又は暖房負荷であるかによって熱源側コイル
+21を凝縮器か又は蒸発器として作用せしめる必要が
あり、前者の場合は開閉弁(3D)を開放、開閉弁(3
S)を閉止すればよく、また後者の場合は逆に開閉弁(
3S)を開放、開閉弁(3D)を閉止すればよい。 また、圧縮機+11の容量制御は前記各容量制御装置(
19A)、 (19B)によって行ない、一方、熱源側
コイル(21に流れる冷媒量の制御は前記制御弁(4)
を作動せしめる弁開度制御装置−によって行なうもので
あって、これら装置(19A)、 (19B)、いと前
記第1切換弁装置(31の弁切換えを行わせる切換制御
器(211と、さらに、開閉弁Q6)を開閉操作する開
閉制御器(イ)とで制御装置αηに形成している。 前述したように、室内ユニツト(IA)〜(工0)では
任意に冷房あるpzは暖房に運転切換えが可能であって
、冷房、暖房の同時運転を行なう場合は、冷房負荷と暖
房負荷との差に見合った凝縮能力又は蒸発能力2室外側
の熱源側コイル(2)に担持させることによって排熱を
効至良く利用した熱回収運転が可能となる。 この場合の熱源側コイル+21の運転モード?冷房負荷
と暖房負荷との関係及び圧縮機構+11の容量ならびに
制御弁+41の開度、開閉弁(3D)、 (3S)・α
0の開閉状態との関係とによって示したのが第3図であ
って、該第3図中、E方向、0方向とは蒸発器として作
用する方向、凝縮器として作用する方向を意味している
。 第3図から明らかなように、熱源側コイル(2]を凝縮
器として作用させ、かつ能力制御したい場合は開閉弁(
3D)を開放、開閉弁(3S)を閉止させて制御弁(4
]の開度を調節すればよく、逆に蒸発器として作用させ
、かつ能力制御したい場合は開閉弁(3S)を開放、開
閉弁(3D)を閉止させて制御弁(41の開度な調節す
ればよい。 また、熱源側コイル+21 E凝縮器として作用させた
い場合は、開閉弁αeを開いて圧縮機(1A)、 (1
A)、(1B)を並列接続運転させ、逆に蒸発器として
作用させたい場合は開閉弁αeを閉じて、圧縮機(IA
)が熱源側コイル(2)からの冷媒吸引を、圧縮機(1
A)、(1B)が利用側コイル(91からの冷媒吸引を
夫々分担して行なわせるようにするものである。 さらに、圧縮機(1A)、 (1A)、(1B)の容量
制御を併用することによって空気調和負荷に見合った過
不足の無い冷凍運転が可能である。 なお、第3図には表わしていないが室内側ユニツト(I
A)〜(IB)が全て冷房又は暖房に揃って運転してい
る場合は開閉弁OGは開かせておくものである。 以上述べた冷凍運転の趣旨に叶った制御指令を前記制御
装置αηに与えるための制御指令手段α&を図面にもと
づいて以下説明する。 上記制御指令手段081は高圧々力検出回路に、低圧々
力検出回路の、過熱度検出回路(至)、第2次能力判定
回路嬢、切換弁制御回路罎)、第1切換弁制御回路(3
z及び開閉弁制御回路@四の8つの回路によ 。 り構成されており、各回路についての機能を説明すると
下記の通りである。 ◎ 高圧々力検出回路−。 高圧ガス側主管f6i1の圧力を検出Tる圧力センサ(
SI)を検出端として有し、該センサ(S、うによって
検出した高圧々力が設定した条件の範囲内にあり、すな
わち圧力帯域内であれば高圧適正信号を発し、圧力帯域
よりも低いと高圧不足信号を、逆に高いと高圧過大信号
を夫々発Tる。 なお、圧力センサ(Si)に替えて吐出側飽和温度ご検
出し圧力換算し得る温度センサを用いてもよい0 ◎ 低圧々力検出回路ム。 低圧ガス側主管(71の圧力を検出する圧力センサ(S
Jを検出端として有し、該センサ(S、)によって検出
した低圧々力が設定した条件の範囲内子なわち圧力帯域
内であれば低圧適正信号、低ければ低圧不足信号、高け
れば低圧過大信号を夫々発するが、この圧力センサ(S
i)は前記圧力センサ(Sθ同様温度センサに置換して
もよい。 ◎ 過熱度検出回路(241゜ 前記熱源側コイル(21が蒸発器として作用Tる場合に
熱源側コイル(21の入口、出口の冷媒温度企検出する
ためのセンサー(sa)、(sJを有し、この2つのセ
ンサー(sJ)、(Sa)の温度差が過熱度となる。 なお、センサー(Sa)は圧力を検知しこれを電気的に
温度信号に変換してもよい。 ◎ 第1次能力判定回路酋。 高圧々力検出回路−と低圧々力検出回路ムの割出力信号
な受けて、その組合わせにより得られる9通りの信号を
判別して5種の出力信号に変換する論理回路であり、高
圧不足信号と低圧過大信号とのANDで圧縮機(1A)
、(1B)すなわち吸入側を低圧ガス側主管(7)に接
続してなる圧縮機の容量を増加させる容量増加信号な前
記容量制御装置(19B)に発し、高圧過大信号と低圧
不足信号とのANDで前記圧縮1 (1A)、(1B)
の容量を減少させる容量減少信号を前記装置(19B)
に発する。 また、高圧不足信号と低圧適正信号、高圧不足信号と低
圧不足信号及び高圧適正信号と低圧不足信号の各AND
のQRをとって冷く暖モード信号を発し、高圧適正信号
と低圧過大信号、高圧過大信号と低圧過大信号及び高圧
過大信号と低圧適正信号の各ANDのO’Rをとって冷
〉暖モード信号を発する。 さらに高圧適正信号と低圧適正信号のANDでホールド
信号を発する。 ◎ 第2次能力判定回路□□□。 高圧々力検出回路■、低圧々力検出回路(231及び前
記第1次能力判定回路(至)の各出力信号分受けて次の
各信号を出力する。。 (1′]  第1次能力判定回路四が冷く暖モード信号
を発した条件での出力群、 高圧々力検出回路■が高圧不足信号を発しているときに
は圧縮機(IA)丁なわち開閉弁(3S)の低圧側ポー
トに吸入側を接続してなる圧縮機の容量を増加させる容
量増加信号を前記、容量制御装置(19A)に発し、高
圧々力検出回路にか高圧過大信号を発しているときには
圧縮機(IA)の容量を減少させる容量減少信号を前記
装置(19A)に発する。 また、低圧々力検出回路ツかつ低圧過大信号を発してい
るときには圧縮機(1A)、(1B)の容量を増加させ
る容量増加信号を容量制御装置(19B)に発し、逆に
低圧過大信号企発しているときには圧縮機(1A)、(
1B)の容量を減少させる容量減少信号号前記装置(1
9B)に発する。 さらに、前記両圧力検出回′路に、[231の高圧適正
信号と低圧適正信号のANDでホールド信号を発する。 〔q 第1次能力判定@路狐が冷〉暖モード信号を発し
た条件での出力群、 高圧々力検出回路にの高圧不足信号と低圧々力検出回路
ツの低圧適正信号あるいは低圧過大信号とのAND、高
圧適正信号と低圧過大信号とのANDによって圧縮機(
1A)、 (1A)、(1B)の各容量?増加させる容
量増加信号を容量制御装置(19A)、 (19B)に
発し、また、高圧過大言置と低圧信号あるいは低圧不足
信号とのAND、高圧適正信号と低圧不足信号とのAN
Dによって圧縮機(1A)、 (1A)、(1B)の各
容量を減少させる容量減少信号を前記両装置(19A)
。 (19B)に発する。 一方、低圧過大信号と高圧適正信号あるいは高圧過大信
号とのAND、低圧適正信号と高圧過大信号とのAND
によって制御弁(41の開度を増加させる弁開度増加信
号を制御弁制御回路罎)に発し、また、低圧不足信号と
高圧不足信号あるいは高圧適正信号とのAND、低圧適
正信号と高圧不足信号とのANDによって制御弁+41
の開度を減少させる弁開度信号【前記回路のりに発する
。 また、高圧適正信号と低圧適正信号とのAND−によっ
てホールド信号を発する。 ◎ 制御弁制御回路(311゜ 前記第1次能力判定回路−が冷く暖モード信号を発する
ことによって前記過熱度検出回路例の信号が低圧適正信
号になるように、所定の過熱度より小さい信号により制
御弁(41の弁開度を減少させ、また逆に大きい信号に
より逆に弁開度を増加させる弁開度制御信号を前記弁開
度制御装置(20)に発するものであって、これは制御
弁(41に対する無段階制御であって蒸発器として作用
する熱源側コイル+21 )!i−過熱度一定に保持す
る制御に相当Tる。 一方、前述する如く第1次能力判定回路(251が冷〉
暖モード信号2発しているときの弁開度増加信号あるい
は弁開度減少信号を受けてこれを弁開度制御装置−に発
するものであって、これは制御弁(41に対する単位小
開度のステップ制御であって凝縮器として作用する熱源
側フィル(21の放熱能力を冷房負荷と暖房負荷との差
に見合わせようとする能力制御に相当する。 ◎ 第1切換制御回路Gz。 前記第1次能力判定回路団が冷く暖モード信号を発する
ことによって開閉弁(3S)を開かせ、かつ開閉弁(3
D〕を閉じさせる信号を切換制御器(211に発し、一
方、冷〉暖モード信号を発することによって開閉弁(3
D)を開かせ、かつ開閉弁(3S)を閉じさせる信号を
切換制御器飢に発する。 ◎ 開閉弁制御回路−。 前記第1次能力判定回路−が冷く暖モード信号を発する
ことによって、開閉弁Q61i閉じさせる信号を前記開
閉弁制御器(至)に発し、一方、冷〉暖モード信号を発
することによって開閉弁αeB開かせる信号を開閉弁制
御器−に発する。 制御指令手段α&の内容は以上説明[5た通りであるが
、次に第1図々示空気調和機の運転態様の概要をさらに
第2図乃至第6図を併せ参照して説明する。 開閉弁(3S)’2開き、開閉弁(3D〕及び開閉弁0
61を閉じて暖房サイクルを基本とし、しかも暖房負荷
と冷房負荷とが均衡しているとの想定を行ってこれを初
期条件に設定(口」して運転開始する。 なお、この初期条件では圧縮機(IA)は停止、圧縮機
(1A)、(1B)は初期運転の中容量で駆動せしめる
と共に、制御弁+41は全閉(開き指令待ち〕にしてお
く。 運転開始後、1分間隔等所定の時間この状態を保持せし
めてθ、ここで出されるチェック信号によって、第1次
能力判定回路(至)による能力判定を行なわせる。 丁なわち、高圧々力検出回路−の圧力検出■及び低圧々
力検出回路にの圧力検出のによって、その組合わせによ
り得られる9通りの信号を判別して、圧縮機(1A)、
(1B)の容量を増加させる容量増加信号(EI)、容
量減少信号(K鵞)、ホールド信号(K、)、暖房負荷
の方が大きくて圧縮機構111の容量増加を希望するた
めの冷く暖モード信号(X、) 、冷房負荷の方が大き
くて圧縮機構(月の容量制御と熱源側コイル(21の能
力制御を希望するための冷〉暖モード信号CI[ii)
を選択的に夫々発せ、しめる。 ホールド信号(IJが発せられているときは、現状の運
転を続行させて■、1分経過後に再び能力判定を行わせ
る。 一方、容量増加信号(El)が発せられているときは、
容量制御装置(19B)によって圧縮機(1A)、(1
B)を1ステップ分容量増加させてQ、1分経過後に再
び能力判定2行わせる。 逆に容量減少信号UC,)が発せられているときは、容
量制御装置(19B)によって圧縮機(IB〕  を1
ステップ分容量減少させて■、1分経過後に再度能力判
定2行わせる。 また、冷く暖モード信号(E4〕が発せられているとき
は、制御弁制御回路(3I)に対する過熱度一定制御側
への切換えと、第2次能力判定回Th f301による
能力判定とを行わせ■、冷〉暖モード信号(E、)が発
せられているときは、制御弁制御回路(3υに対する開
度ステップ制御側への切換えと、第1切換弁制御回路@
2に対する切換指令、丁なわち開閉弁(3D)を開かせ
、開閉弁(3S)を閉じさせる指令と、開閉弁制御回路
(33]に対する開閉弁Q61開放指令と、第2次能力
判定回路馳による能力判定とを行わせる■。 そこで前者の冷く暖モード信号(E4)に基づく作動■
の場合には、高圧々力検出回路にの圧力検出■及び低圧
々力検出回路ムの圧力検出のによって、その組合わせに
より得られる9種の信号、すなわち、圧縮機(IA)を
容量増加し、かつ圧縮機(1A)、(1B)を容量減少
させる信号(θ、〕、圧縮機(IAうのみ容量増加させ
る信号(e、) 、両圧縮機(LA)、 (1B)を容
量増加させる信号(eΩ、圧縮機(1A)、(1B)の
み容量減少させる信号(e、)、両圧縮機(1A)、 
(1A)、(1B)を現容量に保持(ホールド)させる
信号(eり、圧縮機(1A)、(1B)のみ容量増加さ
せる信号(e6)、両圧縮機(1A)、 (1A)、(
1B)を容量減少させる信号(e?)、圧縮機(IA)
のみ容量減少させる信号(、、)、圧縮機(IA)を容
量減少し、かつ圧縮機(1A)、(1B)を容量増加さ
せる信号(e、)を選択して発せしめ、それ等各信号に
対応した圧縮機(IA)。 (1A)、(1B)の容量制御を行わせる○〜■。 そして圧縮機(IA)の容量が零すなわち冷房負荷と暖
房負荷が均衡して圧縮機(IA)が停止するがどうかを
チェック■して、停止に至るまで1分経過毎にθ再び圧
力検出■のを行わせて、停止すると制御弁(41を全閉
させの、元の第1次能力判定回路幻による能力判定を繰
り返させる。 一方、後者の冷〉暖モード信号(Ka)に基づく作動■
の場合には、高圧々力検出回路−の圧力検出■及び低圧
々力検出回路−の圧力検出のによって、その組合わせに
より得られる9種の信号、すなわち、制御弁(4)の開
度2単位開度だけ段階的に減少させる信号(θ′、)、
同様に制御弁(41を段階的に開度減少させ、かつ両圧
縮機(1A)、 (1A)、(1B)の容量を増加させ
る信号(、’、)、両圧縮機(1A)、 (1A)、(
1B)の容量を増加させる信号(e’J、両圧縮機(I
A)、 (1A)、(1B)の容量を減少させ、かつ、
制御弁(4)の弁開度を段階的に減少させる信号(e’
t)、制御弁(41の開度及び両圧縮機(1A)、 (
1A)、(1B)の容量を現状に保持(ボールド)させ
る信号(e’、)、両圧縮機(1A)、 (1A)、(
1B)を容量増加サセ、かつ制御弁+41の弁開度を段
階的に増加させる信号(e’l)、両圧縮機(LA)、
 (1A)、(1B)の容量を減少させる信号(e′)
)、両圧縮機(1A)、 (1A)、(1B)の容量を
減少させ、かつ、制御弁(41の弁開度を段階的に増加
させる信号(”II)、制御弁(41の弁開度を段階的
に増加させる信号(e’o)を選択して発せしめ、それ
等各信号に対応した圧縮機(1A)、 (1A)、(1
B)の容量制御と制御弁+41の弁開度制御とを行わせ
るに)〜(ロ)。 そして制御弁(41の開度が全閉かどうかをチェック■
して、冷房負荷と暖房負荷とが均衡するまで1分経過毎
にθ再び圧力検出■■3行わせて、全閉に至ると圧縮機
(IA)を停止させ■、元の第1次能力判定回路−によ
る能力判定を繰り返させる。 なお、70−線図中、rpa Jは高圧々力、rpeJ
は低圧々力を示し、高年、高適、高過は夫々高圧不足信
号、高圧適正信号、高圧過大信号を示す。また低小、低
適・低過は夫々低圧不足信号、低圧適正信号、低圧過大
信号を夫々示している。 以上の説明によって明らかなように、冷房負荷と暖房負
荷との違いによって圧縮機(1)の容量制御、制御弁+
41の開度制御、第1弁切換装置(31の切換制御、開
閉弁Q61の開閉制御を自動的に行わせ、効尤の良い熱
回収運転が可能である。 特に利用側フィル(9)の少くとも一部と熱源側コイル
(21とを同時に蒸発器として使用する場合には開閉弁
αGを閉じて圧縮機(IA)を吸入圧力例えば−5て相
当圧力で、圧縮機(1A)、(1B)を吸入圧力例えば
5て相当圧力で、別系統として用いることにより室内側
の圧縮機(1A)、(1B)を有利な条件で使用するこ
とができ、利用側コイル(9)の着霜を防止し、さらに
圧縮機(1A)、(1B)容量の減少と成績係数の向上
が期待できる。 (発明の効果) 本発明は熱回収形空気調和機における圧縮機構fl+を
2系統に区分して、室内ユニツト(IA)、(1B)の
一部が冷房運転を、残部が暖房運転を行なっていて、熱
源側コイル(2)が蒸発器として作用する空調運転のと
きは圧縮機構+i+の一方の系統を熱源側フィル(2)
からの冷媒吸入用に、他方の系統を利用側コイルf9+
からの冷媒吸入用°に夫々区別して使用するようにして
いるので、特に利用側フィル(91に関連する圧縮機分
有利な条件で運転でき、コイルへの着霜を確実に防止で
きると共に、圧縮機容量の減少と成績係数の向上とを期
すことができる。
[2] and the refrigerant flow control device (4
) For example, the refrigerant circuit is equipped with an electric refrigerant flow control valve (41), a first valve switching device (31, a switching device αa, for example, an on-off valve αe, and a liquid receiver 4), and an outdoor fan (281
It is available with attached. The refrigerant flow control valve (41 (hereinafter abbreviated as control valve +41) is interposed in the branch main pipe (51), and has an electric device such as a pulse motor or an electromagnetic plunger as a driving element to receive input electricity. It is an expansion valve whose opening degree can be adjusted according to the amount, and the valve opening degree can be easily adjusted by electrical control.The first switching valve device [31 is two on-off valves (3]: L),
(3S) is an element, and has a high pressure side port, a low pressure side port, and a switching port for switching and communicating with both ports, and an on-off valve (3S) on the discharge side of the compression mechanism (1).
) is formed so that it can be alternately switched and communicated with the heat source side coil (21) by opening the heat source side coil (21). (1B) in parallel, and the discharge side is connected to the high pressure side port of the on-off valve (3D) and the high pressure gas side main pipe (61), while the suction of one compressor (IA) The side is the on-off valve (3S)
The suction side of the other compressor (IB) is connected to the suction side port of the other compressor (IB). Connect them with piping and install a switching device α mark in the middle of this piping.
Specifically, an on-off valve α0 is provided. Next, the indoor units (IA) to (Engine C) all have a cooling pressure reducer +81 and a user side coil (9) connected in series, and a check valve - to the pressure reducer 18. It has a circuit configuration with parallel reading, in which the inflow sides of the cooling pressure reducers (81) are respectively connected to the branch main pipe (5), and one end of the utilization side fill (9) which becomes the outlet during cooling operation, Open/close valve (1
3A) (130) are interposed respectively in the high pressure gas side branch pipes [
+11 connects to the high pressure gas side main pipe (6), and
On-off valves (14A) to (14) are connected to the low-pressure gas side main pipe (7) by t-pressure gas side branches!F (+21), and two types of on-off valves (13A) to (13 (1 and on-off valves (14A) to (140) are combined to form a second switching valve device (IOA) to (100). Note that Q51 is a fan for the user side coil (91). The air conditioner with the above circuit configuration is an indoor unit (I
If you want to perform cooling operation in A) ~ (step 0), open the on-off valves (14A) ~ (140), and open the on-off valves (13A) ~
Open (130) and open/close valves (14A) to (140)
It is intended to close the On the other hand, in the outdoor unit (A), depending on whether the total load on the indoor side is a cooling load or a heating load, the heat source side coil +21 needs to act as a condenser or an evaporator, and in the former case, an on-off valve is required. (3D) is opened, on-off valve (3D) is opened.
S), and in the latter case, conversely, close the on-off valve (
3S) and close the on-off valve (3D). In addition, the capacity control of compressor +11 is performed by each capacity control device (
19A) and (19B), while the control valve (4) controls the amount of refrigerant flowing into the heat source side coil (21).
These devices (19A) and (19B), and a switching controller (211) that switches the valve of the first switching valve device (31), and further, The on-off controller (a) that opens and closes the on-off valve Q6) is formed into the control device αη.As mentioned above, in the indoor units (IA) to (work 0), the air conditioner pz is optionally switched to the heating mode. If switching is possible and simultaneous operation of cooling and heating is performed, the condensing capacity or evaporation capacity corresponding to the difference between the cooling load and the heating load is carried by the heat source side coil (2) outside the room. Heat recovery operation using heat efficiently becomes possible. What is the operation mode of the heat source side coil +21 in this case? The relationship between the cooling load and the heating load, the capacity of the compression mechanism +11, the opening degree of the control valve +41, and the opening/closing valve. (3D), (3S)・α
FIG. 3 shows the relationship between the opening and closing states of 0 and 0, and in FIG. There is. As is clear from Fig. 3, if you want to make the heat source side coil (2) act as a condenser and control its capacity, the on-off valve (
Open the on-off valve (3D), close the on-off valve (3S), and open the control valve (4).
].On the contrary, if you want to operate as an evaporator and control the capacity, open the on-off valve (3S), close the on-off valve (3D), and adjust the opening of the control valve (41). In addition, if you want the heat source side coil +21E to act as a condenser, open the on-off valve αe and compressor (1A), (1
A) and (1B) are operated in parallel, and if you wish to operate them conversely as an evaporator, close the on-off valve αe and connect the compressor (IA
) draws refrigerant from the heat source side coil (2) to the compressor (1
A) and (1B) are configured to share the refrigerant suction from the user side coil (91).Furthermore, the capacity control of the compressors (1A), (1A), and (1B) is also performed. By doing so, it is possible to perform refrigeration operation without excess or deficiency commensurate with the air conditioning load.Although not shown in Figure 3, the indoor unit (I
When all of A) to (IB) are operating for cooling or heating, the on-off valve OG is kept open. The control command means α& for giving control commands to the control device αη that meet the purpose of the refrigeration operation described above will be explained below based on the drawings. The control command means 081 includes a high pressure and force detection circuit, a low pressure and force detection circuit, a superheat degree detection circuit (to), a secondary capacity determination circuit, a switching valve control circuit (), a first switching valve control circuit ( 3
z and on/off valve control circuit @ 8 circuits of 4. The functions of each circuit are explained below. ◎ High pressure and force detection circuit. Pressure sensor that detects the pressure of the high pressure gas side main pipe f6i1 (
SI) as a detection end, and if the high pressure force detected by the sensor (S, If the pressure is too high, a high pressure shortage signal will be generated, and if the pressure is too high, a high pressure excess signal will be generated.Instead of the pressure sensor (Si), a temperature sensor that can detect the discharge side saturation temperature and convert it into pressure may be used. Force detection circuit. Pressure sensor (S) that detects the pressure of the low pressure gas side main pipe (71
J as a detection end, and if the low pressure force detected by the sensor (S,) is within the range of the set conditions, that is, within the pressure band, it is a low pressure appropriate signal, if it is low, it is a low pressure insufficient signal, and if it is high, it is a low pressure excessive signal. This pressure sensor (S
i) may be replaced with a temperature sensor similar to the pressure sensor (Sθ). ◎ Superheat degree detection circuit (241 degrees) It has a sensor (sa) and (sJ) for detecting the refrigerant temperature, and the temperature difference between these two sensors (sJ) and (Sa) is the degree of superheat.The sensor (Sa) detects the pressure. This may be electrically converted into a temperature signal. ◎ Primary ability judgment circuit. The output signal is obtained by receiving the divided output signals of the high pressure and force detection circuit and the low pressure and force detection circuit, and by combining them. It is a logic circuit that distinguishes 9 types of signals and converts them into 5 types of output signals.The compressor (1A)
(1B) That is, a capacity increase signal for increasing the capacity of the compressor whose suction side is connected to the low-pressure gas side main pipe (7) is issued to the capacity control device (19B), and a high-pressure excessive signal and a low-pressure insufficient signal are generated. AND the compression 1 (1A), (1B)
The device (19B) sends a capacity reduction signal to reduce the capacity of the device (19B).
emanates from. Also, each AND of the high pressure shortage signal and the low pressure appropriate signal, the high pressure shortage signal and the low pressure shortage signal, and the high pressure appropriate signal and the low pressure shortage signal
QR is taken to issue a cold/warm mode signal, and the O'R of the appropriate high pressure signal and excessive low pressure signal, excessive high pressure signal and excessive low pressure signal, and excessive high pressure signal and appropriate low pressure signal is taken to set the cool/warm mode. emit a signal. Furthermore, a hold signal is generated by ANDing the high voltage appropriate signal and the low voltage appropriate signal. ◎Second ability judgment circuit□□□. It receives the output signals of the high pressure and force detection circuit (231), the low pressure and force detection circuit (231), and the primary ability determination circuit (to) and outputs the following signals. (1') Primary ability determination Output group under the condition that circuit 4 is cold and generates a warm mode signal, and when high pressure power detection circuit ■ generates a high pressure shortage signal, the low pressure side port of the compressor (IA) 1, that is, the on-off valve (3S) A capacity increase signal to increase the capacity of the compressor connected to the suction side is sent to the capacity control device (19A), and when a high pressure excessive signal is sent to the high pressure and force detection circuit, the compressor (IA) is A capacity reduction signal to decrease the capacity is issued to the device (19A). Also, when the low pressure and force detection circuit is connected and a low pressure excessive signal is issued, a capacity increase signal is issued to increase the capacity of the compressors (1A) and (1B). is sent to the capacity control device (19B), and conversely, when a low pressure excessive signal is being generated, the compressor (1A), (
a capacity reduction signal to reduce the capacity of said device (1B);
9B). Further, a hold signal is generated by ANDing the high pressure appropriate signal and the low pressure appropriate signal [231] to both pressure detection circuits. [q 1st performance judgment @ Roko is cold] Output group under the condition that the warm mode signal is issued, high pressure insufficient signal in the high pressure and force detection circuit and low pressure appropriate signal or low pressure excessive signal in the low pressure and force detection circuit The compressor (
1A), (1A), (1B) capacity? A capacity increase signal to increase the capacity is issued to the capacity control devices (19A) and (19B), and an AND between a high voltage excessive statement and a low pressure signal or a low pressure insufficient signal, and an AN between a high voltage appropriate signal and a low pressure insufficient signal are issued.
D sends a capacity reduction signal to both the devices (19A) to reduce the capacities of the compressors (1A), (1A), and (1B).
. (19B). On the other hand, AND of the low pressure excessive signal and the high pressure proper signal or the high pressure excessive signal, and the AND of the low pressure proper signal and the high pressure excessive signal
A signal for increasing the opening of the control valve (41) is issued to the control valve control circuit, and a low pressure shortage signal and a high pressure shortage signal or a high pressure appropriate signal are ANDed, and a low pressure appropriate signal and a high pressure shortage signal are generated. Control valve +41 by AND with
A valve opening signal that decreases the opening of the circuit [sent to the circuit board]. Further, a hold signal is generated by AND- of the high voltage appropriate signal and the low voltage appropriate signal. ◎ A signal smaller than a predetermined superheat degree so that the signal of the superheat degree detection circuit example becomes a low pressure appropriate signal by the control valve control circuit (311゜the primary capacity determination circuit) emitting a cold/warm mode signal. A valve opening control signal is issued to the valve opening control device (20) to decrease the valve opening of the control valve (41) and to increase the valve opening by a large signal. is a stepless control over the control valve (41, which is the heat source side coil that acts as an evaporator + 21)!i - corresponds to control to maintain the degree of superheat constant T. On the other hand, as mentioned above, the primary capacity determination circuit (251 is cold〉
It receives a valve opening increase signal or a valve opening decrease signal when two warm mode signals are issued, and sends this to the valve opening control device. This is step control and corresponds to capacity control that attempts to adjust the heat radiation capacity of the heat source side fill (21) that acts as a condenser to the difference between the cooling load and the heating load. ◎ First switching control circuit Gz. The capability determination circuitry opens the on-off valve (3S) by issuing a cold/warm mode signal, and also opens the on-off valve (3S).
D] is issued to the switching controller (211), and on the other hand, the on-off valve (3) is closed by issuing a cold/warm mode signal.
The switching controller issues a signal to open D) and close the on-off valve (3S). ◎ Open/close valve control circuit. By issuing a cold/warm mode signal, the primary capacity determination circuit issues a signal to the on/off valve controller (to) to close the on/off valve Q61i, and on the other hand, by issuing a cold>warm mode signal, the on/off valve Q61i is closed. A signal to open αeB is sent to the on-off valve controller. The contents of the control command means α& have been explained above.Next, the outline of the operating mode of the air conditioner shown in FIG. 1 will be further explained with reference to FIGS. 2 to 6. On-off valve (3S) '2 open, on-off valve (3D) and on-off valve 0
61 and assumes that the heating cycle is the basic one and that the heating load and the cooling load are balanced, set this as the initial condition and start operation. Note that under this initial condition, the compression The compressor (IA) is stopped, the compressors (1A) and (1B) are driven at the medium capacity of the initial operation, and the control valve +41 is fully closed (waiting for an opening command). After the start of operation, at 1-minute intervals, etc. This state is maintained for a predetermined period of time, and the check signal issued here causes the primary capability determination circuit (to) to perform a capability determination. By detecting the pressure in the low-pressure force detection circuit, nine types of signals obtained by the combination are discriminated, and the compressor (1A),
A capacity increase signal (EI), a capacity decrease signal (K), a hold signal (K,) to increase the capacity of (1B), a cold signal to increase the capacity of the compression mechanism 111 because the heating load is larger. Warm mode signal (X,), when the cooling load is larger, the compression mechanism (moon capacity control and heat source side coil (21) capacity control is desired. Cool>Warm mode signal CI [ii)
Selectively emit and close. When the hold signal (IJ) is being issued, the current operation is continued and the capacity judgment is made again after one minute has passed.On the other hand, when the capacity increase signal (El) is being issued,
Compressor (1A), (1
Increase the capacity of B) by 1 step, Q, and perform ability judgment 2 again after 1 minute has passed. On the other hand, when the capacity reduction signal UC, ) is being issued, the capacity control device (19B) reduces the compressor (IB) by 1
Decrease the capacity by the step (■), and after 1 minute has passed, perform ability judgment 2 again. Furthermore, when the cold/warm mode signal (E4) is being issued, the control valve control circuit (3I) is switched to the constant superheat control side and the capacity is judged by the second capacity judgment circuit Th f301. When the cold>warm mode signal (E,) is issued, the control valve control circuit (switches to the opening step control side for 3υ and the first switching valve control circuit @
2, a command to open the on-off valve (3D) and close the on-off valve (3S), a command to open the on-off valve Q61 to the on-off valve control circuit (33), and a command to open the on-off valve Q61 to the on-off valve control circuit (33), and a command to open the on-off valve Q61 to the on-off valve control circuit (33). Therefore, the operation based on the former cold/warm mode signal (E4) is performed.
In this case, the nine types of signals obtained by the combination of pressure detection in the high pressure and pressure detection circuit (1) and pressure detection in the low pressure and pressure detection circuit (2) increase the capacity of the compressor (IA). , and a signal (θ,) that decreases the capacity of the compressors (1A) and (1B), a signal (e,) that increases the capacity of the compressor (IA), and a signal that increases the capacity of both compressors (LA) and (1B). (eΩ, signal (e,) that reduces the capacity of only compressors (1A) and (1B), both compressors (1A),
A signal (e6) that increases the capacity of only the compressors (1A), (1B), both compressors (1A), (1A), (
Signal (e?) to reduce capacity of 1B), compressor (IA)
A signal (,,) that causes the capacity of only the compressor (IA) to decrease and a signal (e,) that causes the capacity of the compressors (1A) and (1B) to increase are selected and emitted. Compatible compressor (IA). (1A) and (1B) capacity control is performed. Then, check whether the capacity of the compressor (IA) is zero, that is, the cooling load and the heating load are balanced, and the compressor (IA) stops.■ Check the pressure again at θ every minute until the compressor (IA) stops.■ When the control valve (41) is fully closed, the capacity judgment by the original primary capacity judgment circuit is repeated. On the other hand, the operation based on the latter cooling/warming mode signal (Ka) is performed.
In the case of , nine types of signals are obtained by the combination of the pressure detection (1) of the high pressure and force detection circuit and the pressure detection of the low pressure and force detection circuit, that is, the opening degree 2 of the control valve (4). A signal (θ′,) that decreases the opening degree step by step,
Similarly, a signal (,',) that gradually decreases the opening of the control valve (41) and increases the capacity of both compressors (1A), (1A), (1B), both compressors (1A), ( 1A), (
1B), a signal (e'J) that increases the capacity of both compressors (I
A), reducing the capacity of (1A) and (1B), and
A signal (e') that gradually decreases the valve opening degree of the control valve (4).
t), control valve (opening degree of 41 and both compressors (1A), (
1A), (1B) are kept at their current capacity (bold), signal (e',), both compressors (1A), (1A), (
1B), and a signal (e'l) that increases the valve opening degree of control valve +41 in stages, both compressors (LA),
Signal (e') that reduces the capacitance of (1A) and (1B)
), a signal ("II") that reduces the capacity of both compressors (1A), (1A), (1B) and increases the valve opening degree of control valve (41) in stages ("II), A signal (e'o) that increases the opening stepwise is selected and emitted, and the compressors (1A), (1A), (1
To perform the capacity control of B) and the valve opening control of control valve +41) to (B). Then check whether the opening degree of the control valve (41) is fully closed.
Then, the pressure is detected again by θ every minute until the cooling load and heating load are balanced. When the compressor (IA) is fully closed, the compressor (IA) is stopped and the original primary capacity is restored. The ability judgment by the judgment circuit is repeated. In addition, in the 70-diagram, rpa J is high pressure force, rpeJ
indicates a low pressure, and ``old age'', ``high pressure'', and ``high pressure'' indicate a high pressure insufficient signal, a high pressure appropriate signal, and a high pressure excessive signal, respectively. Further, low/low, low proper/low excessive indicate a low pressure insufficient signal, a low pressure appropriate signal, and a low pressure excessive signal, respectively. As is clear from the above explanation, depending on the difference between the cooling load and the heating load, the capacity control of the compressor (1) and the control valve +
41 opening degree control, the first valve switching device (31 switching control, and the opening/closing control of the on-off valve Q61), highly effective heat recovery operation is possible. In particular, the utilization side fill (9) When at least a part and the heat source side coil (21) are used as an evaporator at the same time, the on-off valve αG is closed and the compressor (1A), ( 1B) at a suction pressure of, for example, 5,000 yen, as a separate system, the indoor compressors (1A) and (1B) can be used under advantageous conditions, and the frosting of the user-side coil (9) can be reduced. In addition, it is expected that the capacity of the compressors (1A) and (1B) will be reduced and the coefficient of performance will be improved. (Effects of the Invention) The present invention divides the compression mechanism fl+ in a heat recovery air conditioner into two systems. When some of the indoor units (IA) and (1B) are in cooling operation and the rest are in heating operation, and the heat source side coil (2) is in air conditioning operation where it acts as an evaporator, one of the compression mechanisms +i+ Fill the system on the heat source side (2)
The other system is used for refrigerant suction from the coil f9+
Since the compressor is used separately for suction of refrigerant from It is possible to expect a reduction in machine capacity and an improvement in the coefficient of performance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の1実施例に係る冷凍回路図、第2図は
同じく電気回路ブロック図、第3図は第1図々示装置の
運転状態説明図、第4図乃至第6図は第1図々示装置の
運転制#態様を示すフロー線図、第7図は従来の空気調
和機の冷凍回路図である。 Hl・・・圧縮機構、   (1A)(1A)、(1B
)・・・圧縮機。 (2し・熱源側コイル、(3)・・・第1切換弁装置。 (41・・・冷媒流量制御装置。 (71・・・低圧ガス側主管、(81・・・冷房用減圧
器。 (91・・・利用側コイル、θ61・・・切換装置。 (Al・・・室外ユニット、(工A)(IB)・・・室
内ユニット。
FIG. 1 is a refrigeration circuit diagram according to an embodiment of the present invention, FIG. 2 is an electric circuit block diagram, FIG. 3 is an explanatory diagram of the operating state of the apparatus shown in FIG. 1, and FIGS. 4 to 6 are FIG. 1 is a flow diagram showing the operation control mode of the apparatus shown in FIG. 1, and FIG. 7 is a refrigeration circuit diagram of a conventional air conditioner. Hl... Compression mechanism, (1A) (1A), (1B
)...Compressor. (2) Heat source side coil, (3)... First switching valve device. (41... Refrigerant flow rate control device. (71... Low pressure gas side main pipe, (81... Air conditioning pressure reducer. (91... Utilization side coil, θ61... Switching device. (Al... Outdoor unit, (A) (IB)... Indoor unit.

Claims (1)

【特許請求の範囲】 1、圧縮機構(1)、凝縮器あるいは蒸発器に切換えて
作用し得る熱源側コイル(2)及び冷媒流量制御装置(
4)を有する室外ユニツト(A)と、冷房用減圧器(8
)及び利用側コイル(9)を有し、個々に冷房運転ある
いは暖房運転に切換え可能に前記室外ユニツト(A)に
並列的に接続した複数基の室内ユニツト( I _A)、
( I _B)とからなる熱回収式空気調和機において、
前記圧縮機構(1)を2系統に区分された複数基の圧縮
機(1A)、(1B)により構成する一方、各室内側ユ
ニツト( I _A)、( I _B)の一部が冷房運転を、
残部が暖房運転を行ない、かつ前記熱源側コイル(2)
が蒸発器として作用する空調運転のときには、前記圧縮
機構(1)における一方の系統の吸入側を室外ユニツト
(A)のガス側管に、他方の系統の吸入側を冷房運転中
の室内ユニツトに夫々分離して接続せしめ、その他の空
調運転のときには、両系統の吸入側を室外ユニツト(A
)の吸入ラインあるいは冷房運転中の室内ユニツトに共
通して接続せしめる切換装置(16)を前記圧縮機構(
1)に付設したことを特徴とする熱回収形空気調和機。 2、2系統に区分された複数基の圧縮機(1A)、(1
B)よりなる圧縮機構(1)が、熱源側コイル(2)の
一端に切換ポートを、複数基の前記圧縮機(1A)、(
1B)の各吐出側に共通して高圧側ポートを夫々接続さ
せてなる第1切換弁装置(3)の低圧側ポートに対して
、一方の系統の吸入側を接続せしめ、また、他方の系統
の吸入側を、各室内ユニツト( I _A)、( I _B)
が分岐接続された低圧ガス側主管(7)に接続せしめて
、さらに切換装置(16)が、前記圧縮機構(1)にお
ける両系統の吸入側相互を接続する配管の途中に開閉可
能に介設した開閉弁(16)から形成される特許請求の
範囲第1項記載の熱回収形空気調和機。
[Claims] 1. A compression mechanism (1), a heat source side coil (2) that can act as a condenser or an evaporator, and a refrigerant flow rate control device (
4) and an outdoor unit (A) having a cooling pressure reducer (8).
) and a user-side coil (9), a plurality of indoor units (I_A) connected in parallel to the outdoor unit (A) so as to be individually switchable to cooling operation or heating operation;
In a heat recovery air conditioner consisting of (I _B),
The compression mechanism (1) is composed of a plurality of compressors (1A) and (1B) divided into two systems, while a part of each indoor unit (I_A) and (I_B) performs cooling operation. ,
The remainder performs heating operation, and the heat source side coil (2)
During air conditioning operation in which the compressor functions as an evaporator, the suction side of one system in the compression mechanism (1) is connected to the gas side pipe of the outdoor unit (A), and the suction side of the other system is connected to the indoor unit during cooling operation. For other air conditioning operations, connect the suction sides of both systems to the outdoor unit (A
The switching device (16), which is commonly connected to the suction line of the compressor ( ) or the indoor unit in cooling operation, is connected to the
A heat recovery type air conditioner characterized by being attached to 1). 2. Multiple compressors divided into 2 systems (1A), (1
A compression mechanism (1) consisting of a plurality of compressors (1A), (B) has a switching port at one end of the heat source side coil (2), and
The suction side of one system is connected to the low pressure side port of the first switching valve device (3), which has a high pressure side port commonly connected to each discharge side of 1B), and the suction side of the other system The suction side of each indoor unit (I _A), (I _B)
is connected to the branch-connected low-pressure gas side main pipe (7), and furthermore, a switching device (16) is openably and closably interposed in the middle of the pipe connecting the suction sides of both systems in the compression mechanism (1). A heat recovery type air conditioner according to claim 1, wherein the heat recovery type air conditioner is formed of an on-off valve (16).
JP59233894A 1984-11-05 1984-11-05 Heat recovery type air conditioner Granted JPS61110833A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59233894A JPS61110833A (en) 1984-11-05 1984-11-05 Heat recovery type air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59233894A JPS61110833A (en) 1984-11-05 1984-11-05 Heat recovery type air conditioner

Publications (2)

Publication Number Publication Date
JPS61110833A true JPS61110833A (en) 1986-05-29
JPH05622B2 JPH05622B2 (en) 1993-01-06

Family

ID=16962232

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59233894A Granted JPS61110833A (en) 1984-11-05 1984-11-05 Heat recovery type air conditioner

Country Status (1)

Country Link
JP (1) JPS61110833A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01247967A (en) * 1988-03-29 1989-10-03 Sanyo Electric Co Ltd Multi-room type air-conditioner
JPH01296062A (en) * 1988-05-20 1989-11-29 Sanyo Electric Co Ltd Multiple-room type cooler-heater
JPH0252964A (en) * 1988-08-15 1990-02-22 Mitsubishi Electric Corp Multiroom type refrigerating circuit
JPH0285656A (en) * 1988-09-20 1990-03-27 Sanyo Electric Co Ltd Airconditioner
JPH0293261A (en) * 1988-09-30 1990-04-04 Sanyo Electric Co Ltd Air conditioning device
JPH02126035A (en) * 1988-11-02 1990-05-15 Mitsubishi Electric Corp Multiroom type air conditioning device
JPH0320573A (en) * 1989-06-19 1991-01-29 Sanyo Electric Co Ltd Air-conditioning apparatus
JPH0363469A (en) * 1989-07-31 1991-03-19 Daikin Ind Ltd Air conditioner
JPH03148546A (en) * 1989-11-02 1991-06-25 Daikin Ind Ltd Operation controller for air conditioner
JPH03255860A (en) * 1990-03-02 1991-11-14 Mitsubishi Electric Corp Cooling and heating inclusive type multi-chamber air conditioner
WO2013144994A1 (en) * 2012-03-27 2013-10-03 三菱電機株式会社 Air conditioning device

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01247967A (en) * 1988-03-29 1989-10-03 Sanyo Electric Co Ltd Multi-room type air-conditioner
JPH01296062A (en) * 1988-05-20 1989-11-29 Sanyo Electric Co Ltd Multiple-room type cooler-heater
JPH0252964A (en) * 1988-08-15 1990-02-22 Mitsubishi Electric Corp Multiroom type refrigerating circuit
JPH0285656A (en) * 1988-09-20 1990-03-27 Sanyo Electric Co Ltd Airconditioner
JPH0293261A (en) * 1988-09-30 1990-04-04 Sanyo Electric Co Ltd Air conditioning device
JPH02126035A (en) * 1988-11-02 1990-05-15 Mitsubishi Electric Corp Multiroom type air conditioning device
JPH0320573A (en) * 1989-06-19 1991-01-29 Sanyo Electric Co Ltd Air-conditioning apparatus
JPH0363469A (en) * 1989-07-31 1991-03-19 Daikin Ind Ltd Air conditioner
JPH03148546A (en) * 1989-11-02 1991-06-25 Daikin Ind Ltd Operation controller for air conditioner
JPH03255860A (en) * 1990-03-02 1991-11-14 Mitsubishi Electric Corp Cooling and heating inclusive type multi-chamber air conditioner
WO2013144994A1 (en) * 2012-03-27 2013-10-03 三菱電機株式会社 Air conditioning device
JPWO2013144994A1 (en) * 2012-03-27 2015-08-03 三菱電機株式会社 Air conditioner
US9958171B2 (en) 2012-03-27 2018-05-01 Mitsubishi Electric Corporation Air-conditioning apparatus

Also Published As

Publication number Publication date
JPH05622B2 (en) 1993-01-06

Similar Documents

Publication Publication Date Title
EP0668474B1 (en) Multiroom air conditioner and driving method therefor
CN100371658C (en) Heat exchanger and air conditioner using the same
JPH0522145B2 (en)
JPS6334459A (en) Air conditioner
JP2003194384A (en) Heat pump type air conditioner
JPH02223776A (en) Air conditioner and operation thereof
JPH0762569B2 (en) Operation control device for air conditioner
JPS61110833A (en) Heat recovery type air conditioner
US6038873A (en) Air conditioner capable of controlling an amount of bypassed refrigerant according to a temperature of circulating refrigerant
JP4898025B2 (en) Multi-type gas heat pump type air conditioner
JPH01247967A (en) Multi-room type air-conditioner
JPH0894205A (en) Air conditioner
KR101893155B1 (en) Heat pump
JPH0252964A (en) Multiroom type refrigerating circuit
KR20080006055A (en) Air conditioning system
JPH06317360A (en) Multi-chamber type air conditioner
JPH0587426A (en) Air-conditioner
JP2508306B2 (en) Operation control device for air conditioner
JPH024162A (en) Air conditioning device
JPH08313121A (en) Refrigerating device
JPH0339866A (en) Refrigerator
JPH03286979A (en) Defrosting apparatus of air conditioner
JP3048658B2 (en) Refrigeration equipment
JPH05240521A (en) Recovering device or refrigerant of air conditioning apparatus
JPH03255860A (en) Cooling and heating inclusive type multi-chamber air conditioner

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term