JPH0522145B2 - - Google Patents
Info
- Publication number
- JPH0522145B2 JPH0522145B2 JP23206884A JP23206884A JPH0522145B2 JP H0522145 B2 JPH0522145 B2 JP H0522145B2 JP 23206884 A JP23206884 A JP 23206884A JP 23206884 A JP23206884 A JP 23206884A JP H0522145 B2 JPH0522145 B2 JP H0522145B2
- Authority
- JP
- Japan
- Prior art keywords
- valve
- capacity
- main pipe
- cooling
- control device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000001816 cooling Methods 0.000 claims description 63
- 238000010438 heat treatment Methods 0.000 claims description 54
- 238000001704 evaporation Methods 0.000 claims description 24
- 230000008020 evaporation Effects 0.000 claims description 15
- 239000003507 refrigerant Substances 0.000 claims description 15
- 239000007788 liquid Substances 0.000 claims description 11
- 239000003638 chemical reducing agent Substances 0.000 claims description 7
- 230000005494 condensation Effects 0.000 claims description 4
- 238000009833 condensation Methods 0.000 claims description 4
- 230000004044 response Effects 0.000 claims description 3
- 241001123946 Gaga Species 0.000 claims 1
- 238000010586 diagram Methods 0.000 description 7
- 238000011084 recovery Methods 0.000 description 7
- 238000004378 air conditioning Methods 0.000 description 6
- 230000007423 decrease Effects 0.000 description 6
- 230000001276 controlling effect Effects 0.000 description 5
- 230000007812 deficiency Effects 0.000 description 4
- 230000008859 change Effects 0.000 description 3
- 238000012423 maintenance Methods 0.000 description 3
- 230000003213 activating effect Effects 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000005057 refrigeration Methods 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 229930091051 Arenine Natural products 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 229920000092 linear low density polyethylene Polymers 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
Landscapes
- Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
Description
(産業上の利用分野)
本発明は例えば複数基の室内側ユニツトを1基
の室外側ユニツトに対し個々に冷房あるいは暖房
の運転選択が可能に接続せしめて、室外側ユニツ
トで総合負荷に対応した的確な能力制御が行える
空気調和装置に関する。
(従来の技術)
従来、1台の室外側ユニツトに対して複数台の
室内側ユニツトを並列的に接続し、少なくとも1
台の室内側ユニツトを冷房運転しているときに残
りの少なくとも1台の室内側ユニツトを暖房運転
可能となし、しかもこの運転に際して冷房のため
の放熱を暖房用熱源にそのまま利用し得る所謂、
熱回収が可能な空気調和装置は特開昭55−12372
号公報によつて公知である。
この公知の装置は、第9図に略示する如く、室
外側ユニツトAには、圧縮機1、熱源側コイル
2、吐出ガス用開閉弁3D、吸入ガス用開閉弁3
S、液側主管5、高圧ガス側主管6、低圧ガス側
主管7、暖房用膨脹弁30を備え、一方、各室内
側ユニツトには、冷房用膨脹弁8、利用側コイル
9、開閉弁13A〜13Cが夫々介設された高圧
ガス側分枝管11、開閉弁14A〜14Cが夫々
介設された低圧ガス側分枝管12を夫々備えた回
路構成である。
この空気調和装置では冷房を行おうとする室内
側ユニツトIA,IBでは開閉弁14A,14Bを
開放させ、一方、暖房を行おうとする室内側ユニ
ツトICでは開閉弁13Cを開放させればよいが、
これに対して室外側ユニツトAでは冷房負荷と暖
房負荷とのいずれが大であるかの運転状態によつ
て冷房負荷が大きい場合は熱源側コイル2を凝縮
器として作用させねばならないので開閉弁3Dを
開放させ、逆に暖房負荷が大きい場合は熱源側コ
イル2を蒸発器として作用させねばならないので
開閉弁3Sを開放させる操作が必要である。
(発明が解決しようとする課題)
しかしながら、上記操作の具体的手段について
は前記公報に記載がないので不明であるが、普通
は、各室内側ユニツトIA,IB,ICの冷暖信号を
判断する必要があることから、この各室内側ユニ
ツトIA,IB,ICの冷暖信号を室外側ユニツトA
に送る連絡配線が各室内側ユニツトIA,IB,IC
毎に必要になるなどの点から装置費の高騰は避け
られなかつた。
本発明は上述の如き従来の空気調和装置のもつ
問題点に鑑み、室外側ユニツトの側、即ち、熱源
側において総合空調負荷の状態を的確に認識する
ことを可能ならしめることによつて、室内側、即
ち利用側において任意に冷暖運転操作が成されて
も、かかる利用側の冷暖運転情報を必要とせず、
利用側での運転の有無の情報だけで均衡のとれた
熱回収運転の制御を自動的に行わせ、多接続形空
気調和装置における熱回収運転を自動的に、かつ
省エネルギーならびに高運転経済性の下に実現せ
しめることを主要な目的とする。
(課題を解決するための手段)
上記目的を達成する本発明は実施例を示す第1
図、第2図によつて明示してなる如く、容量制御
が可能な圧縮機1と熱源側コイル2とを備え、前
記熱源側コイル2の一方の端部を、第1切換弁装
置3を持つ配管3Pを介して前記圧縮機1の吐出
側と吸入側とに切換運転可能に接続し、前記熱源
側コイル2の他方の端部を、冷媒流量制御装置4
を介して液側主管5に接続するとともに、前記圧
縮機1の吐出側に高圧ガス側主管6を、吸入側に
低圧ガス側主管7をそれぞれ接続して構成する一
方、冷房用減圧器8と利用側コイル9とを直列に
接続した直列回路を複数個形成し、各直列回路の
冷房用減圧器8側を、前記液側主管5に、第1補
助管5A,5A,5Aを介して接続するととも
に、前記利用側コイル9側を前記高圧ガス側主管
6と低圧ガス側主管7とに、これら高圧ガス側主
管6と低圧ガス側主管7とに切換連通可能に接続
する第2切換弁装置10A,10B,10Cを持
つ第2補助管10P,10P,10Pを介して接
続し、前記圧縮機1の容量を制御する容量制御装
置19と前記冷媒流量制御装置4の弁開度を制御
する弁開度制御装置20と前記第1切換弁装置3
の弁切換を制御する弁切換制御装置21とを備え
た制御装置17と、凝縮圧力又は凝縮温度を検出
する凝縮側検出器SHと、蒸発圧力又は蒸発温度を
検出する蒸発側検出器SLと、凝縮圧力又は凝縮温
度及び蒸発圧力又は蒸発温度がそれぞれ制御目標
として設定された所定範囲内の値になるように、
前記凝縮側検出器SH及び前記蒸発側検出器SLの信
号を受けて前記制御装置17を作動せしめる制御
指令手段18とを設けて、前記利用側コイル9…
のそれぞれを個別に冷房用蒸発器又は暖房用凝縮
器として作動可能とした空気調和装置である。
(作用)
本発明は、熱源側、例えば室外側ユニツトA側
において凝縮圧力(温度)及び蒸発圧力(温度)
を検出し、凝縮圧力(温度)が設定した条件範囲
内であれば暖房負荷に対し適正な能力であると判
断し、それよりも低い値であれば能力が不足であ
り、また、高い値であれば能力が過剰であると判
断し、一方、蒸発圧力(温度)が設定した条件範
囲内であれば冷房負荷に対し適正な能力であると
判断し、それよりも低い値であれば過剰能力であ
り、また、高い値であれば能力が不足であると判
断することによつて負荷状態を適格に把握でき、
このときの負荷に対応させて熱源側コイル2を現
状の凝縮器あるいは蒸発器として作用させながら
圧縮機1の容量調節を行つたり、また、前記冷媒
流量制御弁4を弁開度調節して熱源側コイル2の
熱交換能力の制御を行つたり、さらに第1切換弁
装置3を操作して熱源側コイル2を蒸発切換弁装
置あるいは凝縮切換弁装置として作用させるよう
に転換させることによつて負荷に応じた制御を自
動的に行うことが可能であり、その結果、擾乱を
生じなくてしかも効率的な熱回収空調運転が実現
されるものである。
(実施例 1)
以下、本発明の第1実施例を添付図面にもとづ
いて説明する。
第1図においてAは室外ユニツト、IA,IB,
IC各室内ユニツトで、これら室内ユニツトIA,
IB,ICはは室外ユニツトAに液側主管5、高圧
ガス側主管6及び低圧ガス側主管7を介して接続
させている。
室外ユニツトAは容量制御が可能な圧縮機1、
例えば周波数変換器などの容量制御装置19(第
2図参照)により駆動される電動機を軸直結した
圧縮機1と、熱源側コイル2と、冷媒流量制御装
置4、例えば電気作動形の冷媒流量制御弁4と、
第1切換弁装置3と、受液器16とを備えてい
る。
そして、上記熱源側コイル2の一方の端部は第
1切換弁装置3もつ配管3Pを介して前記圧縮機
1と接続されると共に、第1切換弁装置3は2個
の開閉弁3D,3Sを有していて、圧縮機1の吐
出側を開閉弁3Dの開放により熱源側コイル2
に、一方、開閉弁3Sの開放により吸入側を熱源
側コイル2に夫々交互に切換えて連通し得るよう
形成している。
一方、前記熱源側コイル2の他方の端部はパル
スモータ、電磁プランジヤーなどの電気機器を駆
動要素に有して入力電気量に対応した弁開度の調
節が可能な膨脹弁で電気制御により弁開度の調節
を容易に行う冷媒流量制御装置4(以下単に制御
弁と略記する。)を介して液側主管5に接続され
ている。
また、前記圧縮機1の吐出側からは前記高圧ガ
ス側主管6を、また吸入側からは前記低圧ガス側
主管7を夫々延設し接続している。
なお、26は熱源側コイル2用のフアンであ
る。
次に前記室内側ユニツトIA〜ICはいずれも冷
房用減圧器8と利用側コイル9とを直列接続して
有し、また前記減圧器8に逆止弁27を並列接続
した回路構成であつて、冷房用減圧器8の流入側
を前記液側主管5に夫々第1補助管5A,5A,
5Aを介して接続すると共に利用側コイル9の冷
房運転時に出口となる一端部を、前記高圧ガス側
主管6と低圧ガス側主管7とに、高圧ガス側の開
閉弁13A〜13C及び低圧ガス側の開閉弁14
A〜14Cの組み合わせによりそれら両ガス側主
管6,7に切換連通可能に接続する第2切換弁装
置10A,10B,10Cを備えた第2補助管1
0P,10P,10Pを介して接続している。
なお、15は利用側コイル9用のフアンであ
る。
叙上の回路構成になる空気調和装置は、室内側
ユニツトIA〜ICで冷房運転を行いたい場合は、
開閉弁14A〜14Cを開放し開閉弁13A〜1
3Cを閉止するものであり、一方、暖房運転を行
いたい場合は、開閉弁13A〜13Cを開放し開
閉弁14A〜14Cを閉止するものである。
一方、室外側ユニツトAは室内側の総合負荷が
冷房負荷であるか又は暖房負荷であるかによつて
熱源側コイル2を凝縮器か又は蒸発器として作用
せしめる必要があり、前者の場合は開閉弁3Dを
開放、開閉弁3Sを閉止すればよく、また後者の
場合は逆に開閉弁3Sを開放、開閉弁3Dを閉止
すればよい。
また、圧縮機1の容量制御は第2図に示すよう
に前記容量制御装置19によつて行い、一方、熱
源側コイル2に流れる冷媒量の制御は前記制御弁
4を作動せしめる弁開度制御装置20によつて行
うものであつて、これら両装置19,20と前記
第1切換弁装置3の弁切換えを行わせる切換制御
器21とで制御装置17を形成している。
前述したように室内側ユニツトIA〜ICでは任
意に冷房あるいは暖房に運転切換えが可能であつ
て、冷房、暖房の同時運転を行う場合は冷房負荷
と暖房負荷との差に見合つた凝縮能力又は蒸発能
力を室外側の熱源側コイル2に担持させることに
よつて排熱を効率よく利用した熱回収運転が可能
となる。
この場合の熱源側コイル2の運転モードを冷房
負荷qEと暖房負荷qCとの関係ならびに制御弁4
の開度、開閉弁3D,3Sの開閉状態J K関係
とによつて示したのが第3図であつて、該第3図
中、E方向、C方向とは蒸発器として作用する方
向、凝縮器として作用する方向を意味している。
第3図から明らかなように、熱源側コイル2を
凝縮器として作用させかつ能力制御したい場合は
開閉弁3Dを開放、開閉弁3Sを閉止させて制御
弁4の開度を調節すればよく、逆に蒸発器として
作用させ、かつ能力制御したい場合は開閉弁3S
を開放、開閉弁3Dを閉止させて制御弁4の開度
を調節すればよい。
さらに圧縮機1の容量制御を併用することによ
つて空気調和負荷に見合つた過不足の無い冷凍運
転が可能であり、この冷凍運転の趣旨に叶つた制
御指令を前記制御装置17に与えるための制御指
令手段18を図面に基づいて以下説明する。
上記制御指令手段18は第2図に示し、前述し
た如く、暖房能力判定回路22、冷房能力判定回
路23、容量指令制御回路24及び熱源側コイル
能力制御指令回路25の4つの回路により構成さ
れており、各回路についての機能は以下説明する
如くである。
暖房能力判定回路22は、例えば高圧ガス側主
管6の圧力を検出する凝縮側検出器としての圧力
センサSHを入力信号要素に有し、該センサSHに
よつて検出した高圧圧力が設定した条件の範囲
内、即ち圧力帯領域内であれば暖房能力に過不足
がないとして適正暖房能力信号を発せしめ、一
方、圧力帯域よりも低い能力不足であるとして不
足暖房能力信号を発せしめ、更に圧力帯域よりも
高いと能力に余裕があるとして過剰暖房能力信号
を発せしめるように形成している。
なお、前記センサSHは液管5の圧力を検出し
てもよく、また圧力に代えて凝縮温度を検知して
もよい。この凝縮温度の場合には過冷却がついた
状態では正確に検出できない場合があるが、ある
程度の制御は可能である。
冷房能力判定回路23は例えば低圧ガス側主管
7の圧力を検出する蒸発側検出器としての圧力セ
ンサSLを入力信号要素に有し、該センサSLによ
つて検出した低圧圧力が設定した条件の範囲内す
なわち圧力帯域内であれば冷房能力に過不足がな
いとして適正冷房能力信号を発せしめ、一方、圧
力帯域よりも低いと能力に余裕があるからとして
過剰冷房能力を発せしめ、さらに圧力帯域よりも
高いと能力不足であるとして不足冷房能力信号を
発せしめるように形成している。なお、前記セン
サSLの圧力検知に代えて蒸発温度を検出するよ
うにしてもよいが、過熱度がつく場合には正確に
検知出来ない場合があるが、ある程度の制御は可
能である。
このように両判定回路22,23から各々3種
類の信号が発せられることから信号の組み合わせ
としては9種類になり、従つて下記表のように制
御動作モードを決めて容量制御指令回路24、熱
源側コイル能力制御指令回路25を作動させるよ
うにすれば、円滑で安定した空気調和運転が行え
る。
(Industrial Application Field) The present invention allows, for example, a plurality of indoor units to be connected to one outdoor unit so that cooling or heating operation can be selected individually, so that the outdoor unit can handle the total load. The present invention relates to an air conditioner that can perform accurate capacity control. (Prior art) Conventionally, a plurality of indoor units are connected in parallel to one outdoor unit, and at least one
When one indoor unit is in cooling operation, at least one remaining indoor unit is enabled for heating operation, and during this operation, the heat radiated for cooling can be directly used as a heat source for heating.
An air conditioner that can recover heat is disclosed in Japanese Patent Application Laid-Open No. 55-12372.
It is known from the publication no. In this known device, as schematically shown in FIG. 9, an outdoor unit A includes a compressor 1, a heat source side coil 2, a discharge gas on-off valve 3D, and an intake gas on-off valve 3.
S, a liquid side main pipe 5, a high pressure gas side main pipe 6, a low pressure gas side main pipe 7, and a heating expansion valve 30, while each indoor unit has a cooling expansion valve 8, a usage side coil 9, and an on-off valve 13A. The circuit configuration includes a high-pressure gas side branch pipe 11 having valves 14A to 13C interposed therein, and a low-pressure gas side branch pipe 12 having on-off valves 14A to 14C interposed, respectively. In this air conditioner, the on-off valves 14A and 14B are opened in the indoor units IA and IB which are intended for cooling, and the on-off valve 13C is opened in the indoor unit IC which is intended to be heated.
On the other hand, in the outdoor unit A, when the cooling load is large depending on the operating state, depending on whether the cooling load or the heating load is large, the heat source side coil 2 must act as a condenser, so the on-off valve 3D is On the other hand, when the heating load is large, the heat source side coil 2 must act as an evaporator, so it is necessary to open the on-off valve 3S. (Problem to be Solved by the Invention) However, the specific means for the above operation is unknown as it is not described in the above publication, but normally it is necessary to judge the cooling/heating signals of each indoor unit IA, IB, IC. Since there are
The connection wiring sent to each indoor unit IA, IB, IC
A rise in the cost of equipment was unavoidable due to the fact that it was required for each use. In view of the problems of the conventional air conditioner as described above, the present invention provides an indoor air conditioner by making it possible to accurately recognize the state of the overall air conditioning load on the outdoor unit side, that is, on the heat source side. Even if the cooling/heating operation is arbitrarily performed on the inside, that is, on the user side, the cooling/heating operation information from the user side is not required.
Automatically controls a balanced heat recovery operation based only on the information on whether or not the user is operating, and automatically controls the heat recovery operation in a multi-connection air conditioner while saving energy and achieving high operating economy. The main purpose is to realize the following. (Means for Solving the Problems) The present invention that achieves the above objects is described in the first embodiment.
As clearly shown in FIGS. 2 and 2, the compressor 1 is equipped with a capacity-controllable compressor 1 and a heat source coil 2, and one end of the heat source coil 2 is connected to a first switching valve device 3. The other end of the heat source side coil 2 is connected to the refrigerant flow rate control device 4 through a piping 3P that is connected to the discharge side and the suction side of the compressor 1 so as to be switchable.
is connected to the liquid side main pipe 5 through the compressor 1, and a high pressure gas side main pipe 6 is connected to the discharge side of the compressor 1, and a low pressure gas side main pipe 7 is connected to the suction side of the compressor 1. A plurality of series circuits are formed by connecting the use side coil 9 in series, and the cooling pressure reducer 8 side of each series circuit is connected to the liquid side main pipe 5 via the first auxiliary pipes 5A, 5A, 5A. At the same time, a second switching valve device connects the utilization side coil 9 side to the high pressure gas side main pipe 6 and the low pressure gas side main pipe 7 so as to be able to switch and communicate with the high pressure gas side main pipe 6 and the low pressure gas side main pipe 7. A capacity control device 19 that controls the capacity of the compressor 1 and a valve that controls the valve opening of the refrigerant flow rate control device 4 are connected via second auxiliary pipes 10P, 10P, and 10P having 10A, 10B, and 10C. Opening degree control device 20 and the first switching valve device 3
a control device 17 comprising a valve switching control device 21 for controlling valve switching, a condensing side detector S H for detecting condensing pressure or condensing temperature, and an evaporating side detector S L for detecting evaporating pressure or evaporating temperature. and, so that the condensing pressure or condensing temperature and the evaporating pressure or evaporating temperature each become a value within a predetermined range set as a control target,
A control command means 18 for operating the control device 17 in response to signals from the condensation side detector S H and the evaporation side detector S L is provided, and the use side coil 9...
This is an air conditioner in which each of these can be operated individually as a cooling evaporator or a heating condenser. (Function) The present invention is capable of controlling condensing pressure (temperature) and evaporating pressure (temperature) on the heat source side, for example on the outdoor unit A side.
If the condensing pressure (temperature) is within the set condition range, it is determined that the capacity is appropriate for the heating load, if it is lower than that, the capacity is insufficient, and if it is high, it is determined that the capacity is adequate for the heating load. On the other hand, if the evaporation pressure (temperature) is within the set condition range, it is determined that the capacity is appropriate for the cooling load, and if it is lower than that, it is determined that the capacity is excessive. In addition, if the value is high, the load status can be accurately understood by determining that the capacity is insufficient.
In response to the load at this time, the capacity of the compressor 1 is adjusted while the heat source side coil 2 acts as the current condenser or evaporator, and the opening degree of the refrigerant flow rate control valve 4 is adjusted. By controlling the heat exchange capacity of the heat source side coil 2 and further operating the first switching valve device 3 to switch the heat source side coil 2 to act as an evaporation switching valve device or a condensation switching valve device. Therefore, it is possible to automatically perform control according to the load, and as a result, efficient heat recovery air conditioning operation without causing disturbance can be realized. (Example 1) Hereinafter, a first example of the present invention will be described based on the accompanying drawings. In Figure 1, A is the outdoor unit, IA, IB,
In each indoor unit of IC, these indoor units IA,
IB and IC are connected to the outdoor unit A via a liquid side main pipe 5, a high pressure gas side main pipe 6 and a low pressure gas side main pipe 7. Outdoor unit A has a compressor 1 whose capacity can be controlled.
For example, a compressor 1 having a shaft-directly coupled electric motor driven by a capacity control device 19 (see FIG. 2) such as a frequency converter, a heat source side coil 2, and a refrigerant flow control device 4, for example, an electrically actuated refrigerant flow control device. valve 4 and
It includes a first switching valve device 3 and a liquid receiver 16. One end of the heat source side coil 2 is connected to the compressor 1 via a pipe 3P having a first switching valve device 3, and the first switching valve device 3 has two on-off valves 3D and 3S. The heat source side coil 2 is opened by opening the on-off valve 3D on the discharge side of the compressor 1.
On the other hand, by opening the on-off valve 3S, the suction side is alternately switched to the heat source side coil 2 so as to communicate therewith. On the other hand, the other end of the heat source side coil 2 is an expansion valve whose driving element is an electric device such as a pulse motor or an electromagnetic plunger, and whose opening degree can be adjusted according to the amount of input electricity. It is connected to the liquid side main pipe 5 via a refrigerant flow rate control device 4 (hereinafter simply abbreviated as a control valve) that easily adjusts the opening degree. Further, the high pressure gas side main pipe 6 is extended from the discharge side of the compressor 1, and the low pressure gas side main pipe 7 is extended and connected from the suction side. Note that 26 is a fan for the heat source side coil 2. Next, each of the indoor units IA to IC has a circuit configuration in which a cooling pressure reducer 8 and a use side coil 9 are connected in series, and a check valve 27 is connected in parallel to the pressure reducer 8. , the inflow side of the cooling pressure reducer 8 is connected to the liquid side main pipe 5 with first auxiliary pipes 5A, 5A,
5A, and one end that serves as an outlet during cooling operation of the user side coil 9 is connected to the high pressure gas side main pipe 6 and the low pressure gas side main pipe 7, and the on/off valves 13A to 13C on the high pressure gas side and the low pressure gas side. on-off valve 14
A second auxiliary pipe 1 equipped with a second switching valve device 10A, 10B, 10C connected to both gas side main pipes 6, 7 in a switching manner by a combination of A to 14C.
They are connected via 0P, 10P, and 10P. Note that 15 is a fan for the coil 9 on the user side. For air conditioners with the above circuit configuration, if you want to perform cooling operation with indoor units IA to IC,
Open the on-off valves 14A to 14C and open the on-off valves 13A to 1.
On the other hand, when heating operation is desired, the on-off valves 13A to 13C are opened and the on-off valves 14A to 14C are closed. On the other hand, in the outdoor unit A, the heat source side coil 2 must be operated as a condenser or an evaporator depending on whether the total load on the indoor side is a cooling load or a heating load, and in the former case, it must be opened and closed. It is sufficient to open the valve 3D and close the on-off valve 3S, or in the latter case, it is sufficient to open the on-off valve 3S and close the on-off valve 3D. The capacity of the compressor 1 is controlled by the capacity control device 19 as shown in FIG. The control device 17 is performed by a device 20, and these devices 19, 20 and a switching controller 21 that switches the valves of the first switching valve device 3 form the control device 17. As mentioned above, indoor units IA to IC can be switched to cooling or heating at will, and when cooling and heating are operated at the same time, the condensing capacity or evaporation capacity is adjusted to match the difference between the cooling load and the heating load. By allowing the heat source side coil 2 on the outdoor side to carry the capacity, heat recovery operation that efficiently utilizes exhaust heat becomes possible. In this case, the operation mode of the heat source side coil 2 is determined by the relationship between the cooling load qE and the heating load qC and the control valve 4.
FIG. 3 shows the relationship between the opening degree of the opening and closing state of the on-off valves 3D and 3S, and the opening/closing state of the on-off valves 3D and 3S. It means the direction in which it acts as a condenser. As is clear from FIG. 3, if you want to make the heat source side coil 2 act as a condenser and control its capacity, you can open the on-off valve 3D, close the on-off valve 3S, and adjust the opening degree of the control valve 4. Conversely, if you want to function as an evaporator and control the capacity, use the on-off valve 3S.
The opening degree of the control valve 4 may be adjusted by opening the on-off valve 3D and closing the on-off valve 3D. Furthermore, by using the capacity control of the compressor 1 in combination, it is possible to perform a refrigeration operation with no excess or deficiency commensurate with the air conditioning load, and to give control commands to the control device 17 that meet the purpose of this refrigeration operation. The control command means 18 will be explained below based on the drawings. The control command means 18 is shown in FIG. 2, and as described above, is composed of four circuits: a heating capacity judgment circuit 22, a cooling capacity judgment circuit 23, a capacity command control circuit 24, and a heat source side coil capacity control command circuit 25. The functions of each circuit are as explained below. The heating capacity determination circuit 22 has, for example, a pressure sensor SH as a condensing side detector that detects the pressure of the high pressure gas side main pipe 6 as an input signal element, and the high pressure detected by the sensor SH corresponds to the set conditions. If it is within the range, that is, within the pressure band region, it is assumed that there is no excess or deficiency in the heating capacity, and an appropriate heating capacity signal is issued.On the other hand, it is assumed that the capacity is insufficient, which is lower than the pressure band, and an insufficient heating capacity signal is issued. If the heating capacity is higher than that, it is assumed that there is sufficient capacity and an excess heating capacity signal is generated. Note that the sensor SH may detect the pressure in the liquid pipe 5, or may detect the condensing temperature instead of the pressure. In the case of this condensation temperature, it may not be possible to accurately detect it in a supercooled state, but it is possible to control it to some extent. The cooling capacity determination circuit 23 has, for example, a pressure sensor SL as an evaporation side detector that detects the pressure of the low pressure gas side main pipe 7 as an input signal element, and the low pressure detected by the sensor SL is within the range of the set conditions. If it is within the pressure band, the system determines that there is no excess or deficiency in the cooling capacity and issues an appropriate cooling capacity signal, while if it is lower than the pressure band, it issues an excess cooling capacity signal because there is room for capacity, and furthermore, If the cooling capacity is high, it is assumed that the cooling capacity is insufficient, and an insufficient cooling capacity signal is generated. Note that the evaporation temperature may be detected in place of the pressure detection by the sensor SL, but if the degree of superheating occurs, accurate detection may not be possible, but a certain degree of control is possible. Since three types of signals are emitted each from both judgment circuits 22 and 23, there are nine types of signal combinations. Therefore, the control operation mode is determined as shown in the table below, and the capacity control command circuit 24 and heat source By activating the side coil capacity control command circuit 25, smooth and stable air conditioning operation can be performed.
【表】
用方向を夫々示している。
上記表から明らかなように9種類の制御動作を
行わせるには、まず容量制御指令回路24は前記
両判定回路22,23の一方が適正暖(冷)房能
力信号を発し、かつ他方が不足冷(暖)房能力信
号を発しているモードと、双方が不足暖(冷)房
能力信号を発しているモードとで容量制御装置1
9に容量増加指令信号を発し、また、一方が適正
暖(冷)房能力信号を発し、かつ他方が過剰冷
(暖)房能力を発しているモードと、双方が過剰
暖(冷)房能力信号を発しているモードとで容量
制御装置19に容量減少指令信号を発し、さらに
その他のモードでは現状維持指令信号を発するよ
うに形成するものであり、一方、熱源側コイル能
力制御指令回路25は過剰暖房能力信号と適正冷
房能力信号あるいは不足冷房能力信号とを発して
いるモードと、適正暖房能力信号及び不足冷房能
力信号を発しているモードとでは、熱源側コイル
2を凝縮器として作用せしめた状態で該コイル2
の能力を調節する必要があるために、切換制御器
21に対し開閉弁3Dを開放させるための切換指
令信号を発すると共に、弁開度制御装置20に弁
開度を増大あるいは減少させるための弁開度変更
指令を発せしめ、また、不足暖房能力信号と適正
冷房能力信号あるいは過剰冷房能力信号とを発し
ているモードと、適正暖房能力信号及び過剰冷房
能力信号を発しているモードとでは、熱源側コイ
ル2を蒸発器として作用せしめた状態で該コイル
2の能力を調節する必要があるために切換制御器
21に対し開閉弁3Sを開放させるための切換指
令信号を発せしめると共に、弁開度制御装置20
に弁開度を増減させるための弁開度変更指令信号
を発せしめ、さらにその他のモードでは現状維持
指令信号を発する(信号を発しないのと同じであ
る)ように形成するものである。
なお、上記両回路24,25はマイクロコンピ
ユータを用いることによつて演算及び指令信号発
信が簡単に行えるが、その他に9個の有接点リレ
ーを3行、3列のマトリツクス演算回路を基本と
した結線要領により電磁コイル励磁回路に形成
し、各リレーを選択的に作動させることによつて
も可能であり、何れの場合も第4図に示すフロー
線図の作動態様によつて制御がなされるものであ
る。
次に第1図に示した空気調和装置の運転態様の
概要を第4図に併せ参照して説明する。
冬期の暖房を主体とした運転を例にとると、電
源スイツチなどの投入によつて運転開始(イ)さ
せると同時に初期設定を行う(ロ)。
この場合、弁開度制御装置20によつて制御弁
4を閉止させると共に、切換制御器21によつて
開閉弁3Sを開放、開閉弁3Dを閉止させる。
なお、室内側では一部の室内側ユニツト例えば
電算機室に設置のものが冷房運転にセツトされて
いるものとする。
運転開始後、1分間隔等所定の周期でチエツク
信号が発せられる(ハ)毎に暖房能力判定回路2
2による判定(ニ)と、冷房能力判定回路23に
よる判定(ホ)とを行わせる。
なお、第4図中、Pcは高圧圧力、Peは低圧圧
力を示し、また、「適」は適正暖(冷)房、「高・
過」はPcが高くて過剰暖房能力信号を発してい
ること、「高・不」はPeが高くて不足冷房能力信
号を発していること、「低・過」はPeが低くて過
剰冷房能力信号を発していることを夫々示してい
る。
前述した如く、9種類の判定結果によつて、圧
縮機1の容量を増加させる信号(ヘ)、逆に減少
させる信号(ト)、熱源側コイル2蒸発器として
作用させ、かつ制御弁4の弁開度を増減させる信
号(チ)、逆に凝縮器として作用させ、かつ制御
弁4の弁開度を増減させる信号(リ)を夫々選択
的に発信させて所望の熱回収式運転が可能とな
る。
なお、第4図中E,Cで示した作動内容は第5
図及び第6図に示すフローを符号化したものであ
つて、夫々開閉弁3D,3Sの開閉制御と制御弁
4のステツプ増弁あるいはステツプ減弁が順序的
に成されるようになつている。
すなわち、前記初期設定状態から運転状態の変
化があり今まで冷房負荷>暖房負荷であつたの
が、冷房負荷<暖房負荷となつた場合には第5図
に示すフローとなり、逆に今まで冷房負荷<暖房
負荷であつたのが冷房負荷>暖房負荷となつた場
合には、第6図に示すフローとなる。
すなわち、第5図においては、今までの運転が
開閉弁3Dが閉の暖房主体か開閉弁3Dが開の冷
房主体かを開閉弁3Dが開か否かで判断し、開で
あれば冷房主体であるので制御弁4の開度を減少
させ、全閉か否かあ判断し全閉であれば、これに
より開閉弁3Dを閉とし開閉弁3Sを開として暖
房主体に切換える。
また、前記開閉弁3Dが閉であれば、制御弁4
の開度を増加させる。このようにして暖房主体の
運転とするのである。
また、第6図においても、今までの運転が暖房
主体か冷房主体かを開閉弁3Dが開か否かで判断
し、開であれば、冷房主体であるので、制御弁4
の開度を増加させる。
また、開閉弁3Dが閉であれば、暖房主体であ
るので、制御弁4が全閉かどうかを判断し、全閉
でなければ制御弁4の開度を減少させ、全閉にな
れば、これにより開閉弁3Dを開とし、開閉弁3
Sを閉として冷房主体に切換える。
このようにして高圧圧力Pc、低圧圧力Peが設
定条件範囲内の値になると均衡のとれた熱回収運
転状態となるので現状維持指令信号を発する
(ヌ)。
(実施例 2)
第7図は本発明の他の実施例に係る配管系統を
示しており、第1切換弁装置3及び第2切換弁装
置10A〜10Cを夫々2個の開閉分からなる構
造に替えて三方切換弁を用いた構造としている点
が異なるだけであつて、前述した実施例と全く同
等の機能を発揮し得るものである。
(実施例 3)
第8図は本発明の更にもう1つの実施例を示す
ものであつて、熱源側コイル2を複数台のコイル
2A〜2Cからなる分割形となして各コイル2A
〜2Cに対し暖房用膨脹弁30A〜30C、逆止
弁31A〜31C及び開閉弁32A〜32Cから
なる冷媒流量制御器を夫々接続せしめて、1台の
み、2台同時、3台同時の運転切換えを行わせて
全体として冷媒流量制御が可能であり、前記各冷
媒流量制御器を一括して冷媒流量制御装置4に構
成し、また各三方切換弁3A〜3Cを一括して第
1切換弁装置3に構成している。
なお、33は前記低圧ガス側主管7の途中に介
設した蒸発圧力調整弁であつて、流入側と流出側
との間に蒸発圧力の差がある場合に流入側を常に
設定圧力に保持させるよう弁開度を調節して弁内
流通抵抗を変え得る構造であつて、熱源側コイル
2A〜2Cが蒸発器として作用する吸熱運転をし
ていて室内側ユニツトでも同様に一部が吸熱運転
をしているときに、外気温度が低くて室外側の蒸
発温度が−5℃となつたとすると、前記蒸発圧力
調整弁33が介設されていなければ室内側の蒸発
温度も低下してきて最悪の場合には霜付きを生じ
る恐れがあるが、この例では前記調整弁33が作
動して室内側の蒸発温度を5℃一定に保持するよ
うに働くので着霜を防止し安定運転を果たしある
利点がある。
以上、本発明の実施例として何れも熱源側が室
外側ユニツト、利用側が室内側ユニツトの場合に
ついて夫々説明して来たが、本発明は必らずしも
これに拘束されるものではなく、広く熱源側と複
数の利用側との間において適用可能であることは
云うまでもない。
(発明の効果)
以上述べたように、本発明によれば、前記の構
成により利用側で負荷に応じて冷房、暖房の運転
を任意に行つても、熱源側だけで総合負荷が暖房
負荷が冷房負荷より大きいか逆に小さいか、また
均衡がとれているかを的確に判定して、自動的に
熱源側コイル2を蒸発器あるいは凝縮器として作
用せしめ、あるいは非作動とさせることが可能で
あり、併せて圧縮器1の要領も適正に制御するこ
とが可能となり、従つて、多接続形空気調和装置
で熱回収運転が簡単かつ確実に行え、省エネルギ
ー性能が飛躍的に増加する。
また、本発明は複数の利用側コイル9の夫々を
個別に冷房用蒸発器又は暖房用凝縮器として作動
可能とすると共に、凝縮圧力(温度)及び蒸発圧
力(温度)の冷媒状態から運転作動モードを選ん
で夫々のモードに適した圧縮能力制御及び熱源側
コイルの熱交換能力制御を行わせてなることによ
つてきめ細かい運転が可能となり、ハンチング現
象や能力の過不足を排除して円滑かつ安定した空
気調和運転が果たされる。[Table] Shows the direction of use.
As is clear from the table above, in order to perform the nine types of control operations, the capacity control command circuit 24 must first ensure that one of the determination circuits 22 and 23 issues an appropriate heating (cooling) capacity signal, and that the other determines that the capacity is insufficient. The capacity control device 1 operates in two modes: a mode in which a cooling (heating) capacity signal is emitted, and a mode in which both sides issue an insufficient heating (cooling) capacity signal.
In addition, there is a mode in which one side emits an appropriate heating (cooling) capacity signal and the other side emits an excessive cooling (heating) capacity signal, and a mode in which one side emits an appropriate heating (cooling) capacity signal and the other side emits an excessive cooling (heating) capacity signal. In the mode in which the signal is being emitted, a capacity reduction command signal is issued to the capacity control device 19, and in other modes, a status quo maintenance command signal is issued.On the other hand, the heat source side coil capacity control command circuit 25 is In a mode in which an excess heating capacity signal and an appropriate cooling capacity signal or an insufficient cooling capacity signal are issued, and in a mode in which an appropriate heating capacity signal and an insufficient cooling capacity signal are issued, the heat source side coil 2 is made to act as a condenser. The coil 2 in the state
Since it is necessary to adjust the capacity of the valve, it is necessary to issue a switching command signal to the switching controller 21 to open the on-off valve 3D, and also send a switching command signal to the valve opening control device 20 to increase or decrease the valve opening. The mode in which the opening change command is issued, and the insufficient heating capacity signal and the appropriate cooling capacity signal or the excess cooling capacity signal are issued, and the mode in which the proper heating capacity signal and the excess cooling capacity signal are issued are the heat source Since it is necessary to adjust the capacity of the side coil 2 while it is operating as an evaporator, a switching command signal is issued to the switching controller 21 to open the on-off valve 3S, and the valve opening is adjusted. Control device 20
In other modes, a valve opening change command signal is issued to increase or decrease the valve opening, and in other modes, a status quo maintenance command signal is issued (which is the same as not issuing a signal). Note that both the above circuits 24 and 25 can easily perform calculations and send command signals by using a microcomputer, but in addition, a matrix calculation circuit with nine contact relays in three rows and three columns is basically used. This is also possible by forming an electromagnetic coil excitation circuit according to the wiring procedure and selectively activating each relay, and in either case, control is performed according to the operating mode shown in the flow diagram shown in Figure 4. It is something. Next, an outline of the operating mode of the air conditioner shown in FIG. 1 will be explained with reference to FIG. 4 as well. Taking as an example an operation mainly for heating in winter, when the power switch is turned on, the operation is started (a) and the initial settings are made at the same time (b). In this case, the valve opening control device 20 closes the control valve 4, and the switching controller 21 opens the on-off valve 3S and closes the on-off valve 3D. It is assumed that some of the indoor units installed in the computer room, for example, are set to cooling mode. After the start of operation, the heating capacity determination circuit 2 is activated every time a check signal is issued at a predetermined period such as every minute (c).
2 (D) and the cooling capacity determination circuit 23 (E). In Figure 4, Pc indicates high pressure, Pe indicates low pressure, and "suitable" indicates proper heating (cooling), and "high/
"Excessive" indicates that Pc is high and an excess heating capacity signal is being emitted, "High/Normal" means that Pe is high and an insufficient cooling capacity signal is being emitted, and "Low/Excessive" indicates that Pe is low and excessive cooling capacity is being emitted. Each indicates that a signal is being emitted. As mentioned above, based on the nine types of determination results, there is a signal to increase the capacity of the compressor 1 (F), a signal to decrease the capacity of the compressor 1 (G), a signal to cause the heat source side coil 2 to act as an evaporator, and a signal to cause the control valve 4 to act as an evaporator. Desired heat recovery type operation can be achieved by selectively transmitting a signal (H) that increases or decreases the valve opening degree, or a signal (R) that causes the control valve 4 to function as a condenser and increases or decreases the valve opening degree. becomes. In addition, the operation contents indicated by E and C in Fig. 4 are as follows.
This is an encoded flowchart of the flow shown in FIG. . In other words, if there is a change in the operating state from the initial setting state, and the cooling load > heating load has changed to cooling load < heating load, the flow will be as shown in Figure 5, and vice versa. When load<heating load becomes cooling load>heating load, the flow becomes as shown in FIG. 6. In other words, in FIG. 5, whether the current operation has been mainly heating with the on-off valve 3D closed or mainly cooling with the on-off valve 3D open is determined by whether the on-off valve 3D is open or not, and if it is open, it is mainly cooling. Therefore, the opening degree of the control valve 4 is reduced, and it is determined whether it is fully closed or not. If it is fully closed, the on-off valve 3D is closed, the on-off valve 3S is opened, and the main heating is switched. Further, if the on-off valve 3D is closed, the control valve 4
Increase the opening. In this way, the heating-based operation is achieved. Also, in FIG. 6, it is determined whether the current operation is mainly heating or cooling based on whether the on-off valve 3D is open or not. If it is open, it means that the operation is mainly cooling, so the control valve 4
Increase the opening. Also, if the on-off valve 3D is closed, the heating is mainly performed, so it is determined whether the control valve 4 is fully closed, and if it is not fully closed, the opening degree of the control valve 4 is decreased, and if it is fully closed, As a result, the on-off valve 3D is opened, and the on-off valve 3D is opened.
Close S to switch to cooling mode. In this way, when the high pressure Pc and the low pressure Pe reach values within the set condition range, a balanced heat recovery operating state is achieved, and a status quo maintenance command signal is issued (nu). (Embodiment 2) FIG. 7 shows a piping system according to another embodiment of the present invention, in which the first switching valve device 3 and the second switching valve devices 10A to 10C are each configured to have two opening/closing parts. The only difference is that a three-way switching valve is used instead, and it can perform exactly the same function as the previously described embodiment. (Embodiment 3) FIG. 8 shows yet another embodiment of the present invention, in which the heat source side coil 2 is divided into a plurality of coils 2A to 2C, and each coil 2A
~2C is connected to a refrigerant flow controller consisting of heating expansion valves 30A to 30C, check valves 31A to 31C, and on/off valves 32A to 32C, respectively, to switch the operation of only one, two at the same time, or three at the same time. It is possible to control the refrigerant flow rate as a whole by controlling the refrigerant flow rate, and the refrigerant flow rate controllers are collectively configured as a refrigerant flow rate control device 4, and the three-way switching valves 3A to 3C are collectively configured as a first switching valve device. It is composed of 3 parts. Note that 33 is an evaporation pressure regulating valve interposed in the middle of the low-pressure gas side main pipe 7, which always maintains the inflow side at a set pressure when there is a difference in evaporation pressure between the inflow side and the outflow side. It has a structure in which the flow resistance inside the valve can be changed by adjusting the valve opening degree, and the heat source side coils 2A to 2C are in an endothermic operation acting as an evaporator, and a part of the indoor unit is also in an endothermic operation. If the outside air temperature is low and the evaporation temperature on the outdoor side is -5°C when the evaporation pressure adjustment valve 33 is not installed, the evaporation temperature on the indoor side will also decrease, which is the worst case scenario. However, in this example, the regulating valve 33 operates to maintain the indoor evaporation temperature at a constant 5°C, thereby preventing frost formation and achieving stable operation, which has certain advantages. be. In the above embodiments of the present invention, the case where the heat source side is an outdoor unit and the user side is an indoor unit has been explained, but the present invention is not necessarily limited to this, and can be applied widely. Needless to say, it is applicable between the heat source side and a plurality of users. (Effects of the Invention) As described above, according to the present invention, even if the user side arbitrarily performs cooling and heating operations according to the load, the overall load on the heat source side is reduced to the heating load due to the above configuration. It is possible to accurately determine whether the cooling load is larger than or smaller than the cooling load, or whether it is balanced, and automatically cause the heat source side coil 2 to act as an evaporator or condenser, or to make it inactive. In addition, it becomes possible to appropriately control the operation of the compressor 1, and therefore, heat recovery operation can be easily and reliably performed in a multi-connection air conditioner, and energy saving performance is dramatically increased. In addition, the present invention enables each of the plurality of use-side coils 9 to individually operate as a cooling evaporator or a heating condenser, and also allows operation mode to be selected from the refrigerant state of condensing pressure (temperature) and evaporation pressure (temperature). By selecting the appropriate compression capacity for each mode and controlling the heat exchange capacity of the heat source side coil, fine-grained operation is possible, eliminating hunting phenomena and excess or deficiency in capacity, resulting in smooth and stable operation. air conditioning operation is achieved.
第1図は本発明の1実施例に係る配管系統図、
第2図は同じ制御装置及び制御指令手段のブロツ
ク示構造図、第3図は本発明に係る原理説明図、
第4図乃至第6図は本発明の作動態様を示すフロ
ー線図、第7図及び第8図は本発明の各実施例に
係る配管系統図、第9図は従来装置の配管系統図
である。
A……室外側ユニツト、IA,IB,IC……室内
側ユニツト、1……圧縮機、2……熱源側コイ
ル、3……第1切換弁装置、4……冷媒流量制御
装置、5……液側主管、6……高圧ガス側主管、
7……低圧ガス側主管、8……冷房用減圧器、9
……利用側コイル、10A,10B,10C……
第2切換弁装置、17……制御装置、18……制
御指令手段、19……容量制御装置、20……弁
開度制御装置、21……切換制御装置。
FIG. 1 is a piping system diagram according to an embodiment of the present invention,
FIG. 2 is a block diagram of the same control device and control command means, and FIG. 3 is a diagram explaining the principle of the present invention.
Figures 4 to 6 are flow diagrams showing the operating mode of the present invention, Figures 7 and 8 are piping system diagrams according to each embodiment of the present invention, and Figure 9 is a piping system diagram of a conventional device. be. A... Outdoor unit, IA, IB, IC... Indoor unit, 1... Compressor, 2... Heat source side coil, 3... First switching valve device, 4... Refrigerant flow rate control device, 5... ...Liquid side main pipe, 6...High pressure gas side main pipe,
7...Low pressure gas side main pipe, 8...Air conditioning pressure reducer, 9
...Using side coil, 10A, 10B, 10C...
Second switching valve device, 17...Control device, 18...Control command means, 19...Capacity control device, 20...Valve opening control device, 21...Switching control device.
Claims (1)
とを備え、前記熱源側コイル2の一方の端部を、
第1切換弁装置3を持つ配管3Pを介して前記圧
縮機1の吐出側と吸入側とに切換連通可能に接続
し、前記熱源側コイル2の他方の端部を冷媒流量
制御装置4を介して液側主管5に接続するととも
に、前記圧縮機1の吐出側に高圧ガス側主管6
を、吸入側に低圧ガス側主管7をそれぞれ接続し
て構成する一方、冷房用減圧器8と利用側コイル
9とを直列に接続した直列回路を複数個形成し、
各直列回路の冷房用減圧器8側を、前記液側主管
5に、第1補助管5A,5A,5Aを介して接続
するとともに、前記利用側コイル9側を前記高圧
ガス側主管6と低圧ガス側主管7とに、これら高
圧ガガ側主管6と低圧ガス側主管7とに切換連通
可能に接続する第2切換弁装置10A,10B,
10Cを持つ第2補助管10P,10P,10P
を介して接続し、前記圧縮機1の容量を制御する
容量制御装置19と前記冷媒流量制御装置4の弁
開度を制御する弁開度制御装置20と前記第1切
換弁装置3の弁切換を制御する弁切換制御器21
とを備えた制御装置17と、凝縮圧力又は凝縮温
度を検出する凝縮側検出器SHと、蒸発圧力又は蒸
発温度を検出する蒸発側検出器SLと、凝縮圧力又
は凝縮温度及び蒸発圧力又は蒸発温度がそれぞれ
制御目標として設定された所定範囲内の値になる
ように、前記凝縮側検出器SH及び前記蒸発側検出
器SLの信号を受けて前記制御装置17を作動せし
める制御指令手段18とを設けて、前記利用側コ
イル9…のそれぞれを個別に冷房用蒸発器又は暖
房用凝縮器として作動可能としたことを特徴とす
る空気調和装置。1 Compressor 1 and heat source side coil 2 that can control capacity
and one end of the heat source side coil 2,
It is connected to the discharge side and the suction side of the compressor 1 through a piping 3P having a first switching valve device 3 so as to be able to switch and communicate with each other, and the other end of the heat source side coil 2 is connected through a refrigerant flow rate control device 4. is connected to the liquid side main pipe 5, and a high pressure gas side main pipe 6 is connected to the discharge side of the compressor 1.
is configured by connecting the low-pressure gas side main pipe 7 to the suction side, while forming a plurality of series circuits in which the cooling pressure reducer 8 and the usage side coil 9 are connected in series,
The cooling pressure reducer 8 side of each series circuit is connected to the liquid side main pipe 5 via the first auxiliary pipes 5A, 5A, 5A, and the usage side coil 9 side is connected to the high pressure gas side main pipe 6 and the low pressure Second switching valve devices 10A, 10B, which are connected to the gas side main pipe 7, and the high pressure Gaga side main pipe 6 and the low pressure gas side main pipe 7 so as to be able to switch and communicate with each other.
Second auxiliary pipe 10P, 10P, 10P with 10C
A capacity control device 19 that controls the capacity of the compressor 1, a valve opening degree control device 20 that controls the valve opening degree of the refrigerant flow rate control device 4, and a valve switching device of the first switching valve device 3, which are connected via Valve switching controller 21 that controls
a condensing side detector S H for detecting condensing pressure or condensing temperature; an evaporating side detector S L for detecting evaporating pressure or evaporating temperature; control command means for operating the control device 17 in response to signals from the condensation side detector S H and the evaporation side detector S L so that the evaporation temperature falls within a predetermined range set as a control target; 18, so that each of the user-side coils 9 can be individually operated as a cooling evaporator or a heating condenser.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23206884A JPS61110859A (en) | 1984-11-02 | 1984-11-02 | Heat recovery type air conditioner |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23206884A JPS61110859A (en) | 1984-11-02 | 1984-11-02 | Heat recovery type air conditioner |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3298224A Division JPH0749901B2 (en) | 1991-10-17 | 1991-10-17 | Air conditioner |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS61110859A JPS61110859A (en) | 1986-05-29 |
JPH0522145B2 true JPH0522145B2 (en) | 1993-03-26 |
Family
ID=16933480
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP23206884A Granted JPS61110859A (en) | 1984-11-02 | 1984-11-02 | Heat recovery type air conditioner |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61110859A (en) |
Families Citing this family (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63279063A (en) * | 1987-05-08 | 1988-11-16 | 日本エ−・シ−・イ−株式会社 | Simultaneous air-conditioning method at plurality of position |
JPS6467572A (en) * | 1987-09-08 | 1989-03-14 | Toshiba Corp | Air conditioner |
JPH0285656A (en) * | 1988-09-20 | 1990-03-27 | Sanyo Electric Co Ltd | Airconditioner |
JP2760500B2 (en) * | 1987-12-21 | 1998-05-28 | 三洋電機株式会社 | Multi-room air conditioner |
JPH01247967A (en) * | 1988-03-29 | 1989-10-03 | Sanyo Electric Co Ltd | Multi-room type air-conditioner |
JP2692856B2 (en) * | 1988-05-24 | 1997-12-17 | 三洋電機株式会社 | Multi-room air conditioner |
JPH0252964A (en) * | 1988-08-15 | 1990-02-22 | Mitsubishi Electric Corp | Multiroom type refrigerating circuit |
JPH0278870A (en) * | 1988-09-13 | 1990-03-19 | Sanyo Electric Co Ltd | Cooling and heating device |
JPH0282066A (en) * | 1988-09-19 | 1990-03-22 | Sanyo Electric Co Ltd | Air conditioner |
JP2698117B2 (en) * | 1988-09-30 | 1998-01-19 | 三洋電機株式会社 | Air conditioner |
JP2698118B2 (en) * | 1988-09-30 | 1998-01-19 | 三洋電機株式会社 | Air conditioner |
JPH0297858A (en) * | 1988-10-03 | 1990-04-10 | Sanyo Electric Co Ltd | Air conditioner |
JPH02126035A (en) * | 1988-11-02 | 1990-05-15 | Mitsubishi Electric Corp | Multiroom type air conditioning device |
JPH02146474A (en) * | 1988-11-26 | 1990-06-05 | Toupure Kk | Air-conditioning equipment |
JPH02213660A (en) * | 1989-02-14 | 1990-08-24 | Sanyo Electric Co Ltd | Cooling or heating device |
JPH0320573A (en) * | 1989-06-19 | 1991-01-29 | Sanyo Electric Co Ltd | Air-conditioning apparatus |
JP2740273B2 (en) * | 1989-07-05 | 1998-04-15 | 三洋電機株式会社 | Air conditioner |
JPH0355474A (en) * | 1989-07-21 | 1991-03-11 | Sanyo Electric Co Ltd | Air conditioning apparatus |
JP2765970B2 (en) * | 1989-07-31 | 1998-06-18 | 三洋電機株式会社 | Air conditioner |
JP2611440B2 (en) * | 1989-07-31 | 1997-05-21 | ダイキン工業株式会社 | Operation control device for air conditioner |
JP2682157B2 (en) * | 1989-07-31 | 1997-11-26 | ダイキン工業株式会社 | Air conditioner |
JP2508306B2 (en) * | 1989-10-30 | 1996-06-19 | ダイキン工業株式会社 | Operation control device for air conditioner |
JPH03144246A (en) * | 1989-10-30 | 1991-06-19 | Daikin Ind Ltd | Operation control device for air conditioner |
JP2716559B2 (en) * | 1990-03-02 | 1998-02-18 | 三菱電機株式会社 | Cooling / heating mixed type multi-room air conditioner |
JP2654222B2 (en) * | 1990-03-07 | 1997-09-17 | 三菱電機株式会社 | Cooling / heating mixed type multi-refrigeration cycle |
JP2893844B2 (en) * | 1990-04-23 | 1999-05-24 | 三菱電機株式会社 | Air conditioner |
JPH07180927A (en) * | 1994-07-25 | 1995-07-18 | Sanyo Electric Co Ltd | Multi-chamber type cooling and heating device |
JPH07180928A (en) * | 1994-09-02 | 1995-07-18 | Sanyo Electric Co Ltd | Multi-chamber type cooling and heating device |
JPH08320169A (en) * | 1996-05-20 | 1996-12-03 | Sanyo Electric Co Ltd | Air conditioner |
SE531841C2 (en) * | 2007-12-07 | 2009-08-25 | Scania Cv Ab | Arrangement and method for recirculating exhaust gases of an internal combustion engine |
-
1984
- 1984-11-02 JP JP23206884A patent/JPS61110859A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS61110859A (en) | 1986-05-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0522145B2 (en) | ||
JP3816860B2 (en) | Heat pump air conditioner | |
JPS6334459A (en) | Air conditioner | |
JPH0762569B2 (en) | Operation control device for air conditioner | |
JPH05622B2 (en) | ||
JPH06257828A (en) | Multi-chamber type air conditioning system | |
KR20210093560A (en) | Air Conditioner System for Simultaneous Cooling, Heating and hot water supplying and Control Method of the Same | |
KR950012148B1 (en) | Airconditioner | |
JPH06257827A (en) | Multi chamber type air conditioning system | |
JPH02223757A (en) | Air conditioner | |
JPH09145130A (en) | Multi-room type air conditioner system | |
JP2001116330A (en) | Multi-chamber type air-conditioning system | |
JPH06317360A (en) | Multi-chamber type air conditioner | |
CN113551305B (en) | Air conditioner with double heat exchangers and control method thereof | |
JP2777176B2 (en) | Air conditioner | |
JPH03211370A (en) | Controller for expansion valve of multiple-air conditioner | |
JPH07269977A (en) | Motor operated expansion valve controller for air conditioner | |
JPH0285647A (en) | Air conditioner | |
JPH0451319Y2 (en) | ||
JPH0236057Y2 (en) | ||
JPH05248722A (en) | Refrigerant control device for multi-chamber type air conditioner | |
JP2503701B2 (en) | Air conditioner | |
JPH06123474A (en) | Plural room-type air conditioner | |
JPH0484061A (en) | Electrically-driven expansion valve controller for multi-chamber type air conditioner | |
JPH0120604Y2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |