JPH0339866A - Refrigerator - Google Patents
RefrigeratorInfo
- Publication number
- JPH0339866A JPH0339866A JP1175375A JP17537589A JPH0339866A JP H0339866 A JPH0339866 A JP H0339866A JP 1175375 A JP1175375 A JP 1175375A JP 17537589 A JP17537589 A JP 17537589A JP H0339866 A JPH0339866 A JP H0339866A
- Authority
- JP
- Japan
- Prior art keywords
- compressor
- capacity
- horsepower
- bypass
- refrigerant
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000003507 refrigerant Substances 0.000 claims abstract description 57
- 238000005057 refrigeration Methods 0.000 claims description 24
- 239000003638 chemical reducing agent Substances 0.000 claims description 11
- 230000006835 compression Effects 0.000 claims description 8
- 238000007906 compression Methods 0.000 claims description 8
- 230000007423 decrease Effects 0.000 abstract description 20
- 238000001816 cooling Methods 0.000 description 17
- 238000010438 heat treatment Methods 0.000 description 17
- 239000007788 liquid Substances 0.000 description 11
- 238000010586 diagram Methods 0.000 description 7
- 238000004378 air conditioning Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2400/00—General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
- F25B2400/07—Details of compressors or related parts
- F25B2400/075—Details of compressors or related parts with parallel compressors
- F25B2400/0751—Details of compressors or related parts with parallel compressors the compressors having different capacities
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2600/00—Control issues
- F25B2600/02—Compressor control
- F25B2600/021—Inverters therefor
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B30/00—Energy efficient heating, ventilation or air conditioning [HVAC]
- Y02B30/70—Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating
Landscapes
- Air Conditioning Control Device (AREA)
- Control Of Positive-Displacement Pumps (AREA)
Abstract
Description
【発明の詳細な説明】
(イ〉産業上の利用分野
本発明は多室を冷暖房するヒートポンプ式空気調和装置
に適した冷凍装置に関する。DETAILED DESCRIPTION OF THE INVENTION (a) Industrial Application Field The present invention relates to a refrigeration system suitable for a heat pump type air conditioner that cools and heats multiple rooms.
(ロ)従来の技術
回転数可変型圧縮機と定能力型圧縮機とを並列に接続す
ると共に、これら圧縮機と凝縮器と減圧器と蒸発器とを
順次接続して冷媒回路を形成した冷凍装置が実公平1−
9280号公報で提示されている。(b) Conventional technology A refrigeration system in which a variable rotation speed compressor and a constant capacity compressor are connected in parallel, and a refrigerant circuit is formed by sequentially connecting these compressors, condensers, pressure reducers, and evaporators. The device is actually fair 1-
It is presented in Publication No. 9280.
(ハ)発明が解決しようとする課題
上記公報で提示の装置では、回転数可変型圧縮機と定能
力型圧縮機とが同じ能力であり、例えば両圧縮機の合計
能力が10馬力で回転数可変型圧縮機の能力制御範囲を
30%(1,5馬力)〜100%(5馬力)とすると、
両圧縮機の合計能力制御範囲は1.5馬力〜10馬力と
なり、空調負荷に見合う能力が1,5馬力よりも小さく
なる場合には回転数可変型圧縮機が発停する頻度が増え
、室温変動が多くなる不具合さを有していた。(c) Problems to be Solved by the Invention In the device presented in the above publication, the variable speed compressor and the constant capacity compressor have the same capacity, for example, the total capacity of both compressors is 10 horsepower and the rotation speed is Assuming that the capacity control range of the variable compressor is 30% (1.5 horsepower) to 100% (5 horsepower),
The total capacity control range of both compressors is 1.5 horsepower to 10 horsepower, and when the capacity corresponding to the air conditioning load becomes less than 1.5 horsepower, the variable speed compressor starts and stops more frequently, and the room temperature The problem was that there were many fluctuations.
本発明はかかる課題を解決すると共に両圧縮機からの合
計出力が急激に変動するのを防止した冷凍装置を提供す
ることを目的としたものである。It is an object of the present invention to provide a refrigeration system that solves these problems and prevents the total output from both compressors from fluctuating rapidly.
(ニ)課題を解決するための手段
本発明は、回転数可変型圧縮機と定能力型圧縮機とを並
列に接続した冷凍装置において、回転数可変型圧縮機の
最大能力を定能力型圧縮機の定格能力よりも小さく設定
するようにしたものである。(d) Means for Solving the Problems The present invention provides a refrigeration system in which a variable rotation speed compressor and a constant capacity compressor are connected in parallel, in which the maximum capacity of the variable rotation speed compressor is reduced to constant capacity compression. This is set to be smaller than the rated capacity of the machine.
又、本発明は、回転数可変型圧縮機と極数変換型圧縮機
とを並列に接続した冷凍装置において、回転数可変型圧
縮機の最大能力を極数変換型圧縮機の最大能力よりも小
さく設定するようにしたものである。Further, the present invention provides a refrigeration system in which a variable rotation speed compressor and a variable pole compressor are connected in parallel, in which the maximum capacity of the variable rotation speed compressor is greater than the maximum capacity of the variable pole compressor. This is set to a small value.
又、本発明は、回転数可変型圧縮機と圧縮途中の冷媒の
一部を吸込側へ戻す能力セーブ型圧縮機とを並列に接続
した冷凍装置において、回転数可変型圧縮機の最大能力
を能力セーブ型圧縮機の最大能力よりも小さく設定する
ようにしたものである。In addition, the present invention provides a refrigeration system in which a variable rotation speed compressor and a capacity-saving type compressor that returns part of the refrigerant during compression to the suction side are connected in parallel, in which the maximum capacity of the variable rotation speed compressor is increased. The capacity is set smaller than the maximum capacity of the capacity saving type compressor.
又、本発明は、回転数可変型圧縮機と定能力型圧縮機と
を並列に接続した冷凍装置において、回転数可変型圧縮
機の最大能力を定能力型圧縮機の定格能力よりも小さく
設定する一方、この両圧縮機の冷媒吐出管と冷媒吸込管
とに跨がってバイパス路を設け、このバイパス路には回
転数可変型圧縮機の運転能力が最小になって定能力型圧
縮機が発停した時に開閉するバイパス弁を設けるように
したものである。Further, the present invention provides a refrigeration system in which a variable speed compressor and a constant capacity compressor are connected in parallel, in which the maximum capacity of the variable speed compressor is set smaller than the rated capacity of the constant capacity compressor. On the other hand, a bypass path is provided across the refrigerant discharge pipe and refrigerant suction pipe of both compressors, and in this bypass path, the operating capacity of the variable speed compressor is minimized and the constant capacity compressor is The system is equipped with a bypass valve that opens and closes when the engine starts and stops.
又、本発明は、回転数可変型圧縮機と極数変換型圧縮機
とを並列に接続した冷凍装置において、回転数可変型圧
縮機の最大能力を極数変換型圧縮機の最大能力よりも小
さく設定する一方、この両圧縮機の冷媒吐出管と冷媒吸
込管とに跨がってバイパス路を設け、このバイパス路に
は回転数可変型圧縮機の運転能力が最小になって極数変
換型圧縮機が発停及び極数変換した時に開閉するバイパ
ス弁を設けるようにしたものである。Further, the present invention provides a refrigeration system in which a variable rotation speed compressor and a variable pole compressor are connected in parallel, in which the maximum capacity of the variable rotation speed compressor is greater than the maximum capacity of the variable pole compressor. At the same time, a bypass path is provided across the refrigerant discharge pipe and refrigerant suction pipe of both compressors, and the operating capacity of the variable speed compressor is minimized and the number of poles is changed. A bypass valve is provided that opens and closes when the type compressor starts and stops and changes the number of poles.
又、本発明は、回転数可変型圧縮機と圧縮途中の冷媒の
一部を吸込側へ戻す能力セーブ型圧縮機とを並列に接続
した冷凍装置において、回転数可変型圧縮機の最大能力
を能力セーブ型圧縮機の最大能力よりも小さく設定する
一方、この両圧縮機の冷媒吐出管と冷媒吸込管とに跨が
ってバイパス路を設け、このバイパス路には回転数可変
型圧縮機の運転能力が最小になって能力セーブ型圧縮機
が発停した時に開閉するバイパス弁を設けるようにした
ものである。In addition, the present invention provides a refrigeration system in which a variable rotation speed compressor and a capacity-saving type compressor that returns part of the refrigerant during compression to the suction side are connected in parallel, in which the maximum capacity of the variable rotation speed compressor is increased. While setting the capacity to be smaller than the maximum capacity of the capacity saving type compressor, a bypass passage is provided across the refrigerant discharge pipe and the refrigerant suction pipe of both compressors, and this bypass passage is used for the variable speed compressor. A bypass valve is provided that opens and closes when the capacity saving type compressor starts and stops when the operating capacity reaches its minimum.
〈*)作用
回転数可変型圧縮機の最大能力を例えば4馬力とし、定
能力型圧縮機の定格能力を6馬力、又は極数変換型圧縮
機もしくは能力セーブ型圧縮機の最大能力を6馬力とし
て回転数可変型圧縮機の能力制御範囲を30%(1,2
馬力)〜100%(4馬力)とすると、同圧縮機の合計
出力制御範囲は1.2馬力〜10馬力となり、出力制御
範囲の下限値が下がるため回転数可変型圧縮機が発停す
る頻度が減り室温変動が少なくなる。<*) For example, the maximum capacity of a variable operating speed compressor is 4 horsepower, the rated capacity of a constant capacity compressor is 6 horsepower, or the maximum capacity of a pole change type compressor or a capacity saving type compressor is 6 horsepower. The capacity control range of the variable speed compressor is set to 30% (1, 2
horsepower) to 100% (4 horsepower), the total output control range of the same compressor is 1.2 horsepower to 10 horsepower, and as the lower limit of the output control range decreases, the frequency at which the variable speed compressor starts and stops. This reduces room temperature fluctuations.
併せて、回転数可変型圧縮機の運転能力が最小になって
定能力型圧縮機、極数変換型圧縮機、能力セーブ型圧縮
機が発停もしくは極数変換型圧縮機が極数変換した時、
バイパス弁が開閉されるため、圧縮機からの合計出力が
急激に変動することはない。At the same time, the operating capacity of the variable speed compressor becomes the minimum, and the constant capacity compressor, pole number change type compressor, and capacity save type compressor start and stop, or the pole number of the pole number change type compressor changes. Time,
Since the bypass valve is opened and closed, the total output from the compressor does not fluctuate rapidly.
(へ)実施例
本発明の第1実施例を第1図及び第2図に基づいて説明
すると、(1)はインバータ装置(2〉により運転周波
数が変わって最小能力が1.2馬力で最大能力が4馬力
である回転数可変型圧縮機(3)と、定格能力が6馬力
である定能力型圧縮機(4)と、熱源側熱交換器〈5)
と、気液分離器(6〉とを有する熱源側ユニット、(7
a)(7b)<7c) lt利用側熱交換器(8a)(
8b)(8c)を有し、1.5馬力、3.5馬力、5馬
力の能力をもつ利用側ユニットで、熱源側熱交換器(5
)を両圧縮1!(3)(4)の冷媒吐出管(9)と冷媒
吸込管(10〉とに切換弁(lla)(1lb)を介し
て分岐接続する一方、熱源側ユニット(1)と利用側ユ
ニット(7a)(7b) (7c)とを接続するユニッ
ト間配管(12)を冷媒吐出管(9〉と分岐接続された
高圧ガス管〈13〉と、冷媒吸込管(10〉と分岐接続
された低圧ガス管(14)と、熱源側熱交換器<5)と
接続された液管(15)とで構成して、各利用側熱交換
器〈8a〉(8b)(8c)を高圧ガス管(]3〉と低
圧ガス管(14)とには夫々切換弁(16a)(17a
) 、 (16b)(17b) 、 (16c)(17
C)を介して分岐接続すると共に液管(15)には電動
式膨張弁等の冷媒減圧器(18a)(18b)(18c
)を介して接続している。(F) Embodiment The first embodiment of the present invention will be explained based on FIGS. 1 and 2. (1) The operating frequency is changed by the inverter device (2), and the minimum capacity is 1.2 horsepower and the maximum capacity is 1.2 horsepower. A variable speed compressor (3) with a capacity of 4 horsepower, a constant capacity compressor (4) with a rated capacity of 6 horsepower, and a heat source side heat exchanger (5)
and a gas-liquid separator (6), a heat source side unit (7)
a) (7b) <7c) lt user side heat exchanger (8a) (
8b) (8c) and has a capacity of 1.5 horsepower, 3.5 horsepower, and 5 horsepower, and a heat source side heat exchanger (5 horsepower).
) is both compressed 1! (3) The refrigerant discharge pipe (9) and the refrigerant suction pipe (10> of ) (7b) and (7c) are connected to the high-pressure gas pipe <13> which is branch-connected to the refrigerant discharge pipe (9>), and the low-pressure gas pipe which is branch-connected to the refrigerant suction pipe (10>). It consists of a pipe (14) and a liquid pipe (15) connected to the heat source side heat exchanger <5), and each user side heat exchanger <8a> (8b) (8c) is connected to a high pressure gas pipe (] 3> and the low pressure gas pipe (14) are provided with switching valves (16a) (17a), respectively.
), (16b)(17b), (16c)(17
C), and the liquid pipe (15) is connected to a refrigerant pressure reducer (18a) (18b) (18c) such as an electric expansion valve.
).
(19)は定能力型圧縮機(4)の吐出分岐管(9a〉
に設けられた逆止弁、(20)(21)は冷媒吐出管(
9〉と冷媒吸込管(10〉とに跨がって設けられたバイ
パス路で、このバイパス路には回転数可変型圧縮機(3
)の運転能力が最小になって定能力型圧縮機(4)が発
停した時に開閉するバイパス弁(22)、(23)が設
けれており、この両バイパス弁は制御器(24)によっ
て開閉されるようになっている。(19) is the discharge branch pipe (9a) of the constant capacity compressor (4)
The check valves (20) and (21) are installed in the refrigerant discharge pipe (
9> and the refrigerant suction pipe (10>), and this bypass path is equipped with a variable rotation speed compressor (3).
) are provided with bypass valves (22) and (23) that open and close when the constant capacity compressor (4) starts and stops when the operating capacity of the It is designed to be opened and closed.
次に運転動作を説明する。全室を同時に冷房する場合は
、熱源側熱交換器(5)の一方の切換弁(11a)を開
くと共に他方の切換弁(llb)を閉じ、且つ利用側熱
交換器(7a)(7b)(7c)の一方の切換弁(16
a)(16b)(16c)を閉じると共に他方の切換弁
(17a)(17b)(17c)を開くことにより、圧
縮機(3)(4)から吐出された冷媒は吐出管(9)、
−切換弁(lla)、熱源側熱交換器(5)と順次流れ
てここで凝縮液化した後、液管(15)を経て各利用側
ユニット(7a)(7b)(7C)の冷媒減圧器(18
a)<18b)(18c)に分配され、ここで減圧され
る。然る後、各利用側熱交換器(8a)(sb) (8
c)で蒸発気化した後、夫々切換弁(17a)(17b
)(17c)、低圧ガス管(14〉、吸込管(10〉、
気液分離器(6〉を順次経て圧縮機(3)(4)に吸入
される。Next, the driving operation will be explained. When cooling all rooms at the same time, open one switching valve (11a) of the heat source side heat exchanger (5) and close the other switching valve (llb), and close the user side heat exchanger (7a) (7b). (7c) One switching valve (16
a) By closing (16b) (16c) and opening the other switching valve (17a) (17b) (17c), the refrigerant discharged from the compressor (3) (4) is transferred to the discharge pipe (9),
- The refrigerant flows sequentially through the switching valve (lla) and the heat source side heat exchanger (5), where it is condensed and liquefied, and then passes through the liquid pipe (15) to the refrigerant pressure reducer of each user side unit (7a) (7b) (7C). (18
a)<18b) (18c) where it is depressurized. After that, each user side heat exchanger (8a) (sb) (8
After evaporation in step c), the switching valves (17a) and (17b) are used.
) (17c), low pressure gas pipe (14>, suction pipe (10>,
It passes through the gas-liquid separator (6>) in sequence and is sucked into the compressor (3) and (4).
このように・蒸発器として作用する各利用側熱交換器(
8a) (8b) (8c)で全室が同時に冷房される
。In this way, each user-side heat exchanger (which acts as an evaporator)
8a) (8b) (8c) All rooms are cooled at the same time.
逆に全室を同時に暖房する場合は、熱源側熱交換器(5
)の一方の切換弁(lla)を閉じると共に他方の切換
弁(llb)を開き、且つ利用側熱交換器(8a)(8
b)(8c)の一方の切換弁(16a)(16b)(1
6c)を開くと共に他方の切換弁(17a)(17b)
(17c)を閉じることにより、圧縮機(3)(4>か
ら吐出された冷媒は吐出管(9〉、高圧ガス管(13)
を順次経て切換弁(16a)(16b)(16c)、利
用側熱交換器(8a)(8b) (8c)へと分配され
、ここで夫々凝縮液化した後、各冷媒減圧器(18a)
(18b)(18c)で減圧されて液管(15)で合流
され、然る後、熱源側熱交換器(5)で蒸発気化した後
、切換弁(llb)、吸込管(10)、気液分離器(6
)を順次経て圧縮機(3)(4)に吸入される。このよ
うに凝縮器として作用する各利用側熱交換器(8g)(
8b)(8e)で全室が同時に暖房される。Conversely, if you want to heat all rooms at the same time, use the heat source side heat exchanger (5
) closes one switching valve (lla) and opens the other switching valve (llb), and also closes one switching valve (lla) of the heat exchanger (8a) (8) on the user side.
b) One switching valve (16a) (16b) (1
6c) and open the other switching valve (17a) (17b).
By closing (17c), the refrigerant discharged from the compressors (3) (4>) is transferred to the discharge pipe (9>) and the high pressure gas pipe (13).
The refrigerant is sequentially distributed to the switching valves (16a) (16b) (16c) and the user-side heat exchangers (8a) (8b) (8c), where it is condensed and liquefied, and then transferred to each refrigerant pressure reducer (18a).
The pressure is reduced in (18b) and (18c) and the liquid is merged in the liquid pipe (15). After that, it is evaporated and vaporized in the heat source side heat exchanger (5). Liquid separator (6
) and is then sucked into the compressor (3) and (4). Each user-side heat exchanger (8g) acts as a condenser in this way (
8b) (8e) all rooms are heated at the same time.
かかる同時冷房運転及び同時暖S運転における回転数可
変型圧縮機(3)と定能力型圧縮機(4)の運転動作並
びにバイパス弁(22)(23)の開閉動作を第2図に
基づいて説明すると、先づ回転数可変型圧縮機(3〉が
インバータ装置(2)からの出力信号で最小能力1.2
馬力で運転開始(A点)され3,6馬力の能力に達する
(B点)と最小能力1.2馬力に低下すると同時に制御
器(24〉からの信号で定能力型圧縮機〈4〉が定格能
力6馬力で運転開始され且つバイパス容量30%のバイ
パス弁(22〉とバイパス容i20%のバイパス弁〈2
3〉が開き、定能力型圧縮機〈4)の運転開始後の運転
能力、即ち定能力型圧縮機(4)の運転能力6馬力と回
転数可変型圧縮機(3)の運転能力1.2馬力との合計
能カフ。The operating operations of the variable speed compressor (3) and constant capacity compressor (4) and the opening/closing operations of the bypass valves (22) and (23) in such simultaneous cooling operation and simultaneous warming S operation are shown in FIG. To explain, first, the variable speed compressor (3) has a minimum capacity of 1.2 using the output signal from the inverter device (2).
When the operation starts with horsepower (point A) and reaches a capacity of 3.6 horsepower (point B), the minimum capacity drops to 1.2 horsepower, and at the same time, the constant capacity compressor <4> is activated by a signal from the controller (24). A bypass valve (22) with a rated capacity of 6 horsepower and a bypass capacity of 30% and a bypass valve (22) with a bypass capacity of 20%
3> is opened and the operating capacity of the constant capacity compressor (4) after starting operation, that is, the operating capacity of the constant capacity compressor (4) is 6 horsepower and the operating capacity of the variable speed compressor (3) is 1. Total capacity cuff with 2 horsepower.
2馬力から定能力型圧縮機(4〉の運転開始前の運転能
力、即ち回転数可変型圧縮機(3〉の運転能力3.6馬
力を差し引いた能力3.6馬力(合計能カフ、2馬力の
50%)に相当する量の吐出ガス冷媒がバイパス合計容
ft50%のバイパス弁(22)(23)を通って吐出
管(9)から吸込管(10)へバイパスされる。この為
、回転数可変型圧縮機(3〉が3.6馬力から1.2馬
力に低下すると同時に定能力型圧縮機(4)が運転開始
される際、両圧縮機(3)<4)から吐出管(9)を経
て高圧ガス管(13)へ送り出される合計出力は直線的
に上昇し室温が急激に変動する虞れはない。その後、回
転数可変型圧縮機(3)の運転能力が上昇して4馬力に
達する(0点)とバイパス容量20%のバイパス弁(2
3〉が閉じ、次に回転数可変型圧縮機(3)の運転能力
が2゜2馬力に達して1.2馬力に低下する(D点)と
制御器(24〉からの信号でバイパス容量20%のバイ
パス弁(23〉が開くと同時にバイパス容!30%のバ
イパス弁(22)が閉じ、次に回転数可変型圧縮機(3
)の運転能力が3馬力に達して1.2馬力に低下する(
E点)とバイパス容量20%のバイパス弁(23)が閉
じ、以後、回転数可変型圧縮機(3)の運転能力が4馬
力に達して定能力型圧縮機(4〉の運転能力6馬力との
合計能力が最大の10馬力になる(F点)迄、両圧縮機
(3)(4)から吐出管(9)を経て高圧ガス管(13
)へ送り出される合計出力は直線的に上昇し室温が急激
に変動することはない。The operating capacity before starting operation of the constant capacity compressor (4) from 2 horsepower, that is, the operating capacity of the variable speed compressor (3) 3.6 horsepower (total capacity cuff, 2 50% of the horsepower) is bypassed from the discharge pipe (9) to the suction pipe (10) through the bypass valves (22) and (23) having a total bypass volume of 50%. When the constant capacity compressor (4) starts operating at the same time as the variable speed compressor (3) decreases from 3.6 horsepower to 1.2 horsepower, the discharge pipe from both compressors (3) <4) The total output sent to the high-pressure gas pipe (13) via (9) increases linearly, and there is no risk of sudden changes in the room temperature.Then, the operating capacity of the variable speed compressor (3) increases. When it reaches 4 horsepower (0 point), the bypass valve with 20% bypass capacity (2
3> closes, and then the operating capacity of the variable speed compressor (3) reaches 2°2 horsepower and decreases to 1.2 horsepower (point D), and a signal from the controller (24>) causes the bypass capacity to be increased. At the same time as the 20% bypass valve (23) opens, the bypass volume! The 30% bypass valve (22) closes, and then the variable speed compressor (3
)'s operating capacity reaches 3 horsepower and decreases to 1.2 horsepower (
Point E) and the bypass valve (23) with a bypass capacity of 20% are closed, and after that, the operating capacity of the variable speed compressor (3) reaches 4 horsepower, and the operating capacity of the constant capacity compressor (4>) reaches 6 horsepower. The high-pressure gas pipe (13
) will increase linearly and the room temperature will not fluctuate rapidly.
このようにして、同時冷房運転時及び同時暖房運転時、
利用側ユニット(7a)(7b)(7c)は最大運転能
力10馬力で冷房及び暖房運転されるが、1゜5馬力の
能力をも・つ利用側ユニット(7a〉並びに5馬力の能
力をもつ利用側ユニッ!−(7e)がザーモオフしてい
くと、回転数可変型圧縮機(3)及びバイパス弁(22
)(23>は上述した運転動作と逆動作(E点→C点へ
と移行)しながら合計出力が直線的に下降し、合計出力
が3.6馬力に低下して同転数可変型圧縮機(3)が最
小能力1.2馬力に低下する(B点)と、制御器(24
)からの信号で定能力型圧縮機(4〉が運転を停止する
と同時にバイパス弁(22)(23)が閉じて回転数可
変型圧縮機(3〉の運転能力が3.6馬力に上昇するた
め吐出管(9)を経て高圧ガス管(13)へ送り出され
る出力も3.6馬力となる。このように出力は直線的に
下降するため室温が急激に変動すること4iない。In this way, during simultaneous cooling operation and simultaneous heating operation,
The user units (7a), (7b, and 7c) are operated for cooling and heating with a maximum operating capacity of 10 horsepower; When the user unit!-(7e) goes off, the variable speed compressor (3) and bypass valve (22
) (23> is a reverse operation to the above-mentioned operation (shifting from point E to point C), and the total output decreases linearly, and the total output decreases to 3.6 horsepower, resulting in variable speed compression. When the machine (3) decreases to the minimum capacity of 1.2 horsepower (point B), the controller (24
) When the constant capacity compressor (4) stops operating, the bypass valves (22) and (23) close at the same time, increasing the operating capacity of the variable speed compressor (3) to 3.6 horsepower. Therefore, the output delivered to the high pressure gas pipe (13) via the discharge pipe (9) is also 3.6 horsepower.In this way, the output decreases linearly, so there is no sudden change in the room temperature.
そして、3,5馬力の能力をもつ利用側ユニッ1−(7
b)が室内の冷暖房負荷の減少により1.5馬力以下に
なり、これに応じて回転数可変型圧縮機(3)は運転能
力が1.5馬力更には下限値の1.2馬力に低下するま
で継続して運転される為、回転数可変型圧縮機(3)が
発停する頻度が減り室温変動が少なく抑えられる。Then, the user unit 1-(7
b) becomes less than 1.5 horsepower due to a decrease in the indoor heating and cooling load, and accordingly, the operating capacity of the variable speed compressor (3) decreases to 1.5 horsepower and further to the lower limit of 1.2 horsepower. Since the variable speed compressor (3) is operated continuously until the rotation speed is reached, the frequency of starting and stopping of the variable speed compressor (3) is reduced, and room temperature fluctuations can be kept to a minimum.
又、同時に任意の例えば二基を冷房し一室を暖房する場
合は、熱源側熱交換器(5)の一方の切換弁(lla)
を開くと共に他方の切換弁(llb)を閉じ、且つ、冷
房する利用側ユニット(7a)(7e)の一方(7)切
換弁(16a)(16b)を閉じると共に他方の切換弁
(17a)(17e)を開き、且つ暖房する利用側ユニ
ット(7b)の一方の切換弁(16b)を開くと共に他
方の切換弁(i7b)を閉じると、圧縮a(3)(4)
から吐出された冷媒の一部が吐出管(9〉、切換弁(l
la)を順次繰て熱源側熱交換器(5)に流れると共に
残りの冷媒が高圧ガス管(13〉を経て暖房する利用側
ユニット(7b)の切換弁(16b)、利用側熱交換器
(8b〉へと流れ、この利用側熱交換器(7b〉と熱源
側熱交換器(5)とで凝縮液化される。そして、これら
熱交換器(8b)(5)で凝縮液化された冷媒は液管〈
15)を経て利用側ユニット(7a)(7c)の冷媒減
圧器(18a)(i8C〉で減圧された後、夫々の利用
側熱交換器(8a)(8C〉で蒸発気化され、然る後、
各切換弁(17a)(17c)を経て低圧ガス管(14
〉で合流され、吸込管(10〉、気液分離器〈6〉を順
次経て圧縮機(3)(4)に吸入される。このように凝
縮器として作用する利用側熱交換器(8b)で−室が暖
房され、蒸発器として作用する他の利用側熱交換器(8
a) (8c)で二基が冷房される。In addition, when simultaneously cooling two units and heating one room at the same time, switch the switching valve (lla) of one of the heat source side heat exchangers (5).
One (7) switching valve (16a) (16b) of the cooling user unit (7a) (7e) is opened, the other switching valve (llb) is closed, and the other switching valve (17a) ( 17e) and open one switching valve (16b) of the heating user unit (7b) and close the other switching valve (i7b), compression a(3)(4)
A part of the refrigerant discharged from the discharge pipe (9) and the switching valve (l
la) is sequentially repeated to flow to the heat source side heat exchanger (5), and the remaining refrigerant passes through the high pressure gas pipe (13) for heating. 8b>, and is condensed and liquefied in this utilization side heat exchanger (7b) and heat source side heat exchanger (5).Then, the refrigerant condensed and liquefied in these heat exchangers (8b) and (5) is Liquid pipe
15), the refrigerant pressure is reduced in the refrigerant pressure reducers (18a) (i8C) of the usage side units (7a) (7c), and then evaporated in the respective usage side heat exchangers (8a) (8C>). ,
The low pressure gas pipe (14) passes through each switching valve (17a) (17c).
> and is suctioned into the compressor (3) and (4) through the suction pipe (10) and the gas-liquid separator (6) sequentially.In this way, the user-side heat exchanger (8b) acts as a condenser. - The room is heated and another user heat exchanger (8
a) Two units are cooled in (8c).
かかる冷暖房同時運転時、暖房している利用側ユニット
(7b〉の運転能力3.5馬力と冷房している利用側ユ
ニット(7a)(7c)の運転能力の合計値6.5馬力
とを比較して、大きい方の6.5馬力に見合う(G点)
ように回転数可変型圧縮機(3)が2.1馬力、定能力
型圧縮13!(4)が6馬力で運転されると共にバイパ
ス容量30%のバイパス弁〈22〉が閉じ且つバイパス
容量20%のバイパス弁(23〉が開くことにより、内
圧縮機(3)(4)の合計能力8.1馬力の80%能力
(約6.5馬力)が出力されている。During such simultaneous cooling and heating operation, the operating capacity of the heating user unit (7b) is 3.5 horsepower and the total operating capacity of the cooling user units (7a) (7c) is 6.5 horsepower. and corresponds to the larger 6.5 horsepower (G point)
The variable speed compressor (3) has 2.1 horsepower and constant capacity compression 13! (4) is operated at 6 horsepower, the bypass valve (22) with a bypass capacity of 30% is closed, and the bypass valve (23) with a bypass capacity of 20% is opened, so that the total of the internal compressors (3) and (4) is 80% capacity (approximately 6.5 horsepower) of the capacity 8.1 horsepower is output.
第3図及び第4図は本発明の第2実施例を示したもので
、インバータ装置(2)により運転周波数が変わって最
小能力が1.2馬力で最大能力が4馬力である回転数可
変型圧縮機(3〉と、極数変換装置(25)により極数
が2極と4極とに切換わって最小能力が3馬力(4極運
転)で最大能力が6馬力(2極運転)である極数変換型
圧縮機(26〉とを並列接続すると共に、冷媒吐出管(
9)と冷媒吸込管(10)とに跨がったバイパス路(2
7〉には回転数可変型圧縮機(3〉の運転能力が最小(
1,2馬力)になって極数変換型圧縮機(26〉が発停
及び極数変換した時に制御器(24)の信号で開閉する
バイパス容量5%のバイパス弁(28)を接続した点が
上記第1実施例と相違しており、冷房同時運転、暖房同
時運転、冷暖房同時運転の運転動作は上記第1実施例と
同様につき同一符号を付して説明は省略する。上記相違
点による制御動作を第4図に基づいて説明すると、出力
上昇時に極数変換型圧縮機(26)が4極(3馬力)で
運転を開始し、又は出力下降時に極数変換型圧縮機〈2
6〉が4極(3馬力)で運転を停止した時(H点)、及
び出力上昇時に極数変換型圧縮機(26〉が4極(3馬
力)から2極(6馬力)に切換わり、又は出力下降時に
極数変換型圧縮機(26〉が2極(6馬力)から4極(
3馬力)に切換わった時(1点)にバイパス弁(28)
が開閉されることにより、出力は直線的に上昇又は下降
し、室温が急激に変動することはない。Figures 3 and 4 show a second embodiment of the present invention, in which the operating frequency is changed by an inverter device (2), and the rotation speed is variable with a minimum capacity of 1.2 horsepower and a maximum capacity of 4 horsepower. The number of poles is switched between 2 and 4 poles by the type compressor (3) and the pole number converter (25), resulting in a minimum capacity of 3 horsepower (4-pole operation) and a maximum capacity of 6 horsepower (2-pole operation). A pole change type compressor (26) is connected in parallel, and a refrigerant discharge pipe (
9) and the refrigerant suction pipe (10).
7> is a variable speed compressor (3> has the minimum operating capacity (
1.2 horsepower) and connects a bypass valve (28) with a bypass capacity of 5% that opens and closes with a signal from the controller (24) when the pole number change type compressor (26) starts, stops, or changes the number of poles. The operation operations of simultaneous cooling operation, simultaneous heating operation, and simultaneous cooling and heating operation are the same as in the first embodiment, so the same reference numerals are given and explanations are omitted.Due to the above differences. The control operation will be explained based on FIG. 4. When the output increases, the pole change type compressor (26) starts operating at 4 poles (3 horsepower), or when the output decreases, the pole change type compressor (26) starts operating at 4 poles (3 horsepower).
When 6〉 stops operating at 4 poles (3 horsepower) (point H), and when the output increases, the pole change type compressor (26〉 switches from 4 poles (3 horsepower) to 2 poles (6 horsepower). , or when the output decreases, the pole number change type compressor (26) changes from 2 poles (6 horsepower) to 4 poles (
3 horsepower) (1 point), the bypass valve (28)
By opening and closing, the output increases or decreases linearly, and the room temperature does not fluctuate rapidly.
第5図及び第6図は本発明の第3実施例を示したもので
、インバータ装置(2〉により運転周波数が変わって最
小能力が1.2馬力で最大能力が4馬力である回転数可
変型圧縮機(3〉と、能力セーブ装置(29〉により3
0%容量のセーブ弁(30〉が開閉して最小能力が4.
2馬力で最大能力が6馬力である能力セーブ型圧縮機(
31〉とを並列接続すると共に、冷媒吐出管(9〉と冷
媒吸込管(10)とに跨がったバイパス路(27〉に仕
回転数可変型圧縮機(3)の運転能力が最小(1,2馬
力)になって能力セーブ型圧縮機(31)が発停した時
に制御器り24)の信号で開閉するバイパス容量25%
のバイパス弁〈32〉を接続した点が上記第1実施例と
相違しており、冷房同時運転、暖房同時運転、冷暖房同
時運転の運転動作は上記第1実施例と同様につき同一符
号を付して説明は省略する。上記相違点による制御動作
を第6図に基づいて説明すると、出力上昇時に能力セー
ブ型圧縮機(31〉が4.2馬力で運転を開始し、又は
出力下降時に能力セーブ型圧縮機〈31〉が4.2馬力
で運転を停止した時(1点)にバイパス弁(32〉が開
閉されることにより、出力は直線的に上昇又は下降し、
室温が急激に変動することはない。Figures 5 and 6 show a third embodiment of the present invention, in which the operating frequency is changed by an inverter device (2), and the rotation speed is variable with a minimum capacity of 1.2 horsepower and a maximum capacity of 4 horsepower. 3 by mold compressor (3) and capacity save device (29)
The 0% capacity save valve (30) opens and closes and the minimum capacity is 4.
Capacity-saving type compressor with 2 horsepower and maximum capacity of 6 horsepower (
31> are connected in parallel, and a bypass passage (27> that spans the refrigerant discharge pipe (9>) and the refrigerant suction pipe (10) is connected in parallel to Bypass capacity 25% that opens and closes with the signal from the controller 24) when the capacity saving type compressor (31) starts and stops at 1.2 horsepower).
The difference from the first embodiment is that a bypass valve <32> is connected, and the operation operations of simultaneous cooling operation, simultaneous heating operation, and simultaneous cooling and heating operation are the same as in the first embodiment, and are given the same reference numerals. The explanation will be omitted. The control operation based on the above differences will be explained based on Fig. 6. When the output increases, the capacity save type compressor (31) starts operating at 4.2 horsepower, or when the output decreases, the capacity save type compressor (31) starts operating at 4.2 horsepower. When the engine stops operating at 4.2 horsepower (1 point), the bypass valve (32) is opened and closed, and the output increases or decreases linearly.
Room temperature does not fluctuate rapidly.
第7図及び第8図は本発明の第4実施例を示したもので
、インバータ装置(2)により運転周波数が変わって最
小能力が1.2馬力で最大能力が4馬力である回転数可
変型圧縮機(3〉と、極数変換装置(25)により極数
が2極と4極とに切換わって最小能力が3馬力(4極運
転)で最大能力が6馬力(2極運転)である極数変換型
圧縮機(26〉と、定格能力が10馬力である定能力型
圧縮機(33〉とを並列接続すると共に、冷媒吐出管(
9〉ノー冷媒吸込管(10)とに跨がったバイパス路(
27)には回転数可変型圧縮機(3〉の運転能力が最小
(1,2馬力)になって極数変換型圧縮機〈26〉が発
停及び極数変換した時、又は定能力型圧縮機〈33〉が
発停した時に制御器(24)の信号で開閉するバイパス
容量12%のバイパス弁(34)を接続した点が上記第
1実施例と相違しており、冷房同時運転、暖房同時運転
、冷暖房同時運転の運転動作は上記第1実施例と同様に
つき同一符号を付して説明は省略する。Figures 7 and 8 show a fourth embodiment of the present invention, in which the operating frequency is changed by an inverter device (2), and the rotation speed is variable with a minimum capacity of 1.2 horsepower and a maximum capacity of 4 horsepower. The number of poles is switched between 2 and 4 poles by the type compressor (3) and the pole number converter (25), resulting in a minimum capacity of 3 horsepower (4-pole operation) and a maximum capacity of 6 horsepower (2-pole operation). A pole change type compressor (26) with a rated capacity of 10 horsepower and a constant capacity compressor (33) with a rated capacity of 10 horsepower are connected in parallel, and a refrigerant discharge pipe (
9> Bypass path spanning the no-refrigerant suction pipe (10) (
27) When the operating capacity of the variable speed compressor (3) reaches the minimum (1 or 2 horsepower) and the pole change type compressor (26) starts and stops and changes the number of poles, or when the constant capacity type The difference from the first embodiment is that a bypass valve (34) with a bypass capacity of 12% is connected, which opens and closes in response to a signal from the controller (24) when the compressor (33) starts and stops. The operation operations of the simultaneous heating operation and the simultaneous cooling and heating operation are the same as those of the first embodiment, so the same reference numerals are given and the explanation will be omitted.
上記相違点による制御動作を第8図に基づいて説明する
と、出力上昇時に極数変換型圧縮機(26)が4極(3
馬力)で運転を開始し、又は出力下降時に極数変換型圧
縮機(26〉が4極(3馬力)で運転を停屯した時(K
点)、及び出力上昇時に極数変換型圧縮機(26)が屡
極(3馬力)から2極(6馬力)に切換わり、又は出力
下降時に極数変換型圧縮機〈26〉が2極(6馬力)か
ら4極(3馬力)に切換わった時(L点)、並びに出力
上昇時に定能力型圧縮機(33)が運転を開始し、又は
出力下降時に運転を停止した時(M点)にバイバメB(
30が開閉されることにより、出力は直線的にJ:昇又
は下降し、室温が急激に変動することはない。To explain the control operation based on the above differences based on FIG. 8, when the output increases, the pole change type compressor (26)
When the compressor (26) starts operating at 4 poles (3 horsepower) or stops operating at 4 poles (3 horsepower) when the output decreases (K
point), and when the output increases, the pole-changing compressor (26) often switches from 3-pole (3 horsepower) to 2-pole (6 horsepower), or when the output decreases, the pole-changing compressor (26) switches from 2-pole to 2-pole (6 horsepower). (6 horsepower) to 4-pole (3 horsepower) (L point), and when the constant capacity compressor (33) starts operating when the output increases or stops operating when the output decreases (M point) to Bi-fit B(
30 is opened and closed, the output increases or decreases linearly, and the room temperature does not fluctuate rapidly.
尚、上記各実施例ではユニット・間配管(12)を高圧
ガス管(・13)、低圧ガス管(14〉、液管〈15)
との3本の冷媒管で構成したので、単一機能の熱源側熱
交換器を用いた簡易な回路構成のものとで、複数台の利
用側ユニットの同時冷房運転及び同時暖房運転はもとよ
り冷暖房同時運転を任意の利用側ユニットで自由に選択
して行なうことができると共に、冷暖房同時運転時には
凝縮器として作用する利用側熱交換器と、蒸発器として
作用する利用側熱交換器とがシリーズ接続されるため熱
回収による効率の良い運転を行なうこεができるが、本
発明はかかる冷媒回路のみに限定されるものではない。In each of the above embodiments, the unit-to-unit piping (12) is replaced by a high pressure gas pipe (13), a low pressure gas pipe (14), and a liquid pipe (15).
Since it is composed of three refrigerant pipes, it has a simple circuit configuration using a single-function heat source side heat exchanger, and can perform simultaneous cooling and heating operations of multiple user-side units as well as heating and cooling operations. Simultaneous operation can be freely selected on any user-side unit, and during simultaneous heating and cooling operation, the user-side heat exchanger that acts as a condenser and the user-side heat exchanger that acts as an evaporator are connected in series. Therefore, it is possible to perform efficient operation by heat recovery, but the present invention is not limited to such a refrigerant circuit.
(ト〉発明の効果
本発明によれば、回転数可変型圧縮機の最大能力を定能
力型圧縮機の定格能力、極数変換型圧縮機の最大能力、
能力セーブ型圧縮機の最大能力の何れよりも小さく設定
したため、合計出力の下限値が下がって出力制御範囲が
広がるため回転数可変型圧縮機が発停する頻度が減り室
温変動の少ない快適な空調ができると共に運転効率を上
げることができ、且つ、圧縮機の能力が異なる為、圧縮
機間のオイルバランスを良好にすることができる。(G) Effects of the Invention According to the present invention, the maximum capacity of a variable speed compressor is the rated capacity of a constant capacity compressor, the maximum capacity of a pole change type compressor,
Since the capacity is set lower than the maximum capacity of the capacity saving type compressor, the lower limit of the total output is lowered and the output control range is expanded, which reduces the frequency of the variable speed compressor starting and stopping, resulting in comfortable air conditioning with less room temperature fluctuation. It is possible to improve the operating efficiency, and since the compressors have different capacities, it is possible to improve the oil balance between the compressors.
併せて、回転数可変型圧縮機の運転能力が最小になって
定能力型圧縮機、極数変換型圧縮機、能力セーブ型圧縮
機が発停もしくは極数変換型圧縮機が極数変換した時、
バイパス弁が開閉されるため小容量のインバータ装置で
小出力から大出力まで比例制御でき、出力が急激に変動
するのを防止することができる。At the same time, the operating capacity of the variable speed compressor becomes the minimum, and the constant capacity compressor, pole number change type compressor, and capacity save type compressor start and stop, or the pole number of the pole number change type compressor changes. Time,
Since the bypass valve is opened and closed, proportional control from small to large output can be performed using a small capacity inverter device, and sudden fluctuations in output can be prevented.
第1図は本発明の第1実施例を示す冷凍装置の冷媒回路
図、第2図は同実施例における圧縮機とバイパス弁の制
御動作を示す説明図、第3図は本発明の第2実施例を示
す冷凍装置の冷媒回路図、第4図は同実施例における圧
縮機とバイパス弁の制御動作を示す説明図、第5図は本
発明の第3実施例を示す冷凍装置の冷媒回路図、第6図
は同実施例における圧縮機とバイパス弁の制御動作を示
す説明図、第7図は本発明の第4実施例を示す冷凍装置
の冷媒回路図、第8図は同実施例における圧縮機とバイ
パス弁の制御動作を示す説明図である。
(3)・・・回転数可変型圧縮機、 (4)(33)・
・・定能力型圧縮機、 〈9〉・・・冷媒吐出管、 り
10)・・・冷媒吸込管、 (20)(21)(27)
・・・バイパス路、 (22)(23)(28)(32
)(34)・・・バイパス弁、 (26)・・・極数変
換型圧縮機、 (31)・・・能力セーブ型圧縮機。Fig. 1 is a refrigerant circuit diagram of a refrigeration system showing a first embodiment of the present invention, Fig. 2 is an explanatory diagram showing control operations of a compressor and a bypass valve in the same embodiment, and Fig. 3 is a diagram showing a second embodiment of the present invention. A refrigerant circuit diagram of a refrigeration system showing an embodiment, FIG. 4 is an explanatory diagram showing control operations of a compressor and a bypass valve in the same embodiment, and FIG. 5 is a refrigerant circuit of a refrigeration system showing a third embodiment of the present invention. Fig. 6 is an explanatory diagram showing the control operation of the compressor and bypass valve in the same embodiment, Fig. 7 is a refrigerant circuit diagram of a refrigeration system showing the fourth embodiment of the present invention, and Fig. 8 is the same embodiment. It is an explanatory view showing control operation of a compressor and a bypass valve in . (3)...Variable rotation speed compressor, (4)(33)・
... Constant capacity compressor, <9> ... Refrigerant discharge pipe, ri10) ... Refrigerant suction pipe, (20) (21) (27)
...Bypass road, (22) (23) (28) (32
)(34)...Bypass valve, (26)...Pole change type compressor, (31)...Capacity saving type compressor.
Claims (6)
接続し、この両圧縮機と凝縮器と減圧器と蒸発器とを順
次接続して冷媒回路を形成した冷凍装置において、回転
数可変型圧縮機の最大能力を定能力型圧縮機の定格能力
よりも小さく設定したことを特徴とする冷凍装置。(1) In a refrigeration system in which a variable rotation speed compressor and a constant capacity compressor are connected in parallel, and a refrigerant circuit is formed by sequentially connecting both compressors, a condenser, a pressure reducer, and an evaporator, A refrigeration system characterized in that the maximum capacity of a variable rotation speed compressor is set smaller than the rated capacity of a constant capacity compressor.
に接続し、この両圧縮機と凝縮器と減圧器と蒸発器とを
順次接続して冷媒回路を形成した冷凍装置において、回
転数可変型圧縮機の最大能力を極数変換型圧縮機の最大
能力よりも小さく設定したことを特徴とする冷凍装置。(2) In a refrigeration system in which a variable rotation speed compressor and a pole change type compressor are connected in parallel, and a refrigerant circuit is formed by sequentially connecting both compressors, a condenser, a pressure reducer, and an evaporator. A refrigeration system characterized in that the maximum capacity of the variable rotation speed compressor is set smaller than the maximum capacity of the pole change type compressor.
込側へ戻す能力セーブ型圧縮機とを並列に接続し、この
両圧縮機と凝縮器と減圧器と蒸発器とを順次接続して冷
媒回路を形成した冷凍装置において、回転数可変型圧縮
機の最大能力を能力セーブ型圧縮機の最大能力よりも小
さく設定したことを特徴とする冷凍装置。(3) A variable speed compressor and a capacity-saving compressor that returns part of the refrigerant during compression to the suction side are connected in parallel, and these compressors, condenser, pressure reducer, and evaporator are connected in sequence. A refrigeration system which is connected to form a refrigerant circuit, characterized in that the maximum capacity of a variable rotation speed compressor is set smaller than the maximum capacity of a capacity saving type compressor.
接続し、この両圧縮機と凝縮器と減圧器と蒸発器とを順
次接続して冷媒回路を形成した冷凍装置において、回転
数可変型圧縮機の最大能力を定能力型圧縮機の定格能力
よりも小さく設定する一方、この両圧縮機の冷媒吐出管
と冷媒吸込管とに跨がってバイパス路を設け、このバイ
パス路には回転数可変型圧縮機の運転能力が最小になっ
て定能力型圧縮機が発停した時に開閉するバイパス弁を
設けたことを特徴とする冷凍装置。(4) In a refrigeration system in which a variable speed compressor and a constant capacity compressor are connected in parallel, and a refrigerant circuit is formed by sequentially connecting both compressors, a condenser, a pressure reducer, and an evaporator, While the maximum capacity of the variable speed compressor is set to be smaller than the rated capacity of the constant capacity compressor, a bypass path is provided across the refrigerant discharge pipe and refrigerant suction pipe of both compressors, and this bypass 1. A refrigeration system characterized in that a bypass valve is provided in the passageway, which opens and closes when the operating capacity of the variable speed compressor reaches a minimum and the constant capacity compressor starts and stops.
に接続し、この両圧縮機と凝縮器と減圧器と蒸発器とを
順次接続して冷媒回路を形成した冷凍装置において、回
転数可変型圧縮機の最大能力を極数変換型圧縮機機の最
大能力よりも小さく設定する一方、この両圧縮機の冷媒
吐出管と冷媒吸込管とに跨がってバイパス路を設け、こ
のバイパス路には回転数可変型圧縮機の運転能力が最小
になって極数変換型圧縮機が発停及び極数変換した時に
開閉するバイパス弁を設けたことを特徴とする冷凍装置
。(5) In a refrigeration system in which a variable rotation speed compressor and a pole change type compressor are connected in parallel, and a refrigerant circuit is formed by sequentially connecting both compressors, a condenser, a pressure reducer, and an evaporator. The maximum capacity of the variable speed compressor is set smaller than the maximum capacity of the pole change type compressor, while a bypass path is provided across the refrigerant discharge pipe and refrigerant suction pipe of both compressors. A refrigeration system characterized in that the bypass path is provided with a bypass valve that opens and closes when the operating capacity of the variable rotation speed compressor reaches a minimum and the pole number changeable compressor starts and stops and changes the number of poles.
込側へ戻す能力セーブ型圧縮機とを並列に接続し、これ
ら圧縮機と凝縮器と減圧器と蒸発器とを順次接続して冷
媒回路を形成した冷凍装置において、回転数可変型圧縮
機の最大能力を能力セーブ型圧縮機の最大能力よりも小
さく設定する一方、この両圧縮機の冷媒吐出管と冷媒吸
込管とに跨がってバイパス路を設け、このバイパス路に
は回転数可変型圧縮機の運転能力が最小になって能力セ
ーブ型圧縮機が発停した時に開閉するバイパス弁を設け
たことを特徴とする冷凍装置。(6) A variable speed compressor and a capacity-saving compressor that returns part of the refrigerant during compression to the suction side are connected in parallel, and these compressors, condensers, pressure reducers, and evaporators are connected in sequence. In a refrigeration system in which a refrigerant circuit is formed by A bypass path is provided across the compressor, and this bypass path is provided with a bypass valve that opens and closes when the operating capacity of the variable speed compressor reaches a minimum and the capacity saving compressor starts and stops. Refrigeration equipment.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1175375A JP2810422B2 (en) | 1989-07-05 | 1989-07-05 | Refrigeration equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1175375A JP2810422B2 (en) | 1989-07-05 | 1989-07-05 | Refrigeration equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0339866A true JPH0339866A (en) | 1991-02-20 |
JP2810422B2 JP2810422B2 (en) | 1998-10-15 |
Family
ID=15995004
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1175375A Expired - Lifetime JP2810422B2 (en) | 1989-07-05 | 1989-07-05 | Refrigeration equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2810422B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0731325A2 (en) * | 1995-03-09 | 1996-09-11 | SANYO ELECTRIC Co., Ltd. | Refrigerating apparatus, air conditioner using the same and method for driving the air conditioner |
EP1287299A1 (en) * | 2000-06-07 | 2003-03-05 | Samsung Electronics Co. Ltd. | Air conditioner control system and control method thereof |
EP1589303A2 (en) * | 2004-04-22 | 2005-10-26 | Lg Electronics Inc. | Apparatus for switching air conditioner refrigerant pipes |
EP1589304A2 (en) * | 2004-04-22 | 2005-10-26 | Lg Electronics Inc. | Apparatus for switching air conditioner refrigerant pipes |
-
1989
- 1989-07-05 JP JP1175375A patent/JP2810422B2/en not_active Expired - Lifetime
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0731325A2 (en) * | 1995-03-09 | 1996-09-11 | SANYO ELECTRIC Co., Ltd. | Refrigerating apparatus, air conditioner using the same and method for driving the air conditioner |
EP0731325A3 (en) * | 1995-03-09 | 2002-01-02 | SANYO ELECTRIC Co., Ltd. | Refrigerating apparatus, air conditioner using the same and method for driving the air conditioner |
EP1287299A1 (en) * | 2000-06-07 | 2003-03-05 | Samsung Electronics Co. Ltd. | Air conditioner control system and control method thereof |
EP1287299A4 (en) * | 2000-06-07 | 2007-08-01 | Samsung Electronics Co Ltd | Air conditioner control system and control method thereof |
EP1589303A2 (en) * | 2004-04-22 | 2005-10-26 | Lg Electronics Inc. | Apparatus for switching air conditioner refrigerant pipes |
EP1589304A2 (en) * | 2004-04-22 | 2005-10-26 | Lg Electronics Inc. | Apparatus for switching air conditioner refrigerant pipes |
EP1589304A3 (en) * | 2004-04-22 | 2012-02-15 | LG Electronics, Inc. | Apparatus for switching air conditioner refrigerant pipes |
EP1589303A3 (en) * | 2004-04-22 | 2012-02-22 | LG Electronics, Inc. | Apparatus for switching air conditioner refrigerant pipes |
Also Published As
Publication number | Publication date |
---|---|
JP2810422B2 (en) | 1998-10-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2007063883A1 (en) | Freezing device | |
EP2112444A1 (en) | Refrigeration apparatus | |
WO2006013834A1 (en) | Freezing apparatus | |
WO2006013938A1 (en) | Freezing apparatus | |
JP2004044921A (en) | Refrigerating device | |
JP2003202162A (en) | Refrigerating device | |
JP2974179B2 (en) | Multi-room air conditioner | |
US20040261447A1 (en) | Refrigeration equipment | |
WO2007097311A1 (en) | Refrigerating system | |
JP4449139B2 (en) | Refrigeration equipment | |
JP2001235245A (en) | Freezer | |
US20050252236A1 (en) | Refrigeration equipment | |
JP3161347B2 (en) | Refrigeration equipment | |
JPH01247967A (en) | Multi-room type air-conditioner | |
JPH0339866A (en) | Refrigerator | |
JP2004278824A (en) | Refrigeration cycle device and air conditioner | |
JP4277354B2 (en) | Air conditioner | |
JPH0211886A (en) | Refrigerating cycle device | |
JP4023386B2 (en) | Refrigeration equipment | |
JP2001349629A (en) | Heat pump device | |
JP2698179B2 (en) | Air conditioning | |
JP2007147228A (en) | Refrigerating device | |
JP2618057B2 (en) | Two-stage compression cooling / heating hot water supply system | |
JP2007163011A (en) | Refrigeration unit | |
JP2664437B2 (en) | Refrigeration equipment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080731 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080731 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090731 Year of fee payment: 11 |
|
EXPY | Cancellation because of completion of term |