JP2810422B2 - Refrigeration equipment - Google Patents
Refrigeration equipmentInfo
- Publication number
- JP2810422B2 JP2810422B2 JP1175375A JP17537589A JP2810422B2 JP 2810422 B2 JP2810422 B2 JP 2810422B2 JP 1175375 A JP1175375 A JP 1175375A JP 17537589 A JP17537589 A JP 17537589A JP 2810422 B2 JP2810422 B2 JP 2810422B2
- Authority
- JP
- Japan
- Prior art keywords
- compressor
- capacity
- variable speed
- refrigerant
- bypass
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2400/00—General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
- F25B2400/07—Details of compressors or related parts
- F25B2400/075—Details of compressors or related parts with parallel compressors
- F25B2400/0751—Details of compressors or related parts with parallel compressors the compressors having different capacities
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2600/00—Control issues
- F25B2600/02—Compressor control
- F25B2600/021—Inverters therefor
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B30/00—Energy efficient heating, ventilation or air conditioning [HVAC]
- Y02B30/70—Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating
Landscapes
- Air Conditioning Control Device (AREA)
- Control Of Positive-Displacement Pumps (AREA)
Description
【発明の詳細な説明】 (イ)産業上の利用分野 本発明は多室を冷暖房するヒートポンプ式空気調和装
置に適した冷凍装置に関する。The present invention relates to a refrigerating apparatus suitable for a heat pump type air conditioner for cooling and heating multiple rooms.
(ロ)従来の技術 回転数可変型圧縮機と定能力型圧縮機とを並列に接続
すると共に、これら圧縮機と凝縮器と減圧器と蒸発器と
を順次接続して冷媒回路を形成した冷凍装置が実公平1
−9280号公報で提示されている。(B) Conventional technology A refrigeration system in which a variable-speed compressor and a constant-capacity compressor are connected in parallel, and these compressors, a condenser, a decompressor, and an evaporator are sequentially connected to form a refrigerant circuit. Equipment is fair 1
No. -9280.
(ハ)発明が解決しようとする課題 上記公報で提示の装置では、回転数可変圧縮機と定能
力圧縮機とが同じ能力であり、例えば両圧縮機の合計能
力が10馬力で回転数可変型圧縮機の能力制御範囲を35%
(1.5馬力)〜100%(5馬力)とすると、両圧縮機の合
計能力制御範囲は1.5馬力〜10馬力となり、空調負荷に
見合う能力が1.5馬力よりも小さくなる場合には回転数
可変型圧縮機が発停する頻度が増え、室温変動が多くな
る不具合さを有していた。(C) Problems to be Solved by the Invention In the device presented in the above publication, the variable speed compressor and the constant capacity compressor have the same capacity. For example, the total capacity of both compressors is 10 horsepower and the speed is variable. 35% capacity control range of compressor
(1.5 hp) to 100% (5 hp), the total capacity control range of both compressors will be 1.5 hp to 10 hp, and if the capacity to meet the air conditioning load is less than 1.5 hp, variable speed compression There was a problem that the frequency of starting and stopping the machine increased, and the fluctuation in room temperature increased.
本発明はかかる課題を解決すると共に両圧縮機からの
合計出力が急激に変動するのを防止した冷凍装置を提供
することを目的としたものである。It is an object of the present invention to provide a refrigeration apparatus that solves the above problem and prevents the total output from both compressors from changing rapidly.
(ニ)課題を解決するための手段 本発明は、回転数可変型圧縮機と定能力型圧縮機とを
並列に接続し、この両圧縮機と凝縮器と減圧器と蒸発器
とを順次接続して冷媒回路を形成した冷凍装置におい
て、回転数可変型圧縮機の最大能力を定能力型圧縮機の
定格能力よりも小さく設定する一方、この両圧縮機の冷
媒吐出管と冷媒吸込管とに跨ってバイパス路を設け、こ
のバイパス路には回転数可変型圧縮機の運転能力が最小
になって定能力型圧縮機が発停した時に開閉するバイパ
ス弁を設けたことを特徴とする。(D) Means for Solving the Problems According to the present invention, a variable speed compressor and a constant capacity compressor are connected in parallel, and both compressors, a condenser, a decompressor, and an evaporator are sequentially connected. In the refrigeration system in which the refrigerant circuit is formed, the maximum capacity of the variable speed compressor is set to be smaller than the rated capacity of the constant capacity compressor, while the refrigerant discharge pipe and the refrigerant suction pipe of both compressors are connected. A straddle bypass path is provided, and the bypass path is provided with a bypass valve that opens and closes when the operation capacity of the variable speed compressor is minimized and the constant capacity compressor starts and stops.
また、本発明は、回転可変型圧縮機と極数変換型圧縮
機とを並列に接続し、この両圧縮機と凝縮器と減圧器と
蒸発器とを順次接続して冷媒回路を形成した冷凍装置に
おいて、回転数可変型圧縮機の最大能力を極数変換型圧
縮機の最大能力よりも小さく設定する一方、この両圧縮
機の冷媒吐出管と冷媒吸込管とに跨ってバイパス路を設
け、このバイパス路には回転数可変型圧縮機の運転能力
が最小になって極数変換型圧縮機が発停及び極数変換し
た時に開閉するバイパス弁を設けたことを特徴とする。Further, the present invention provides a refrigeration system in which a variable rotation type compressor and a pole number conversion type compressor are connected in parallel, and the compressor, a condenser, a decompressor, and an evaporator are sequentially connected to form a refrigerant circuit. In the device, while setting the maximum capacity of the variable speed variable type compressor smaller than the maximum capacity of the pole number conversion type compressor, a bypass path is provided across the refrigerant discharge pipe and the refrigerant suction pipe of both compressors, The bypass path is characterized in that a bypass valve is provided which opens and closes when the operation capacity of the variable speed compressor is minimized and the pole number conversion type compressor starts and stops and the pole number is changed.
また、本発明は、回転数可変型圧縮機と圧縮途中の冷
媒の一部を吸込側へ戻す能力セーブ型圧縮機とを並列に
接続し、これら圧縮機と凝縮器と減圧器と蒸発器とを順
次接続して冷媒回路を形成した冷凍装置において、回転
数可変型圧縮機の最大能力を能力セーブ型圧縮機の最大
能力よりも小さく設定する一方、この両圧縮機の冷媒吐
出管と冷媒吸込管とに跨ってバイパス路を設け、このバ
イパス路には回転数可変型圧縮機の運転能力が最小にな
って能力セーブ型圧縮機が発停した時に開閉するバイパ
ス弁を設けたことを特徴とする。In addition, the present invention connects a variable-speed compressor and a capacity-saving compressor that returns a part of the refrigerant being compressed to the suction side in parallel, and these compressor, condenser, decompressor, and evaporator are connected. Are sequentially connected to form a refrigerant circuit, the maximum capacity of the variable-speed compressor is set smaller than the maximum capacity of the capacity-saving compressor, while the refrigerant discharge pipe and the refrigerant suction pipe of both compressors are set. A bypass path is provided across the pipe, and a bypass valve that opens and closes when the operation capacity of the variable speed compressor is minimized and the capacity saving type compressor starts and stops is provided in the bypass path. I do.
(ホ)作 用 回転数可変型圧縮機の最大能力を例えば馬力とし、定
能力型圧縮機の定格能力を6馬力、又は極数変換型圧縮
機もしくは能力セーブ型圧縮機の最大能力を6馬力とし
て回転数可変型圧縮機の能力制御範囲を30%(1.2馬
力)〜100%(4馬力)とすると、両圧縮機の合計出力
制御範囲は1.2馬力〜10馬力となり、出力制御範囲の下
限値が下がるため回転数可変型圧縮機が発停する頻度が
減り室温変動が少なくなる。(E) Operation The maximum capacity of the variable speed compressor is, for example, horsepower, the rated capacity of the constant capacity compressor is 6 horsepower, or the maximum capacity of the pole conversion type compressor or the capacity saving type compressor is 6 horsepower. Assuming that the capacity control range of the variable speed compressor is 30% (1.2 hp) to 100% (4 hp), the total output control range of both compressors is 1.2 hp to 10 hp, and the lower limit of the output control range , The frequency at which the variable speed compressor starts and stops is reduced, and the room temperature fluctuation is reduced.
併せて、回転数可変型圧縮機の運転能力が最小になっ
て定能力型圧縮機、極数変換型圧縮機、能力セーブ型圧
縮機が発停もしくは極数変換型圧縮機が極数変換した
時、バイパス弁が開閉されるため、圧縮機からの合計出
力が急激に変動することはない。At the same time, the operating capacity of the variable speed compressor was minimized, and the constant capacity compressor, the pole number conversion type compressor, and the capacity saving type compressor started or stopped, or the pole number conversion type compressor changed the pole number. At this time, since the bypass valve is opened and closed, the total output from the compressor does not fluctuate rapidly.
(ヘ)実施例 本発明の第1実施例を第1図及び第2図に基づいて説
明すると、(1)はインバータ装置(2)により運転周
波数が変わって最小能力が1.2馬力で最大能力が4馬力
である回転数可変型圧縮機(3)と、定格能力が6馬力
ある定能力型圧縮機(4)と、熱源側熱交換器(5)
と、気液分離器(6)とを有する熱源側ユニット、(7
a)(7b)(7c)は利用側熱交換器(8a)(8b)(8c)
を有し、1.5馬力、3.5馬力、5馬力の能力をもつ利用側
ユニットで、熱源側熱交換器(5)を両圧縮機(3)
(4)の冷媒吐出管(9)と冷媒吸込管(10)とに切換
弁(11a)(11b)を介して分岐接続する一方、熱源側ユ
ニット(1)と利用側ユニット(7a)(7b)(7c)とを
接続するユニット間配管(12)を冷媒吐出管(9)と分
岐接続された高圧ガス管(13)と、冷媒吸込管(10)と
分岐接続された低圧ガス管(14)と、熱源側熱交換器
(5)と接続された液管(15)とで構成して、各利用側
熱交換器(8a)(8b)(8c)を高圧ガス管(13)と低圧
ガス管(14)とには夫々切換弁(16a)(17a),(16
b)(17b),(16c)(17c)を介して分岐接続すると共
に液管(15)には電動式膨張弁等の冷媒減圧器(18a)
(18b)(18c)を介して接続している。(F) Embodiment The first embodiment of the present invention will be described with reference to FIGS. 1 and 2. (1) The operating frequency is changed by the inverter device (2), the minimum capacity is 1.2 horsepower and the maximum capacity is 4 hp variable speed compressor (3), constant capacity compressor with rated capacity of 6 hp (4), and heat source side heat exchanger (5)
And a heat-source side unit having a gas-liquid separator (6), (7
a) (7b) (7c) are heat exchangers on the use side (8a) (8b) (8c)
And a 1.5-hp, 3.5-hp, 5-hp power unit with a heat source-side heat exchanger (5) and both compressors (3)
The refrigerant discharge pipe (9) and the refrigerant suction pipe (10) of (4) are branched and connected via switching valves (11a) (11b), while the heat source side unit (1) and the utilization side units (7a) (7b ) And (7c), a high-pressure gas pipe (13) branched and connected to the refrigerant discharge pipe (9), and a low-pressure gas pipe (14) branched and connected to the refrigerant suction pipe (10). ) And a liquid pipe (15) connected to the heat source side heat exchanger (5), and each use side heat exchanger (8a) (8b) (8c) is connected to a high pressure gas pipe (13) and a low pressure gas pipe (13). Switching valves (16a) (17a) and (16a) are connected to the gas pipe (14), respectively.
b) Branch connection via (17b), (16c) and (17c) and a refrigerant pressure reducer (18a) such as an electric expansion valve in the liquid pipe (15)
(18b) are connected via (18c).
(19)は定能力型圧縮機(4)の吐出分岐管(9a)に
設けられた逆止弁、(20)(21)は冷媒吐出管(9)と
冷媒吸込管(10)とに跨がって設けられたバイパス路
で、このバイパス路には回転数可変型圧縮機(3)の運
転能力が最小になって定能力型圧縮機(4)が発停した
時に開閉するバイパス弁(22)(23)が設けれており、
この両バイパス弁は制御器(24)によって開閉されるよ
うになっている。(19) is a check valve provided in the discharge branch pipe (9a) of the constant capacity compressor (4), and (20) and (21) are straddling the refrigerant discharge pipe (9) and the refrigerant suction pipe (10). The bypass passage is provided with a bypass valve that opens and closes when the operation capacity of the variable speed compressor (3) is minimized and the constant capacity compressor (4) starts and stops. 22) and (23).
The two bypass valves are opened and closed by a controller (24).
次に運転動作を説明する。全室を同時に冷房する場合
は、熱源側熱交換器(5)の一方の切換弁(11a)を開
くと共に他方の切換弁(11b)を閉じ、且つ利用側熱交
換器(7a)(7b)(7c)の一方の切換弁(16a)(16b)
(16c)を閉じると共に他方の切換弁(17a)(17b)(1
7c)を開くことにより、圧縮機(3)(4)から吐出さ
れた冷媒は吐出管(9)、切換弁(11a)、熱源側熱交
換器(5)と順次流れてここで凝縮液化した後、液管
(15)を経て各利用側ユニット(7a)(7b)(7c)の冷
媒減圧器(18a)(18b)(18c)に分配され、ここで減
圧される。然る後、各利用側熱交換器(8a)(8b)(8
c)で蒸発気化した後、夫々切換弁(17a)(17b)(17
c)、低圧ガス管(14)、吸込管(10)、気液分離器
(6)を順次経て圧縮機(3)(4)に吸入される。こ
のように蒸発器として作用する各利用側熱交換器(8a)
(8b)(8c)で全室が同時に冷房される。Next, the driving operation will be described. When cooling all the rooms at the same time, one switching valve (11a) of the heat source side heat exchanger (5) is opened and the other switching valve (11b) is closed, and the use side heat exchangers (7a) (7b) (7c) One switching valve (16a) (16b)
(16c) is closed and the other switching valve (17a) (17b) (1
By opening 7c), the refrigerant discharged from the compressors (3) and (4) flows sequentially through the discharge pipe (9), the switching valve (11a), and the heat source side heat exchanger (5), where it is condensed and liquefied. Thereafter, the refrigerant is distributed to the refrigerant decompressors (18a), (18b), and (18c) of each of the use-side units (7a), (7b), and (7c) via the liquid pipe (15), where the pressure is reduced. After that, each use side heat exchanger (8a) (8b) (8
After evaporating in c), the switching valves (17a), (17b), (17
c), is sucked into the compressors (3) and (4) through the low-pressure gas pipe (14), the suction pipe (10), and the gas-liquid separator (6) in this order. Thus, each use side heat exchanger acting as an evaporator (8a)
(8b) In (8c), all rooms are cooled simultaneously.
逆に全室を同時に暖房する場合は、熱源側熱交換器
(5)の一方の切換弁(11a)を閉じる共に他方の切換
弁(11b)を開き、且つ利用側熱交換器(8a)(8b)(8
c)の一方の切換弁(16a)(16b)(16c)を開くと共に
他方の切換弁(17a)(17b)(17c)を閉じることによ
り、圧縮機(3)(4)から吐出された冷媒は吐出管
(9)、高圧ガス管(13)を順次経て切換弁(16a)(1
6b)(16c)、利用側熱交換器(8a)(8b)(8c)へと
分配され、ここで夫々凝縮液化した後、各冷媒減圧器
(18a)(18b)(18c)で減圧されて液管(15)で合流
され、然る後、熱源側交換器(5)で蒸発気化した後、
切換弁(11b)、吸込管(10)、気液分離器(6)を順
次経て圧縮機(3)(4)に吸入される。このように凝
縮器として作用する各利用側熱交換器(8a)(8b)(8
c)で全室が同時に暖房される。Conversely, when heating all the rooms at the same time, one switching valve (11a) of the heat source side heat exchanger (5) is closed and the other switching valve (11b) is opened, and the use side heat exchanger (8a) ( 8b) (8
By opening one of the switching valves (16a) (16b) (16c) and closing the other switching valve (17a) (17b) (17c), the refrigerant discharged from the compressors (3) and (4) Through the discharge pipe (9) and the high-pressure gas pipe (13) in that order, the switching valve (16a) (1
6b) (16c), distributed to the use side heat exchangers (8a) (8b) (8c) where they are condensed and liquefied respectively, and then decompressed by each refrigerant decompressor (18a) (18b) (18c). After being merged in the liquid pipe (15), and then evaporated and vaporized in the heat source side exchanger (5),
The gas is sucked into the compressors (3) and (4) through the switching valve (11b), the suction pipe (10), and the gas-liquid separator (6) sequentially. Thus, each use side heat exchanger (8a) (8b) (8
In c) all rooms are heated simultaneously.
かかる同時冷房運転及び同時暖房運転における回転数
可変型圧縮機(3)と定能力型圧縮機(4)の運転動作
並びにバイパス弁(22)(23)の開閉動作を第2図に基
づいて説明すると、先づ回転数可変型圧縮機(3)がイ
ンバータ装置(2)からの出力信号で最小能力1.2馬力
で運転開始(A点)され3.6馬力の能力に達する(B
点)と最小能力1.2馬力に低下すると同時に制御器(2
4)からの信号で定能力型圧縮機(4)が定格能力6馬
力で運転開始され且つバイパス容量30%のバイパス弁
(22)とバイパス容量20%のバイパス弁(23)が開き、
定能力型圧縮機(4)の運転開始後の運転能力、即ち定
能力型圧縮機(4)の運転能力6馬力と回転数可変型圧
縮機(3)の運転能力1.2馬力との合計能力7.2馬力から
定能力型圧縮機(4)の運転開始前の運転能力、即ち回
転数可変型圧縮機(3)の運転能力3.6馬力を差し引い
た能力3.6馬力(合計能力7.2馬力の50%)に相当する量
の吐出ガス冷媒がバイパス合計容量50%のバイパス弁
(22)(23)を通って吐出管(9)から吸込管(10)へ
バイパスされる。この為、回転数可変型圧縮機(3)が
3.6馬力から1.2馬力に低下すると同時に定能力型圧縮機
(4)が運転開始される際、両圧縮機(3)(4)から
吐出管(9)を経て高圧ガス管(13)へ送り出される合
計力は直線的に上昇し室温が急激に変動する虞れはな
い。その後、回転数可変型圧縮機(3)の運転能力が上
昇して4馬力に達する(C点)とバイパス容量20%のバ
イパス弁(23)が閉じ、次に回転数可変型圧縮機(3)
の運転能力が2.2馬力に達して1.2馬力に低下する(D
点)と制御器(24)からの信号でバイパス容量20%のバ
イパス弁(23)が開くと同時にバイパス容量30%のバイ
パス弁(22)が閉じ、次に回転数可変型圧縮機(3)の
運転能力が3馬力に達して1.2馬力に低下する(E点)
とバイパス容量20%のバイパス弁(23)が閉じ、以後、
回転数可変型圧縮機(3)運転能力が4馬力に達して定
能力型圧縮機(4)の運転能力6馬力との合計能力が最
大の10馬力になる(F点)迄、両圧縮機(3)(4)か
ら吐出管(9)を経て高圧ガス管(13)へ送り出される
合計力は直線的に上昇し室温が急激に変動することはな
い。The operation of the variable speed compressor (3) and the constant capacity compressor (4) and the opening and closing operations of the bypass valves (22) and (23) in the simultaneous cooling operation and the simultaneous heating operation will be described with reference to FIG. Then, first, the variable speed compressor (3) starts operation (point A) with a minimum capacity of 1.2 horsepower by an output signal from the inverter device (2) and reaches a capacity of 3.6 horsepower (B).
Point) and the minimum capacity is reduced to 1.2 hp and the controller (2
With the signal from 4), the constant capacity compressor (4) is started to operate at the rated capacity of 6 hp and the bypass valve (22) with the bypass capacity of 30% and the bypass valve (23) with the bypass capacity of 20% open,
The operating capacity of the constant capacity compressor (4) after the start of operation, that is, the total capacity of the operating capacity of the constant capacity compressor (4), 6 hp and the variable speed compressor (3), 1.2 hp, 7.2 The operating capacity of the constant capacity compressor (4) before starting operation, ie, the operating capacity of the variable speed compressor (3) minus 3.6 horsepower is equivalent to 3.6 horsepower (50% of the total capacity 7.2 horsepower) from horsepower. A small amount of the discharged gas refrigerant is bypassed from the discharge pipe (9) to the suction pipe (10) through the bypass valves (22) and (23) having a total bypass capacity of 50%. Therefore, the variable speed compressor (3)
When the constant capacity compressor (4) is started to operate at the same time as the 3.6 hp reduced to 1.2 hp, the compressors (3) and (4) are sent to the high pressure gas pipe (13) via the discharge pipe (9). The total force rises linearly and there is no fear that the room temperature will fluctuate rapidly. Thereafter, when the operating capacity of the variable speed compressor (3) increases and reaches 4 hp (point C), the bypass valve (23) having a bypass capacity of 20% is closed, and then the variable speed compressor (3) is closed. )
Driving capacity reaches 2.2 hp and decreases to 1.2 hp (D
Point) and the signal from the controller (24) opens the bypass valve (23) with a bypass capacity of 20% and simultaneously closes the bypass valve (22) with a bypass capacity of 30%, then the variable speed compressor (3) Driving capacity reaches 3 hp and drops to 1.2 hp (point E)
And the bypass valve (23) with a bypass capacity of 20% is closed.
Both compressors until the operating capacity of the variable speed compressor (3) reaches 4 hp and the total capacity of the constant capacity compressor (4) and the operating capacity of 6 hp reaches a maximum of 10 hp (point F). (3) The total force sent from (4) to the high-pressure gas pipe (13) via the discharge pipe (9) rises linearly, and the room temperature does not fluctuate rapidly.
このようにして、同時冷房運転時及び同時暖房運転
時、利用側ユニット(7a)(7b)(7c)は最大運転能力
10馬力で冷房及び暖房運転されるが、1.5馬力の能力を
もつ利用側ユニット(7a)並びに5馬力の能力をもつ利
用側ユニット(7c)がサーモオフしていくと、回転数可
変型圧縮機(3)及びバイパス弁(22)(23)は上述し
た運転動作と逆動作(E点→C点へと移行)しながら合
計出力が直線的に下降し、合計出力が3.6馬力に低下し
て回転数可変型圧縮機(3)が最小能力1.2馬力に低下
する(B点)と、制御器(24)からの信号で定能力型圧
縮機(4)が運転を停止すると同時にバイパス弁(22)
(23)が閉じて回転数可変型圧縮機(3)の運転能力が
3.6馬力に上昇するため吐出管(9)を経て高圧ガス管
(13)へ送り出される出力も3.6馬力となる。このよう
に出力は直線的に下降するため室温が急激に変動するこ
とはない。In this way, during simultaneous cooling operation and simultaneous heating operation, the use side units (7a) (7b) (7c) have the maximum operating capacity.
The cooling and heating operation is performed at 10 hp, but when the use side unit (7a) having a capacity of 1.5 hp and the use side unit (7c) having a capacity of 5 hp are turned off, the variable speed compressor ( 3) and the bypass valves (22) and (23) rotate inversely to the above operation (shift from point E to point C), the total output decreases linearly, and the total output decreases to 3.6 horsepower and rotates. When the variable capacity compressor (3) has a minimum capacity of 1.2 horsepower (point B), the constant capacity compressor (4) stops operating by a signal from the controller (24), and at the same time the bypass valve (22).
(23) is closed and the operating capacity of the variable speed compressor (3) is
The output delivered to the high-pressure gas pipe (13) via the discharge pipe (9) to rise to 3.6 horsepower also becomes 3.6 horsepower. As described above, since the output decreases linearly, the room temperature does not fluctuate rapidly.
そして、3.5馬力の能力をもつ利用側ユニット(7b)
が室内の冷暖房負荷の減少により1.5馬力以下になり、
これに応じて回転数可変型圧縮機(3)は運転能力が1.
5馬力更には下限値の1.2馬力に低下するまで継続して運
転される為、回転数可変型圧縮機(3)が発停する頻度
が減り室温変動が少なく抑えられる。And a user unit (7b) with a 3.5 horsepower capability
Reduced to less than 1.5 hp due to a decrease in the indoor heating and cooling load,
Accordingly, the variable speed compressor (3) has an operating capacity of 1.
Since the engine is continuously operated until the horsepower drops to 5 hp and further to the lower limit of 1.2 hp, the frequency of starting and stopping of the variable speed compressor (3) is reduced, and the fluctuation in room temperature is suppressed.
又、同時に任意の例えば二室を冷房し一室を暖房する
場合は、熱源側熱交換器(5)の一方の切換弁(11a)
を開くと共に他方の切換弁(11b)を閉じ、且つ、冷房
する利用側ユニット(7a)(7c)の一方の切換弁(16
a)(16b)を閉じると共に他方の切換弁(17a)(17c)
を開き、且つ暖房する利用側ユニット(7b)の一方の切
換弁(16b)を開くと共に他方の切換弁(17b)を閉じる
と、圧縮機(3)(4)から吐出された冷媒の一部が吐
出管(9)、切換弁(11a)を順次経て熱源側熱交換器
(5)に流れると共に残りの冷媒が高圧ガス管(13)を
経て暖房する利用側ユニット(7b)の切換弁(16b)、
利用側熱交換器(8b)へと流れ、この利用側熱交換器
(7b)と熱源側熱交換器(5)とで凝縮液化される。そ
して、これら熱交換器(8b)(5)で凝縮液化された冷
媒は液管(15)を経て利用側ユニット(7a)(7c)の冷
媒減圧器(18a)(18c)で減圧された後、夫々の利用側
熱交換器(8a)(8c)で蒸発気化され、然る後、各切換
弁(17a)(17c)を経て低圧ガス管(14)で合流され、
吸込管(10)、気液分離器(6)を順次経て圧縮機
(3)(4)に吸入される。このように凝縮器として作
用する利用側熱交換器(8b)で一室が暖房され、蒸発器
として作用する他の利用側熱交換器(8a)(8c)で二室
が冷房される。In the case where two arbitrary rooms are cooled at the same time and one room is heated at the same time, one switching valve (11a) of the heat source side heat exchanger (5) is used.
Is opened and the other switching valve (11b) is closed, and one of the switching valves (16) of the user-side units (7a) (7c) to be cooled.
a) (16b) is closed and the other switching valve (17a) (17c)
When one of the switching valves (16b) of the user-side unit (7b) for heating and opening is opened and the other switching valve (17b) is closed, a part of the refrigerant discharged from the compressors (3) and (4) is opened. Flows through the discharge pipe (9) and the switching valve (11a) sequentially to the heat source side heat exchanger (5), and the remaining refrigerant is heated via the high pressure gas pipe (13). 16b),
It flows to the use side heat exchanger (8b) and is condensed and liquefied by the use side heat exchanger (7b) and the heat source side heat exchanger (5). The refrigerant condensed and liquefied in the heat exchangers (8b) and (5) passes through the liquid pipe (15) and is decompressed by the refrigerant depressurizers (18a) and (18c) of the utilization units (7a) and (7c). , Is evaporated and vaporized in the respective use-side heat exchangers (8a) (8c), and then merged in the low-pressure gas pipe (14) via the switching valves (17a) (17c).
It is sucked into the compressors (3) and (4) through the suction pipe (10) and the gas-liquid separator (6) in order. Thus, one room is heated by the use side heat exchanger (8b) acting as a condenser, and two rooms are cooled by the other use side heat exchangers (8a) (8c) acting as an evaporator.
かかる冷暖房同時運転時、暖房している利用側ユニッ
ト(7b)の運転能力3.5馬力と冷房している利用側ユニ
ット(7a)(7c)の運転能力の合計値6.5馬力とを比較
して、大きい方の6.5馬力に見合う(G点)のように回
転数可変型圧縮機(3)が2.1馬力、定能力型圧縮機
(4)が6馬力で運転されると共にバイパス容量30%の
バイパス弁(22)が閉じ且つバイパス容量20%のバイパ
ス弁(23)が開くことにより、両圧縮機(3)(4)の
合計能力8.1馬力の80%能力(約6.5馬力)が出力されて
いる。During such simultaneous cooling and heating operation, the operating capacity of the heating use side unit (7b) is 3.5 hp and the operating capacity of the cooling use side units (7a) (7c) is 6.5 hp. The variable speed compressor (3) is operated at 2.1 horsepower, the constant capacity compressor (4) is operated at 6 horsepower and the bypass valve has a 30% bypass capacity (point G) as shown in the figure (point G). When the bypass valve (23) with the bypass capacity of 20% is opened and the bypass valve (23) with the bypass capacity of 20% is opened, the 80% capacity (about 6.5 horsepower) of the total capacity of 8.1 hp of both compressors (3) and (4) is output.
第3図及び第4図は本発明の第2実施例を示したもの
で、インバータ装置(2)により運転周波数が変わって
最小能力が1.2馬力で最大能力が4馬力である回転数可
変型圧縮機(3)と、極数変換装置(25)により極数が
2極と4極とに切換わって最小能力が3馬力(4極運
転)で最大能力が6馬力(2極運転)である極数変換型
圧縮機(26)とを並列接続するに共に、冷媒吐出管
(9)と冷媒吸込管(10)とに跨がったバイパス路(2
7)には回転数可変型圧縮機(3)の運転能力が最小
(1.2馬力)になって極数変換型圧縮機(26)が発停及
び極数変換した時に制御器(24)の信号で開閉するバイ
パス容量5%のバイパス弁(28)を接続した点が上記第
1実施例と相違しており、冷房同時運転、暖房同時運
転、冷暖房同時運転の運転動作は上記第1実施例と同様
につき同一符号を付して説明は省略する。上記相違点に
よる制御動作を第4図に基づいて説明すると、出力上昇
時に極数変換型圧縮機(26)が4極(3馬力)で運転を
開始し、又は出力下降時に極数変換型圧縮機(26)が4
極(3馬力)で運転を停止した時(H点)、及び出力上
昇時に極数変換型圧縮機(26)が4極(3馬力)から2
極(6馬力)に切換わり、又は出力下降時に極数変換型
圧縮機(26)が2極(6馬力)から4極(3馬力)に切
換わった時(I点)にバイパス弁(28)が開閉されるこ
とにより、出力は直線的に上昇又は下降し、室温が急激
に変動することはない。FIGS. 3 and 4 show a second embodiment of the present invention, in which the operating frequency is changed by the inverter device (2) and the minimum capacity is 1.2 hp and the maximum capacity is 4 hp. The number of poles is switched between 2 poles and 4 poles by the machine (3) and the pole number conversion device (25), and the minimum capacity is 3 horsepower (4 pole operation) and the maximum capacity is 6 horsepower (2 pole operation) The parallel connection of the pole number conversion type compressor (26) and the bypass passage (2) extending across the refrigerant discharge pipe (9) and the refrigerant suction pipe (10) are performed.
7) The signal of the controller (24) when the operating speed of the variable speed compressor (3) becomes the minimum (1.2 hp) and the pole conversion type compressor (26) starts and stops and the pole number is changed The fifth embodiment is different from the first embodiment in that a bypass valve (28) having a bypass capacity of 5%, which is opened and closed by a switch, is connected to the first embodiment. Similarly, the same reference numerals are given and the description is omitted. The control operation based on the above difference will be described with reference to FIG. 4. The pole conversion type compressor (26) starts operation with four poles (3 hp) at the time of output increase, or the pole number conversion type compressor at the time of output decrease. Machine (26) is 4
When the operation is stopped at the poles (3 hp) (point H), and when the output rises, the pole number conversion type compressor (26) changes from 4 poles (3 hp) to 2
When the pole number conversion type compressor (26) switches from 2 poles (6 hp) to 4 poles (3 hp) (point I) when the output is switched to pole (6 hp) or the output drops, the bypass valve (28 ) Is opened and closed, the output rises or falls linearly, and the room temperature does not fluctuate rapidly.
第5図及び第6図は本発明の第3実施例を示したもの
で、インバータ装置(2)により運転周波数が変わって
最小能力が1.2馬力で最大能力が4馬力である回転可変
型圧縮機(3)と、能力セーブ装置(29)により30%容
量のセーブ弁(30)が開閉して最小能力が4.2馬力で最
大能力が6馬力である能力セーブ型圧縮機(31)とを並
列接続すると共に、冷媒吐出管(9)と冷媒吸込管(1
0)とに跨がったバイパス路(27)には回転数可変型圧
縮機(3)の運転能力が最小(1.2馬力)になって能力
セーブ型圧縮機(31)が発停した時に制御器(24)の信
号で開閉するバイパス容量25%のバイパス弁(32)を接
続した点が上記第1実施例と相違しており、冷房同時運
転、暖房同時運転、冷暖房同時運転の運転動作は上記第
1実施例と同様につき同一符号を付して説明は省略す
る。上記相違点による制御動作を第6図に基づいて説明
すると、出力上昇時に能力セーブ型圧縮機(31)が4.2
馬力で運転を開始し、又は出力下降時に能力セーブ型圧
縮機(31)が4.2馬力で運転を停止した時(J点)にバ
イパス弁(32)が開閉されることにより、出力は直線的
に上昇又は下降し、室温が急激に変動することはない。FIGS. 5 and 6 show a third embodiment of the present invention, in which the operating frequency is changed by an inverter device (2) and the minimum capacity is 1.2 horsepower and the maximum capacity is 4 horsepower. (3) A capacity saving compressor (31) with a minimum capacity of 4.2 hp and a maximum capacity of 6 hp with the capacity saving device (29) opening and closing the 30% capacity save valve (30) in parallel And a refrigerant discharge pipe (9) and a refrigerant suction pipe (1
Control when the operating capacity of the variable speed compressor (3) becomes minimum (1.2 horsepower) and the capacity saving type compressor (31) starts and stops on the bypass path (27) straddling 0) Is different from the first embodiment in that a bypass valve (32) having a bypass capacity of 25%, which is opened / closed by a signal from a heater (24), is connected. The same reference numerals are given to the same components as in the first embodiment, and the description will be omitted. The control operation based on the above difference will be described with reference to FIG. 6.
When the operation is started at horsepower or the capacity saving type compressor (31) stops operating at 4.2 horsepower when the output drops (J point), the bypass valve (32) is opened and closed, so that the output is linear. It rises or falls and the room temperature does not fluctuate rapidly.
第7図及び第8図は本発明の第4実施例を示したもの
で、インバータ装置(2)により運転周波数が変わって
最小能力が1.2馬力で最大能力が4馬力である回転数可
変型圧縮機(3)と、極数変換装置(25)により極数が
2極と4極とに切換わって最小能力が3馬力(4極運
転)で最大能力が6馬力(2極運転)である極数変換型
圧縮機(26)と、定格能力が10馬力である定能力型圧縮
機(33)とを並列接続すると共に、冷媒吐出管(9)と
冷媒吸込管(10)とに跨がったバイパス路(27)には回
転数可変型圧縮機(3)の運転能力が最小(1.2馬力)
になって極数変換型圧縮機(26)が発停及び極数変換し
た時、又は定能力型圧縮機(33)が発停した時に制御器
(24)の信号で開閉するバイパス容量12%のバイパス弁
(34)を接続した点が上記第1実施例と相違しており、
冷房同時運転、暖房同時運転、冷暖房同時運転の運転動
作は上記第1実施例と同様につき同一符号を付して説明
は省略する。上記相違点による制御動作を第8図に基づ
いて説明すると、出力上昇時に極数変換型圧縮機(26)
が4極(3馬力)で運転を開始し、又は出力下降時に極
数変換型圧縮機(26)が4極(3馬力)で運転を停止し
た時(K点)、及び出力上昇時に極数変換型圧縮機(2
6)が4極(3馬力)から2極(6馬力)に切換わり、
又は出力下降時に極数変換型圧縮機(26)が2極(6馬
力)から4極(3馬力)に切換わった時(L点)、並び
に出力上昇時に定能力型圧縮機(33)が運転を開始し、
又は出力下降時に運転を停止した時(M点)にバイパス
弁(34)が開閉されることにより、出力は直線的に上昇
又は下降し、室温が急激に変動することはない。FIGS. 7 and 8 show a fourth embodiment of the present invention, in which the operating frequency is changed by the inverter device (2), and the variable speed compression type has a minimum capacity of 1.2 horsepower and a maximum capacity of 4 horsepower. The number of poles is switched between 2 poles and 4 poles by the machine (3) and the pole number conversion device (25), and the minimum capacity is 3 horsepower (4 pole operation) and the maximum capacity is 6 horsepower (2 pole operation) A pole number conversion type compressor (26) and a constant capacity type compressor (33) having a rated capacity of 10 horsepower are connected in parallel, and a straddle between the refrigerant discharge pipe (9) and the refrigerant suction pipe (10) is provided. Operating speed of the variable speed compressor (3) is minimum (1.2 hp) in the bypass path (27)
12% bypass capacity that is opened and closed by the signal of the controller (24) when the pole number conversion type compressor (26) starts and stops and the number of poles changes, or when the constant capacity type compressor (33) starts and stops Is different from the first embodiment in that the bypass valve (34) of
The operating operations of the simultaneous cooling operation, the simultaneous heating operation, and the simultaneous cooling / heating operation are the same as those in the first embodiment, and are denoted by the same reference numerals, and description thereof is omitted. The control operation based on the above difference will be described with reference to FIG. 8. When the output increases, the pole number conversion type compressor (26)
Starts operation with 4 poles (3 hp), or when the pole number conversion type compressor (26) stops operation with 4 poles (3 hp) when the output drops (point K) and when the output rises Conversion type compressor (2
6) switches from 4 poles (3 hp) to 2 poles (6 hp)
Or, when the pole number conversion type compressor (26) switches from 2 poles (6 horsepower) to 4 poles (3 horsepower) at the time of output decrease (point L), and at the time of output increase, the constant capacity compressor (33) Start driving,
Alternatively, when the operation is stopped (point M) when the output is lowered, the bypass valve (34) is opened and closed, so that the output rises or falls linearly, and the room temperature does not fluctuate rapidly.
尚、上記各実施例ではユニット間配管(12)を高圧ガ
ス管(13)、低圧ガス圧(14)、液管(15)との3本の
冷暖管で構成したので、単一機能の熱源側熱交換器を用
いた簡易な回路構成のものとで、複数台の利用側ユニッ
トの同時冷房運転及び同時暖房運転はもとより冷暖房時
運転を任意の利用側ユニットで自由に選択して行なうこ
とができると共に、冷暖房同時運転時には凝縮器として
利用する利用側熱交換器と、蒸発器として作用する利用
側熱交換とがシリーズ接続されるため熱回収による効率
の良い運転を行なうことができるが、本発明はかかる冷
房回路のみに限定されるものではない。In each of the above embodiments, the unit-to-unit pipe (12) is composed of three cooling / heating pipes: a high-pressure gas pipe (13), a low-pressure gas pressure (14), and a liquid pipe (15). With a simple circuit configuration using a side heat exchanger, it is possible to freely select the cooling / heating operation as well as the simultaneous cooling operation and simultaneous heating operation of a plurality of use side units with any user side unit. At the same time, the simultaneous use of air conditioning and heating allows the use-side heat exchanger used as a condenser and the use-side heat exchange acting as an evaporator to be connected in series, thus enabling efficient operation by heat recovery. The invention is not limited to only such a cooling circuit.
(ト)発明の効果 本発明によれば、回転数可変型圧縮器機の最大能力を
定能力型圧縮機の定格能力、極数変換型圧縮機の最大能
力、能力セーブ型圧縮機の最大力の何れよりも小さく設
定したため、合計出力の下限値が下がって出力制御範囲
が広がるため回転数可変型圧縮機が発停する頻度が減り
室温変動の少ない快適な空調ができると共に運転効率を
上げることができ、且つ、圧縮機の能力が異なる為、圧
縮機間のオイルバランスを良好にすることができる。(G) Effect of the Invention According to the present invention, the maximum capacity of the variable speed compressor is determined by the rated capacity of the constant capacity compressor, the maximum capacity of the pole number conversion type compressor, and the maximum capacity of the capacity saving type compressor. Since the lower limit value of the total output is set lower, the output control range is widened and the frequency of the variable speed compressor starts and stops less. Since the compressors have different capacities, the oil balance between the compressors can be improved.
併せて、回転数可変型圧縮機の運転能力が最小になっ
て定能力型圧縮機、極数変換型圧縮機、能力セーブ型圧
縮機が発停もしくは極数変換型圧縮機が極数変換した
時、バイパス弁が開閉されるため小容量のインバータ装
置で小出力から大出力まで比例制御でき、出力が急激に
変動するのを防止することができる。At the same time, the operating capacity of the variable speed compressor was minimized, and the constant capacity compressor, the pole number conversion type compressor, and the capacity saving type compressor started or stopped, or the pole number conversion type compressor changed the pole number. At this time, since the bypass valve is opened and closed, proportional control from a small output to a large output can be performed with a small-capacity inverter device, and a rapid change in the output can be prevented.
第1図は本発明の第1実施例を示す冷凍装置の冷媒回路
図、第2図は同実施例における圧縮機とバイパス弁の制
御動作を示す説明図、第3図は本発明の第2実施例を示
す冷凍装置の冷媒回路図、第4図は同実施例における圧
縮機とバイパス弁の制御動作を示す説明図、第5図は本
発明の第3実施例を示す冷凍装置の冷媒回路図、第6図
は同実施例における圧縮機とバイパス弁の制御動作を示
す説明図、第7図は本発明の第4実施例を示す冷凍装置
の冷媒回路図、第8図は同実施例における圧縮機とバイ
パス弁の制御動作を示す説明図である。 (3)……回転数可変型圧縮機、(4)(33)……定能
力型圧縮機、(9)……冷媒吐出管、(10)……冷媒吸
込管、(20)(21)(27)……バイパス路、(22)(2
3)(28)(32)(34)……バイパス弁、(26)……極
数変換型圧縮機、(31)……能力セーブ型圧縮機。FIG. 1 is a refrigerant circuit diagram of a refrigeration apparatus showing a first embodiment of the present invention, FIG. 2 is an explanatory diagram showing a control operation of a compressor and a bypass valve in the embodiment, and FIG. 3 is a second embodiment of the present invention. Fig. 4 is a refrigerant circuit diagram of a refrigeration apparatus showing an embodiment, Fig. 4 is an explanatory diagram showing control operations of a compressor and a bypass valve in the embodiment, and Fig. 5 is a refrigerant circuit of a refrigeration apparatus showing a third embodiment of the present invention. FIG. 6, FIG. 6 is an explanatory view showing a control operation of the compressor and the bypass valve in the embodiment, FIG. 7 is a refrigerant circuit diagram of a refrigerating apparatus showing a fourth embodiment of the present invention, and FIG. It is explanatory drawing which shows the control operation of a compressor and a bypass valve in FIG. (3) ... variable speed compressor, (4) (33) ... constant capacity compressor, (9) ... refrigerant discharge pipe, (10) ... refrigerant suction pipe, (20) (21) (27) ...... Bypass road, (22) (2
3) (28) (32) (34) ... bypass valve, (26) ... pole number conversion type compressor, (31) ... capacity saving type compressor.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 伊崎 泰久 大阪府守口市京阪本通2丁目18番地 三 洋電機株式会社内 (56)参考文献 特開 昭63−49667(JP,A) (58)調査した分野(Int.Cl.6,DB名) F25B 1/00 361────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Yasuhisa Izaki 2--18 Keihanhondori, Moriguchi-shi, Osaka Sanyo Electric Co., Ltd. (56) References JP-A-63-49667 (JP, A) (58) Field surveyed (Int. Cl. 6 , DB name) F25B 1/00 361
Claims (3)
並列に接続し、この両圧縮機と凝縮器と減圧器と蒸発器
とを順次接続して冷媒回路を形成した冷凍装置におい
て、回転数可変型圧縮機の最大能力を定能力型圧縮機の
定格能力よりも小さく設定する一方、この両圧縮機の冷
媒吐出管と冷媒吸込管とに跨ってバイパス路を設け、こ
のバイパス路には回転数可変型圧縮機の運転能力が最小
になって定能力型圧縮機が発停した時に開閉するバイパ
ス弁を設けたことを特徴とする冷凍装置。1. A refrigeration system in which a variable speed compressor and a constant capacity compressor are connected in parallel, and the compressor, a condenser, a decompressor, and an evaporator are sequentially connected to form a refrigerant circuit. In the above, while the maximum capacity of the variable speed compressor is set smaller than the rated capacity of the constant capacity compressor, a bypass path is provided across the refrigerant discharge pipe and the refrigerant suction pipe of both compressors, A refrigeration system characterized in that a bypass valve is provided on the road to open and close when the operation capacity of the variable speed compressor is minimized and the constant capacity compressor is started and stopped.
を並列に接続し、この両圧縮機と凝縮器と減圧器と蒸発
器とを順次接続して冷媒回路を形成した冷凍装置におい
て、回転数可変型圧縮機の最大能力を極数変換型圧縮機
の最大能力よりも小さく設定する一方、この両圧縮機の
冷媒吐出管と冷媒吸込管とに跨ってバイパス路を設け、
このバイパス路には回転数可変型圧縮機の運転能力が最
小になって極数変換型圧縮機が発停及び極数変換した時
に開閉するバイパス弁を設けたことを特徴とする冷凍装
置。2. A refrigeration system in which a variable speed compressor and a pole number conversion compressor are connected in parallel, and the two compressors, the condenser, the decompressor, and the evaporator are sequentially connected to form a refrigerant circuit. In the device, while setting the maximum capacity of the variable speed variable type compressor smaller than the maximum capacity of the pole number conversion type compressor, a bypass path is provided across the refrigerant discharge pipe and the refrigerant suction pipe of both compressors,
A refrigeration system comprising a bypass valve provided in the bypass passage to open and close when the operation number of the variable speed compressor is minimized and the pole number conversion type compressor starts and stops and the number of poles is changed.
部を吸込側へ戻す能力カセーブ型圧縮機とを並列に接続
し、これら圧縮機と凝縮器と減圧器と蒸発器とを順次接
続して冷媒回路を形成した冷凍装置において、回転数可
変型圧縮機の最大能力を能力セーブ型圧縮機の最大能力
よりも小さく設定する一方、この両圧縮機の冷媒吐出管
と冷媒吸込管とに跨ってバイパス路を設け、このバイパ
ス路には回転数可変型圧縮機の運転能力が最小になって
能力セーブ型圧縮機が発停した時に開閉するバイパス弁
を設けたことを特徴とする冷凍装置。3. A variable speed compressor and a capacity saving compressor capable of returning a part of refrigerant during compression to a suction side are connected in parallel, and these compressor, condenser, decompressor and evaporator are connected. In a refrigeration system in which refrigerant circuits are sequentially connected to form a refrigerant circuit, the maximum capacity of the variable-speed compressor is set smaller than the maximum capacity of the capacity-saving compressor, while the refrigerant discharge pipe and the refrigerant suction pipe of both compressors are set. And a bypass valve that opens and closes when the operating capacity of the variable speed compressor is minimized and the capacity saving type compressor starts and stops. Refrigeration equipment.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1175375A JP2810422B2 (en) | 1989-07-05 | 1989-07-05 | Refrigeration equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1175375A JP2810422B2 (en) | 1989-07-05 | 1989-07-05 | Refrigeration equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0339866A JPH0339866A (en) | 1991-02-20 |
JP2810422B2 true JP2810422B2 (en) | 1998-10-15 |
Family
ID=15995004
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1175375A Expired - Lifetime JP2810422B2 (en) | 1989-07-05 | 1989-07-05 | Refrigeration equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2810422B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW299393B (en) * | 1995-03-09 | 1997-03-01 | Sanyo Electric Co | |
AU2712401A (en) * | 2000-06-07 | 2001-12-17 | Samsung Electronics Co., Ltd. | Air conditioner control system and control method thereof |
KR100539763B1 (en) * | 2004-04-22 | 2006-01-10 | 엘지전자 주식회사 | Pressure balance apparatus for compressor of airconditioner |
KR100556801B1 (en) * | 2004-04-22 | 2006-03-10 | 엘지전자 주식회사 | Pressure balance apparatus for compressor of airconditioner |
-
1989
- 1989-07-05 JP JP1175375A patent/JP2810422B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH0339866A (en) | 1991-02-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6874326B2 (en) | Air conditioning system with two compressors and method for operating the same | |
WO2007063883A1 (en) | Freezing device | |
JPH07234038A (en) | Multiroom type cooling-heating equipment and operating method thereof | |
JP2004044921A (en) | Refrigerating device | |
WO2006013938A1 (en) | Freezing apparatus | |
JPWO2003001129A1 (en) | Refrigeration equipment | |
EP2450647A2 (en) | Air conditioner | |
AU2006258762A1 (en) | Refrigeration system | |
JP3263579B2 (en) | Multi-room type air conditioner and heating method | |
US7908878B2 (en) | Refrigerating apparatus | |
WO2004005811A1 (en) | Refrigeration equipment | |
JP2001235245A (en) | Freezer | |
JP2810422B2 (en) | Refrigeration equipment | |
JP3161347B2 (en) | Refrigeration equipment | |
JP2007155143A (en) | Refrigerating device | |
JPH11270918A (en) | Refrigerating device | |
JP2004278824A (en) | Refrigeration cycle device and air conditioner | |
JP4277354B2 (en) | Air conditioner | |
JP2760500B2 (en) | Multi-room air conditioner | |
JP2001349629A (en) | Heat pump device | |
JP2000018685A (en) | Multi-room type air conditioner | |
JP2777459B2 (en) | Air conditioner | |
JP2730398B2 (en) | Multi-room air conditioning system | |
JP2664437B2 (en) | Refrigeration equipment | |
JP2698175B2 (en) | Air conditioner |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080731 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080731 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090731 Year of fee payment: 11 |
|
EXPY | Cancellation because of completion of term |